Oxidative Phosphorylation as a Target Space for Tuberc Future Directions

Microbiology Spectrum

5,

DOI: 10.1128/microbiolspec.tbtb2-0014-2016

Citation Report

#	Article	IF	CITATIONS
1	A fluorescence-based reporter for monitoring expression of mycobacterial cytochrome bd in response to antibacterials and during infection. Scientific Reports, 2017, 7, 10665.	1.6	18
2	Anaerobic Mycobacterium tuberculosis Cell Death Stems from Intracellular Acidification Mitigated by the DosR Regulon. Journal of Bacteriology, 2017, 199, .	1.0	14
3	Bedaquiline Inhibits the ATP Synthase in Mycobacterium abscessus and Is Effective in Infected Zebrafish. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	79
4	Priming the tuberculosis drug pipeline: new antimycobacterial targets and agents. Current Opinion in Microbiology, 2018, 45, 39-46.	2.3	40
5	Small Molecules Targeting Mycobacterium tuberculosis Type II NADH Dehydrogenase Exhibit Antimycobacterial Activity. Angewandte Chemie, 2018, 130, 3536-3540.	1.6	6
6	Plasticity of <i>Mycobacterium tuberculosis</i> NADH dehydrogenases and their role in virulence. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1599-1604.	3.3	58
7	Small Molecules Targeting Mycobacterium tuberculosis Type II NADH Dehydrogenase Exhibit Antimycobacterial Activity. Angewandte Chemie - International Edition, 2018, 57, 3478-3482.	7.2	42
8	The Expanding Diversity of <i>Mycobacterium tuberculosis</i> Drug Targets. ACS Infectious Diseases, 2018, 4, 696-714.	1.8	60
9	The anti-mycobacterial activity of the cytochrome bcc inhibitor Q203 can be enhanced by small-molecule inhibition of cytochrome bd. Scientific Reports, 2018, 8, 2625.	1.6	56
10	Mycobacterial Membrane Proteins QcrB and AtpE: Roles in Energetics, Antibiotic Targets, and Associated Mechanisms of Resistance. Journal of Membrane Biology, 2018, 251, 105-117.	1.0	13
11	Combinations of Respiratory Chain Inhibitors Have Enhanced Bactericidal Activity against Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	31
12	Antibiotic Lethality and Membrane Bioenergetics. Advances in Microbial Physiology, 2018, 73, 77-122.	1.0	9
13	Impact of Clofazimine Dosing on Treatment Shortening of the First-Line Regimen in a Mouse Model of Tuberculosis. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	37
14	<i>Mycobacterium tuberculosis</i> Metabolism. Microbiology Spectrum, 2019, 7, .	1.2	19
15	Anaerobic nitrate respiration in the aerobe <i>Streptomyces coelicolor</i> A3(2): helping maintain a proton gradient during dormancy. Environmental Microbiology Reports, 2019, 11, 645-650.	1.0	9
16	Naturally-Occurring Polymorphisms in QcrB Are Responsible for Resistance to Telacebec in <i>Mycobacterium abscessus</i> . ACS Infectious Diseases, 2019, 5, 2055-2060.	1.8	9
17	Carbon metabolism modulates the efficacy of drugs targeting the cytochrome bc1:aa3 in Mycobacterium tuberculosis. Scientific Reports, 2019, 9, 8608.	1.6	26
18	Inhibitors of enzymes in the electron transport chain of Mycobacterium tuberculosis. Annual Reports in Medicinal Chemistry, 2019, 52, 97-130.	0.5	4

