Two-dimensional heterostructures for energy storage

Nature Energy

2,

DOI: 10.1038/nenergy.2017.89

Citation Report

#	Article	IF	CITATIONS
1	Highly Conductive Transition Metal Carbide/Carbonitride(MXene)@polystyrene Nanocomposites Fabricated by Electrostatic Assembly for Highly Efficient Electromagnetic Interference Shielding. Advanced Functional Materials, 2017, 27, 1702807.	7.8	620
2	2D Materials with Nanoconfined Fluids for Electrochemical Energy Storage. Joule, 2017, 1, 443-452.	11.7	104
3	Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti ₃ C ₂ T _{<i>x</i>} MXene). Chemistry of Materials, 2017, 29, 7633-7644.	3.2	3,129
4	Elucidating the Intercalation Pseudocapacitance Mechanism of MoS ₂ –Carbon Monolayer Interoverlapped Superstructure: Toward High-Performance Sodium-Ion-Based Hybrid Supercapacitor. ACS Applied Materials & Interfaces, 2017, 9, 32745-32755.	4.0	156
5	Titanium Disulfide: A Promising Low-Dimensional Electrode Material for Sodium Ion Intercalation for Seawater Desalination. Chemistry of Materials, 2017, 29, 9964-9973.	3.2	112
6	Recent advances in the nanoengineering of electrocatalysts for CO ₂ reduction. Nanoscale, 2018, 10, 6235-6260.	2.8	139
7	Facile Water-Based Strategy for Synthesizing MoO _{3–<i>x</i>} Nanosheets: Efficient Visible Light Photocatalysts for Dye Degradation. ACS Omega, 2018, 3, 2193-2201.	1.6	135
8	Dwindling the re-stacking by simultaneous exfoliation of boron nitride and decoration of α-Fe ₂ O ₃ nanoparticles using a solvothermal route. New Journal of Chemistry, 2018, 42, 5090-5095.	1.4	8
9	Nucleation front instability in two-dimensional (2D) nanosheet gadolinium-doped cerium oxide (CGO) formation. CrystEngComm, 2018, 20, 1405-1410.	1.3	5
10	Selfâ€Activating, Capacitive Anion Intercalation Enables Highâ€Power Graphite Cathodes. Advanced Materials, 2018, 30, e1800533.	11.1	121
11	A Nonaqueous Potassiumâ€Based Battery–Supercapacitor Hybrid Device. Advanced Materials, 2018, 30, e1800804.	11.1	345
12	One-Dimensional Hetero-Nanostructures for Rechargeable Batteries. Accounts of Chemical Research, 2018, 51, 950-959.	7.6	87
13	One-step synthesis of 2D-layered carbon wrapped transition metal nitrides from transition metal carbides (MXenes) for supercapacitors with ultrahigh cycling stability. Chemical Communications, 2018, 54, 2755-2758.	2.2	59
14	Three-Dimensional Integrated X-ray Diffraction Imaging of a Native Strain in Multi-Layered WSe ₂ . Nano Letters, 2018, 18, 1993-2000.	4.5	9
15	Controllable Chemical Vapor Deposition Growth of Two-Dimensional Heterostructures. CheM, 2018, 4, 671-689.	5.8	84
16	Emergent Pseudocapacitance of 2D Nanomaterials. Advanced Energy Materials, 2018, 8, 1702930.	10.2	226
17	Recent Advances in Layered Ti ₃ C ₂ T <i>_x</i> MXene for Electrochemical Energy Storage. Small, 2018, 14, e1703419.	5.2	729
18	Three-Dimensional Network Architecture with Hybrid Nanocarbon Composites Supporting Few-Layer MoS ₂ for Lithium and Sodium Storage. ACS Nano, 2018, 12, 1592-1602.	7.3	275

.,		15	C
#	ARTICLE Improved capacity of redox-active functional carbon cathodes by dimension reduction for hybrid		CHATIONS
19	supercapacitors. Journal of Materials Chemistry A, 2018, 6, 3367-3375.	5.2	28
20	Beyond Insertion for Naâ€lon Batteries: Nanostructured Alloying and Conversion Anode Materials. Advanced Energy Materials, 2018, 8, 1702582.	10.2	231
21	Nature-Inspired 2D-Mosaic 3D-Gradient Mesoporous Framework: Bimetal Oxide Dual-Composite Strategy toward Ultrastable and High-Capacity Lithium Storage. ACS Nano, 2018, 12, 2035-2047.	7.3	40
22	Metallic MoN layer and its application as anode for lithium-ion batteries. Nanotechnology, 2018, 29, 165402.	1.3	15
23	Structural Engineering of 2D Nanomaterials for Energy Storage and Catalysis. Advanced Materials, 2018, 30, e1706347.	11.1	297
24	Genuine Unilamellar Metal Oxide Nanosheets Confined in a Superlattice-like Structure for Superior Energy Storage. ACS Nano, 2018, 12, 1768-1777.	7.3	122
25	Two-dimensional nanostructures for sodium-ion battery anodes. Journal of Materials Chemistry A, 2018, 6, 3284-3303.	5.2	224
26	MoS ₂ â€onâ€MXene Heterostructures as Highly Reversible Anode Materials for Lithiumâ€Ion Batteries. Angewandte Chemie, 2018, 130, 1864-1868.	1.6	67
27	MoS ₂ â€onâ€MXene Heterostructures as Highly Reversible Anode Materials for Lithiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2018, 57, 1846-1850.	7.2	520
28	Reversible and fast Na-ion storage in MoO2/MoSe2 heterostructures for high energy-high power Na-ion capacitors. Energy Storage Materials, 2018, 12, 241-251.	9.5	117
29	MXenes/graphene heterostructures for Li battery applications: a first principles study. Journal of Materials Chemistry A, 2018, 6, 2337-2345.	5.2	173
30	Emerging Robust Heterostructure of MoS ₂ –rGO for High-Performance Supercapacitors. ACS Applied Materials & Interfaces, 2018, 10, 16588-16595.	4.0	163
31	Layered PtTe ₂ Matches Electrocatalytic Performance of Pt/C for Oxygen Reduction Reaction with Significantly Lower Toxicity. ACS Sustainable Chemistry and Engineering, 2018, 6, 7432-7441.	3.2	56
32	2D Titanium Carbide/Reduced Graphene Oxide Heterostructures for Supercapacitor Applications. Batteries and Supercaps, 2018, 1, 33-38.	2.4	72
33	Probing Battery Electrochemistry with In Operando Synchrotron Xâ€Ray Imaging Techniques. Small Methods, 2018, 2, 1700293.	4.6	52
34	Unilamellar Metallic MoS ₂ /Graphene Superlattice for Efficient Sodium Storage and Hydrogen Evolution. ACS Energy Letters, 2018, 3, 997-1005.	8.8	184
35	Bifunctional 2D Superlattice Electrocatalysts of Layered Double Hydroxide–Transition Metal Dichalcogenide Active for Overall Water Splitting. ACS Energy Letters, 2018, 3, 952-960.	8.8	140
36	Defining Diffusion Pathways in Intercalation Cathode Materials: Some Lessons from V ₂ O ₅ on Directing Cation Traffic. ACS Energy Letters, 2018, 3, 915-931.	8.8	79

#	Article	IF	CITATIONS
37	Recent Applications of 2D Inorganic Nanosheets for Emerging Energy Storage System. Chemistry - A European Journal, 2018, 24, 4757-4773.	1.7	52
38	2D MXene/SnS2 composites as high-performance anodes for sodium ion batteries. Chemical Engineering Journal, 2018, 334, 932-938.	6.6	230
39	Progress of Nanostructured Electrode Materials for Supercapacitors. Advanced Sustainable Systems, 2018, 2, 1700110.	2.7	87
40	Graphene-coupled Ti ₃ C ₂ MXenes-derived TiO ₂ mesostructure: promising sodium-ion capacitor anode with fast ion storage and long-term cycling. Journal of Materials Chemistry A, 2018, 6, 1017-1027.	5.2	133
41	Holey 2D Nanomaterials for Electrochemical Energy Storage. Advanced Energy Materials, 2018, 8, 1702179.	10.2	293
42	Lateral heterostructures of two-dimensional materials by electron-beam induced stitching. Carbon, 2018, 128, 106-116.	5.4	20
43	Electronic and Optical Properties of 2D Transition Metal Carbides and Nitrides (MXenes). Advanced Materials, 2018, 30, e1804779.	11.1	850
44	Construction of MoS ₂ /C Hierarchical Tubular Heterostructures for High-Performance Sodium Ion Batteries. ACS Nano, 2018, 12, 12578-12586.	7.3	272
45	Hydrodynamic assembly of two-dimensional layered double hydroxide nanostructures. Nature Communications, 2018, 9, 4913.	5.8	38
46	Mechanistic Understanding of the Growth Kinetics and Dynamics of Nanoparticle Superlattices by Coupling Interparticle Forces from Real-Time Measurements. ACS Nano, 2018, 12, 12778-12787.	7.3	34
47	First-principles investigation of Ag-, Co-, Cr-, Cu-, Fe-, Mn-, Ni-, Pd- and Rh-hexaaminobenzene 2D metal-organic frameworks. Materials Today Energy, 2018, 10, 336-342.	2.5	18
48	Tungstenâ€Based Materials for Lithiumâ€lon Batteries. Advanced Functional Materials, 2018, 28, 1707500.	7.8	114
49	Inhibiting Polysulfide Shuttling with a Graphene Composite Separator for Highly Robust Lithium-Sulfur Batteries. Joule, 2018, 2, 2091-2104.	11.7	345
50	Thermally Reduced Graphene/MXene Film for Enhanced Liâ€ion Storage. Chemistry - A European Journal, 2018, 24, 18556-18563.	1.7	65
51	Ultrafast Broadband Charge Collection from Clean Graphene/CH ₃ NH ₃ PbI ₃ Interface. Journal of the American Chemical Society, 2018, 140, 14952-14957.	6.6	29
52	2D Materials for Lithium/Sodium Metal Anodes. Advanced Energy Materials, 2018, 8, 1802833.	10.2	105
53	Atomic‣cale Observation of Electrochemically Reversible Phase Transformations in SnSe ₂ Single Crystals. Advanced Materials, 2018, 30, e1804925.	11.1	38
54	Highly Electrically Conductive Three-Dimensional Ti ₃ C ₂ T _{<i>x</i>} MXene/Reduced Graphene Oxide Hybrid Aerogels with Excellent Electromagnetic Interference Shielding Performances. ACS Nano, 2018, 12, 11193-11202.	7.3	671

#	Article	IF	CITATIONS
55	Ion Removal Performance, Structural/Compositional Dynamics, and Electrochemical Stability of Layered Manganese Oxide Electrodes in Hybrid Capacitive Deionization. ACS Applied Materials & Interfaces, 2018, 10, 32313-32322.	4.0	67
56	MoS2 flakes integrated with boron and nitrogen-doped carbon: Striking gravimetric and volumetric capacitive performance for supercapacitor applications. Journal of Power Sources, 2018, 402, 163-173.	4.0	72
57	Heterostructured filler in mixed matrix membranes to coordinate physical and chemical selectivities for enhanced CO2 separation. Journal of Membrane Science, 2018, 567, 272-280.	4.1	60
58	Phosphorene as cathode for metal-ion batteries: Importance of F decoration. Materials Today Energy, 2018, 10, 141-145.	2.5	5
59	Construction of 3D architectures with Ni(HCO ₃) ₂ nanocubes wrapped by reduced graphene oxide for LIBs: ultrahigh capacity, ultrafast rate capability and ultralong cycle stability. Chemical Science, 2018, 9, 8682-8691.	3.7	34
60	2D-Pnictogens: alloy-based anode battery materials with ultrahigh cycling stability. Chemical Society Reviews, 2018, 47, 6964-6989.	18.7	100
61	MXene encapsulated titanium oxide nanospheres for ultra-stable and fast sodium storage. Energy Storage Materials, 2018, 14, 306-313.	9.5	119
62	Solvent mediated hybrid 2D materials: black phosphorus – graphene heterostructured building blocks assembled for sodium ion batteries. Nanoscale, 2018, 10, 10443-10449.	2.8	40
63	Hierarchical Porous NiO/βâ€NiMoO ₄ Heterostructure as Superior Anode Material for Lithium Storage. ChemPlusChem, 2018, 83, 915-923.	1.3	15
64	Enhanced Lithium Storage Performance of Liquidâ€Phase Exfoliated Graphene Supported WS ₂ Heterojunctions. ChemElectroChem, 2018, 5, 3222-3228.	1.7	18
65	Reliable and General Route to Inverse Opal Structured Nanohybrids of Carbonâ€Confined Transition Metal Sulfides Quantum Dots for Highâ€Performance Sodium Storage. Advanced Energy Materials, 2018, 8, 1801452.	10.2	118
66	Functional MXene Materials: Progress of Their Applications. Chemistry - an Asian Journal, 2018, 13, 2742-2757.	1.7	162
67	Theoretical Study of Aluminum Hydroxide as a Hydrogen-Bonded Layered Material. Nanomaterials, 2018, 8, 375.	1.9	15
68	Emerging nanofabrication and quantum confinement techniques for 2D materials beyond graphene. Npj 2D Materials and Applications, 2018, 2, .	3.9	117
69	Theoretical Prediction of Blue Phosphorene/Borophene Heterostructure as a Promising Anode Material for Lithium-Ion Batteries. Journal of Physical Chemistry C, 2018, 122, 18294-18303.	1.5	59
70	Two-Dimensional Hierarchical Semiconductor with Addressable Surfaces. Journal of the American Chemical Society, 2018, 140, 9369-9373.	6.6	22
71	Assembly of Advanced Materials into 3D Functional Structures by Methods Inspired by Origami and Kirigami: A Review. Advanced Materials Interfaces, 2018, 5, 1800284.	1.9	195
72	Fabrication of a 3D Hierarchical Sandwich Co ₉ S ₈ /αâ€MnS@N–C@MoS ₂ Nanowire Architectures as Advanced Electrode Material for High Performance Hybrid Supercapacitors. Small, 2018, 14, e1800291.	5.2	154

