The vehicle routing problem with drones: Extended mo

Networks 70, 34-43 DOI: 10.1002/net.21746

Citation Report

#	Article	IF	CITATIONS
1	Dynamic Programming Approaches for the Traveling Salesman Problem with Drone. SSRN Electronic Journal, 0, , .	0.4	10
2	A decomposition-based iterative optimization algorithm for traveling salesman problem with drone. Transportation Research Part C: Emerging Technologies, 2018, 91, 249-262.	3.9	163
3	Optimization approaches for civil applications of unmanned aerial vehicles (UAVs) or aerial drones: A survey. Networks, 2018, 72, 411-458.	1.6	568
4	A Case for a Battery-Aware Model of Drone Energy Consumption. , 2018, , .		29
5	Traveling Salesman Problem with Multiple Drones. , 2018, , .		36
6	Drone arc routing problems. Networks, 2018, 72, 543-559.	1.6	42
7	Drone delivery from trucks: Drone scheduling for given truck routes. Networks, 2018, 72, 506-527.	1.6	122
8	Sameâ€day delivery with heterogeneous fleets of drones and vehicles. Networks, 2018, 72, 475-505.	1.6	132
9	Dynamic programming approaches for the traveling salesman problem with drone. Networks, 2018, 72, 528-542.	1.6	200
10	Dynamic operations and pricing of electric unmanned aerial vehicle systems and power networks. Transportation Research Part C: Emerging Technologies, 2018, 92, 472-485.	3.9	25
11	An iterative twoâ€ s tep heuristic for the parallel drone scheduling traveling salesman problem. Networks, 2018, 72, 459-474.	1.6	72
12	<i>En route</i> truck–drone parcel delivery for optimal vehicle routing strategies. IET Intelligent Transport Systems, 2018, 12, 253-261.	1.7	97
13	A matheuristic for the vehicle routing problem with drones and its variants. Transportation Research Part C: Emerging Technologies, 2019, 106, 166-204.	3.9	145
14	A Heuristic Approach for the Drone Placement Problem. , 2019, , 45-59.		1
15	On a cooperative truck-and-drone delivery system. Procedia Computer Science, 2019, 159, 38-47.	1.2	34
16	Optimization of Multi-token Circulation with Master UAV Method in Multi-UAV Systems for Location Information Sharing. , 2019, , .		0
17	A Solution Approach for UAV Fleet Mission Planning in Changing Weather Conditions. Applied Sciences (Switzerland), 2019, 9, 3972.	1.3	22
18	A Survey of Recent Extended Variants of the Traveling Salesman and Vehicle Routing Problems for Unmanned Aerial Vehicles. Drones, 2019, 3, 66.	2.7	95

#	Article	IF	CITATIONS
19	Cooperative Routing Problem for Ground Vehicle and Unmanned Aerial Vehicle: The Application on Intelligence, Surveillance, and Reconnaissance Missions. IEEE Access, 2019, 7, 63504-63518.	2.6	65
20	Vehicle routing with transportable resources: Using carpooling and walking for on-site services. European Journal of Operational Research, 2019, 279, 996-1010.	3.5	21
21	A Study on the Traveling Salesman Problem with a Drone. Lecture Notes in Computer Science, 2019, , 557-564.	1.0	12
22	A Branch-and-Bound Approach to the Traveling Salesman Problem with a Drone. INFORMS Journal on Computing, 2019, 31, 335-346.	1.0	135
23	Optimal Energy Management of UAV-Based Cellular Networks Powered by Solar Panels and Batteries: Formulation and Solutions. IEEE Access, 2019, 7, 53698-53717.	2.6	33
24	A hybrid VNS/Tabu search algorithm for solving the vehicle routing problem with drones and en route operations. Computers and Operations Research, 2019, 109, 134-158.	2.4	138
25	A variable neighborhood search for flying sidekick traveling salesman problem. International Transactions in Operational Research, 2020, 27, 267-290.	1.8	125
26	Battery-Aware Operation Range Estimation for Terrestrial and Aerial Electric Vehicles. IEEE Transactions on Vehicular Technology, 2019, 68, 5471-5482.	3.9	42
27	The Drone Delivery Problem. SSRN Electronic Journal, 0, , .	0.4	10
28	Impact of drone delivery on sustainability and cost: Realizing the UAV potential through vehicle routing optimization. Applied Energy, 2019, 242, 1164-1175.	5.1	180
29	An adaptive large neighborhood search metaheuristic for the vehicle routing problem with drones. Transportation Research Part C: Emerging Technologies, 2019, 102, 289-315.	3.9	236
30	Vehicle routing problem with drones. Transportation Research Part B: Methodological, 2019, 122, 350-364.	2.8	252
31	Supply, demand, operations, and management of crowd-shipping services: A review and empirical evidence. Transportation Research Part C: Emerging Technologies, 2019, 103, 83-103.	3.9	128
32	The hybrid vehicle-drone routing problem for pick-up and delivery services. Transportation Research Part C: Emerging Technologies, 2019, 102, 427-449.	3.9	148
33	The Multiple Flying Sidekicks Traveling Salesman Problem: Parcel Delivery with Multiple Drones. SSRN Electronic Journal, 2019, , .	0.4	6
34	Service network design with mixed autonomous fleets. Transportation Research, Part E: Logistics and Transportation Review, 2019, 124, 40-55.	3.7	64
35	The electric two-echelon vehicle routing problem. Computers and Operations Research, 2019, 103, 198-210.	2.4	92
36	Maximum coverage capacitated facility location problem with range constrained drones. Transportation Research Part C: Emerging Technologies, 2019, 99, 1-18.	3.9	116