#	Article	IF	Citations
19	Uncovering the Metabolic Strategies of the Dormant Microbial Majority: towards Integrative Approaches. MSystems, 2019, 4, .	1.7	19
20	Mycobacterium tuberculosis Rv0191 is an efflux pump of major facilitator superfamily transporter regulated by Rv1353c. Archives of Biochemistry and Biophysics, 2019, 667, 59-66.	1.4	8
21	Novel MenA Inhibitors Are Bactericidal against <i>Mycobacterium tuberculosis</i> and Synergize with Electron Transport Chain Inhibitors. Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	29
22	Novel Antimycobacterial Compounds Suppress NAD Biogenesis by Targeting a Unique Pocket of NaMN Adenylyltransferase. ACS Chemical Biology, 2019, 14, 949-958.	1.6	15
23	2-aminoimidazoles collapse mycobacterial proton motive force and block the electron transport chain. Scientific Reports, 2019, 9, 1513.	1.6	23
24	Mycobacterium tuberculosisMetabolism. , 2019, , 1107-1128.		0
25	Pyrazolo[1,5- <i>a</i>]pyridine Inhibitor of the Respiratory Cytochrome <i>bcc</i> Complex for the Treatment of Drug-Resistant Tuberculosis. ACS Infectious Diseases, 2019, 5, 239-249.	1.8	74
26	Intracellular and in vivo evaluation of imidazo[2,1-b]thiazole-5-carboxamide anti-tuberculosis compounds. PLoS ONE, 2020, 15, e0227224.	1.1	26
27	Decoding the similarities and specific differences between latent and active tuberculosis infections based on consistently differential expression networks. Briefings in Bioinformatics, 2020, 21, 2084-2098.	3.2	2
28	Emerging opportunities of exploiting mycobacterial electron transport chain pathway for drug-resistant tuberculosis drug discovery. Expert Opinion on Drug Discovery, 2020, 15, 231-241.	2.5	14
29	Potential therapeutic approaches for a sleeping pathogen: tuberculosis a case for bioinorganic chemistry. Journal of Biological Inorganic Chemistry, 2020, 25, 685-704.	1.1	6
30	Nitric Oxide Does Not Inhibit but Is Metabolized by the Cytochrome bcc-aa3 Supercomplex. International Journal of Molecular Sciences, 2020, 21, 8521.	1.8	9
31	<i>Mycobacterium tuberculosis</i> Survival in J774A.1 Cells Is Dependent on MenJ Moonlighting Activity, Not Its Enzymatic Activity. ACS Infectious Diseases, 2020, 6, 2661-2671.	1.8	6
32	SAR Analysis of Small Molecules Interfering with Energy-Metabolism in Mycobacterium tuberculosis. Pharmaceuticals, 2020, 13, 227.	1.7	12
33	Transcriptional Inhibition of the F ₁ F ₀ -Type ATP Synthase Has Bactericidal Consequences on the Viability of Mycobacteria. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	17
34	Features and Functional Importance of Key Residues of the <i>Mycobacterium tuberculosis</i> Cytochrome <i>bd</i> Oxidase. ACS Infectious Diseases, 2020, 6, 1697-1707.	1.8	11
35	Molecular Hydrogen Metabolism: a Widespread Trait of Pathogenic Bacteria and Protists. Microbiology and Molecular Biology Reviews, 2020, 84, .	2.9	70
36	Targeting the cytochrome oxidases for drug development in mycobacteria. Progress in Biophysics and Molecular Biology, 2020, 152, 45-54.	1.4	29

CITATION REPORT

#	Article	IF	Citations
37	Discovery of a Novel Mycobacterial Fâ€ATP Synthase Inhibitor and its Potency in Combination with Diarylquinolines. Angewandte Chemie, 2020, 132, 13397-13406.	1.6	4
38	Oxidative Phosphorylation—an Update on a New, Essential Target Space for Drug Discovery in Mycobacterium tuberculosis. Applied Sciences (Switzerland), 2020, 10, 2339.	1.3	29
39	Discovery of a Novel Mycobacterial Fâ€ATP Synthase Inhibitor and its Potency in Combination with Diarylquinolines. Angewandte Chemie - International Edition, 2020, 59, 13295-13304.	7.2	28
40	A systematic assessment of mycobacterial F ₁ â€ATPase subunit ε's role in latent ATPase hydrolysis. FEBS Journal, 2021, 288, 818-836.	2.2	11
41	Bacterial Oxidases of the Cytochrome <i>bd</i> Family: Redox Enzymes of Unique Structure, Function, and Utility As Drug Targets. Antioxidants and Redox Signaling, 2021, 34, 1280-1318.	2.5	45
42	A protet-based, protonic charge transfer model of energy coupling in oxidative and photosynthetic phosphorylation. Advances in Microbial Physiology, 2021, 78, 1-177.	1.0	11
43	Metabolic Versatility of Mycobacterium tuberculosis during Infection and Dormancy. Metabolites, 2021, 11, 88.	1.3	26
44	Understanding Metabolic Regulation Between Host and Pathogens: New Opportunities for the Development of Improved Therapeutic Strategies Against Mycobacterium tuberculosis Infection. Frontiers in Cellular and Infection Microbiology, 2021, 11, 635335.	1.8	17
45	ROS Defense Systems and Terminal Oxidases in Bacteria. Antioxidants, 2021, 10, 839.	2.2	59
48	Hydrostatic pressure boost rate and mode to enhance sterilization mediated by GroEL-interacting proteins. Food Control, 2021, 126, 108091.	2.8	1
49	Structure of mycobacterial CIII2CIV2 respiratory supercomplex bound to the tuberculosis drug candidate telacebec (Q203). ELife, 2021, 10, .	2.8	19
51	Opportunities for overcoming tuberculosis: Emerging targets and their inhibitors. Drug Discovery Today, 2021, 27, 326-326.	3.2	13
52	Study of the bioenergetics to identify the novel pathways as a drug target against Mycobacterium tuberculosis using Petri net. BioSystems, 2021, 209, 104509.	0.9	7
53	Bioenergetic Inhibitors: Antibiotic Efficacy and Mechanisms of Action in Mycobacterium tuberculosis. Frontiers in Cellular and Infection Microbiology, 2020, 10, 611683.	1.8	21
54	QcrB in <i>Mycobacterium tuberculosis</i> : The new drug target of antitubercular agents. Medicinal Research Reviews, 2021, 41, 2565-2581.	5.0	16
55	Dual inhibition of the terminal oxidases eradicates antibioticâ€ŧolerant <i>Mycobacterium tuberculosis</i> . EMBO Molecular Medicine, 2021, 13, e13207.	3.3	47
56	Terminal Respiratory Oxidases: A Targetables Vulnerability of Mycobacterial Bioenergetics?. Frontiers in Cellular and Infection Microbiology, 2020, 10, 589318.	1.8	14
57	Cytochrome bc1-aa3 oxidase supercomplex as emerging and potential drug target against tuberculosis. Current Molecular Pharmacology, 2021, 14, .	0.7	4