#	Article	IF	CITATIONS
73	Boron–graphdiyne: a superstretchable semiconductor with low thermal conductivity and ultrahigh capacity for Li, Na and Ca ion storage. Journal of Materials Chemistry A, 2018, 6, 11022-11036.	5.2	104
74	Research Update: Recent progress on 2D materials beyond graphene: From ripples, defects, intercalation, and valley dynamics to straintronics and power dissipation. APL Materials, 2018, 6, .	2.2	30
75	Recent advances in the preparation, characterization, and applications of two-dimensional heterostructures for energy storage and conversion. Journal of Materials Chemistry A, 2018, 6, 21747-21784.	5.2	85
76	Computational Understanding of the Growth of 2D Materials. Advanced Theory and Simulations, 2018, 1, 1800085.	1.3	30
77	Two-dimensional SnO2/graphene heterostructures for highly reversible electrochemical lithium storage. Science China Materials, 2018, 61, 1527-1535.	3.5	42
78	Hetero-nanostructured materials for high-power lithium ion batteries. Journal of Colloid and Interface Science, 2018, 529, 505-519.	5.0	18
79	Inkjet Printing of Selfâ€Assembled 2D Titanium Carbide and Protein Electrodes for Stimuliâ€Responsive Electromagnetic Shielding. Advanced Functional Materials, 2018, 28, 1801972.	7.8	157
80	Heterointerface effects in the electrointercalation of van der Waals heterostructures. Nature, 2018, 558, 425-429.	13.7	184
81	Graphene-supported 2D transition metal oxide heterostructures. Journal of Materials Chemistry A, 2018, 6, 13509-13537.	5.2	103
82	Polymeric Graphene Bulk Materials with a 3D Cross‣inked Monolithic Graphene Network. Advanced Materials, 2019, 31, e1802403.	11.1	74
83	Fe _{1â^'x} S@S-doped carbon core–shell heterostructured hollow spheres as highly reversible anode materials for sodium ion batteries. Journal of Materials Chemistry A, 2019, 7, 20229-20238.	5.2	80
84	Revisited insights into charge storage mechanisms in electrochemical capacitors with Li2SO4-based electrolyte. Energy Storage Materials, 2019, 22, 1-14.	9.5	43
85	Controlled Growth of Large-Area Bilayer Tungsten Diselenides with Lateral P–N Junctions. ACS Nano, 2019, 13, 10490-10498.	7.3	39
86	Modeling of Si–B–N Sheets and Derivatives as a Potential Sorbent Material for the Adsorption of Li ⁺ Ion and CO ₂ Gas Molecule. ACS Omega, 2019, 4, 13808-13823.	1.6	14
87	Multiple roles of a heterointerface in two-dimensional van der Waals heterostructures: insights into energy-related applications. Journal of Materials Chemistry A, 2019, 7, 23577-23603.	5.2	43
88	Liquid Phase Exfoliated Hexagonal Boron Nitride/Graphene Heterostructure Based Electrode Toward Asymmetric Supercapacitor Application. Frontiers in Chemistry, 2019, 7, 544.	1.8	22
89	Direct versus reverse vertical two-dimensional Mo ₂ C/graphene heterostructures for enhanced hydrogen evolution reaction electrocatalysis. Nanotechnology, 2019, 30, 415404.	1.3	26
90	Self-assembly of single layer V2O5 nanoribbon/graphene heterostructures as ultrahigh-performance cathode materials for lithium-ion batteries. Carbon, 2019, 154, 24-32.	5.4	25

#	ARTICLE	IF	Citations
91	Sandwichâ€Like Ultrathin TiS ₂ Nanosheets Confined within N, S Codoped Porous Carbon as an Effective Polysulfide Promoter in Lithium‣ulfur Batteries. Advanced Energy Materials, 2019, 9, 1901872.	10.2	186
92	Graphitic carbon nitride decorated with FeNi ₃ nanoparticles for flexible planar micro-supercapacitor with ultrahigh energy density and quantum storage capacity. Dalton Transactions, 2019, 48, 12137-12146.	1.6	29
93	Tailoring Storage Capacity and Ion Kinetics in Ti2CO2/ Graphene Heterostructures by Functionalization of Graphene. Physical Review Applied, 2019, 12, .	1.5	17
94	Transition Metal Dichalcogenides for Energy Storage Applications. , 2019, , 173-201.		2
95	Hierarchical Structure Superlattice P ₂ Mo ₁₈ /MoS ₂ @C Nanocomposites: A Kind of Efficient Counter Electrode Materials for Dye-Sensitized Solar Cells. ACS Applied Energy Materials, 2019, 2, 5824-5834.	2.5	30
96	Visible-light-driven sonophotocatalysis and peroxymonosulfate activation over 3D urchin-like MoS2/C nanoparticles for accelerating levofloxacin elimination: Optimization and kinetic study. Chemical Engineering Journal, 2019, 378, 122039.	6.6	75
97	Review Article: Layer-structured carbonaceous materials for advanced Li-ion and Na-ion batteries: Beyond graphene. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2019, 37, .	0.9	24
98	2D Titania–Carbon Superlattices Vertically Encapsulated in 3D Hollow Carbon Nanospheres Embedded with 0D TiO ₂ Quantum Dots for Exceptional Sodiumâ€Ion Storage. Angewandte Chemie - International Edition, 2019, 58, 14125-14128.	7.2	47
99	Nâ€Doped Carbon Nanofibers with Interweaved Nanochannels for Highâ€Performance Sodiumâ€ion Storage. Small, 2019, 15, e1904054.	5.2	45
100	Carbon-Based Electrode Materials for Microsupercapacitors in Self-Powering Sensor Networks: Present and Future Development. Sensors, 2019, 19, 4231.	2.1	16
101	Architected materials for advanced electrochemical systems. MRS Bulletin, 2019, 44, 789-795.	1.7	10
102	Fewâ€Layer MoS ₂ Nanosheets Encapsulated in Nâ€Doped Carbon Hollow Spheres as Longâ€Life Anode Materials for Lithiumâ€Ion Batteries. Chemistry - A European Journal, 2019, 25, 14598-14603.	1.7	25
103	Flexible free-standing paper electrodes based on reduced graphene oxide/Î^NaxV2O5·nH2O nanocomposite for high-performance aqueous zinc-ion batteries. Electrochimica Acta, 2019, 328, 135137.	2.6	54
104	Structural, electronic, and electromechanical properties of MoSSe/blue phosphorene heterobilayer. AIP Advances, 2019, 9, 115302.	0.6	19
105	First principles study of alkali and alkaline earth metal ions adsorption and diffusion on penta-graphene. Solid State Ionics, 2019, 342, 115062.	1.3	18
106	2D Titania–Carbon Superlattices Vertically Encapsulated in 3D Hollow Carbon Nanospheres Embedded with 0D TiO 2 Quantum Dots for Exceptional Sodiumâ€lon Storage. Angewandte Chemie, 2019, 131, 14263-14266.	1.6	13
107	Emerging mono-elemental 2D nanomaterials for electrochemical sensing applications: From borophene to bismuthene. TrAC - Trends in Analytical Chemistry, 2019, 121, 115696.	5.8	31
108	Electrochemical Lithiation Mechanism of Two-Dimensional Transition-Metal Dichalcogenide Anode Materials: Intercalation versus Conversion Reactions. Journal of Physical Chemistry C, 2019, 123, 2139-2146.	1.5	47

#	Article	IF	CITATIONS
109	Effects of biaxial strain and functional groups on SiC/ti ₃ C ₂ heterostructure: a first principle calculation. Materials Research Express, 2019, 6, 125070.	0.8	1
110	Densely Functionalized Cyanographene Bypasses Aqueous Electrolytes and Synthetic Limitations Toward Seamless Graphene/βâ€FeOOH Hybrids for Supercapacitors. Advanced Functional Materials, 2019, 29, 1906998.	7.8	20
111	Selective Oxidation of WS ₂ Defect Domain with Subâ€Monolayer Thickness Leads to Multifold Enhancement in Photoluminescence. Advanced Materials Interfaces, 2019, 6, 1900962.	1.9	6
112	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mi>Zr</mml:mi><mml:msub><mml:n mathvariant="normal">S<mml:mn>2</mml:mn></mml:n </mml:msub><mml:mo>/</mml:mo>/<mml:mi>Hfmathvariant="normal">S</mml:mi><mml:mn>2</mml:mn></mml:mrow>	ni ıml ım i> <m< td=""><td>mlıızısub><m< td=""></m<></td></m<>	mlıızısub> <m< td=""></m<>
113	A Facile One-Pot Stepwise Hydrothermal Method for the Synthesis of 3D MoS ₂ /RGO Composites with Improved Lithium Storage Properties. Nano, 2019, 14, 1950037.	0.5	4
114	Graphene Armored with a Crystal Carbon Shell for Ultrahigh-Performance Potassium Ion Batteries and Aluminum Batteries. ACS Nano, 2019, 13, 10631-10642.	7.3	98
115	First principles study of g-Mg ₃ N ₂ as an anode material for Na-, K-, Mg-, Ca- and Al-ion storage. RSC Advances, 2019, 9, 27378-27385.	1.7	24
116	SnO@amorphous TiO2core-shell composite for advanced lithium storage. Ceramics International, 2019, 45, 19404-19408.	2.3	9
117	Two-Dimensional Ga ₂ O ₃ /C Nanosheets as Durable and High-Rate Anode Material for Lithium Ion Batteries. Langmuir, 2019, 35, 13607-13613.	1.6	19
118	Highly-dispersed iron oxide nanoparticles anchored on crumpled nitrogen-doped MXene nanosheets as anode for Li-ion batteries with enhanced cyclic and rate performance. Journal of Power Sources, 2019, 439, 227107.	4.0	45
119	Synthesis of heterostructure SnO2/graphitic carbon nitride composite for high-performance electrochemical supercapacitor. Journal of Electroanalytical Chemistry, 2019, 852, 113507.	1.9	29
120	Application of highly stretchable and conductive two-dimensional 1T VS2 and VSe2 as anode materials for Li-, Na- and Ca-ion storage. Computational Materials Science, 2019, 160, 360-367.	1.4	60
121	Alkali Metal Intercalation in MXene/Graphene Heterostructures: A New Platform for Ion Battery Applications. Journal of Physical Chemistry Letters, 2019, 10, 727-734.	2.1	88
122	Graphene/hBN Heterostructures as High-Capacity Cathodes with High Voltage for Next-Generation Aluminum Batteries. Journal of Physical Chemistry C, 2019, 123, 3959-3967.	1.5	30
123	Ultrafast Li-ion migration in holey-graphene-based composites constructed by a generalized <i>ex situ</i> method towards high capacity energy storage. Journal of Materials Chemistry A, 2019, 7, 4788-4796.	5.2	34
124	Self-tunable ultrathin carbon nanocups as the electrode material of sodium-ion batteries with unprecedented capacity and stability. Chemical Engineering Journal, 2019, 364, 578-588.	6.6	37
125	Heterostructured Nanocube‧haped Binary Sulfide (SnCo)S ₂ Interlaced with Sâ€Doped Graphene as a Highâ€Performance Anode for Advanced Na ⁺ Batteries. Advanced Functional Materials, 2019, 29, 1807971.	7.8	154
126	Two-Dimensional GeP ₃ as a High Capacity Anode Material for Non-Lithium-Ion Batteries. Journal of Physical Chemistry C, 2019, 123, 4721-4728.	1.5	71

#	Article	IF	CITATIONS
127	Tunable arsenene band gap in arsenene/graphene heterostructures. Japanese Journal of Applied Physics, 2019, 58, SBBH01.	0.8	3
128	Transition-metal dichalcogenides/Mg(OH) ₂ van der Waals heterostructures as promising water-splitting photocatalysts: a first-principles study. Physical Chemistry Chemical Physics, 2019, 21, 1791-1796.	1.3	106
129	Robust heterostructures of a bimetallic sodium–zinc metal–organic framework and reduced graphene oxide for high-performance supercapacitors. Journal of Materials Chemistry A, 2019, 7, 1725-1736.	5.2	94
130	The Future of Layer-by-Layer Assembly: A Tribute to <i>ACS Nano</i> Associate Editor Helmuth Möhwald. ACS Nano, 2019, 13, 6151-6169.	7.3	211
131	Niobium carbide/reduced graphene oxide hybrid porous aerogel as high capacity and longâ€life anode material for Liâ€ion batteries. International Journal of Energy Research, 2019, 43, 4995-5003.	2.2	40
132	Chemical Mass Production of MoS ₂ /Graphene van der Waals Heterostructure as a Highâ€Performance Liâ€ion Intercalation Host. ChemElectroChem, 2019, 6, 3393-3400.	1.7	12
133	Interplay between Short―and Longâ€Ranged Forces Leading to the Formation of Ag Nanoparticle Superlattice. Small, 2019, 15, 1901966.	5.2	19
134	Theoretical investigating of graphene/antimonene heterostructure as a promising high cycle capability anodes for fast-charging lithium ion batteries. Applied Surface Science, 2019, 491, 451-459.	3.1	33
135	Application of lasers in the synthesis and processing of two-dimensional quantum materials. Journal of Laser Applications, 2019, 31, 031202.	0.8	9
136	Confined Pyrolysis of ZIFâ€8 Polyhedrons Wrapped with Graphene Oxide Nanosheets to Prepare 3D Porous Carbon Heterostructures. Small Methods, 2019, 3, 1900277.	4.6	31
137	Giant Enhancement of Photoluminescence Emission in WS ₂ -Two-Dimensional Perovskite Heterostructures. Nano Letters, 2019, 19, 4852-4860.	4.5	72
138	Synthesis and Processing of Emerging Two-Dimensional Nanomaterials. , 2019, , 1-25.		18
139	Layer-by-layer self-assembly of pillared two-dimensional multilayers. Nature Communications, 2019, 10, 2558.	5.8	166
140	Devices and Circuits Using Novel 2-D Materials: A Perspective for Future VLSI Systems. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2019, 27, 1486-1503.	2.1	30
141	The novel g-C3N4/MoS2/ZnS ternary nanocomposite with enhanced lithium storage properties. Applied Surface Science, 2019, 492, 37-44.	3.1	26
142	Nitrogen and oxygen co-doped porous carbon nanosheets as high-rate and long-lifetime anode materials for high-performance Li-ion capacitors. Carbon, 2019, 151, 28-35.	5.4	74
143	Intercalation of Layered Materials from Bulk to 2D. Advanced Materials, 2019, 31, e1808213.	11.1	120
144	Energy storage: pseudocapacitance in prospect. Chemical Science, 2019, 10, 5656-5666.	3.7	99

#	Article	IF	CITATIONS
145	Charge Transfer Salt and Graphene Heterostructureâ€Based Microâ€Supercapacitors with Alternating Current Lineâ€Filtering Performance. Small, 2019, 15, e1901494.	5.2	64
146	Plasmonic Light Illumination Creates a Channel To Achieve Fast Degradation of Ti ₃ C ₂ T _{<i>x</i>} Nanosheets. Inorganic Chemistry, 2019, 58, 7285-7294.	1.9	37
147	Using van der Waals heterostructures based on two-dimensional blue phosphorus and XC (X = Ge, Si) for water-splitting photocatalysis: a first-principles study. Physical Chemistry Chemical Physics, 2019, 21, 9949-9956.	1.3	66
148	Data mining new energy materials from structure databases. Renewable and Sustainable Energy Reviews, 2019, 107, 554-567.	8.2	38
149	Black phosphorus nanosheets promoted 2D-TiO2-2D heterostructured anode for high-performance lithium storage. Energy Storage Materials, 2019, 19, 424-431.	9.5	69
150	Scalable Manufacturing of Large and Flexible Sheets of MXene/Graphene Heterostructures. Advanced Materials Technologies, 2019, 4, 1800639.	3.0	90
151	Design of TiO2eC hierarchical tubular heterostructures for high performance potassium ion batteries. Nano Energy, 2019, 59, 582-590.	8.2	100
152	Unraveling the multiscale damping properties of two-dimensional layered MXene. Nanomaterials and Energy, 2019, 8, 84-95.	0.1	5
153	MoO2 and graphene heterostructure as promising flexible anodes for lithium-ion batteries. Carbon, 2019, 147, 357-363.	5.4	46
154	Understanding structures and properties of phosphorene/perovskite heterojunction toward perovskite solar cell applications. Journal of Molecular Graphics and Modelling, 2019, 89, 96-101.	1.3	5
155	Ta4C3 MXene as supercapacitor electrodes. Journal of Alloys and Compounds, 2019, 792, 1230-1238.	2.8	103
156	Synthesis of Ti ₃ C ₂ /TiO ₂ heterostructure by microwave heating with high electrochemical performance. Materials Research Express, 2019, 6, 065056.	0.8	15
157	Tailored Janus silica nanosheets integrating bispecific artificial receptors for simultaneous adsorption of 2,6-dichlorophenol and Pb(<scp>ii</scp>). Journal of Materials Chemistry A, 2019, 7, 16161-16175.	5.2	49
158	Porous hierarchical spinel Mn-doped NiCo2O4 nanosheet architectures as high-performance anodes for lithium-ion batteries and electrochemical reaction mechanism. Journal of Materials Science: Materials in Electronics, 2019, 30, 8555-8567.	1.1	18
159	Facile Surface Properties Engineering of High-Quality Graphene: Toward Advanced Ni-MOF Heterostructures for High-Performance Supercapacitor Electrode. ACS Applied Energy Materials, 2019, 2, 2169-2177.	2.5	120
160	Platinum/Nickel Bicarbonate Heterostructures towards Accelerated Hydrogen Evolution under Alkaline Conditions. Angewandte Chemie, 2019, 131, 5486-5491.	1.6	30
161	Nitrogen-doped graphene/multiphase nickel sulfides obtained by Ni-C3N3S3 (metallopolymer) assisted synthesis for high-performance hybrid supercapacitors. Electrochimica Acta, 2019, 301, 332-341.	2.6	22
162	Cold pressing-built microreactors to thermally manipulate microstructure of MXene film as an anode for high-performance lithium-ion batteries. Electrochimica Acta, 2019, 305, 11-23.	2.6	15