#	Article	IF	CITATIONS
37	Truck-drone hybrid delivery routing: Payload-energy dependency and No-Fly zones. International Journal of Production Economics, 2019, 214, 220-233.	5.1	170
38	Multiple traveling salesman problem with drones: Mathematical model and heuristic approach. Computers and Industrial Engineering, 2019, 129, 14-30.	3.4	207
39	Cooperative route planning for the drone and truck in delivery services: A bi-objective optimisation approach. Journal of the Operational Research Society, 2020, 71, 1657-1674.	2.1	39
40	Efficient Routing for Precedence-Constrained Package Delivery for Heterogeneous Vehicles. IEEE Transactions on Automation Science and Engineering, 2020, 17, 248-260.	3.4	39
41	Multi-visit drone routing problem. Computers and Operations Research, 2020, 113, 104802.	2.4	130
42	A concise guide to existing and emerging vehicle routing problem variants. European Journal of Operational Research, 2020, 286, 401-416.	3.5	171
43	A Genetic Algorithm for Solving the Truck-Drone-ATV Routing Problem. Advances in Intelligent Systems and Computing, 2020, , 1023-1032.	0.5	8
44	Dynamic Vehicle Routing in Presence of Random Recalls. , 2020, 4, 37-42.		5
45	A hybrid genetic algorithm for the traveling salesman problem with drone. Journal of Heuristics, 2020, 26, 219-247.	1.1	92
46	Two echelon vehicle routing problem with drones in last mile delivery. International Journal of Production Economics, 2020, 225, 107598.	5.1	145
47	Comparison of energy demands of drone-based and ground-based parcel delivery services. Transportation Research, Part D: Transport and Environment, 2020, 78, 102209.	3.2	111
48	The Mothership and Drone Routing Problem. INFORMS Journal on Computing, 2020, 32, 249-262.	1.0	59
49	The multiple flying sidekicks traveling salesman problem: Parcel delivery with multiple drones. Transportation Research Part C: Emerging Technologies, 2020, 110, 368-398.	3.9	257
50	Two-echelon urban deliveries using autonomous vehicles. Transportation Research, Part E: Logistics and Transportation Review, 2020, 141, 102018.	3.7	36
51	A vehicle-UAV operation scheme for instant delivery. Computers and Industrial Engineering, 2020, 149, 106809.	3.4	40
52	Dynamic discretization discovery for the service network design problem with mixed autonomous fleets. Transportation Research Part B: Methodological, 2020, 141, 164-195.	2.8	23
53	Drone routing with energy function: Formulation and exact algorithm. Transportation Research Part B: Methodological, 2020, 139, 364-387.	2.8	86
54	Unmanned Aerial Vehicles for Package Delivery and Network Coverage. , 2020, , .		10

