The Hitchhikerâ€**∛**Guide to Flow Chemistry

Chemical Reviews 117, 11796-11893 DOI: 10.1021/acs.chemrev.7b00183

Citation Report

#	Article	IF	CITATIONS
1	Screwing NaBH ₄ through a Barrel without a Bang: A Kneaded Alternative to Fed-Batch Carbonyl Reductions. Organic Process Research and Development, 2017, 21, 992-1002.	2.7	21
2	A Versatile Route to Unstable Diazo Compounds via Oxadiazolines and their Use in Aryl–Alkyl Crossâ€Coupling Reactions. Angewandte Chemie - International Edition, 2017, 56, 16602-16605.	13.8	62
3	Telescoped continuous flow generation of a library of highly substituted 3-thio-1,2,4-triazoles. Reaction Chemistry and Engineering, 2017, 2, 896-907.	3.7	12
4	A Versatile Route to Unstable Diazo Compounds via Oxadiazolines and their Use in Aryl–Alkyl Cross oupling Reactions. Angewandte Chemie, 2017, 129, 16829-16832.	2.0	17
5	Process Development and Scale-up of the Continuous Flow Nitration of Trifluoromethoxybenzene. Organic Process Research and Development, 2017, 21, 1843-1850.	2.7	49
6	Introduction: Natural Product Synthesis. Chemical Reviews, 2017, 117, 11649-11650.	47.7	7
7	Micromixing enables chemoselective reactions of difunctional electrophiles with functional aryllithiums. Reaction Chemistry and Engineering, 2017, 2, 862-870.	3.7	12
8	Exploiting the Continuous in situ Generation of Mesyl Azide for Use in a Telescoped Process. European Journal of Organic Chemistry, 2017, 2017, 6533-6539.	2.4	21
9	A Convenient, Mild, and Green Synthesis of NHâ€5ulfoximines in Flow Reactors. European Journal of Organic Chemistry, 2017, 2017, 6486-6490.	2.4	40
10	Photochemical Dualâ€Catalytic Synthesis of Alkynyl Sulfides. Angewandte Chemie - International Edition, 2017, 56, 12255-12259.	13.8	58
11	Photochemical Dual atalytic Synthesis of Alkynyl Sulfides. Angewandte Chemie, 2017, 129, 12423-12427.	2.0	15
12	Visible light-induced iniferter polymerization of methacrylates enhanced by continuous flow. Polymer Chemistry, 2017, 8, 6496-6505.	3.9	77
13	Immobilization of Privileged Triazolium Carbene Catalyst for Batch and Flow Stereoselective Umpolung Processes. ACS Catalysis, 2017, 7, 6365-6375.	11.2	48
14	Visibleâ€Lightâ€Mediated Selective Arylation of Cysteine in Batch and Flow. Angewandte Chemie, 2017, 129, 12876-12881.	2.0	30
15	Visibleâ€Lightâ€Mediated Selective Arylation of Cysteine in Batch and Flow. Angewandte Chemie - International Edition, 2017, 56, 12702-12707.	13.8	94
16	Environmentally Friendly Synthesis of Indoline Derivatives using Flowâ€Chemistry Techniques. European Journal of Organic Chemistry, 2017, 2017, 6525-6532.	2.4	9
17	An environmentally benign and selective electrochemical oxidation of sulfides and thiols in a continuous-flow microreactor. Green Chemistry, 2017, 19, 4061-4066.	9.0	133
18	Optimizing Chemical Reactions with Deep Reinforcement Learning. ACS Central Science, 2017, 3, 1337-1344.	11.3	291

ARTICLE IF CITATIONS # Continuous Flow Chemistry: Reaction of Diphenyldiazomethane with 19 0.3 1 p-Nitrobenzoic Acid. Journal of Visualized Experiments, 2017, , . Synthesis of cyclopent-2-enones from furans using a nebulizer-based continuous flow photoreactor. 