Targeting Mycolic Acid Transport by Indole-2-carboxan <i>Mycobacterium abscessus</i> Infections

Journal of Medicinal Chemistry 60, 5876-5888 DOI: 10.1021/acs.jmedchem.7b00582

Citation Report

#	Article	IF	CITATIONS
2	Controlling Extra- and Intramacrophagic Mycobacterium abscessus by Targeting Mycolic Acid Transport. Frontiers in Cellular and Infection Microbiology, 2017, 7, 388.	1.8	18
3	NTM drug discovery: status, gaps and the way forward. Drug Discovery Today, 2018, 23, 1502-1519.	3.2	186
4	The Role of Antibiotic-Target-Modifying and Antibiotic-Modifying Enzymes in Mycobacterium abscessus Drug Resistance. Frontiers in Microbiology, 2018, 9, 2179.	1.5	155
5	MmpL8 _{MAB} controls <i>Mycobacterium abscessus</i> virulence and production of a previously unknown glycolipid family. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E10147-E10156.	3.3	42
6	MmpL3 as a Target for the Treatment of Drug-Resistant Nontuberculous Mycobacterial Infections. Frontiers in Microbiology, 2018, 9, 1547.	1.5	40
7	A Simple and Rapid Gene Disruption Strategy in Mycobacterium abscessus: On the Design and Application of Glycopeptidolipid Mutants. Frontiers in Cellular and Infection Microbiology, 2018, 8, 69.	1.8	29
8	Screening of Preselected Libraries Targeting Mycobacterium abscessus for Drug Discovery. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	25
9	Synthesis of New Indole and Adamantane Amido Derivatives with Pharmacological Interest. ChemistrySelect, 2019, 4, 8727-8730.	0.7	4
10	A piperidinol-containing molecule is active against Mycobacterium tuberculosis by inhibiting the mycolic acid flippase activity of MmpL3. Journal of Biological Chemistry, 2019, 294, 17512-17523.	1.6	32
11	Crystal Structures of Membrane Transporter MmpL3, an Anti-TB Drug Target. Cell, 2019, 176, 636-648.e13.	13.5	172
12	Cell Walls and Membranes of Actinobacteria. Sub-Cellular Biochemistry, 2019, 92, 417-469.	1.0	39
13	Direct Inhibition of MmpL3 by Novel Antitubercular Compounds. ACS Infectious Diseases, 2019, 5, 1001-1012.	1.8	74
14	Future Nontuberculous Mycobacteria DST and Therapeutic Interventions. , 2019, , 85-100.		0
15	Mycobacterium abscessus, an Emerging and Worrisome Pathogen among Cystic Fibrosis Patients. International Journal of Molecular Sciences, 2019, 20, 5868.	1.8	84
16	Indole-2-Carboxamides Are Active against <i>Mycobacterium abscessus</i> in a Mouse Model of Acute Infection. Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	28
17	Altered drug efflux under iron deprivation unveils abrogated MmpL3 driven mycolic acid transport and fluidity in mycobacteria. BioMetals, 2019, 32, 49-63.	1.8	15
18	Unpacking the Pathogen Box—An Open Source Tool for Fighting Neglected Tropical Disease. ChemMedChem, 2019, 14, 386-453.	1.6	46
19	Active Benzimidazole Derivatives Targeting the MmpL3 Transporter in <i>Mycobacterium abscessus</i> . ACS Infectious Diseases, 2020, 6, 324-337.	1.8	44