#	Article	IF	CITATIONS
55	The electric vehicle routing problem with time windows and synchronised mobile battery swapping. Transportation Research Part B: Methodological, 2020, 140, 101-129.	2.8	68
56	The impact of airspace regulations on unmanned aerial vehicles in last-mile operation. Transportation Research, Part D: Transport and Environment, 2020, 87, 102480.	3.2	32
57	Impact of UAV Delivery on Sustainability and Costs under Traffic Restrictions. Mathematical Problems in Engineering, 2020, 2020, 1-15.	0.6	7
58	The multiple flying sidekicks traveling salesman problem with variable drone speeds. Transportation Research Part C: Emerging Technologies, 2020, 120, 102813.	3.9	70
59	Drone-aided routing: A literature review. Transportation Research Part C: Emerging Technologies, 2020, 120, 102762.	3.9	225
60	An Adaptive Heuristic Approach to Compute Upper and Lower Bounds for The Close-Enough Traveling Salesman Problem. INFORMS Journal on Computing, 2020, , .	1.0	2
61	Commanding Cooperative UGV-UAV With Nested Vehicle Routing for Emergency Resource Delivery. IEEE Access, 2020, 8, 215691-215704.	2.6	18
62	Optimization for drone and drone-truck combined operations: A review of the state of the art and future directions. Computers and Operations Research, 2020, 123, 105004.	2.4	196
63	Joint optimization of customer location clustering and drone-based routing for last-mile deliveries. Transportation Research Part C: Emerging Technologies, 2020, 114, 620-642.	3.9	115
64	A b <scp>ranchâ€andâ€cut</scp> approach and alternative formulations for the traveling salesman problem with drone. Networks, 2020, 76, 164-186.	1.6	40
65	Same-Day Delivery with Drone Resupply. Transportation Science, 2020, 54, 229-249.	2.6	113
66	Truck-drone team logistics: A heuristic approach to multi-drop route planning. Transportation Research Part C: Emerging Technologies, 2020, 114, 657-680.	3.9	114
67	A learnheuristic approach for the team orienteering problem with aerial drone motion constraints. Applied Soft Computing Journal, 2020, 92, 106280.	4.1	41
68	Using drones for parcels delivery process. Procedia Manufacturing, 2020, 42, 488-497.	1.9	48
69	Agile optimization of a twoâ€echelon vehicle routing problem with pickup and delivery. International Transactions in Operational Research, 2021, 28, 201-221.	1.8	45
70	Unmanned aerial vehicles/drones in vehicle routing problems: a literature review. International Transactions in Operational Research, 2021, 28, 1626-1657.	1.8	142
71	Hybrid genetic-sweep algorithm to solve the vehicle routing problem with drones. Physical Communication, 2021, 44, 101236.	1.2	64
72	Objectives and methods in multi-objective routing problems: a survey and classification scheme. European Journal of Operational Research, 2021, 290, 1-25.	3.5	42

#	Article	IF	CITATIONS
73	Recent challenges in Routing and Inventory Routing: Eâ€commerce and lastâ€mile delivery. Networks, 2021, 77, 255-268.	1.6	44
74	Last-mile delivery concepts: a survey from an operational research perspective. OR Spectrum, 2021, 43, 1-58.	2.1	210
75	The traveling salesman problem with release dates and drone resupply. Computers and Operations Research, 2021, 129, 105170.	2.4	33
76	Robust Maximum Coverage Facility Location Problem with Drones Considering Uncertainties in Battery Availability and Consumption. Transportation Research Record, 2021, 2675, 25-39.	1.0	10
77	A Review of Recent Advances in Coordination Between Unmanned Aerial and Ground Vehicles. Unmanned Systems, 2021, 09, 97-117.	2.7	53
78	An optimization drone routing model for inspecting wind farms. Soft Computing, 2021, 25, 2483-2498.	2.1	9
79	Parcel delivery by vehicle and drone. Journal of the Operational Research Society, 2021, 72, 398-416.	2.1	33
80	Drone-assisted deliveries: new formulations for the flying sidekick traveling salesman problem. Optimization Letters, 2021, 15, 1617-1648.	0.9	55
81	Optimal and heuristic algorithms for the multi-objective vehicle routing problem with drones for military surveillance operations. Journal of Industrial and Management Optimization, 2022, 18, 1651.	0.8	8
82	Modeling the flying sidekick traveling salesman problem with multiple drones. Networks, 2021, 78, 303-327.	1.6	24
83	A twoâ€tier urban delivery network with robotâ€based deliveries. Networks, 2021, 78, 461-483.	1.6	21
84	Parcel delivery cost minimization with time window constraints using trucks and drones. Networks, 2021, 78, 400-420.	1.6	18
85	A viability study using conceptual models for last mile drone logistics operations in populated urban cities of India. IET Collaborative Intelligent Manufacturing, 2021, 3, 262-272.	1.9	9
86	A branch-and-cut algorithm for the vehicle routing problem with drones. Transportation Research Part B: Methodological, 2021, 144, 174-203.	2.8	61
87	Exact Methods for the Traveling Salesman Problem with Drone. Transportation Science, 2021, 55, 315-335.	2.6	85
88	Allocating epidemic response teams and vaccine deliveries by drone in generic network structures, according to expected prevented exposures. PLoS ONE, 2021, 16, e0248053.	1.1	4
89	Minimizing energy and cost in range-limited drone deliveries with speed optimization. Transportation Research Part C: Emerging Technologies, 2021, 125, 102985.	3.9	40
90	Multi-Purpose Drones for Coverage and Transport Applications. IEEE Transactions on Wireless Communications, 2021, 20, 3974-3987.	6.1	17