2.8 Órganic and Biomolecular Chemistry, 2017, 15, 10151-10155. Design and 3D printing of a stainless steel reactor for continuous difluoromethylations using 21 3.7 73 fluoroform. Reaction Chemistry and Engineering, 2017, 2, 919-927. Lignin depolymerization to monophenolic compounds in a flow-through system. Green Chemistry, 9.0 164 2017, 19, 5767-5771. Autoâ€Tandem Catalysis: Pd^{II}â€Catalysed Dehydrogenation/Oxidative Heck Reaction of 23 3.3 20 Cyclopentaneâ€1,3â€diones. Chemistry - A European Journal, 2017, 23, 18282-18288. Sustainable Flow Synthesis of a Versatile Cyclopentenone Building Block. Organic Process Research and Development, 2017, 21, 2052-2059. Selective continuous flow synthesis of hydroxy lactones from alkenoic acids. Reaction Chemistry and 25 3.7 18 Engineering, 2017, 2, 467-471. Continuous Flow Synthesis of Carbonylated Heterocycles via Pd-Catalyzed Oxidative Carbonylation Using CO and O₂ at Elevated Temperatures and Pressures. Organic Process Research and 2.7 26 Development, 2017, 21, 1080-1087. 27 Integrated drug discovery in continuous flow. Journal of Flow Chemistry, 2017, 7, 124-128. 1.9 13 Flow chemistry in space \hat{e}^{\ast} a unique opportunity to perform extraterrestrial research. Journal of Flow Chemistry, 2017, 7, 151-156. Continuous-flow chemistry in chemical education. Journal of Flow Chemistry, 2017, 7, 157-158. 29 12 1.9 Flow chemistry, continuous processing, and continuous manufacturing: A pharmaceutical perspective. Journal of Flow Chemistry, 2017, 7, 137-145. Energy Optimization of Gasâ€"Liquid Dispersion in Micronozzles Assisted by Design of Experiment. $\mathbf{31}$ 2.8 9 Processes, 2017, 5, 57. The photodecarboxylative addition of carboxylates to phthalimides as a key-step in the synthesis of biologically active 3-arylmethylene-2,3-dihydro-1<i>H</i>isoindolin-1-ones. Beilstein Journal of Organic Chemistry, 2017, 13, 2833-2841. 2.2 Fluidized particles in flow analysis: potentialities, limitations and applications. Talanta, 2018, 184, 33 5.513 325-331. Flow-Assisted Synthesis of Bicyclic Aziridines <i>via</i> Photochemical Transformation of Pyridinium Salts. Organic Process Research and Development, 2018, 22, 551-556. The Molecular Industrial Revolution: Automated Synthesis of Small Molecules. Angewandte Chemie -35 13.8 150 International Edition, 2018, 57, 4192-4214. Safe Use of Hazardous Chemicals in Flow. Topics in Heterocyclic Chemistry, 2018, , 343-373.

#	Article	IF	CITATIONS
37	Flow-Assisted Synthesis of Heterocycles at High Temperatures. Topics in Heterocyclic Chemistry, 2018, , 161-186.	0.2	1
38	Segmented Tube Reactors (STR): A Simple Tool To Screen Multiple Reactions in Parallel in Batch Mode within a Single Tube. Organic Process Research and Development, 2018, 22, 512-519.	2.7	2
39	Literally Green Chemical Synthesis of Artemisinin from Plant Extracts. Angewandte Chemie - International Edition, 2018, 57, 5525-5528.	13.8	62
40	Controlled Transformations of Aryl Halides in a Flow System: Selective Synthesis of Aryl Azides and Aniline Derivatives. Advanced Synthesis and Catalysis, 2018, 360, 1841-1849.	4.3	16
41	Flow Chemistry as a Drug Discovery Tool: A Medicinal Chemistry Perspective. Topics in Heterocyclic Chemistry, 2018, , 319-341.	0.2	11
42	Release of Terminal Alkynes via Tandem Photodeprotection and Decarboxylation of o-Nitrobenzyl Arylpropiolates in a Flow Microchannel Reactor. Bioconjugate Chemistry, 2018, 29, 1178-1185.	3.6	5
43	Trendbericht Organische Chemie 2017. Nachrichten Aus Der Chemie, 2018, 66, 249-280.	0.0	0
44	Optimum catalyst selection over continuous and discrete process variables with a single droplet microfluidic reaction platform. Reaction Chemistry and Engineering, 2018, 3, 301-311.	3.7	69
45	Industrial Approaches Toward API Synthesis Under Continuous-Flow Conditions. Topics in Heterocyclic Chemistry, 2018, , 375-389.	0.2	1
46	Visibleâ€Lightâ€Driven Conversion of Alcohols into Iodide Derivatives with Iodoform. ChemPhotoChem, 2018, 2, 720-724.	3.0	11
