Side Flow Effect on Surface Generation in Nano Cutting

Nanoscale Research Letters 12, 359 DOI: 10.1186/s11671-017-2136-3

Citation Report

#	Article	IF	CITATIONS
1	Hard particle effect on surface generation in nano-cutting. Applied Surface Science, 2017, 425, 1020-1027.	3.1	35
2	Recent Advances in Micro/Nano-cutting: Effect of Tool Edge and Material Properties. Nanomanufacturing and Metrology, 2018, 1, 4-31.	1.5	85
3	Effects of recovery and side flow on surface generation in nano-cutting of single crystal silicon. Computational Materials Science, 2018, 143, 133-142.	1.4	53
4	Molecular Dynamics Investigation of Residual Stress and Surface Roughness of Cerium under Diamond Cutting. Micromachines, 2018, 9, 386.	1.4	12
5	Effect of Fluid Media on Material Removal and Subsurface Defects Evolution of Monocrystal Copper in Nano-Cutting Process. Nanoscale Research Letters, 2019, 14, 239.	3.1	10
6	The Phonomenon of Material Side Flow During Finish Turning of EN X153CrMoV12 Hardened Steel with Tools Based on Polycrystalline Cubic Boron Nitride. Journal of Superhard Materials, 2019, 41, 265-271.	0.5	4
7	Effect of Machining-Induced Subsurface Defects on Dislocation Evolution and Mechanical Properties of Materials via Nano-indentation. Nanoscale Research Letters, 2019, 14, 372.	3.1	9
8	Effects of Cooling Conditions on Surface Integrity in Turning of TC4 Alloy. IOP Conference Series: Materials Science and Engineering, 2020, 735, 012035.	0.3	0
9	Atomistic Simulation Study of Nanoparticle Effect on Nano-Cutting Mechanisms of Single-Crystalline Materials. Micromachines, 2020, 11, 265.	1.4	11
10	Improving nanocutting surface quality by force-controlled rolling. Applied Nanoscience (Switzerland), 2021, 11, 763-769.	1.6	0
11	FE-SPH hybrid method to simulate the effect of tool inclination angle in oblique diamond cutting of KDP crystal. International Journal of Mechanical Sciences, 2021, 196, 106271.	3.6	16
12	Size effects in ultraprecision machining of aluminum alloys: Conventional AA6061-T6 and RSA 6061-T6. Journal of Manufacturing Processes, 2021, 68, 136-157.	2.8	10
13	Temperature induced nano-scratch responses of γ-TiAl alloys revealed via molecular dynamics simulation. Materials Today Communications, 2022, 30, 103072.	0.9	6
14	Influences of the workpiece material and the tool-surface engagement (TSE) on surface finishing when ball-end milling. Journal of Manufacturing Processes, 2022, 75, 219-231.	2.8	10
15	Etching behavior of ground fused silica and light enhancement modulated by surface/subsurface cracks. International Journal of Applied Glass Science, 2022, 13, 664-675.	1.0	7
16	Molecular dynamics study on surface formation and phase transformation in nanometric cutting of β-Sn. Advances in Manufacturing, 2022, 10, 356-367.	3.2	4
17	Effects of tool geometry on tungsten removal behavior during nano-cutting. International Journal of Mechanical Sciences, 2022, 225, 107384.	3.6	21
18	Molecular dynamics study of nano-cutting mechanical properties and microstructural evolution behavior of Ni/Ni3Al phase structure. Journal of Materials Research and Technology, 2022, 19, 2447-2457	2.6	8

#	Article	IF	CITATIONS
19	Effects of minimum uncut chip thickness on tungsten nano-cutting mechanism. International Journal of Mechanical Sciences, 2023, 237, 107790.	3.6	11
20	Study on surface roughness model of 3D ultrasonic vibration–assisted turning driven by a single actuator. International Journal of Advanced Manufacturing Technology, 2022, 123, 4413-4426.	1.5	1
21	Molecular dynamics simulation on crystal defects of single-crystal silicon during elliptical vibration cutting. International Journal of Mechanical Sciences, 2023, 244, 108072.	3.6	10
24	Effect of cutting direction on nanomachining of copper when using a three-sided pyramidal AFM tip. , 2022, , .		Ο
27	Simulation of gallium phosphide cutting mechanism in ductile regime using molecular dynamics. , 2023, , .		0