#	Article	IF	CITATIONS
91	Van-based robot hybrid pickup and delivery routing problem. European Journal of Operational Research, 2022, 298, 894-914.	3.5	24
92	The Multi-visit Traveling Salesman Problem with Multi-Drones. Transportation Research Part C: Emerging Technologies, 2021, 128, 103172.	3.9	60
93	Assessing the sustainability of using drone technology for last-mile delivery in a blood supply chain. Journal of Modelling in Management, 2021, 16, 1376-1402.	1.1	14
94	Humanitarian relief network assessment using collaborative truck-and-drone system. Transportation Research, Part E: Logistics and Transportation Review, 2021, 152, 102417.	3.7	44
95	The twoâ€echelon routing problem with truck and drones. International Transactions in Operational Research, 2022, 29, 2968-2994.	1.8	16
96	The Last-Mile Delivery Process with Trucks and Drones Under Uncertain Energy Consumption. Journal of Optimization Theory and Applications, 2021, 191, 31-67.	0.8	17
97	The parallel drone scheduling problem with multiple drones and vehicles. European Journal of Operational Research, 2022, 300, 571-589.	3.5	28
98	Drone routing and optimization for post-disaster inspection. Computers and Industrial Engineering, 2021, 159, 107495.	3.4	32
99	Optimization in multimodal freight transportation problems: A Survey. European Journal of Operational Research, 2022, 299, 1-20.	3.5	45
100	Applications and Research avenues for drone-based models in logistics: A classification and review. Expert Systems With Applications, 2021, 177, 114854.	4.4	141
101	Traveling salesman problem with drone under recharging policy. Computer Communications, 2021, 179, 35-49.	3.1	15
102	An adaptive large neighborhood search heuristic for the vehicle routing problem with time windows and delivery robots. European Journal of Operational Research, 2021, 294, 1164-1180.	3.5	83
103	A New Truck-Drone Routing Problem for Parcel Delivery Services Aided by Parking Lots. IEEE Access, 2021, 9, 11091-11108.	2.6	22
104	Trucks and drones cooperation in the lastâ€mile delivery process. Networks, 2021, 78, 371-399.	1.6	23
105	Drone Delivery Models for Medical Emergencies. Healthcare Delivery in the Information Age, 2020, , 69-85.	0.3	16
106	An Integer Programming Model for the Capacitated Vehicle Routing Problem with Drones. Lecture Notes in Computer Science, 2019, , 511-520.	1.0	11
107	Algorithms for Solving the Vehicle Routing Problem with Drones. Lecture Notes in Computer Science, 2018, , 352-361.	1.0	31
108	A review of vehicle routing with simultaneous pickup and delivery. Computers and Operations Research, 2020, 122, 104987.	2.4	95