47	Process Intensification and Integration Studies for the Generation of a Key Aminoimidazole Intermediate in the Synthesis of Lanabecestat. Organic Process Research and Development, 2018, 22, 633-640.	2.7	4
48	Oneâ€Pot Synthesis of Diverse γâ€Lactam Scaffolds Facilitated by a Nebulizerâ€Based Continuous Flow Photoreactor. ChemPhotoChem, 2018, 2, 860-864.	3.0	25
49	Continuous Flow Synthesis of 16-Dehydropregnenolone Acetate, a Key Synthon for Natural Steroids and Drugs. Organic Process Research and Development, 2018, 22, 600-607.	2.7	13
50	The Green ChemisTREE: 20 years after taking root with the 12 principles. Green Chemistry, 2018, 20, 1929-1961.	9.0	499
51	Machine assisted reaction optimization: A self-optimizing reactor system for continuous-flow photochemical reactions. Tetrahedron, 2018, 74, 3171-3175.	1.9	41
52	Flow Chemistry & Catalysis – Where do we stand and where do we need to go?. Catalysis Today, 2018, 308, 1-2.	4.4	1
53	Triphasic Continuousâ€Flow Oxidation System for Alcohols Utilizing Graftâ€Polymerâ€Supported TEMPO. Asian Journal of Organic Chemistry, 2018, 7, 1071-1074.	2.7	12
54	Selective C(sp ³)â^'H Aerobic Oxidation Enabled by Decatungstate Photocatalysis in Flow. Angewandte Chemie - International Edition, 2018, 57, 4078-4082.	13.8	179

#	Article	IF	Citations
55	Enzymatic Continuous Flow Synthesis of Thiolâ€Terminated Poly(δâ€Valerolactone) and Block Copolymers. Macromolecular Rapid Communications, 2018, 39, e1700807.	3.9	16
56	Kontinuierliche heterogene Photokatalyse in seriellen Mikroâ€Batchâ€Reaktoren. Angewandte Chemie, 2018, 130, 10127-10131.	2.0	23
57	Flow fine synthesis with heterogeneous catalysts. Tetrahedron, 2018, 74, 1705-1730.	1.9	134
58	Quality-In(Process)Line (QuIProLi) process intensification for a micro-flow UV-photo synthesis enabled by online UHPLC analysis. Tetrahedron, 2018, 74, 3143-3151.	1.9	13
59	Dehydration of an Insoluble Urea Byproduct Enables the Condensation of DCC and Malonic Acid in Flow. Organic Process Research and Development, 2018, 22, 399-402.	2.7	5
60	Continuous Heterogeneous Photocatalysis in Serial Microâ€Batch Reactors. Angewandte Chemie - International Edition, 2018, 57, 9976-9979.	13.8	134
61	A Catalystâ€Free Amination of Functional Organolithium Reagents by Flow Chemistry. Angewandte Chemie - International Edition, 2018, 57, 4063-4066.	13.8	33
62	Ni-Catalyzed Electrochemical Decarboxylative C–C Couplings in Batch and Continuous Flow. Organic Letters, 2018, 20, 1338-1341.	4.6	126
63	A Catalystâ€Free Amination of Functional Organolithium Reagents by Flow Chemistry. Angewandte Chemie, 2018, 130, 4127-4130.	2.0	15
64	Catalytic hydrogenation of <i>N</i> -4-nitrophenyl nicotinamide in a micro-packed bed reactor. Green Chemistry, 2018, 20, 886-893.	9.0	52
65	A platform for automated nanomole-scale reaction screening and micromole-scale synthesis in flow. Science, 2018, 359, 429-434.	12.6	292
66	Applications of Flow Chemistry in Drug Development: Highlights of Recent Patent Literature. Organic Process Research and Development, 2018, 22, 13-20.	2.7	90
67	Regioselective Functionalization of 4-Methyl-1H-indole for Scalable Synthesis of 2-Cyano-5-formyl-4-methyl-1H-indole. Organic Process Research and Development, 2018, 22, 97-102.	2.7	1
68	Ceneration of Diversity Sets with High sp ³ Fraction Using the Photoredox Coupling of Organotrifluoroborates and Organosilicates with Heteroaryl/Aryl Bromides in Continuous Flow. Journal of Organic Chemistry, 2018, 83, 1551-1557.	3.2	39
69	Control of tandem isomerizations: flow-assisted reactions of <i>o</i> -lithiated aryl benzyl ethers. Chemical Communications, 2018, 54, 547-550.	4.1	20