#	Article	IF	CITATIONS
163	Two-dimensional transition metal dichalcogenides in supercapacitors and secondary batteries. Energy Storage Materials, 2019, 19, 408-423.	9.5	189
164	Promoted electro-responsive performances in an interface-confined oxidized niobium carbide MXene. Chemical Engineering Journal, 2019, 366, 321-329.	6.6	51
165	Highly dispersed ultrasmall NiS ₂ nanoparticles in porous carbon nanofiber anodes for sodium ion batteries. Nanoscale, 2019, 11, 4688-4695.	2.8	107
166	Interfacial and electronic properties of heterostructures of MXene and graphene. Physical Review B, 2019, 99, .	1.1	53
167	Platinum/Nickel Bicarbonate Heterostructures towards Accelerated Hydrogen Evolution under Alkaline Conditions. Angewandte Chemie - International Edition, 2019, 58, 5432-5437.	7.2	194
168	Preparation of dual-shell Si/TiO2/CFs composite and its lithium storage performance. Transactions of Nonferrous Metals Society of China, 2019, 29, 2384-2391.	1.7	11
169	Carbon–metal compound composite electrodes for capacitive deionization: synthesis, development and applications. Journal of Materials Chemistry A, 2019, 7, 26693-26743.	5.2	77
170	Tailorable Polyanion Diffusion Coefficient in LbL Films: The Role of Polycation Molecular Weight and Polymer Conformation. Macromolecules, 2019, 52, 9045-9052.	2.2	18
171	Scalable nanohybrids of graphitic carbon nitride and layered NiCo hydroxide for high supercapacitive performance. RSC Advances, 2019, 9, 33643-33652.	1.7	22
172	Energy storage: The future enabled by nanomaterials. Science, 2019, 366, .	6.0	1,119
		0.0	
173	"Allâ€Inâ€One―integrated ultrathin SnS ₂ @3D multichannel carbon matrix power highâ€areal–capacity lithium battery anode. , 2019, 1, 276-288.	0.0	47
173 174	 "Allâ€Inâ€One―integrated ultrathin SnS₂@3D multichannel carbon matrix power highâ€areal–capacity lithium battery anode. , 2019, 1, 276-288. The Role of Graphene and Other 2D Materials in Solar Photovoltaics. Advanced Materials, 2019, 31, e1802722. 	11.1	47 268
173 174 175	 "Allâ€Inâ€One†integrated ultrathin SnS₂@3D multichannel carbon matrix power highâ€areal–capacity lithium battery anode. , 2019, 1, 276-288. The Role of Graphene and Other 2D Materials in Solar Photovoltaics. Advanced Materials, 2019, 31, e1802722. Molybdenum and tungsten chalcogenides for lithium/sodium-ion batteries: Beyond MoS2. Journal of Energy Chemistry, 2019, 33, 100-124. 	0.0 11.1 7.1	47 268 174
173 174 175 176	"Allâ€inâ€One―integrated ultrathin SnS ₂ @3D multichannel carbon matrix power highâ€areal–capacity lithium battery anode. , 2019, 1, 276-288. The Role of Graphene and Other 2D Materials in Solar Photovoltaics. Advanced Materials, 2019, 31, e1802722. Molybdenum and tungsten chalcogenides for lithium/sodium-ion batteries: Beyond MoS2. Journal of Energy Chemistry, 2019, 33, 100-124. Heterostructure of two different 2D materials based on MoS ₂ nanoflowers@rGO: an electrode material for sodium-ion capacitors. Nanoscale Advances, 2019, 1, 334-341.	0.0 11.1 7.1 2.2	47 268 174 33
173 174 175 176	 "Allâ€Inâ€Oneâ€-integrated ultrathin SnS₂@3D multichannel carbon matrix power highâ€areal–capacity lithium battery anode. , 2019, 1, 276-288. The Role of Graphene and Other 2D Materials in Solar Photovoltaics. Advanced Materials, 2019, 31, e1802722. Molybdenum and tungsten chalcogenides for lithium/sodium-ion batteries: Beyond MoS2. Journal of Energy Chemistry, 2019, 33, 100-124. Heterostructure of two different 2D materials based on MoS₂ nanoflowers@rGO: an electrode material for sodium-ion capacitors. Nanoscale Advances, 2019, 1, 334-341. Progress and perspective on two-dimensional unilamellar metal oxide nanosheets and tailored nanostructures from them for electrochemical energy storage. Energy Storage Materials, 2019, 19, 281-298. 	0.0 11.1 7.1 2.2 9.5	47 268 174 33 34
173 174 175 176 177	 倜Allå€Inå€Oneå€integrated ultrathin SnS₂@3D multichannel carbon matrix power highå€areal倓capacity lithium battery anode. , 2019, 1, 276-288. The Role of Graphene and Other 2D Materials in Solar Photovoltaics. Advanced Materials, 2019, 31, e1802722. Molybdenum and tungsten chalcogenides for lithium/sodium-ion batteries: Beyond MoS2. Journal of Energy Chemistry, 2019, 33, 100-124. Heterostructure of two different 2D materials based on MoS₂ nanoflowers@rGO: an electrode material for sodium-ion capacitors. Nanoscale Advances, 2019, 1, 334-341. Progress and perspective on two-dimensional unilamellar metal oxide nanosheets and tailored nanostructures from them for electrochemical energy storage. Energy Storage Materials, 2019, 19, 281-298. MXeneå€"Conducting Polymer Asymmetric Pseudocapacitors. Advanced Energy Materials, 2019, 9, 1802917. 	0.0 11.1 7.1 2.2 9.5 10.2	47 268 174 33 34 262
 173 174 175 176 177 178 179 	 "Allâ€inâ€Oneâ€integrated ultrathin SnS₂@3D multichannel carbon matrix power highâ€arealâ€" capacity lithium battery anode. , 2019, 1, 276-288. The Role of Graphene and Other 2D Materials in Solar Photovoltaics. Advanced Materials, 2019, 31, e1802722. Molybdenum and tungsten chalcogenides for lithium/sodium-ion batteries: Beyond MoS2. Journal of Energy Chemistry, 2019, 33, 100-124. Heterostructure of two different 2D materials based on MoS₂ nanoflowers@rGO: an electrode material for sodium-ion capacitors. Nanoscale Advances, 2019, 1, 334-341. Progress and perspective on two-dimensional unilamellar metal oxide nanosheets and tailored nanostructures from them for electrochemical energy storage. Energy Storage Materials, 2019, 19, 281-298. MXeneâ€"Conducting Polymer Asymmetric Pseudocapacitors. Advanced Energy Materials, 2019, 9, 1802917. Applications of 2D MXenes in energy conversion and storage systems. Chemical Society Reviews, 2019, 48, 72-133. 	0.0 11.1 7.1 2.2 9.5 10.2 18.7	47 268 174 33 34 262 1,354

#	Article	IF	CITATIONS
181	Solubility contrast strategy for enhancing intercalation pseudocapacitance in layered MnO2 electrodes. Nano Energy, 2019, 56, 357-364.	8.2	41
182	MXene/Polymer Hybrid Materials for Flexible AC-Filtering Electrochemical Capacitors. Joule, 2019, 3, 164-176.	11.7	250
183	Alkali ions pre-intercalated layered vanadium oxide nanowires for stable magnesium ions storage. Nano Energy, 2019, 58, 347-354.	8.2	72
184	Allâ€Sprayedâ€Processable, Largeâ€Area, and Flexible Perovskite/MXeneâ€Based Photodetector Arrays for Photocommunication. Advanced Optical Materials, 2019, 7, 1801521.	3.6	144
185	Two-Dimensional Hybrid Composites of SnS ₂ with Graphene and Graphene Oxide for Improving Sodium Storage: A First-Principles Study. Inorganic Chemistry, 2019, 58, 1433-1441.	1.9	17
186	Achieving Fast Kinetics and Enhanced Li Storage Capacity for Ti3C2O2 by Intercalation of Quinone Molecules. ACS Applied Energy Materials, 2019, 2, 1251-1258.	2.5	19
187	Atomically thin two-dimensional metal oxide nanosheets and their heterostructures for energy storage Materials, 2019, 16, 455-480.	9.5	109
188	Redox-electrolytes for non-flow electrochemical energy storage: A critical review and best practice. Progress in Materials Science, 2019, 101, 46-89.	16.0	111
189	Review of MXenes as new nanomaterials for energy storage/delivery and selected environmental applications. Nano Research, 2019, 12, 471-487.	5.8	358
190	Blue TiO2 nanosheets as a high-performance electrode material for supercapacitors. Journal of Colloid and Interface Science, 2019, 536, 62-70.	5.0	82
191	Ti ₃ C ₂ T _{<i>x</i>} -Based Three-Dimensional Hydrogel by a Graphene Oxide-Assisted Self-Convergence Process for Enhanced Photoredox Catalysis. ACS Nano, 2019, 13, 295-304.	7.3	247
192	Solid-state energy storage devices based on two-dimensional nano-materials. Energy Storage Materials, 2019, 20, 269-290.	9.5	50
193	High-performance lithium-ion battery anodes based on Mn3O4/nitrogen-doped porous carbon hybrid structures. Journal of Alloys and Compounds, 2019, 775, 51-58.	2.8	31
194	N-, P-, As-triphenylene-graphdiyne: Strong and stable 2D semiconductors with outstanding capacities as anodes for Li-ion batteries. Carbon, 2019, 141, 291-303.	5.4	73
195	Construction of surface lattice oxygen in metallic Nâ^'CuCoS1.97 porous nanowire for wearable Znâ^'air battery. Journal of Energy Chemistry, 2019, 34, 1-9.	7.1	15
196	Advances in Inkâ€Jet Printing of MnO ₂ â€Nanosheet Based Pseudocapacitors. Small Methods, 2019, 3, 1800318.	4.6	23
197	2D heterostructure comprised of Ni3S2/d-Ti3C2 supported on Ni foam as binder-free electrode for hybrid supercapacitor. Journal of Alloys and Compounds, 2020, 814, 152271.	2.8	59
198	Mixed analogous heterostructure based on MXene and prussian blue analog derivative for high-performance flexible energy storage. Chemical Engineering Journal, 2020, 387, 123170.	6.6	42

#	Article	IF	CITATIONS
199	Layered Transition Metal Dichalcogenideâ€Based Nanomaterials for Electrochemical Energy Storage. Advanced Materials, 2020, 32, e1903826.	11.1	329
200	Functional 2D Germanene Fluorescent Coating of Microrobots for Micromachines Multiplexing. Small, 2020, 16, e1902365.	5.2	31
201	2D Superlattices for Efficient Energy Storage and Conversion. Advanced Materials, 2020, 32, e1902654.	11.1	117
202	Electrochemical and photo response behavior of in situ Fe doped Ti3SiC2 after anodization. International Journal of Hydrogen Energy, 2020, 45, 24066-24075.	3.8	4
203	A General Approach to Direct Growth of Oriented Metal–Organic Framework Nanosheets on Reduced Graphene Oxides. Advanced Science, 2020, 7, 1901480.	5.6	25
204	Porous architectures assembled with ultrathin Cu2O–Mn3O4 hetero-nanosheets vertically anchoring on graphene for high-rate lithium-ion batteries. Journal of Alloys and Compounds, 2020, 819, 152969.	2.8	19
205	Strain-engineered BlueP–MoS2 van der Waals heterostructure with improved lithiation/sodiation for LIBs and SIBs. Physical Chemistry Chemical Physics, 2020, 22, 1701-1714.	1.3	19
206	Rational design of two-dimensional nanomaterials for lithium–sulfur batteries. Energy and Environmental Science, 2020, 13, 1049-1075.	15.6	285
207	SiOC functionalization of MoS ₂ as a means to improve stability as sodium-ion battery anode. Nanotechnology, 2020, 31, 145403.	1.3	30
208	Solvationâ€Involved Nanoionics: New Opportunities from 2D Nanomaterial Laminar Membranes. Advanced Materials, 2020, 32, e1904562.	11.1	61
209	Electrochemical Activation of 2D MXeneâ€Based Hybrid for High Volumetric Mgâ€lon Storage Capacitance. Batteries and Supercaps, 2020, 3, 354-360.	2.4	28
210	Hollow MXene Sphere/Reduced Graphene Aerogel Composites for Piezoresistive Sensor with Ultraâ€High Sensitivity. Advanced Electronic Materials, 2020, 6, 1901064.	2.6	137
211	A mini review on two-dimensional nanomaterial assembly. Nano Research, 2020, 13, 1179-1190.	5.8	36
212	Biocarbon based template synthesis of uniform lamellar MoS2 nanoflowers with excellent energy storage performance in lithium-ion battery and supercapacitors. Electrochimica Acta, 2020, 331, 135262.	2.6	41
213	Porous MXenes: Synthesis, structures, and applications. Nano Today, 2020, 30, 100803.	6.2	218
214	Recent advances of two-dimensional transition metal nitrides for energy storage and conversion applications. FlatChem, 2020, 19, 100149.	2.8	54
215	The preparation of V2CTx by facile hydrothermal-assisted etching processing and its performance in lithium-ion battery. Journal of Materials Research and Technology, 2020, 9, 984-993.	2.6	58
216	Anisotropic Boron–Carbon Heteroâ€Nanosheets for Ultrahigh Energy Density Supercapacitors. Angewandte Chemie, 2020, 132, 24008-24017.	1.6	12

#	Article	IF	CITATIONS
217	MOF-derived CoFe2O4 nanorods anchored in MXene nanosheets for all pseudocapacitive flexible supercapacitors with superior energy storage. Applied Surface Science, 2020, 534, 147584.	3.1	81
218	Double transition-metal MXenes: Atomistic design of two-dimensional carbides and nitrides. MRS Bulletin, 2020, 45, 850-861.	1.7	138
219	Hierarchical nanostructured Au–SnO2 for enhanced energy storage performance. International Journal of Hydrogen Energy, 2020, 45, 29395-29406.	3.8	12
220	Flexible freestanding all-MXene hybrid films with enhanced capacitive performance for powering a flex sensor. Journal of Materials Chemistry A, 2020, 8, 16649-16660.	5.2	50
221	Advances in Materials Design for All-Solid-state Batteries: From Bulk to Thin Films. Applied Sciences (Switzerland), 2020, 10, 4727.	1.3	27
222	Computational screening of vdWs heterostructures of BSe with MoSe2 and WSe2 as sustainable hydrogen production materials. Current Applied Physics, 2020, , .	1.1	1
223	Two-dimensional materials and its heterostructures for energy storage. , 2020, , 385-401.		1
224	Machine learning in materials modeling—fundamentals and the opportunities in 2D materials. , 2020, , 445-468.		7
225	A Novel Co 3 O 4 /MnO 2 /C Electrode with Hierarchical Heterostructure for Highâ€performance Lithiumâ€lon Batteries. ChemistrySelect, 2020, 5, 13831-13836.	0.7	9
226	RuN ₂ Monolayer: A Highly Efficient Electrocatalyst for Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2020, 12, 54517-54523.	4.0	22
227	Electron Delocalization and Dissolutionâ€Restraint in Vanadium Oxide Superlattices to Boost Electrochemical Performance of Aqueous Zincâ€ion Batteries. Advanced Energy Materials, 2020, 10, 2001852.	10.2	125
228	A Review of the Effects of Electrode Fabrication and Assembly Processes on the Structure and Electrochemical Performance of 2D MXenes. Advanced Functional Materials, 2020, 30, 2005305.	7.8	58
229	Electronic structures, and optical and photocatalytic properties of the BP–BSe van der Waals heterostructures. New Journal of Chemistry, 2020, 44, 14964-14969.	1.4	11
230	Correlated migration of ions in a 2D heterostructure anode: guaranteeing a low barrier for a high site occupancy. Journal of Materials Chemistry A, 2020, 8, 17463-17470.	5.2	5
231	Confining Ultrathin 2D Superlattices in Mesoporous Hollow Spheres Renders Ultrafast and High apacity Naâ€lon Storage. Advanced Energy Materials, 2020, 10, 2001033.	10.2	25
232	Two-dimensional metal (oxy)hydroxide and oxide ultrathin nanosheets via liquid phase epitaxy. Energy Storage Materials, 2020, 32, 272-280.	9.5	14
233	Two-Dimensional Indium Selenide for Sulphur Vapour Sensing Applications. Nanomaterials, 2020, 10, 1396.	1.9	4
234	Electrode material–ionic liquid coupling for electrochemical energy storage. Nature Reviews Materials, 2020, 5, 787-808.	23.3	210