#	Article	IF	CITATIONS
109	Retail Deliveries by Drones: How Will Logistics Networks Change?. Production and Operations Management, 2020, 29, 2019-2034.	2.1	42
110	Heuristic Method for Collaborative Parcel Delivery with Drone. Journal of Distribution Science, 2018, 16, 19-24.	0.4	6
111	The Traveling Salesman Problem With One Truck and Multiple Drones. SSRN Electronic Journal, 0, , .	0.4	8
112	The Drone-Assisted Traveling Salesman Problem with Robot Stations. , 2020, , .		9
113	Optimization of the Distribution Network Using an Emerging Technology. Applied Sciences (Switzerland), 2020, 10, 857.	1.3	6
114	Retail Deliveries by Drones: How Will Logistics Networks Change?. SSRN Electronic Journal, 0, , .	0.4	2
115	Integration of Drones in Last-Mile Delivery: The Vehicle Routing Problem with Drones. Operations Research Proceedings: Papers of the Annual Meeting = VortrÃ g e Der Jahrestagung / DGOR, 2019, , 17-22.	0.1	0
116	A dynamical artificial bee colony for vehicle routing problem with drones. Engineering Applications of Artificial Intelligence, 2022, 107, 104510.	4.3	34
117	Fly Slower, Deliver Faster: the Multiple Flying Sidekicks Traveling Salesman Problem with Variable Drone Speeds. SSRN Electronic Journal, 0, , .	0.4	0
118	The Green-Vehicle Routing Problem: A Survey. , 2020, , 1-26.		7
119	Carrier-vehicle system for delivery in city environments. IFAC-PapersOnLine, 2020, 53, 15253-15258.	0.5	6
120	Hybrid Multi-Objective Optimization Approach With Pareto Local Search for Collaborative Truck-Drone Routing Problems Considering Flexible Time Windows. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 13011-13025.	4.7	17
121	Vehicle routing problem with drones considering time windows. Expert Systems With Applications, 2022, 191, 116264.	4.4	64
122	Path Optimization of Joint Delivery Mode of Trucks and UAVs. Mathematical Problems in Engineering, 2021, 2021, 1-15.	0.6	1
123	Time Optimization of Unmanned Aerial Vehicles Using an Augmented Path. Future Internet, 2021, 13, 308.	2.4	7
124	Collaborative Hybrid Aerial and Ground Vehicle Routing for Post-Disaster Assessment. Sustainability, 2021, 13, 12841.	1.6	5
125	Novel Spherical Fuzzy MARCOS Method for Assessment of Drone-Based City Logistics Concepts. Complexity, 2021, 2021, 1-17.	0.9	24
126	Optimizing Mission Times for Multiple Unmanned Vehicles with Vehicle-Target Assignment Constraints. , 2022, , .		1

#	Article	IF	CITATIONS
127	The Collaboration Routing of Heterogeneous Vehicles on Traveling Salesman Problem. , 2020, , .		1
128	Drone Applications Fighting COVID-19 Pandemic—Towards Good Practices. Drones, 2022, 6, 15.	2.7	24
129	A multi-agent approach to the truck multi-drone routing problem. Expert Systems With Applications, 2022, 195, 116604.	4.4	28
130	Solving the vehicle routing problem with drone for delivery services using an ant colony optimization algorithm. Advanced Engineering Informatics, 2022, 51, 101536.	4.0	46
131	A Literature Review of Drone-Based Package Delivery Logistics Systems and Their Implementation Feasibility. Sustainability, 2022, 14, 360.	1.6	70
132	A novel mathematical approach for the Truck-and-Drone Location-Routing Problem. Procedia Computer Science, 2022, 200, 1378-1391.	1.2	4
133	Multi-Depot Electric Vehicle and Drones Synchronized Delivery Routing Problem Under Time-Dependent Networks. SSRN Electronic Journal, 0, , .	0.4	0
134	Multi-Depot Electric Vehicle and Drones Synchronized Delivery Routing Problem Under Time-Dependent Networks. SSRN Electronic Journal, 0, , .	0.4	0
135	Load and Wind Aware Routing of Delivery Drones. Drones, 2022, 6, 50.	2.7	9
136	A Survey of Truck–Drone Routing Problem: Literature Review and Research Prospects. Journal of the Operations Research Society of China, 2022, 10, 343-377.	0.9	18
137	Two-stage robust facility location problem with drones. Transportation Research Part C: Emerging Technologies, 2022, 137, 103563.	3.9	23
138	A new artificial bee colony for vehicle routing problem with drones. , 2021, , .		1
139	An efficient routing heuristic for a drone-assisted delivery problem. IMA Journal of Management Mathematics, 2022, 33, 583-601.	1.1	3
140	An ILP-based Approach to Delivery Drone Routing under Load-dependent Flight Speed. , 2022, , .		0
141	A genetic algorithm for the close-enough traveling salesman problem with application to solar panels diagnostic reconnaissance. Computers and Operations Research, 2022, 145, 105831.	2.4	10
142	Nested vehicle routing problem: Optimizing drone-truck surveillance operations. Transportation Research Part C: Emerging Technologies, 2022, 139, 103645.	3.9	10
143	The traveling salesman problem with drone resupply. OR Spectrum, 2022, 44, 1045-1086.	2.1	6
144	An adaptive large neighborhood search heuristic for the flying sidekick traveling salesman problem with multiple drops. Expert Systems With Applications, 2022, 205, 117647.	4.4	13