CITATION REPORT

#	Article	IF	CITATIONS
20	MmpL3 Inhibition: A New Approach to Treat Nontuberculous Mycobacterial Infections. International Journal of Molecular Sciences, 2020, 21, 6202.	1.8	21
21	Alternative and Experimental Therapies of Mycobacterium abscessus Infections. International Journal of Molecular Sciences, 2020, 21, 6793.	1.8	23
23	Synergistic Interactions of Indole-2-Carboxamides and β-Lactam Antibiotics against Mycobacterium abscessus. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	12
24	Drug discovery targeting drug-resistant nontuberculous mycobacteria. , 2020, , 361-376.		2
25	Structural Basis for the Inhibition of Mycobacterial MmpL3 by NITD-349 and SPIRO. Journal of Molecular Biology, 2020, 432, 4426-4434.	2.0	27
26	Design, synthesis, and biological evaluation of novel imidazo[1,2â€a]pyridinecarboxamides as potent antiâ€ŧuberculosis agents. Chemical Biology and Drug Design, 2020, 96, 1362-1371.	1.5	11
27	Assembling Pharma Resources to Tackle Diseases of Underserved Populations. ACS Medicinal Chemistry Letters, 2020, 11, 1094-1100.	1.3	2
28	Non-tuberculous mycobacteria and the rise of Mycobacterium abscessus. Nature Reviews Microbiology, 2020, 18, 392-407.	13.6	407
29	Looking beyond Typical Treatments for Atypical Mycobacteria. Antibiotics, 2020, 9, 18.	1.5	34
30	Design, synthesis and antimycobacterial evaluation of novel adamantane and adamantanol analogues effective against drug-resistant tuberculosis. Bioorganic Chemistry, 2021, 106, 104486.	2.0	12
31	Two-Way Regulation of MmpL3 Expression Identifies and Validates Inhibitors of MmpL3 Function in <i>Mycobacterium tuberculosis</i> . ACS Infectious Diseases, 2021, 7, 141-152.	1.8	13
32	Design, synthesis and evaluation of novel indole-2-carboxamides for growth inhibition of <i>Mycobacterium tuberculosis</i> and paediatric brain tumour cells. RSC Advances, 2021, 11, 15497-15511.	1.7	11
33	Pipeline of antiâ€ <i>Mycobacterium abscessus</i> small molecules: Repurposable drugs and promising novel chemical entities. Medicinal Research Reviews, 2021, 41, 2350-2387.	5.0	32
35	Genome-Wide Essentiality Analysis of <i>Mycobacterium abscessus</i> by Saturated Transposon Mutagenesis and Deep Sequencing. MBio, 2021, 12, e0104921.	1.8	37
36	Cryo-EM structure and resistance landscape of M.Âtuberculosis MmpL3: An emergent therapeutic target. Structure, 2021, 29, 1182-1191.e4.	1.6	25
37	Mycobacterial Membrane Protein Large 3 (MmpL3) Inhibitors: A Promising Approach to Combat Tuberculosis. ChemMedChem, 2021, 16, 3136-3148.	1.6	24
38	A review of current and promising nontuberculous mycobacteria antibiotics. Future Medicinal Chemistry, 2021, 13, 1367-1395.	1.1	9
39	Current Molecular Therapeutic Agents and Drug Candidates for Mycobacterium abscessus. Frontiers	1.6	15

#	Article	IF	CITATIONS
40	The Antimalarial Mefloquine Shows Activity against Mycobacterium abscessus, Inhibiting Mycolic Acid Metabolism. International Journal of Molecular Sciences, 2021, 22, 8533.	1.8	4
41	Recent advancements and developments in search of anti-tuberculosis agents: A quinquennial update and future directions. Journal of Molecular Structure, 2022, 1248, 131473.	1.8	25
42	Efficacy of epetraborole against Mycobacterium abscessus is increased with norvaline. PLoS Pathogens, 2021, 17, e1009965.	2.1	19
43	Investigation of Reaction of Some Ester Ethoxycarbonyl Hydrazones with 1-Adamantyl Amine. Hacettepe Journal of Biology and Chemistry, 2019, 47, 203-208.	0.3	0
44	Synthetic account of indoles in search of potential anti-mycobacterial agents: A review and future insights. Journal of Molecular Structure, 2022, 1248, 131522.	1.8	24
45	Mycobacterium abscessus drug discovery using machine learning. Tuberculosis, 2022, 132, 102168.	0.8	5
47	Indoleâ€2â€carboxamides as New Antiâ€Mycobacterial Agents: Design, Synthesis, Biological Evaluation and Molecular Modeling against mmpL3. ChemistrySelect, 2022, 7, .	0.7	7
48	Proton transfer activity of the reconstituted <i>Mycobacterium tuberculosis</i> MmpL3 is modulated by substrate mimics and inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	8
49	Structure-based design of anti-mycobacterial drug leads that target the mycolic acid transporter MmpL3. Structure, 2022, , .	1.6	2
50	Efficacy and Mode of Action of a Direct Inhibitor of <i>Mycobacterium abscessus</i> InhA. ACS Infectious Diseases, 2022, 8, 2171-2186.	1.8	7
51	Clofazimine as a comparator for preclinical efficacy evaluations of experimental therapeutics against pulmonary M. abscessus infection in mice. Tuberculosis, 2022, , 102268.	0.8	2
52	Why Matter Matters: Fast-Tracking Mycobacterium abscessus Drug Discovery. Molecules, 2022, 27, 6948.	1.7	7
53	Structural Determinants of Indole-2-carboxamides: Identification of Lead Acetamides with Pan Antimycobacterial Activity. Journal of Medicinal Chemistry, 2023, 66, 170-187.	2.9	4
54	Molecular Mechanisms of MmpL3 Function and Inhibition. Microbial Drug Resistance, 2023, 29, 190-212.	0.9	3
55	Drug Discovery for Non-tuberculous Mycobacteria: Recent Updates. Integrated Science, 2023, , 571-600.	0.1	1

CITATION REPORT