#	Article	IF	CITATIONS
235	Intercalation of Two-dimensional Layered Materials. Chemical Research in Chinese Universities, 2020, 36, 584-596.	1.3	21
236	Recent advances and future perspectives of two-dimensional materials for rechargeable Li-O2 batteries. Energy Storage Materials, 2020, 31, 470-491.	9.5	34
237	The effect of chemically preintercalated alkali ions on the structure of layered titanates and their electrochemistry in aqueous energy storage systems. Journal of Materials Chemistry A, 2020, 8, 18220-18231.	5.2	8
238	Enhanced Rate Capability of Ionâ€Accessible Ti ₃ C ₂ T <i>_x</i> â€NbN Hybrid Electrodes. Advanced Energy Materials, 2020, 10, 2001411.	10.2	50
239	Two-dimensional organic–inorganic superlattice-like heterostructures for energy storage applications. Energy and Environmental Science, 2020, 13, 4834-4853.	15.6	64
240	Controlled Electronâ€Induced Fabrication of Metallic Nanostructures on 1 nm Thick Membranes. Small, 2020, 16, e2003947.	5.2	7
241	Single Droplet Assembly for Two-Dimensional Nanosheet Tiling. ACS Nano, 2020, 14, 15216-15226.	7.3	29
242	Synthesis and Properties of MXenes. Engineering Materials, 2020, , 5-93.	0.3	1
243	Great enhancement of Curie temperature and magnetic anisotropy in two-dimensional van der Waals magnetic semiconductor heterostructures. Physical Review B, 2020, 102, .	1.1	34
244	Synthesis and characterization of WS2/graphene/SiC van der Waals heterostructures via WO3â^'x thin film sulfurization. Scientific Reports, 2020, 10, 17334.	1.6	15
245	Assessment of Sulfur-Functionalized MXenes for Li-Ion Battery Applications. Journal of Physical Chemistry C, 2020, 124, 21293-21304.	1.5	22
246	Magnetic and magnetocaloric properties of layered van der Waals CrCl3. Applied Physics Letters, 2020, 117, .	1.5	8
247	Ultra-small Ni(HCO ₃) ₂ as a water dissociation promoter boosting the alkaline hydrogen electrocatalysis performance of MoS ₂ . Chemical Communications, 2020, 56, 12065-12068.	2.2	5
248	Understanding Charge Storage in Hydrated Layered Solids MOPO ₄ (M = V, Nb) with Tunable Interlayer Chemistry. ACS Nano, 2020, 14, 13824-13833.	7.3	6
249	Anisotropic Boron–Carbon Heteroâ€Nanosheets for Ultrahigh Energy Density Supercapacitors. Angewandte Chemie - International Edition, 2020, 59, 23800-23809.	7.2	61
250	Transitionâ€Metal Phosphides: Activity Origin, Energyâ€Related Electrocatalysis Applications, and Synthetic Strategies. Advanced Functional Materials, 2020, 30, 2004009.	7.8	309
251	Interface Chemistry on MXeneâ€Based Materials for Enhanced Energy Storage and Conversion Performance. Advanced Functional Materials, 2020, 30, 2005190.	7.8	136
252	Design of Core–Shell Quantum Dots–3D WS ₂ Nanowall Hybrid Nanostructures with High-Performance Bifunctional Sensing Applications. ACS Nano, 2020, 14, 12668-12678.	7.3	49

#	Article	IF	CITATIONS
253	Thermodynamically Metal Atom Trapping in Van der Waals Layers Enabling Multifunctional 3D Carbon Network. Advanced Functional Materials, 2020, 30, 2002626.	7.8	15
254	Structure and Dynamics of Aqueous Electrolytes Confined in 2D-TiO2/Ti3C2T2 MXene Heterostructures. ACS Applied Materials & Interfaces, 2020, 12, 58378-58389.	4.0	25
255	Conjugated Cobalt (II) Polyphthalocyanine Doped with Carbon Nanotubes as Available Electrode for Supercapacitors. Journal of Physics: Conference Series, 2020, 1605, 012177.	0.3	1
256	Ultrathin Carbon Nanomembranes from 5,10,15,20-Tetraphenylporphyrin: Electron Beam Induced Fabrication and Functionalization via Focused Electron Beam Induced Processing. Journal of Physical Chemistry C, 2020, 124, 28335-28344.	1.5	2
257	Fluid Dynamics-Induced Surface Engineering for Holey and Stable Metallic MoS ₂ Nanosheets with High Pseudocapacitance and Ultrafast Rate Capability. ACS Applied Energy Materials, 2020, 3, 12078-12087.	2.5	6
258	A First Principles Study of Electric Structures of Heterostructures Built with Blue Phosphorene. Journal of Physics: Conference Series, 2020, 1676, 012239.	0.3	0
259	Lithium and Sodium Adsorption on Monolayer Tellurene. Journal of Physical Chemistry C, 2020, 124, 28074-28082.	1.5	4
260	Direct Visualization of Atomic-Scale Graphene Growth on Cu through Environmental Transmission Electron Microscopy. ACS Applied Materials & Interfaces, 2020, 12, 52201-52207.	4.0	9
261	First-principles study of heterostructures of MXene and nitrogen-doped graphene as anode materials for Li-ion batteries. Surfaces and Interfaces, 2020, 21, 100788.	1.5	9
262	1D/2D C ₃ N ₄ /Graphene Composite as a Preferred Anode Material for Lithium Ion Batteries: Importance of Heterostructure Design via DFT Computation. ACS Applied Materials & Interfaces, 2020, 12, 25875-25883.	4.0	40
263	Atomically thin mesoporous NiCo2O4 grown on holey graphene for enhanced pseudocapacitive energy storage. Journal of Materials Chemistry A, 2020, 8, 13443-13451.	5.2	25
264	Interfacial structure design of <scp>MXeneâ€based</scp> nanomaterials for electrochemical energy storage and conversion. InformaÄnÃ-Materiály, 2020, 2, 1057-1076.	8.5	143
265	Atomically dispersed metal active centers as a chemically tunable platform for energy storage devices. Journal of Materials Chemistry A, 2020, 8, 15358-15372.	5.2	16
266	Electrical Contact between an Ultrathin Topological Dirac Semimetal and a Two-Dimensional Material. Physical Review Applied, 2020, 13, .	1.5	23
267	MOF-derived hybrid nanoarchitectured carbons for gas discrimination of volatile aromatic hydrocarbons. Carbon, 2020, 168, 55-64.	5.4	20
268	Co(OH)2/MXene composites for tunable pseudo-capacitance energy storage. Electrochimica Acta, 2020, 353, 136607.	2.6	34
269	Revealing ion transport in supercapacitors with Sub-2 nm two-dimensional graphene channels. Energy Storage Materials, 2020, 31, 64-71.	9.5	31
270	Self-assembly of block copolymers towards mesoporous materials for energy storage and conversion systems. Chemical Society Reviews, 2020, 49, 4681-4736.	18.7	311

#	Article	IF	Citations
271	3D Hierarchically Mesoporous Zinc-Nickel-Cobalt Ternary Oxide (Zn0.6Ni0.8Co1.6O4) Nanowires for High-Performance Asymmetric Supercapacitors. Frontiers in Chemistry, 2020, 8, 487.	1.8	26
272	Harmonizing self-supportive VN/MoS2 pseudocapacitance core-shell electrodes for boosting the areal capacity of lithium storage. Materials Today Energy, 2020, 17, 100461.	2.5	59
273	Carbon Nanobowls Filled with MoS ₂ Nanosheets as Electrode Materials for Supercapacitors. ACS Applied Nano Materials, 2020, 3, 6448-6459.	2.4	38
274	Interstratification-assembled 2D black phosphorene and V ₂ CT _x MXene as superior anodes for boosting potassium-ion storage. Journal of Materials Chemistry A, 2020, 8, 12705-12715.	5.2	44
275	Construction of heterostructured NiFe ₂ O ₄ -C nanorods by transition metal recycling from simulated electroplating sludge leaching solution for high performance lithium ion batteries. Nanoscale, 2020, 12, 13398-13406.	2.8	17
276	Surface Functionalization of 2D Transition Metal Oxides and Dichalcogenides via Covalent and Non-covalent Bonding for Sustainable Energy and Biomedical Applications. ACS Applied Nano Materials, 2020, 3, 3116-3143.	2.4	67
277	Semiconducting few-layer PdSe ₂ and Pd ₂ Se ₃ : native point defects and contacts with native metallic Pd ₁₇ Se ₁₅ . Physical Chemistry Chemical Physics, 2020, 22, 7365-7373.	1.3	8
278	Boosting Sodium Storage in Two-Dimensional Phosphorene/Ti ₃ C ₂ T _{<i>x</i>} MXene Nanoarchitectures with Stable Fluorinated Interphase. ACS Nano, 2020, 14, 3651-3659.	7.3	155
279	Rational Synthesis of a Hierarchical Supramolecular Porous Material Created via Self-Assembly of Metal–Organic Framework Nanosheets. Inorganic Chemistry, 2020, 59, 3983-3992.	1.9	16
280	A Novel Flexible Hybrid Battery–Supercapacitor Based on a Selfâ€Assembled Vanadiumâ€Graphene Hydrogel. Advanced Functional Materials, 2020, 30, 1910738.	7.8	53
281	Comparison of Nanoarchitecture to Porous Media Diffusion Models in Reduced Graphene Oxide/Aramid Nanofiber Electrodes for Supercapacitors. ACS Nano, 2020, 14, 5314-5323.	7.3	15
282	Improving Electronic Conductivity of Layered Oxides through the Formation of Two-Dimensional Heterointerface for Intercalation Batteries. ACS Applied Energy Materials, 2020, 3, 3835-3844.	2.5	21
283	Stimuliâ€Responsive MXeneâ€Based Actuators. Advanced Functional Materials, 2020, 30, 1909504.	7.8	126
284	Nanoscale Assembly of 2D Materials for Energy and Environmental Applications. Advanced Materials, 2020, 32, e1907006.	11.1	106
285	Saltâ€Assisted Synthesis of 2D Materials. Advanced Functional Materials, 2020, 30, 1908486.	7.8	115
286	Enhanced carrier separation in ferroelectric In ₂ Se ₃ /MoS ₂ van der Waals heterostructure. Journal of Materials Chemistry C, 2020, 8, 11160-11167.	2.7	44
287	Laser Irradiation of Electrode Materials for Energy Storage and Conversion. Matter, 2020, 3, 95-126.	5.0	74
288	Strain engineering of two-dimensional multilayered heterostructures for beyond-lithium-based rechargeable batteries. Nature Communications, 2020, 11, 3297.	5.8	134

# 289	ARTICLE Tracking ion intercalation into layered Ti ₃ C ₂ MXene films across length scales. Energy and Environmental Science, 2020, 13, 2549-2558.	IF 15.6	Citations
290	Taking MXenes from the lab to commercial products. Chemical Engineering Journal, 2020, 401, 125786.	6.6	139
291	Positioning MXenes in the Photocatalysis Landscape: Competitiveness, Challenges, and Future Perspectives. Advanced Functional Materials, 2020, 30, 2002528.	7.8	162
292	Synthesis of heterostructures based on two-dimensional materials. , 2020, , 265-287.		2
293	Recent Developments on Emerging Properties, Growth Approaches, and Advanced Applications of Metallic 2D Layered Vanadium Dichalcogenides. Advanced Materials Interfaces, 2020, 7, 1901682.	1.9	28
294	Investigating the Electrocatalysis of a Ti ₃ C ₂ /Carbon Hybrid in Polysulfide Conversion of Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2020, 12, 13904-13913.	4.0	72
295	A flexible semitransparent photovoltaic supercapacitor based on water-processed MXene electrodes. Journal of Materials Chemistry A, 2020, 8, 5467-5475.	5.2	79
296	Two-Dimensional Ti ₃ C ₂ T <i>_x</i> MXene/GO Hybrid Membranes for Highly Efficient Osmotic Power Generation. Environmental Science & Technology, 2020, 54, 2931-2940.	4.6	41
297	Highly selective carrier-type modulation of tungsten selenide transistors using iodine vapor. Journal of Materials Chemistry C, 2020, 8, 4365-4371.	2.7	7
298	Two-Dimensional Materials to Address the Lithium Battery Challenges. ACS Nano, 2020, 14, 2628-2658.	7.3	214
299	Graphene-Supported 2D transition metal dichalcogenide van der waals heterostructures. Applied Materials Today, 2020, 19, 100600.	2.3	64
300	Magnetic Sn/SnO/FeSn2 nanocomposite as a high-performance anode material for lithium-ion batteries. Powder Technology, 2020, 364, 719-724.	2.1	8
301	Evaporationâ€Induced Vertical Alignment Enabling Directional Ion Transport in a 2Dâ€Nanosheetâ€Based Battery Electrode. Advanced Materials, 2020, 32, e1907941.	11.1	66
302	Carbon Nanotubes Coated with NiOOH-Ni Converted from Ni(HCO ₃) ₂ -Ni Nanoflakes for Electrochemical Energy Storage. ACS Applied Nano Materials, 2020, 3, 1713-1721.	2.4	1
303	Multifunctional VI–VI binary heterostructure-based self-powered pH-sensitive photo-detector. Journal of Materials Chemistry C, 2020, 8, 5991-6000.	2.7	8
304	Defects controlled doping and electrical transport in TiS2 single crystals. Applied Physics Letters, 2020, 116, .	1.5	5
305	Hydrogen Bond Interaction Promotes Flash Energy Transport at MXene-Solvent Interface. Journal of Physical Chemistry C, 2020, 124, 10306-10314.	1.5	32
306	Graphdiyneâ€Based Flexible Photodetectors with High Responsivity and Detectivity. Advanced Materials, 2020, 32, e2001082.	11.1	171