	CITATION	LEPORT	
#	Article	IF	CITATIONS
145	Branch-price-and-cut for trucks and drones cooperative delivery. IISE Transactions, 2023, 55, 271-287.	1.6	14
146	Collaborative truck multi-drone routing and scheduling problem: Package delivery with flexible launch and recovery sites. Transportation Research, Part E: Logistics and Transportation Review, 2022, 164, 102788.	3.7	44
147	Electric van-based robot deliveries with en-route charging. European Journal of Operational Research, 2022, , .	3.5	4
148	A hierarchical solution evaluation method and a hybrid algorithm for the vehicle routing problem with drones and multiple visits. Transportation Research Part C: Emerging Technologies, 2022, 141, 103733.	3.9	23
149	Vehicle routing problems with drones equipped with multi-package payload compartments. Transportation Research, Part E: Logistics and Transportation Review, 2022, 164, 102757.	3.7	14
150	A Proactive Approach to Extended Vehicle Routing Problem with Drones (EVRPD). Applied Sciences (Switzerland), 2022, 12, 8255.	1.3	5
151	Energy-constrained multi-visit TSP with multiple drones considering non-customer rendezvous locations. Expert Systems With Applications, 2022, 210, 118479.	4.4	10
152	Aerial-ground collaborative routing with time constraints. Chinese Journal of Aeronautics, 2023, 36, 270-283.	2.8	1
153	A last-mile drone-assisted one-to-one pickup and delivery problem with multi-visit drone trips. Computers and Operations Research, 2022, 148, 106015.	2.4	19
154	Hybrid Truck-Drone Delivery Systems: A Systematic Literature Review. IEEE Access, 2022, 10, 92854-92878.	2.6	14
155	Simulated Annealing-based Energy Efficient Route Planning for Urban Service Robots. , 2022, , .		3
156	Collaborative truck-and-drone delivery for inventory-routing problems. Transportation Research Part C: Emerging Technologies, 2023, 146, 103791.	3.9	8
157	Drone location and vehicle fleet planning with trucks and aerial drones. European Journal of Operational Research, 2023, 308, 113-130.	3.5	13
158	Design and Assessment of an Urban Circular Combined Truck–Drone Delivery System Using Continuum Approximation Models and Integer Programming. Sustainability, 2022, 14, 13459.	1.6	3
159	Exact and heuristic approaches to Truck–Drone Delivery Problems. EURO Journal on Transportation and Logistics, 2023, 12, 100094.	1.3	6
160	Vehicle and UAV Collaborative Delivery Path Optimization Model. Mathematics, 2022, 10, 3744.	1.1	13
161	Stochastic-Geometry-Based Analysis of Multipurpose UAVs for Package and Data Delivery. IEEE Internet of Things Journal, 2023, 10, 4664-4676.	5.5	4
162	The multi-visit drone routing problem for pickup and delivery services. Transportation Research, Part E: Logistics and Transportation Review, 2023, 169, 102990.	3.7	20

#	Article	IF	CITATIONS
163	VRP of Drones Considering Power Consumption Rate and Wind Effects. LOGI - Scientific Journal on Transport and Logistics, 2022, 13, 210-221.	0.5	0
164	Exact solution approaches for the minimum total cost traveling salesman problem with multiple drones. Transportation Research Part B: Methodological, 2023, 168, 81-123.	2.8	10
165	Environmental and economic impacts of drone-assisted truck delivery under the carbon market price. Journal of Cleaner Production, 2023, 401, 136758.	4.6	7
166	Solving electric vehicle–drone routing problem using memetic algorithm. Swarm and Evolutionary Computation, 2023, 79, 101295.	4.5	6
167	A branch-and-price-and-cut algorithm for the vehicle routing problem with load-dependent drones. Transportation Research Part B: Methodological, 2023, 171, 80-110.	2.8	6
168	An Overview of Drone Energy Consumption Factors and Models. , 2022, , 1-20.		19
169	The generalized close enough traveling salesman problem. European Journal of Operational Research, 2023, 310, 974-991.	3.5	4
170	A-VRPD: Automating Drone-Based Last-Mile Delivery Using Self-Driving Cars. IEEE Transactions on Intelligent Transportation Systems, 2023, 24, 9599-9612.	4.7	2
180	An Overview of Drone Energy Consumption Factors and Models. , 2023, , 529-548.		0
186	A Variable Neighborhood Search Algorithm for the Truck-Drone Routing Problem. Lecture Notes in Computer Science, 2023, , 322-334.	1.0	0
199	Application of Drones and Robots in Provision of Goods and Services During Pandemic. , 2023, , .		0