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
58	Proton Pumping and Non-Pumping Terminal Respiratory Oxidases: Active Sites Intermediates of These Molecular Machines and Their Derivatives. International Journal of Molecular Sciences, 2021, 22, 10852.	1.8	15
59	Determination of Bioenergetic Parameters in Mycobacterium ulcerans. Methods in Molecular Biology, 2022, 2387, 219-230.	0.4	0
60	Impact of Hydrogen Sulfide on Mitochondrial and Bacterial Bioenergetics. International Journal of Molecular Sciences, 2021, 22, 12688.	1.8	23
61	Structure of Mycobacterium tuberculosis cytochrome bcc in complex with Q203 and TB47, two anti-TB drug candidates. ELife, 2021, 10, .	2.8	22
62	Multiplexed transcriptional repression identifies a network of bactericidal interactions between mycobacterial respiratory complexes. IScience, 2022, 25, 103573.	1.9	10
63	Screening Technologies. RSC Drug Discovery Series, 2022, , 101-128.	0.2	0
64	Recent advancement in drug development of nitro(<scp>NO₂</scp>)â€heterocyclic compounds as lead scaffolds for the treatment of <i>Mycobacterium tuberculosis</i> . Drug Development Research, 2022, 83, 842-858.	1.4	5
66	Recent Advances in Structural Studies of Cytochrome bd and Its Potential Application as a Drug Target. International Journal of Molecular Sciences, 2022, 23, 3166.	1.8	21
67	A review on enzyme complexes of electron transport chain from Mycobacterium tuberculosis as promising drug targets. International Journal of Biological Macromolecules, 2022, 212, 474-494.	3.6	8
68	Defining the Genes Required for Survival of Mycobacterium bovis in the Bovine Host Offers Novel Insights into the Genetic Basis of Survival of Pathogenic Mycobacteria. MBio, 2022, 13, .	1.8	3
69	Uncovering interactions between mycobacterial respiratory complexes to target drug-resistant Mycobacterium tuberculosis. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	3
70	Recent developments, challenges and future prospects in advanced drug delivery systems in the management of tuberculosis. Journal of Drug Delivery Science and Technology, 2022, 75, 103690.	1.4	6
71	Tocopherol-assisted magnetic Ag-Fe3O4-TiO2 nanocomposite for photocatalytic bacterial-inactivation with elucidation of mechanism and its hazardous level assessment with zebrafish model. Journal of Hazardous Materials, 2023, 442, 130044.	6.5	12
72	Response of Mycobacterium smegmatis to the Cytochrome bcc Inhibitor Q203. International Journal of Molecular Sciences, 2022, 23, 10331.	1.8	2
73	Synthesis and Biological Evaluation of Aurachin D Analogues as Inhibitors of <i>Mycobacterium tuberculosis</i> Cytochrome <i>bd</i> Oxidase. ACS Medicinal Chemistry Letters, 2022, 13, 1663-1669.	1.3	6
74	Redox Cycling Dioxonaphthoimidazoliums Disrupt Iron Homeostasis in Mycobacterium bovis Bacillus Calmette-GuA©rin. Microbiology Spectrum, 2022, 10, .	1.2	1
75	"ldentification of alkaloid compounds as potent inhibitors of Mycobacterium tuberculosis NadD using computational strategies― Computers in Biology and Medicine, 2023, 158, 106863.	3.9	2
76	Quantitative analysis of the bioenergetics of Mycobacterium tuberculosis along with Glyoxylate cycle as a drug target under inhibition of enzymes using Petri net. Computational Biology and Chemistry, 2023, 104, 107828.	1.1	1

		TATION REPORT		
#	ARTICLE	IF	CITATIONS	
77	Energy Pathways in Mycobacterium Tuberculosis. Integrated Science, 2023, , 541-569.	0.1	0	
78	Multiomics Integration of Tuberculosis Pathogenesis. Integrated Science, 2023, , 937-967.	0.1	0	
89	Cytochrome <i>bd</i> oxidase: an emerging anti-tubercular drug target. RSC Medicinal Chemistry, 2024, 15, 769-787.	1.7	1	