#	Article	IF	CITATIONS
307	Heterostructures of 2D Molybdenum Dichalcogenide on 2D Nitrogenâ€Doped Carbon: Superior Potassiumâ€Ion Storage and Insight into Potassium Storage Mechanism. Advanced Materials, 2020, 32, e2000958.	11.1	192
308	Electronic properties and enhanced photocatalytic performance of van der Waals heterostructures of ZnO and Janus transition metal dichalcogenides. Physical Chemistry Chemical Physics, 2020, 22, 10351-10359.	1.3	53
309	Selective Epitaxial Growth of Oriented Hierarchical Metal–Organic Framework Heterostructures. Journal of the American Chemical Society, 2020, 142, 8953-8961.	6.6	100
310	Two-dimensional (2D) electrode materials for supercapacitors. Materials Today: Proceedings, 2021, 41, 498-505.	0.9	55
311	DFT-Guided Design and Fabrication of Carbon-Nitride-Based Materials for Energy Storage Devices: A Review. Nano-Micro Letters, 2021, 13, 13.	14.4	91
312	A versatile route to metal oxide nanoparticles impregnated in carbon matrix for electrochemical energy storage. Chemical Engineering Journal, 2021, 404, 126461.	6.6	11
313	Interlayer Space Engineering of MXenes for Electrochemical Energy Storage Applications. Chemistry - A European Journal, 2021, 27, 1921-1940.	1.7	45
314	Polymer "Tapeâ€â€Assisted Ballâ€Milling Method Fabrication Fewâ€Atomicâ€Layered Bismuth for Improving K ⁺ /Na ⁺ Storage. Energy and Environmental Materials, 2021, 4, 421-427.	7.3	11
315	First-principles calculations of stability of graphene-like BC3 monolayer and its high-performance potassium storage. Chinese Chemical Letters, 2021, 32, 900-905.	4.8	32
316	The first-principles study on the performance of the graphene/WS2 heterostructure as an anode material of Li-ion battery. Journal of Alloys and Compounds, 2021, 855, 157432.	2.8	30
317	Direct growth of highly organized, 2D ultra-thin nano-accordion Ni-MOF@NiS2@C core-shell for high performance energy storage device. Chemical Engineering Journal, 2021, 406, 126810.	6.6	45
318	Theoretical investigation on interactions between lithium ions and two-dimensional halide perovskite for solar-rechargeable batteries. Applied Surface Science, 2021, 541, 148509.	3.1	14
319	The Art of Constructing Black Phosphorus Nanosheet Based Heterostructures: From 2D to 3D. Advanced Materials, 2021, 33, e2005254.	11.1	33
320	Structure, Preparation, and Applications of 2D Materialâ€Based Metal–Semiconductor Heterostructures. Small Structures, 2021, 2, 2000093.	6.9	71
321	A review on Ti3C2Tx-based nanomaterials: synthesis and applications in gas and humidity sensors. Rare Metals, 2021, 40, 1459-1476.	3.6	121
322	A general way to transform Ti3C2Tx MXene into solvent-free fluids for filler phase applications. Chemical Engineering Journal, 2021, 409, 128082.	6.6	33
323	Supercritical CO2-assisted fabrication of advanced two-dimensional materials and their heterostructure. Current Opinion in Green and Sustainable Chemistry, 2021, 28, 100424.	3.2	2
324	Engineering heterointerfaces coupled with oxygen vacancies in lanthanum–based hollow microspheres for synergistically enhanced oxygen electrocatalysis. Journal of Energy Chemistry, 2021, 60, 503-511	7.1	27

ARTICLE IF CITATIONS # Few-layered MoS2 with expanded interplanar spacing strongly encapsulated inside compact carbon 325 spheres by C–S interaction as ultra-stable sodium ion batteries anode. Journal of Alloys and 2.8 16 Compounds, 2021, 858, 157675. Hybridized 1T/2H-MoS2/graphene fishnet tube for high-performance on-chip integrated micro-systems 5.8 28 comprising supercapacitors and gas sensors. Nano Research, 2021, 14, 114-121. Free-standing bilayered vanadium oxide films synthesized by liquid exfoliation of chemically 327 2.6 3 preintercalated Î'-LixV2O5·nH2O. Materials Advances, 2021, 2, 2711-2718. N-doped carbon nanofibers encapsulated Cu2-xSe with the improved lithium storage performance and its structural evolution analysis. Electrochimica Acta, 2021, 367, 137449. Improvement of alkali metal ion batteries <i>via</i> interlayer engineering of anodes: from graphite to 329 2.8 14 graphene. Nanoscale, 2021, 13, 12521-12533. Two-Dimensional Material-Based Heterostructures for Rechargeable Batteries. Cell Reports Physical 2.8 Science, 2021, 2, 100286. 331 Nanostructured anode materials in rechargeable batteries., 2021, , 187-219. 5 Synthesis and characterization of 2D materials., 2021, , 77-104. Transparent polymer nanocomposites based on two-dimensional materials and their multiple 333 0 applications., 2021, , 1-30. A van der Waals heterostructure of MoS₂/MoSi₂N₄: a 334 1.4 first-principles study. New Journal of Chemistry, 2021, 45, 8291-8296. Heterostructures of titanium-based MXenes in energy conversion and storage devices. Journal of 335 2.7 30 Materials Chemistry C, 2021, 9, 8395-8465. Solving Gravimetric-Volumetric Capacitive Paradox of 2D Materials through Dual-Functional Chemical Bonding-Induced Self-Constructing Graphene-MXene Monoliths. ACS Applied Materials & amp; 4.0 Interfaces, 2021, 13, 6339-6348. Engineering two-dimensional materials for high-performance supercapacitor devices., 2021, , 359-387. 337 6 Metallic two-dimensional BP₂: a high-performance electrode material for Li- and Na-ion 1.3 batteries. Physical Chemistry Chemical Physics, 2021, 23, 4386-4393. Nature of the surface space charge layer on undoped SrTiO₃(001). Journal of Materials 339 2.7 6 Chemistry C, 2021, 9, 13094-13102. Emerging field of few-layered intercalated 2D materials. Nanoscale Advances, 2021, 3, 963-982. 340 2.2 Nature-inspired hierarchical materials for sensing and energy storage applications. Chemical Society 342 18.7 49 Reviews, 2021, 50, 4856-4871. Recent advances in biomassâ€derived carbon, mesoporous materials, and transition metal nitrides as 343 new electrode materials for supercapacitor: A short review. International Journal of Energy 2.2 Research, 2021, 45, 8335-8346.

#	Article	IF	CITATIONS
344	CoSe@N-Doped Carbon Nanotubes as a Potassium-Ion Battery Anode with High Initial Coulombic Efficiency and Superior Capacity Retention. ACS Nano, 2021, 15, 1121-1132.	7.3	98
345	Two-dimensional van der Waals electrical contact to monolayer MoSi2N4. Applied Physics Letters, 2021, 118, .	1.5	134
346	Spectroscopic ellipsometry. , 2021, , 45-83.		5
347	3D/2D Bi ₂ S ₃ /SnS ₂ heterostructures: superior charge separation and enhanced solar light-driven photocatalytic performance. CrystEngComm, 2021, 23, 2276-2288.	1.3	7
348	Low-temperature synthesis of Fe2(MoO4)3nanosheets: A cathode for sodium ion batteries with kinetics enhancement. Nano Research, 2021, 14, 3977.	5.8	7
349	Pentagonal transition-metal (group X) chalcogenide monolayers: Intrinsic semiconductors for photocatalysis. International Journal of Hydrogen Energy, 2021, 46, 9371-9379.	3.8	27
350	Printable Two-Dimensional V ₂ O ₅ /MXene Heterostructure Cathode for Lithium-Ion Battery. Journal of the Electrochemical Society, 2021, 168, 020507.	1.3	9
351	Abundant Active Sites on the Basal Plane and Edges of Layered van der Waals Fe ₃ GeTe ₂ for Highly Efficient Hydrogen Evolution. , 2021, 3, 313-319.		19
352	Toward Large-Capacity and High-Stability Lithium Storages via Constructing Quinone–2D-MnO ₂ -Pillared Structures. Journal of Physical Chemistry C, 2021, 125, 3725-3732.	1.5	23
353	2D Transitionâ€Metal Silicides as Analogs of MXenes: A Firstâ€Principles Exploration. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2100048.	1.2	4
354	Docking MOF crystals on graphene support for highly selective electrocatalytic peroxide production. Nano Research, 2022, 15, 145-152.	5.8	14
355	2D Nanomaterials for Effective Energy Scavenging. Nano-Micro Letters, 2021, 13, 82.	14.4	36
356	Natural Clayâ€Based Materials for Energy Storage and Conversion Applications. Advanced Science, 2021, 8, e2004036.	5.6	56
357	Multidimensional analysis of excitonic spectra of monolayers of tungsten disulphide: toward computer-aided identification of structural and environmental perturbations of 2D materials. Machine Learning: Science and Technology, 2021, 2, 025021.	2.4	7
358	Additive Manufacturing of Electrochemical Energy Storage Systems Electrodes. Advanced Energy and Sustainability Research, 2021, 2, 2000111.	2.8	15
359	Theory prediction of PC3 monolayer as a promising anode material in potassium-ion batteries. Ionics, 2021, 27, 2465-2471.	1.2	7
360	Atomically Thin Nanosheets Confined in 2D Heterostructures: Metalâ€Ion Batteries Prospective. Advanced Energy Materials, 2021, 11, 2100451.	10.2	35
361	Nanosilverâ€Promoted Trimetallic Ni–Co–Mn Perovskite Fluorides for Advanced Aqueous Supercabatteries with Pseudocapacitive Multielectrons Phase Conversion Mechanisms. Advanced Functional Materials, 2021, 31, 2101353.	7.8	28

#	Article	IF	CITATIONS
362	Tunable capacitance in all-inkjet-printed nanosheet heterostructures. Energy Storage Materials, 2021, 36, 318-325.	9.5	22
363	A V ₃ C ₂ MXene/graphene heterostructure as a sustainable electrode material for metal ion batteries. Journal of Physics Condensed Matter, 2021, 33, 175001.	0.7	14
364	Synergetic Advantages of Atomically Coupled 2D Inorganic and Graphene Nanosheets as Versatile Building Blocks for Diverse Functional Nanohybrids. Advanced Materials, 2021, 33, e2005922.	11.1	49
365	MXenes: Two-Dimensional Building Blocks for Future Materials and Devices. ACS Nano, 2021, 15, 5775-5780.	7.3	250
366	High-Entropy van der Waals Materials Formed from Mixed Metal Dichalcogenides, Halides, and Phosphorus Trisulfides. Journal of the American Chemical Society, 2021, 143, 7042-7049.	6.6	55
367	Two-Dimensional Graphene/BlueP/MoS ₂ van der Waals Multilayer Heterostructure as a High-Performance Anode Material for LIBs. Journal of Physical Chemistry C, 2021, 125, 8980-8992.	1.5	8
368	2D/2D Heterostructures: Rational Design for Advanced Batteries and Electrocatalysis. Energy and Environmental Materials, 2022, 5, 115-132.	7.3	70
369	Chemically Converted Graphene Nanosheets for the Construction of Ion-Exclusion Nanochannel Membranes. Nano Letters, 2021, 21, 3495-3502.	4.5	41
370	Hollow opening nanoflowers MoS2-CuS-EG cathodes for high-performance hybrid Mg/Li-ion batteries. Chemical Engineering Journal, 2021, 409, 128271.	6.6	23
371	2D and Layered Ti-based Materials for Supercapacitors and Rechargeable Batteries: Synthesis, Properties, and Applications. Current Applied Materials, 2022, 1, .	0.4	4
372	Bambooâ€Membrane Inspired Multilevel Ultrafast Interlayer Ion Transport for Superior Volumetric Energy Storage. Advanced Functional Materials, 2021, 31, 2100299.	7.8	27
373	Tungstenâ€Disulfide/Polyaniline High Frequency Supercapacitors. Advanced Electronic Materials, 2021, 7, 2100025.	2.6	25
374	Layered Intercalation Materials. Advanced Materials, 2021, 33, e2004557.	11.1	92
375	Two-Dimensional Nanosheets-Based Soft Electro-Chemo-Mechanical Actuators: Recent Advances in Design, Construction, and Applications. ACS Nano, 2021, 15, 9273-9298.	7.3	55
376	A FIRST-PRINCIPLES INVESTIGATION OF HETEROSTRUCTURES CONSISTING OF HALIDE PEROVSKITE CsPbI3 AND LEAD CHALCOGENIDE FOR OPTOELECTRONIC APPLICATIONS. Journal of Structural Chemistry, 2021, 62, 671-677.	0.3	2
377	Misfit layer SnTiS3: An assemble-free van der Waals heterostructure SnS/TiS2 for lithium ion battery anode. Journal of Power Sources, 2021, 494, 229712.	4.0	24
378	Potential Applications of MoS ₂ /M ₂ CS ₂ (M = Ti, V) Heterostructures as Anode Materials for Metal-Ion Batteries. Journal of Physical Chemistry C, 2021, 125, 10226-10234.	1.5	26
379	Boosting reversible lithium storage in two-dimensional C3N4 by achieving suitable adsorption energy via Si doping. Carbon, 2021, 176, 480-487.	5.4	21

# 380	ARTICLE Emerging of Heterostructure Materials in Energy Storage: A Review. Advanced Materials, 2021, 33, e2100855.	IF 11.1	Citations 308
381	Strain-tunable electronic and optical properties of Zr2CO2 MXene and MoSe2 van der Waals heterojunction: A first principles calculation. Applied Surface Science, 2021, 548, 149249.	3.1	33
382	Interfacial charge transfer and interaction in the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mi>MXene</mml:mi><m mathvariant="normal">O<mml:mn>2</mml:mn></m </mml:mrow> heterostructures. Physical Review Materials, 2021, 5, .</mml:mrow></mml:math 	nnl:mo>/<	/mml:mo> <n 14</n
383	Computational insight of ZrS2/graphene heterobilayer as an efficient anode material. Applied Surface Science, 2021, 551, 149304.	3.1	20
384	Synthesis and functionalization of 2D nanomaterials for application in lithium-based energy storage systems. Energy Storage Materials, 2021, 38, 200-230.	9.5	29
385	Grapheneâ€Based Hybrid Functional Materials. Small, 2021, 17, e2100514.	5.2	31
386	Recent Advances in Two-Dimensional Quantum Dots and Their Applications. Nanomaterials, 2021, 11, 1549.	1.9	39
387	High Breakdown Current Density in Monolayer Nb ₄ C ₃ T _{<i>x</i>} MXene. , 2021, 3, 1088-1094.		19
388	2D Materialâ€Based Heterostructures for Rechargeable Batteries. Advanced Energy Materials, 2022, 12, 2100864.	10.2	91
389	Electrochemical energy storage performance of 2D nanoarchitectured hybrid materials. Nature Communications, 2021, 12, 3563.	5.8	62
390	Advances in Liquidâ€Phase and Intercalation Exfoliations of Transition Metal Dichalcogenides to Produce 2D Framework. Advanced Materials Interfaces, 2021, 8, 2002205.	1.9	43
391	Flexible MXene Framework as a Fast Electron/Potassiumâ€lon Dualâ€Function Conductor Boosting Stable Potassium Storage in Graphite Electrodes. Advanced Functional Materials, 2021, 31, 2102126.	7.8	77
392	Twoâ€Dimensional Metal Chalcogenide Heterostructures: Designed Growth and Emerging Novel Applications. Advanced Materials Interfaces, 2021, 8, 2100515.	1.9	3
393	Thermal boundary conductance of monolayer beyond-graphene two-dimensional materials on SiO ₂ and GaN. Nanotechnology, 2021, 32, 405206.	1.3	7
394	Deep Learning Method to Accelerate Discovery of Hybrid Polymer-Graphene Composites. Scientific Reports, 2021, 11, 15111.	1.6	13
395	2D TiN@C sheets derived from MXene as highly efficient polysulfides traps and catalysts for lithiumâ^'sulfur batteries. Electrochimica Acta, 2021, 384, 138187.	2.6	32
396	Nanoconfined Topochemical Conversion from MXene to Ultrathin Nonâ€Layered TiN Nanomesh toward Superior Electrocatalysts for Lithium‣ulfur Batteries. Small, 2021, 17, e2101360.	5.2	25
397	A DFT study on the outstanding hydrogen storage performance of the Ti-decorated MoS2 monolayer. Surfaces and Interfaces, 2021, 26, 101329.	1.5	8