70	Microflow High-p,T Intensification of Vitamin D ₃ Synthesis Using an Ultraviolet Lamp. Organic Process Research and Development, 2018, 22, 147-155.	2.7	21
71	Efficient kinetic experiments in continuous flow microreactors. Reaction Chemistry and Engineering, 2018, 3, 94-101.	3.7	63
72	Silica gel-immobilized multidisciplinary materials applicable in stereoselective organocatalysis and HPLC separation. RSC Advances, 2018, 8, 1174-1181.	3.6	8

#	Article	IF	CITATIONS
73	Process Catalyst Mass Efficiency by Using Proline Tetrazole Columnâ€Flow System. Chemistry - A European Journal, 2018, 24, 1076-1079.	3.3	16
74	Continuous-flow chemistry for the determination of comonomer reactivity ratios. Polymer Chemistry, 2018, 9, 1728-1734.	3.9	19
75	Continuous-Flow Chemo and Enzymatic Synthesis of Monoterpenic Esters with Integrated Purification. Molecular Catalysis, 2018, 453, 39-46.	2.0	19
76	Horizons of Systems Biocatalysis and Renaissance of Metabolite Synthesis. Biotechnology Journal, 2018, 13, 1700620.	3.5	19
77	Up in the air: oxygen tolerance in controlled/living radical polymerisation. Chemical Society Reviews, 2018, 47, 4357-4387.	38.1	313
78	Continuous Flow Photoinduced Reversible Deactivation Radical Polymerization. ChemPhotoChem, 2018, 2, 831-838.	3.0	21
79	Photooxidation of Fulvenes in a Continuous Flow Photoreactor using Carbon Dioxide as a Solvent. ChemPhotoChem, 2018, 2, 580-585.	3.0	9
80	Kinetics study of heterogeneous continuous-flow nitration of trifluoromethoxybenzene. Reaction Chemistry and Engineering, 2018, 3, 379-387.	3.7	24
81	Overcoming solid handling issues in continuous flow substitution reactions through ionic liquid formation. Green Chemistry, 2018, 20, 1748-1753.	9.0	21
82	Wirklich grüne Synthese von Artemisinin aus Pflanzenextrakt. Angewandte Chemie, 2018, 130, 5623-5626.	2.0	6
83	Photoredox Iridium–Nickel Dual-Catalyzed Decarboxylative Arylation Cross-Coupling: From Batch to Continuous Flow via Self-Optimizing Segmented Flow Reactor. Organic Process Research and Development, 2018, 22, 542-550.	2.7	101
84	UV PhotoVap: Demonstrating How a Simple and Versatile Reactor Based on a Conventional Rotary Evaporator Can Be Used for UV Photochemistry. Organic Process Research and Development, 2018, 22, 595-599.	2.7	14
85	Catalyst-free reductive amination of levulinic acid to N-substituted pyrrolidinones with formic acid in continuous-flow microreactor. Journal of Flow Chemistry, 2018, 8, 35-43.	1.9	15
86	Iridium-catalyzed Synthesis of Saturated N-Heterocycles from Aldehydes and SnAP Reagents with Continuous Flow Photochemistry. Organic Letters, 2018, 20, 2071-2075.	4.6	32
87	A microfluidic photoreactor enables 2-methylbenzophenone light-driven reactions with superior performance. Chemical Communications, 2018, 54, 6820-6823.	4.1	30
88	Aqueous Asymmetric 1,4-Addition of Arylboronic Acids to Enones Catalyzed by an Amphiphilic Resin-Supported Chiral Diene Rhodium Complex under Batch and Continuous-Flow Conditions. Journal of Organic Chemistry, 2018, 83, 7380-7387.	3.2	36
89	Selective C(sp ³)â^'H Aerobic Oxidation Enabled by Decatungstate Photocatalysis in Flow. Angewandte Chemie, 2018, 130, 4142-4146.	2.0	45
90	Continuous Flow Organic Chemistry: Successes and Pitfalls at the Interface with Current Societal Challenges. European Journal of Organic Chemistry, 2018, 2018, 2301-2351.	2.4	188

#	Article	IF	Citations
	Continuous manufacturing as an enabling tool with green credentials in early-phase pharmaceutical		