#	Article	IF	Citations
398	A MoS ₂ and Graphene Alternately Stacking van der Waals Heterostructure for Li ⁺ /Mg ²⁺ Coâ€Intercalation. Advanced Functional Materials, 2021, 31, 2103214.	7.8	35
399	Investigation on the optical nonlinearity of the layered magnesium-mediated metal organic framework (Mg-MOF-74). Optics Express, 2021, 29, 23786.	1.7	3
400	2D amorphous-MoO3â^'x@Ti3C2-MXene non-van der Waals heterostructures as anode materials for lithium-ion batteries. Nano Energy, 2021, 86, 106139.	8.2	63
401	Design and characterization of 2D MXene-based electrode with high-rate capability. MRS Bulletin, 2021, 46, 755-766.	1.7	9
402	Hydrogenated borophene/blue phosphorene: A novel two-dimensional donor-acceptor heterostructure with shrunken interlayer distance as a potential anode material for Li/Na ion batteries. Journal of Physics and Chemistry of Solids, 2021, 155, 110108.	1.9	8
403	Designing Newâ€Generation Piezoelectric Transducers by Embedding Superior Grapheneâ€Based Thermal Regulators. Advanced Materials, 2021, 33, e2103141.	11.1	9
404	Hybrid energy storage using nitrogen-doped graphene and layered-MXene (Ti3C2) for stable high-rate supercapacitors. Electrochimica Acta, 2021, 388, 138664.	2.6	22
405	Wafer-scale quasi-layered tungstate-doped polypyrrole film with high volumetric capacitance. Nano Research, 2023, 16, 4895-4900.	5.8	3
406	Recent Progress in Emerging Two-Dimensional Transition Metal Carbides. Nano-Micro Letters, 2021, 13, 183.	14.4	82
407	Ten Years of Progress in the Synthesis and Development of MXenes. Advanced Materials, 2021, 33, e2103393.	11.1	410
408	Flexible GO/Nb ₂ CT _x hybrid films for high-performance piezoresistive sensors. Journal Physics D: Applied Physics, 2021, 54, 424007.	1.3	4
409	Strain-induced electronic, stability and enhancement of thermoelectric performance of 2D Si2C3 monolayer: An emerging material for renewable energy. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 132, 114769.	1.3	3
410	Two-dimensional heterostructures and their device applications: progress, challenges and opportunities—review. Journal Physics D: Applied Physics, 2021, 54, 433001.	1.3	30
411	MXenes-based nanocomposites for supercapacitor applications. Current Opinion in Chemical Engineering, 2021, 33, 100710.	3.8	56
412	High-temperature ferromagnetism in monolayers MnGaX3 (XÂ=ÂTe, Se). Journal of Magnetism and Magnetic Materials, 2021, 534, 168041.	1.0	2
413	Two-Dimensional Materials for Advanced Solar Cells. , 0, , .		0
414	Construction of hierarchical Ti3C2Tx@TiO2/MoS2 covered manganese oxides for advanced oxygen evolution electrocatalysis. Journal of Materials Science, 2021, 56, 18174-18187.	1.7	3
415	Synthesis of hexagonal boron nitrides by chemical vapor deposition and their use as single photon emitters. Nano Materials Science, 2021, 3, 291-312.	3.9	29

#	Article	IF	CITATIONS
416	Van der Waals heterostructures with one-dimensional atomic crystals. Progress in Materials Science, 2021, 122, 100856.	16.0	29
417	Structural and electronic properties of semi-buckled phase of III4–V4 monolayers. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 134, 114922.	1.3	4
418	Theoretical studies of SiC van der Waals heterostructures as anodes of Li-ion batteries. Applied Surface Science, 2021, 563, 150269.	3.1	43
419	2D titanium and vanadium carbide MXene heterostructures for electrochemical energy storage. Energy Storage Materials, 2021, 41, 554-562.	9.5	57
420	Recent Progress in MXene-Based Materials for Metal-Sulfur and Metal-Air Batteries: Potential High-Performance Electrodes. Electrochemical Energy Reviews, 2022, 5, 112-144.	13.1	99
421	Theoretical study on the heterostructures of MXenes and B-doped graphene as promising anode materials for lithium-ion batteries. Journal of Solid State Chemistry, 2021, 302, 122418.	1.4	3
422	Design and synthesis of 2D rGO/NiO heterostructure composites for high-performance electrochromic energy storage. Applied Surface Science, 2021, 565, 150512.	3.1	25
423	Recent progress on transition metal oxides as advanced materials for energy conversion and storage. Energy Storage Materials, 2021, 42, 317-369.	9.5	113
424	Design and construction of 2D/2D sheet-on-sheet transition metal sulfide/phosphide heterostructure for efficient oxygen evolution reaction. Applied Surface Science, 2021, 565, 150510.	3.1	30
425	Challenges and design strategies for high performance aqueous zinc ion batteries. Energy Storage Materials, 2021, 42, 533-569.	9.5	74
426	Tension-compression asymmetry of the stress-strain behavior of the stacked graphene assembly: Experimental measurement and theoretical interpretation. Journal of the Mechanics and Physics of Solids, 2021, 157, 104642.	2.3	2
427	Sc2CO-MXene/h-BN heterostructure with synergetic effect as an anchoring and catalytic material for lithium-sulfur battery. Journal of Alloys and Compounds, 2021, 887, 161273.	2.8	15
428	Alternately aligned 2D heterostructures enabled by d-spacing accessible, highly periodic accordion-like graphene oxide frameworks. Science China Materials, 2021, 64, 1457-1467.	3.5	4
429	Adhesion Between MXenes and Other 2D Materials. ACS Applied Materials & Interfaces, 2021, 13, 4682-4691.	4.0	39
430	Transition metal nitrides for electrochemical energy applications. Chemical Society Reviews, 2021, 50, 1354-1390.	18.7	580
431	Chemical Synthesis and Substrate Temperature Effect on Morphology of 2D Vanadium Disulfide. Crystal Research and Technology, 2021, 56, 2000184.	0.6	5
432	A review on vertical and lateral heterostructures of semiconducting 2D-MoS ₂ with other 2D materials: a feasible perspective for energy conversion. Nanoscale, 2021, 13, 9908-9944.	2.8	53
433	Two-dimensional conjugated metal–organic frameworks (2D <i>c</i> -MOFs): chemistry and function for MOFtronics. Chemical Society Reviews, 2021, 50, 2764-2793.	18.7	242

	CITATION R	EPORT	
#	Article	IF	Citations
434	Application of two-dimensional materials in perovskite solar cells: recent progress, challenges, and prospective solutions. Journal of Materials Chemistry C, 2021, 9, 14065-14092.	2.7	24
435	Interface chemistry of two-dimensional heterostructures – fundamentals to applications. Chemical Society Reviews, 2021, 50, 4684-4729.	18.7	152
436	Transforming Ti ₃ C ₂ T _x MXenes into nanoscale ionic materials <i>via</i> an electronic interaction strategy. Journal of Materials Chemistry A, 2021, 9, 15441-15451.	5.2	21
437	Layerâ€byâ€Layer Selfâ€Assembled Nanostructured Electrodes for Lithiumâ€Ion Batteries. Small, 2021, 17, e2006434.	5.2	12
438	MXene–Organic Hybrid Materials. , 2019, , 221-251.		1
439	3D Porous iron oxide/carbon with large surface area as advanced anode materials for lithium-ion batteries. Ionics, 2020, 26, 4327-4338.	1.2	11
440	A review of the interfacial properties of 2-D materials for energy storage and sensor applications. Chinese Journal of Physics, 2020, 66, 246-257.	2.0	28
441	A brand-new bimetallic copper-lithium HEDP complex of fast ion migration as a promising anode for lithium ion batteries. Journal of Molecular Structure, 2020, 1214, 128223.	1.8	18
442	High-Performance Borophene/Graphene Heterostructure Anode of Lithium-Ion Batteries Achieved via Controlled Interlayer Spacing. ACS Applied Energy Materials, 2020, 3, 11699-11705.	2.5	33
443	Exploring the Efficient Na/K Storage Mechanism and Vacancy Defect-Boosted Li ⁺ Diffusion Based on VSe ₂ /MoSe ₂ Heterostructure Engineering. ACS Applied Materials & Interfaces, 2021, 13, 2072-2080.	4.0	19
444	Surface Redox-Active Organosulfur-Tethered Carbon Nanotubes for High Power and Long Cyclability of Na–Organosulfur Hybrid Energy Storage. ACS Energy Letters, 2021, 6, 280-289.	8.8	20
445	A MoSSe/blue phosphorene vdw heterostructure with energy conversion efficiency of 19.9% for photocatalytic water splitting. Semiconductor Science and Technology, 2020, 35, 125008.	1.0	56
446	Atomic-resolution visualization and doping effects of complex structures in intercalated bilayer graphene. Physical Review Materials, 2019, 3, .	0.9	10
447	Synthesis of two-dimensional Ti3C2Tx/Au nanosheets with SERS performance. Applied Optics, 2019, 58, 8290.	0.9	6
448	Recent progress of pulsed fiber lasers based on transition-metal dichalcogenides and black phosphorus saturable absorbers. Nanophotonics, 2020, 9, 2215-2231.	2.9	58
449	Optical Patterning of Two-Dimensional Materials. Research, 2020, 2020, 6581250.	2.8	30
450	Surface functionalization of MXenes. Materials Advances, 2021, 2, 7277-7307.	2.6	73
451	A graphene-like nanoribbon for efficient bifunctional electrocatalysts. Journal of Materials Chemistry A, 2021, 9, 26688-26697.	5.2	10

#	ARTICLE	IF	CITATIONS
452	First principles study of electronic and optical properties and photocatalytic performance of GaN–SiS van der Waals heterostructure. RSC Advances, 2021, 11, 32996-33003.	1.7	11
453	2D material hybrid heterostructures: achievements and challenges towards high throughput fabrication. Journal of Materials Chemistry C, 2021, 9, 15721-15734.	2.7	13
454	Graphene oxide-mediated scalable preparation of heterostructured MoS ₂ –MoO ₂ /graphene nanohybrids for efficient energy storage and hydrogen evolution reaction. Sustainable Energy and Fuels, 2021, 5, 6124-6134.	2.5	1
455	A review on MXenes: new-generation 2D materials for supercapacitors. Sustainable Energy and Fuels, 2021, 5, 5672-5693.	2.5	55
456	Interfacial Assembly and Applications of Functional Mesoporous Materials. Chemical Reviews, 2021, 121, 14349-14429.	23.0	151
458	Band-gap engineering, magnetic behavior and Dirac-semimetal character in the MoSi ₂ N ₄ nanoribbon with armchair and zigzag edges. Journal Physics D: Applied Physics, 2022, 55, 035301.	1.3	23
459	Two-Dimensional TeB Structures with Anisotropic Carrier Mobility and Tunable Bandgap. Molecules, 2021, 26, 6404.	1.7	0
460	Huge Lithium Storage in 2D Bilayer Structures with Point Defects. Journal of Physical Chemistry C, 2021, 125, 23597-23603.	1.5	6
461	Core–Shell CoSe ₂ /WSe ₂ Heterostructures@Carbon in Porous Carbon Nanosheets as Advanced Anode for Sodium Ion Batteries. Small, 2021, 17, e2103005.	5.2	74
462	Usability Identification Framework and High-Throughput Screening of Two-Dimensional Materials in Lithium Ion Batteries. ACS Nano, 2021, 15, 16469-16477.	7.3	15
463	Strainâ€Induced Magnetism in MSi ₂ N ₄ (M = V, Cr): A Firstâ€Principles Study. Annalen Der Physik, 2021, 533, 2100273.	0.9	10
464	Screening and Understanding Li Adsorption on Two-Dimensional Metallic Materials by Learning Physics and Physics-Simplified Learning. Jacs Au, 2021, 1, 1904-1914.	3.6	12
465	Performance improvement of photovoltaic: Utilization of two-dimensional Ti3C2Tx MXene. Surfaces and Interfaces, 2021, 27, 101566.	1.5	3
466	Interface Engineering of Magnetic Anisotropy in van der Waals Ferromagnet-based Heterostructures. ACS Nano, 2021, 15, 16395-16403.	7.3	7
467	Application and prospect of supercapacitors in Internet of Energy (IOE). Journal of Energy Storage, 2021, 44, 103299.	3.9	26
468	Layered manganese oxides as electrodes for water desalination via hybrid capacitive deionization. , 2018, , .		0
469	Emerging 2D-Nanostructured materials for electrochemical and sensing Application-A review. International Journal of Hydrogen Energy, 2022, 47, 1371-1389.	3.8	34
470	Atomically Thin Materials for Next-Generation Rechargeable Batteries. Chemical Reviews, 2022, 122, 957-999.	23.0	87

#	Article	IF	CITATIONS
472	M-Site Vacancy-Mediated Adsorption and Diffusion of Sodium on Ti ₂ CO ₂ MXene. Journal of Physical Chemistry C, 2021, 125, 82-90.	1.5	10
473	Ultrafast extreme thermal–electrical fabrication of volcano-shape-like core-shell Ag-MnxOy branches anchored on carbon as high-performance electrochemical electrodes. Nano Energy, 2022, 91, 106663.	8.2	4
474	Direct Z-scheme construction of g-C3N4 quantum dots / TiO2 nanoflakes for efficient photocatalysis. Chemical Engineering Journal, 2022, 430, 132861.	6.6	63
475	Two-dimensional materials towards separator functionalization in advanced Li–S batteries. Nanoscale, 2021, 13, 18883-18911.	2.8	10
476	Anisotropic optical responses of layered thallium arsenic sulfosalt gillulyite. Scientific Reports, 2021, 11, 22002.	1.6	4
477	2D Materials for Environment, Energy, and Biomedical Applications. Journal of Biomedical Research & Environmental Sciences, 2021, 2, 977-984.	0.1	5
478	Emerging MXene@Metal–Organic Framework Hybrids: Design Strategies toward Versatile Applications. ACS Nano, 2021, 15, 18742-18776.	7.3	81
479	Theoretical study of SnS2 encapsulated in Graphene as a promising anode material for Kâ~'ion batteries. Journal of Physics Condensed Matter, 2021, , .	0.7	0
480	Manipulation on Two-Dimensional Amorphous Nanomaterials for Enhanced Electrochemical Energy Storage and Conversion. Nanomaterials, 2021, 11, 3246.	1.9	7
481	High‧peed Ionic Synaptic Memory Based on 2D Titanium Carbide MXene. Advanced Functional Materials, 2022, 32, 2109970.	7.8	33
482	MXenes nanocomposites for energy storage and conversion. Rare Metals, 2022, 41, 1101-1128.	3.6	47
483	Hydrothermal synthesis of Co3O4 nanoparticles decorated three dimensional MoS2 nanoflower for exceptionally stable supercapacitor electrode with improved capacitive performance. Journal of Energy Storage, 2022, 47, 103551.	3.9	18
484	Photo Rechargeable Liâ€lon Batteries Using Nanorod Heterostructure Electrodes. Small, 2021, 17, e2105029.	5.2	25
485	1T-VS ₂ /MXene Hybrid as a Superior Electrode Material for Asymmetric Supercapacitors: Experimental and Theoretical Investigations. ACS Applied Energy Materials, 2021, 4, 14198-14209.	2.5	34
486	All-Optical Modulation Technology Based on 2D Layered Materials. Micromachines, 2022, 13, 92.	1.4	20
487	Three-dimensional porous aerogel assembly from ultrathin rGO@SnO2 nanosheets for advanced lithium-ion batteries. Composites Part B: Engineering, 2022, 231, 109591.	5.9	15
488	Sodium birnessite@graphene hierarchical structures for ultrafast sodium ion storage. Journal of Electroanalytical Chemistry, 2022, 906, 116007.	1.9	3
489	Flexible Si3C monolayer: A superior anode for high-performance non-lithium ion batteries. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 637, 128238.	2.3	17

#	Article	IF	CITATIONS
490	First-principles study of the electronic and optical properties of homo-doped 2D-hBN monolayer. Computational Condensed Matter, 2022, 30, e00628.	0.9	6
491	Hybrid MnO-SiOx@C microspheres with a hierarchical mesoporous structure for advanced lithium-ion battery anodes. Journal of Alloys and Compounds, 2022, 899, 163251.	2.8	6
492	2D MoS ₂ -MoSe ₂ and MoS ₂ -NbS ₂ Lateral Hetero Structures as Anode Materials for LIBs/SIBs. SSRN Electronic Journal, O, , .	0.4	1
493	Boosting the Lithium Storage of Tin Dioxide Nanotubes by Mxene Inks as Conductive Binder. SSRN Electronic Journal, 0, , .	0.4	0
494	Vacancy engineering of oxidized Nb2CTx MXenes for a biased nitrogen fixation. Green Energy and Environment, 2023, 8, 1185-1194.	4.7	11
495	Surface engineering of anode materials for improving sodium-ion storage performance. Journal of Materials Chemistry A, 2022, 10, 3889-3904.	5.2	20
496	Ion Intercalation Process in MXene Pseudocapacitors With Aqueous and Non-Aqueous Electrolytes. , 2022, , .		0
497	Metal–organic-framework derived Co@CN modified horizontally aligned graphene oxide array as free-standing anode for lithium-ion batteries. Journal of Materials Chemistry A, 2022, 10, 699-706.	5.2	17
498	Experimental and theoretical characterization of the interfacial adhesion of 2D heterogeneous materials: A review. Journal of Micromechanics and Molecular Physics, 2021, 06, 31-48.	0.7	4
499	MXenes and their composites for lithium- and sodium-ion battery applications. , 2022, , 307-341.		0
500	Economical preparation of porous polyacrylonitrile-derived carbon/molybdenum disulfide composite anode for high-performance lithium-ion battery. Journal of Materials Science, 2022, 57, 1246-1260.	1.7	2
501	<scp>Twoâ€Dimensional</scp> Cathode Materials for Aqueous Rechargeable <scp>Zincâ€Ion</scp> Batteries ^{â€} . Chinese Journal of Chemistry, 2022, 40, 973-988.	2.6	10
502	Insights into 2D/2D MXene Heterostructures for Improved Synergy in Structure toward Nextâ€Generation Supercapacitors: A Review. Advanced Functional Materials, 2022, 32, .	7.8	152
503	3D hetero-nanostructured electrode constructed on carbon fiber paper with 2D 1T-MoS2/1D Cu(OH)2 for flexible asymmetric solid-state supercapacitors. Journal of Power Sources, 2022, 523, 231031.	4.0	21
504	Composite Li-ion battery cathodes formed via integration of carbon nanotubes or graphene nanoplatelets into chemical preintercalation synthesis of bilayered vanadium oxides. Journal of Alloys and Compounds, 2022, 903, 163929.	2.8	12
505	MXene/rGO/PS spheres multiple physical networks as high-performance pressure sensor. Nano Energy, 2022, 95, 106986.	8.2	58
506	Foldable batteries: from materials to devices. Nanoscale Advances, 2022, 4, 1494-1516.	2.2	8
507	Emerging smart design of electrodes for microâ€supercapacitors: A review. SmartMat, 2022, 3, 447-473.	6.4	16

ARTICLE IF CITATIONS Firstâ€principles investigation of elastic and electronic properties of double transition metal carbide 508 1.9 7 MXenes. Journal of the American Ceramic Society, 2022, 105, 4400-4413. Pseudocapacitive Coâ€Free Trimetallic Niâ€Znâ€Mn Perovskite Fluorides Enable Fastâ€Rechargeable Znâ€Based 509 Aqueous Batteries. Advanced Functional Materials, 2022, 32, . Observation of robust infrared plasmons in twisted titanium carbide (Ti3C2) MXene. Journal of 510 1.9 6 Physics and Chemistry of Solids, 2022, 164, 110612. Plasmonic-Metal/2d-Semiconductor Hybrids for Photodetection and Photocatalysis in Energy-Related and Environmental Processes. SSRN Electronic Journal, 0, , . Dimensional optimization enables high-performance capacitive deionization. Journal of Materials 512 5.2 43 Chemistry A, 2022, 10, 6414-6441. Toward layered MoS₂ anode for harvesting superior lithium storage. RSC Advances, 2022, 12, 9917-9922. 1.7 Layered post-transition-metal dichalcogenide SnGe₂N₄ as a promising 514 1.7 4 photoelectric material: a DFT study. RSC Advances, 2022, 12, 10249-10257. MXenes for metal-ion and metal-sulfur batteries: Synthesis, properties, and electrochemistry. 1.7 Materials Reports Energy, 2022, 2, 100077. Coupling of Nâ€Doped Mesoporous Carbon and Nâ€Ti₃C₂ in 2D Sandwiched 516 5.2 14 Heterostructure for Enhanced Oxygen Electroreduction. Small, 2022, 18, e2106581. Advances in carbon materials for stable lithium metal batteries. New Carbon Materials, 2022, 37, 1-24. Rational Design of Two-Dimensional Porous Boron Phosphide as Efficient Cathode Material for Li and 518 1.5 24 Na Ion Batteries: A First-Principles Study. Journal of Physical Chemistry C, 2022, 126, 5092-5100. Hierarchical Nanocapsules of Cu-Doped MoS₂@H-Substituted Graphdiyne for Magnesium 519 28 Storage. ACS Nano, 2022, 16, 3955-3964. Opportunities and challenges for 2D heterostructures in battery applications: a computational 520 1.3 1 perspective. Nanotechnology, 2022, , . Quantum capacitance of supercapacitor electrodes based on the F-functionalized M2C MXenes: A first-principles study. Vacuum, 2022, 201, 111094. 1.6 Local Structure of Sulfur Vacancies on the Basal Plane of Monolayer MoS₂. ACS Nano, 522 7.3 17 2022, 16, 6725-6733. Boosting the Lithium Storage of Tin Dioxide Nanotubes by MXene Inks as Conductive Binder. Chemistry Letters, 2022, 51, 585-589. Microwave-assisted reduction and sintering to construct hybrid networks of reduced graphene oxide 524 and MXene for electromagnetic interference shielding. Composites Part A: Applied Science and 3.8 13 Manufacturing, 2022, 157, 106928. A review on the recent advances in binder-free electrodes for electrochemical energy storage application. Journal of Energy Storage, 2022, 50, 104283.

#	Article	IF	CITATIONS
526	Exploring the structural stability, electronic and thermal attributes of synthetic 2D materials and their heterostructures. Applied Surface Science, 2022, 590, 153131.	3.1	15
527	Carbon nanocapsules stabilized Cu2O nanocubes as the high-performance electrode material for metal ion battery. Journal of Alloys and Compounds, 2022, 909, 164714.	2.8	3
528	Chemical vapor deposition of two-dimensional molybdenum nitride/graphene van der Waals heterostructure with enhanced electrocatalytic hydrogen evolution performance. Applied Surface Science, 2022, 589, 152934.	3.1	19
529	Heterostructured Lepidocrocite Titanate-Carbon Nanosheets for Electrochemical Applications. ACS Applied Nano Materials, 2022, 5, 678-690.	2.4	7
530	Multilayer Load and Fast Diffusion of Metal Ions on a Ti ₂ CS ₂ /Blue Phosphorene Heterostructure Anode. Journal of Physical Chemistry C, 2022, 126, 91-101.	1.5	7
531	Proton dynamics in water confined at the interface of the graphene–MXene heterostructure. Journal of Chemical Physics, 2021, 155, 234707.	1.2	5
532	Boosting capacitive energy density of conjugated molecule modified porous graphene film as high-performance electrode materials. Electrochimica Acta, 2022, 419, 140404.	2.6	13
533	Improved Ordering of Quasi-Two-Dimensional MoS ₂ via an Amorphous-to-Crystal Transition Initiated from Amorphous Sulfur-Rich MoS _{2+<i>x</i>} . Crystal Growth and Design, 2022, 22, 3072-3079.	1.4	7
534	Heterostructures based on transition metal chalcogenides and layered double hydroxides for enhanced water splitting. Current Opinion in Electrochemistry, 2022, 34, 101016.	2.5	5
535	Enhanced UV–Vis photodetector performance by optimizing interfacial charge transportation in the heterostructure by SnS and SnSe2. Journal of Colloid and Interface Science, 2022, 621, 374-384.	5.0	20
538	Controlled local orientation of 2D nanomaterials in 3D devices: methods and prospects for multifunctional designs and enhanced performance. Journal of Materials Chemistry A, 2022, 10, 19129-19168.	5.2	9
539	Two-dimensional layered materials for flexible electronics and batteries. , 2022, , 579-602.		0
540	Direct Plasmaâ€Enhancedâ€Chemicalâ€Vaporâ€Deposition Syntheses of Vertically Oriented Graphene Films on Functional Insulating Substrates for Wideâ€Range Applications. Advanced Functional Materials, 2022, 32, .	7.8	8
541	2D/2D Nanoarchitectured Nb ₂ C/Ti ₃ C ₂ MXene Heterointerface for High-Energy Supercapacitors with Sustainable Life Cycle. ACS Applied Materials & Interfaces, 2022, 14, 21038-21049.	4.0	24
542	A Glimpse on the plethora of applications of prodigious material MXene. Sustainable Materials and Technologies, 2022, 32, e00439.	1.7	9
543	Enhanced capacitive deionization by rGO@PEI/MoS2 nanocomposites with rich heterostructures. Separation and Purification Technology, 2022, 295, 121156.	3.9	7
544	Layer-by-Layer Materials for the Fabrication of Devices with Electrochemical Applications. Energies, 2022, 15, 3399.	1.6	9
545	2D MoS2-MoSe2 and MoS2-NbS2 lateral heterostructures as anode materials for LIBs/SIBs. Applied Surface Science, 2022, 596, 153529.	3.1	9

#	Article	IF	CITATIONS
547	Electrochemical method integrating exfoliation and in-situ growth to synthesize MoS2 nanosheets/MnO2 heterojunction for performance-enhanced supercapacitor. Ceramics International, 2022, 48, 23498-23503.	2.3	11
548	Boosting Li-Ion Diffusion Kinetics of Na ₂ Ti _{6–<i>x</i>} Mo _{<i>x</i>} O ₁₃ via Coherent Dimensional Engineering and Lattice Tailoring: An Alternative High-Rate Anode. ACS Nano, 2022, 16, 9117-9129.	7.3	9
549	First-principles insights of electronic properties of Blue Phosphorus/MoSi2N4 van der Waals heterostructure via vertical electric field and biaxial strain. Physica E: Low-Dimensional Systems and Nanostructures, 2022, 143, 115321.	1.3	5
550	MXene-based aptasensors: Advances, challenges, and prospects. Progress in Materials Science, 2022, 129, 100967.	16.0	46
551	Metallic nanosponges for energy storage and conversion applications. Journal of Materials Chemistry A, 2022, 10, 14221-14246.	5.2	8
552	First-Principles Study of 2d Ring-Te and its Electrical Contact with Topological Dirac Semimetal. SSRN Electronic Journal, 0, , .	0.4	0
553	Design Rationale and Device Configuration of Lithiumâ€lon Capacitors. Advanced Energy Materials, 2022, 12, .	10.2	40
554	Harnessing the Defects at Heteroâ€Interface of Transition Metal Compounds for Advanced Charge Storage: A Review. Small Structures, 2022, 3, .	6.9	11
555	Two-Dimensional Layered Heterostructures of Nanoporous Carbons Using Reduced Graphene Oxide and Metal–Organic Frameworks. Chemistry of Materials, 2022, 34, 4946-4954.	3.2	24
556	Atomically thin WSe2 nanosheets for fabrication of high-performance p-Si/WSe2 heterostructure. Optical Materials, 2022, 129, 112537.	1.7	7
557	Interfacial structure design of MXene-based nanomaterials for supercapacitors and batteries. , 2022, , .		0
558	Polyaniline inside the pores of high surface area mesoporous silicon as composite electrode material for supercapacitors. RSC Advances, 2022, 12, 17228-17236.	1.7	12
559	Research progress on ZnSe and ZnTe anodes for rechargeable batteries. Nanoscale, 2022, 14, 9609-9635.	2.8	15
560	Developing Potential Energy Surfaces for Graphene-Based 2D–3D Interfaces From Modified High-Dimensional Neural Networks for Applications in Energy Storage. Journal of Electrochemical Energy Conversion and Storage, 2022, 19, .	1.1	4
562	Selfâ€Regulation of Spin Polarization Density Propelling the Ion Diffusion Kinetics for Flexible Potassiumâ€ion Batteries. Advanced Functional Materials, 2022, 32, .	7.8	21
563	High-Capacity Ti ₃ C ₂ T _{<i>x</i>} MXene Electrodes Achieved by Eliminating Intercalated Water Molecules Using a Co-solvent System. ACS Applied Materials & Interfaces, 2022, 14, 30080-30089.	4.0	2
564	Solid-State Reaction Synthesis of Nanoscale Materials: Strategies and Applications. Chemical Reviews, 2022, 122, 12748-12863.	23.0	35
565	Prominent Electrode Material for Na-, K-, and Mg-ion Batteries: 2D β-Sb Monolayer. Energy & Fuels, 2022, 36, 7087-7095.	2.5	16

#	Article	IF	CITATIONS
566	Preparation and characterization of Ti3C2TX MXene/PVDF cation exchange membrane for electrodialysis. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 650, 129556.	2.3	13
567	N-functionalized Ti2B MBene as high-performance anode materials for sodium-ion batteries: A DFT study. Applied Surface Science, 2022, 599, 153927.	3.1	18
568	Catalytic and pseudocapacitive energy storage performance of metal (Co, Ni, Cu and Mn) ferrite nanostructures and nanocomposites. Progress in Materials Science, 2022, 130, 100995.	16.0	25
569	Plasmonic-metal/2D-semiconductor hybrids for photodetection and photocatalysis in energy-related and environmental processes. Coordination Chemistry Reviews, 2022, 469, 214665.	9.5	21
570	Black phosphorene/NP heterostructure as a novel anode material for Li/Na-ion batteries. Physical Chemistry Chemical Physics, 2022, 24, 19697-19704.	1.3	7
571	Modulation of MoSH/WSi ₂ N ₄ Schottky-junction barrier by external electric field and biaxial strain. Wuli Xuebao/Acta Physica Sinica, 2022, 71, 217301.	0.2	1
572	Pentagonal 2D Transition Metal Dichalcogenides: PdSe ₂ and Beyond. Advanced Functional Materials, 2022, 32, .	7.8	16
574	Metalâ€Organic Frameworks Functionalized Separators for Lithium‣ulfur Batteries. Chemical Record, 2022, 22, .	2.9	6
575	Electrodeposited cobalt sulfide nanolayer fenced nickel-copper carbonate hydroxide nanowires as an electrode for hybrid supercapacitors: A wind turbine-driven energy storage system for portable applications. Applied Surface Science, 2022, 602, 154288.	3.1	5
576	Two-Dimensional Hybrid Nanosheet-Based Supercapacitors: From Building Block Architecture, Fiber Assembly, and Fabric Construction to Wearable Applications. ACS Nano, 2022, 16, 10130-10155.	7.3	47
577	Electrochemical study of reduced graphene oxide@Zn2Ti3O8 nanocomposites as a superior anode for Li-ion battery. Chemical Engineering Science, 2022, 260, 117872.	1.9	3
578	Non-van der Waals quasi-2D materials; recent advances in synthesis, emergent properties and applications. Materials Today, 2022, 58, 164-200.	8.3	30
579	Optimum conditions for deposition of amorphous WS2 thin films and changes in structure and optical properties during solid state crystallization. Ceramics International, 2022, 48, 33041-33047.	2.3	1
580	Theoretical Progress of 2D Sixâ€Memberedâ€Ring Inorganic Materials as Anodes for Nonâ€Lithiumâ€Ion Batteries. Small, 2022, 18, .	5.2	6
581	Bridging 1D Inorganic and Organic Synthesis to Fabricate Ultrathin Bismuthâ€Based Nanotubes with Controllable Size as Anode Materials for Secondary Li Batteries. Small, 2022, 18, .	5.2	1
582	Charge Transfer in Metallocene Intercalated Transition Metal Dichalcogenides. Journal of Physical Chemistry C, 2022, 126, 13994-14002.	1.5	4
583	2D hybrid photocatalysts for solar energy harvesting. Sustainable Materials and Technologies, 2022, 33, e00469.	1.7	7
584	First-principles study on the effect of atomic swap on the electronic properties and quantum capacitance of Sc2CF2 monolayer. Vacuum, 2022, 204, 111371.	1.6	4