91	chemistry. Current Opinion in Green and Sustainable Chemistry, 2018, 11, 27-33.	5.9	23
92	Utilization of fluoroform for difluoromethylation in continuous flow: a concise synthesis of α-difluoromethyl-amino acids. Green Chemistry, 2018, 20, 108-112.	9.0	35
93	Continuous purification of reaction products by micro free-flow electrophoresis enabled by large area deep-UV fluorescence imaging. Analytical and Bioanalytical Chemistry, 2018, 410, 853-862.	3.7	14
94	Multiphase flow processing in microreactors combined with heterogeneous catalysis for efficient and sustainable chemical synthesis. Catalysis Today, 2018, 308, 3-19.	4.4	131
95	Targeting a Mirabegron precursor by BH3-mediated continuous flow reduction process. Catalysis Today, 2018, 308, 81-85.	4.4	3
96	Visible-light photooxygenation of α-terpinene in a falling film microreactor. Catalysis Today, 2018, 308, 102-118.	4.4	32
97	13 The Controlled Synthesis of Carbohydrates. , 2018, , .		0
98	Die molekulare industrielle Revolution: zur automatisierten Synthese organischer Verbindungen. Angewandte Chemie, 2018, 130, 4266-4288.	2.0	21
99	Microflow Fluorinations of Benzynes: Efficient Synthesis of Fluoroaromatic Compounds. Chemical and Pharmaceutical Bulletin, 2018, 66, 1153-1164.	1.3	9
100	Design and application of a modular and scalable electrochemical flow microreactor. Journal of Flow Chemistry, 2018, 8, 157-165.	1.9	70
101	Palladium-scavenging self-assembled hybrid hydrogels – reusable highly-active green catalysts for Suzuki–Miyaura cross-coupling reactions. Chemical Science, 2018, 9, 8673-8681.	7.4	57
102	Masthead - Full issue pdf. Chemistry International, 2018, 40, 1-62.	0.3	0
103	Photochemical Homologation for the Preparation of Aliphatic Aldehydes in Flow. Journal of Organic Chemistry, 2018, 83, 15558-15568.	3.2	19
104	Synthesis of Quinolinone Alkaloids via Aryne Insertions into Unsymmetric Imides in Flow. Organic Letters, 2018, 20, 7661-7664.	4.6	22
105	Supported Catalysts for Continuous Flow Synthesis. Topics in Current Chemistry, 2018, 376, 46.	5.8	39
106	Porphyrins as Photoredox Catalysts in Csp ² –H Arylations: Batch and Continuous Flow Approaches. Journal of Organic Chemistry, 2018, 83, 15077-15086.	3.2	51
107	Sequential α-lithiation and aerobic oxidation of an arylacetic acid - continuous-flow synthesis of cyclopentyl mandelic acid. Journal of Flow Chemistry, 2018, 8, 109-116.	1.9	12
108	Mild and selective reduction of aldehydes utilising sodium dithionite under flow conditions. Beilstein Journal of Organic Chemistry, 2018, 14, 1529-1536.	2.2	3

#	Article	IF	CITATIONS
109	FIA-coupled spectrophotometric method for determination of Cr (VI) traces in natural waters: application of in-line dissolution of 1,5-diphenylcarbazide after heat treatment and activated alumina as adsorbent for preconcentration. Environmental Monitoring and Assessment, 2018, 190, 617.	2.7	2
110	Gas-liquid flow hydrogenation of nitroarenes: Efficient access to a pharmaceutically relevant pyrrolobenzo[1,4]diazepine scaffold. Tetrahedron, 2018, 74, 6795-6803.	1.9	10
111	A flow platform for degradation-free CuAAC bioconjugation. Nature Communications, 2018, 9, 4021.	12.8	30
112	Borocyclopropanation of Styrenes Mediated by UVâ€light Under Continuous Flow Conditions. Angewandte Chemie, 2018, 130, 13702-13706.	2.0	7
113	Selfâ€Assembling Allâ€Enzyme Hydrogels for Flow Biocatalysis. Angewandte Chemie, 2018, 130, 17274-17278.	2.0	18
114	Stereoselective Homocrotylation of Aldehydes: Enantioselective Synthesis of Allylic-Substituted Z/E-Alkenes. Organic Letters, 2018, 20, 6730-6735.	4.6	4