#	Article	IF	CITATIONS
585	Highly scalable and pH stable 2D Ni-MOF-based composites for high performance supercapacitor. Composites Part B: Engineering, 2022, 245, 110174.	5.9	30
586	Strain engineering on the electronic properties and interface contact of graphene/GeN3 van der Waals heterostructure. Applied Surface Science, 2022, 604, 154540.	3.1	13
587	First-principles calculations study of TiS2/Ti2CS2 heterostructure as an anode material for Li/Na/K-ion batteries. Computational Materials Science, 2022, 215, 111784.	1.4	6
588	Two-dimensional redox polydopamine with in-plane cylindrical mesochannels on graphene for high-energy and high-power lithium-ion capacitors. Chemical Engineering Journal, 2023, 452, 139095.	6.6	13
589	A two-dimensional metallic SnB monolayer as an anode material for non-lithium-ion batteries. Physical Chemistry Chemical Physics, 2022, 24, 23737-23748.	1.3	6
590	Advanced In Situ Induced Dualâ€Mechanism Heterointerface Towards Ultrastable Aqueous Rockingâ€Chair Zincâ€ion Batteries. Advanced Energy Materials, 2022, 12, .	10.2	50
591	Electrostatic gating and intercalation in 2D materials. Nature Reviews Materials, 2023, 8, 41-53.	23.3	57
592	Large-Scale Manual Grinding Preparation of Ultrathin Porous Sulfur (S ₈)-Anchored ScOOH Nanosheets for Photothermal Conversion and Dye Adsorption. ACS Applied Nano Materials, 2022, 5, 15133-15141.	2.4	4
593	Heterointerface effects of lithium intercalation and diffusion in van der Waals heterostructures. Physical Review Materials, 2022, 6, .	0.9	4
594	Review on recent advances in twoâ€dimensional nanomaterialsâ€based cathodes for lithiumâ€sulfur batteries. EcoMat, 2023, 5, .	6.8	15
595	A Review on MXene Synthesis, Stability, and Photocatalytic Applications. ACS Nano, 2022, 16, 13370-13429.	7.3	142
596	Engineering of Oxidized Line Defects on CVD-Grown MoS ₂ Flakes. ACS Applied Materials & Interfaces, 2022, 14, 47288-47299.	4.0	8
597	Shearing induced ordered structures in two-dimensional nanomaterials-based electrodes for boosted pseudocapacitive kinetics. Energy Storage Materials, 2022, 53, 444-452.	9.5	8
598	Design and synthesis of high-energy-density heterostructure Na _{0.7} MnO ₂ –Li ₄ Mn ₅ O ₁₂ cathode material for advanced lithium batteries. New Journal of Chemistry, 2022, 46, 21350-21355.	1.4	3
599	A room-temperature antiferroelectric in hybrid perovskite enables highly efficient energy storage at low electric fields. Chemical Science, 2022, 13, 13499-13506.	3.7	16
600	Mapping the Binding Energy of Layered Crystals to Macroscopic Observables. Advanced Science, 0, , 2204001.	5.6	1
601	Ti3C2Tx supercapacitors with a hexagonal boron nitride separator manufactured by spray coating. , 2022, 7, 81-89.		1
602	2D Van der Waals Heterostructures for Chemical Sensing. Advanced Functional Materials, 2022, 32, .	7.8	34

ARTICLE IF CITATIONS Engineering single atomic ruthenium on defective nickel vanadium layered double hydroxide for 603 5.8 4 highly efficient hydrogen evolution. Nano Research, 2023, 16, 4612-4619. A computational investigation to tune the optical gain in AISb/InGaAsSb/AISb type-I quantum well 604 heterostructure. European Physical Journal B, 2022, 95, . Application of in situ/operando characterization techniques in heterostructure catalysts toward 605 5.8 8 water electrolysis. Nano Research, 2023, 16, 1984-1991. Operando spectroelectrochemistry of bulk-exfoliated 2D SnS2 for anodes within alkali metal ion 606 1.8 batteries reveals unusual tin (III) states. Frontiers in Chemistry, 0, 10, . Constructing Fast Transmembrane Pathways in a Layered Double Hydroxide Nanosheets/Nanoparticles Composite Film for an Inorganic Anion-Exchange Membrane. ACS Applied Materials & amp; Interfaces, 607 4.0 6 2022, 14, 51212-51221. Exploring the role of Stone-Wales defect in boron nitride nano-sheet as a anode Mg-ion batteries. 608 1.8 Inorganic Chemistry Communication, 2022, 146, 110098. Ultrathin graphdiyne oxide-intercalated MXene: A new heterostructure with interfacial synergistic 609 9.5 16 effect for high performance lithium-ion storage. Energy Storage Materials, 2023, 54, 10-19. Theory, properties and engineering of 2D magnetic materials. Progress in Materials Science, 2023, 132, 16.0 19 101036. Advanced In Situ Characterization Techniques for Direct Observation of Gasâ€Involved Electrochemical 611 7.3 8 Reactions. Energy and Environmental Materials, 2023, 6, . Evaluation of the role perfect and defect boron nitride monolayer in calcium ion batteries as a anode. 1.1 Computational and Theoretical Chemistry, 2023, 1219, 113940. Metal nitrides as efficient electrode material for supercapacitors: A review. Journal of Energy 613 3.9 34 Storage, 2022, 56, 105912. Interfacial Coupling SnSe₂/SnSe Heterostructures as Long Cyclic Anodes of Lithiumâ€Ion 614 5.6 Battery. Advanced Science, 2023, 10, . Aluminum functionalized few-layer silicene as anode material for alkali metal ion batteries. 615 1.7 5 Molecular Systems Design and Éngineering, 2023, 8, 379-387. Chemistry–mechanics–geometry coupling in positive electrode materials: a scale-bridging perspective for mitigating degradation in lithium-ion batteries through materials design. Chemical Science, 2023, 3.7 14, 458-484. High capacity and stability induced by sandwich-like structure and metal–O configuration for 617 2 2.6 CoNi2S4/Ti3C2Tx heterostructure electrode. Electrochimica Acta, 2023, 439, 141643. Charge storage kinetics of MoS2 flower decorated reduced graphene oxide for quasi solid-state symmetric supercapacitor. Journal of Physics and Chemistry of Solids, 2023, 173, 111117. <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si38.svg" display="inline". id="d1e522"><mml:msub><mml:mrow><mml:mi>1</mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></m xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si36.svg" display="inline" 619 2.0 4 id="d1e532"><mml:msub><mml:mrow /><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:math> layered materials as auspicious anodes for Lithium batteries. Materials Chemistry and Physics. 2023, 295, 127146. Boosting Sodium Ion Storage via the Thermodynamic- and Dynamic-Induced Bidirectional Interfacial Electric Field in the ZnS/Sn₂S₃ Heterostructure Anode. Energy & amp; Fuels, 2022, 36, 14423-14432.

#	Article	IF	CITATIONS
621	Chemical Preintercalation Synthesis of Versatile Electrode Materials for Electrochemical Energy Storage. Accounts of Chemical Research, 2023, 56, 13-24.	7.6	8
622	Recent progress of two-dimensional heterostructures for thermoelectric applications. Journal of Physics Condensed Matter, 2023, 35, 073001.	0.7	27
623	Liquid Phase Exfoliation of Chemically Prelithiated Bilayered Vanadium Oxide in Aqueous Media for Li-Ion Batteries. Journal of Physical Chemistry C, 2023, 127, 919-929.	1.5	4
624	The rise of two-dimensional tellurium for next-generation electronics and optoelectronics. Frontiers of Physics, 2023, 18, .	2.4	7
625	MOFs-derived advanced heterostructure electrodes for energy storage. Coordination Chemistry Reviews, 2023, 479, 214985.	9.5	19
626	Terminal Groupâ€Oriented Selfâ€Assembly to Controllably Synthesize a Layerâ€by‣ayer SnSe ₂ and MXene Heterostructure for Ultrastable Lithium Storage. Small, 2023, 19, .	5.2	33
627	The surface charge induced high activity of oxygen reduction reaction on the PdTe ₂ bilayer. Physical Chemistry Chemical Physics, 2023, 25, 4105-4112.	1.3	2
628	Bending Resistance Covalent Organic Framework Superlattice: "Nano-Hourglass―Induced Charge Accumulation for Flexible In-Plane Micro-Supercapacitors. Nano-Micro Letters, 2023, 15, .	14.4	12
629	Surface chemistry and structure manipulation of graphene-related materials to address the challenges of electrochemical energy storage. Chemical Communications, 2023, 59, 2571-2583.	2.2	16
630	Challenges and future prospects. , 2023, , 447-484.		1
631	Design of Atomic Ordering in Mo ₂ Nb ₂ C ₃ T _{<i>x</i>} MXenes for Hydrogen Evolution Electrocatalysis. Nano Letters, 2023, 23, 931-938.	4.5	6
632	Intercalation Engineering of 2D Materials at Macroscale for Smart Human–Machine Interface and Double‣ayer to Faradaic Charge Storage for Ions Separation. Advanced Materials Interfaces, 2023, 10, .	1.9	4
633	2D materials for flexible electronics. , 2023, , 169-206.		1
634	First principles study of 2D ring-Te and its electrical contact with a topological Dirac semimetal. Nanoscale, 2023, 15, 5360-5370.	2.8	3
635	Prospects and future perspective of nanomaterials for energy storage applications. , 2023, , 569-578.		0
636	Electrostatic restacking of two-dimensional materials to generate novel hetero-superlattices and their energy applications. APL Materials, 2023, 11, .	2.2	2
637	Rolling flexible double-MXenes TiCT/VCT hybrid films for microsupercapacitors. Chemical Engineering Journal, 2023, 464, 142645.	6.6	1
638	A comprehensive review of heat transfer enhancement of heat exchanger, heat pipe and electronic components using graphene. Case Studies in Thermal Engineering, 2023, 45, 102874.	2.8	12

#	Article	IF	CITATIONS
639	Potential use of silicon carbide monolayer as an anode in rechargeable Mg-ion batteries. Journal of Physics and Chemistry of Solids, 2023, 177, 111270.	1.9	0
640	Surface and Interface Regulation of MXenes: Methods and Properties. Small Methods, 2023, 7, .	4.6	8
641	Self-Supporting Co/CeO ₂ Heterostructures for Ampere-Level Current Density Alkaline Water Electrolysis. Inorganic Chemistry, 2023, 62, 3297-3304.	1.9	6
642	In-situ atomic level observation of the strain response of graphene lattice. Scientific Reports, 2023, 13,	1.6	4
643	Holey Ti ₃ C ₂ MXene-Derived Anode Enables Boosted Kinetics in Lithium-Ion Capacitors. ACS Applied Materials & Interfaces, 2023, 15, 12161-12170.	4.0	12
644	The electronic and interfacial properties of a vdW heterostructure composed of penta-PdSe ₂ and biphenylene monolayers. Materials Advances, 2023, 4, 1566-1571.	2.6	2
645	Advances on Microsupercapacitors: Real Fast Miniaturized Devices toward Technological Dreams for Powering Embedded Electronics?. ACS Omega, 2023, 8, 8977-8990.	1.6	6
646	Quantum Energy Storage in 2D Heterointerfaces. Advanced Materials Interfaces, 2023, 10, .	1.9	4
647	Comparative studies of hexagonal boron phosphide/V ₂ CS ₂ heterostructure and homogeneous bilayers as metal-ion battery anodes. Physical Chemistry Chemical Physics, 2023, 25, 10011-10021.	1.3	1
648	Photo-response of water intercalated Ti ₃ C ₂ O ₂ MXene. Physical Chemistry Chemical Physics, 2023, 25, 9522-9531.	1.3	0
649	Emergent second-harmonic generation in van der Waals heterostructure of bilayer MoS ₂ and monolayer graphene. Science Advances, 2023, 9, .	4.7	6
650	Facile hydrothermal synthesis of vanadium disulfide nanomaterial for supercapacitor application. , 2023, , .		1
651	Nonâ€van der Waals 2D Materials for Electrochemical Energy Storage. Advanced Functional Materials, 2023, 33, .	7.8	9
652	Soft robotics towards sustainable development goals and climate actions. Frontiers in Robotics and Al, O, 1O, .	2.0	3
653	Hard-breakable Ohmic contact in 2D CrSi ₂ N ₄ -metal heterostructures: A DFT study. AIP Advances, 2023, 13, 035127.	0.6	0
654	Interlayer Sodium Plating/Stripping in Van der Waals‣ayered Quantum Dot Superstructure. Small, 2023, 19, .	5.2	0
655	Covalent Organic Frameworks (COFs)/MXenes Heterostructures for Electrochemical Energy Storage. Crystal Growth and Design, 2023, 23, 3057-3078.	1.4	9
656	Rational Engineering of 2D Materials as Advanced Catalyst Cathodes for Highâ€Performance Metal–Carbon Dioxide Batteries. Small Structures, 2023, 4, .	6.9	2

#	Article	IF	CITATIONS
657	Adaptive Convolutional Neural Networks for Enhanced Memory Retention and Restoration in Optoelectronic Vision Devices. Advanced Intelligent Systems, 2023, 5, .	3.3	0
658	Tunable Schottky contacts in graphene/XAu ₄ Y (X, Y = Se, Te) heterostructures. Physical Chemistry Chemical Physics, 2023, 25, 12245-12251.	1.3	3
688	Heterostructures of MXenes and transition metal oxides for supercapacitors: an overview. Nanoscale, 2023, 15, 13546-13560.	2.8	3
690	Synthesis of VS2/N-rGO nanocomposite material for energy storage application. , 2023, , .		0
693	Liquid metal-based Printing Synthesis of bismuth-doped gallium oxide and its application for photodetector. Journal of Materials Chemistry C, O, , .	2.7	0
694	Emerging Trends in Advanced Synthesis and Properties: Mxenes as Super Materials. ACS Symposium Series, 0, , 71-100.	0.5	1
699	Emerging Nanoengineered 2D MXene-Based Architectures for Supercapacitor Application. ACS Symposium Series, 0, , 97-139.	0.5	0
710	Graphene cladded cobalt phosphide nanoparticles with a sandwich structure by plasma for lithium and sodium storage. Chemical Communications, 2023, 59, 13313-13316.	2.2	3
722	2D-non-layered materials: Advancement and application in biosensors, memristors, and energy storage. Semiconductors and Semimetals, 2023, , 253-276.	0.4	1