115	Chemoselective Synthesis of Amines from Ammonium Hydroxide and Hydroxylamine in Continuous Flow. Journal of Organic Chemistry, 2018, 83, 14203-14209.	3.2	9
116	Base-Catalyzed 1,6-Conjugate Addition of Nitroalkanes to <i>p</i> -Quinone Methides under Continuous Flow. ACS Omega, 2018, 3, 13967-13976.	3.5	7
117	Radical Hydroarylation of Functionalized Olefins and Mechanistic Investigation of Photocatalytic Pyridyl Radical Reactions. Journal of the American Chemical Society, 2018, 140, 15525-15534.	13.7	88
118	Scalable Continuous Flow Process for the Synthesis of Eflornithine Using Fluoroform as Difluoromethyl Source. Organic Process Research and Development, 2018, 22, 1553-1563.	2.7	35
119	A Practical and General Amidation Method from Isocyanates Enabled by Flow Technology. Angewandte Chemie, 2018, 130, 12302-12306.	2.0	4
120	Selfâ€Assembling Allâ€Enzyme Hydrogels for Flow Biocatalysis. Angewandte Chemie - International Edition, 2018, 57, 17028-17032.	13.8	76
121	Direct Reductive Amination of Carbonyl Compounds with H ₂ Using Heterogeneous Catalysts in Continuous Flow as an Alternative to Nâ€Alkylation with Alkyl Halides. Advanced Synthesis and Catalysis, 2018, 360, 4699-4704.	4.3	45
122	Reaction: Toward Organic-Solvent-free Synthetic Chemistry. CheM, 2018, 4, 2007-2008.	11.7	6
123	An Autonomous Self-Optimizing Flow Reactor for the Synthesis of Natural Product Carpanone. Journal of Organic Chemistry, 2018, 83, 14286-14299.	3.2	86
124	Reaction: Exploring the Chemistry Frontier in Water-Borne Vessels. CheM, 2018, 4, 2008-2010.	11.7	0
125	Thermal Decomposition of Ethyl Diazoacetate in Microtube Reactor: A Kinetics Study. ACS Omega, 2018, 3, 10526-10533.	3.5	4
126	Esterification of glycerol and solketal by oxidative NHC-catalysis under heterogeneous batch and flow conditions. Reaction Chemistry and Engineering, 2018, 3, 816-825	3.7	20

#	Article	IF	CITATIONS
127	Iron-catalysed carbene-transfer reactions of diazo acetonitrile. Organic and Biomolecular Chemistry, 2018, 16, 7129-7133.	2.8	24
128	Reconfigurable system for automated optimization of diverse chemical reactions. Science, 2018, 361, 1220-1225.	12.6	339
129	C–H functionalisation of aldehydes using light generated, non-stabilised diazo compounds in flow. Chemical Communications, 2018, 54, 11685-11688.	4.1	20
130	Borocyclopropanation of Styrenes Mediated by UVâ€light Under Continuous Flow Conditions. Angewandte Chemie - International Edition, 2018, 57, 13514-13518.	13.8	45
131	<i>anti</i> -Selective Catalytic Asymmetric Nitroaldol Reaction of α-Keto Esters: Intriguing Solvent Effect, Flow Reaction, and Synthesis of Active Pharmaceutical Ingredients. Journal of the American Chemical Society, 2018, 140, 12290-12295.	13.7	52
132	Everything Flows: Continuous Micro-Flow for Pharmaceutical Production. Chemistry International, 2018, 40, 12-16.	0.3	11
133	Leloir Glycosyltransferases as Biocatalysts for Chemical Production. ACS Catalysis, 2018, 8, 6283-6300.	11.2	133
134	Nâ€Heterocyclic Carbeneâ€Protected Ag Nanoparticles Immobilized on Polyacrylonitrile Fiber as Efficient Catalysts for a Threeâ€Component Coupling Reaction. Chemistry - an Asian Journal, 2018, 13, 1561-1569.	3.3	21
135	7‣tep Flow Synthesis of the HIV Integrase Inhibitor Dolutegravir. Angewandte Chemie, 2018, 130, 7299-7303.	2.0	11
136	Native Chemical Ligation–Photodesulfurization in Flow. Journal of the American Chemical Society, 2018, 140, 9020-9024.	13.7	47
137	A continuous flow-batch hybrid reactor for commodity chemical synthesis enabled by inline NMR and temperature monitoring. Tetrahedron, 2018, 74, 5503-5509.	1.9	12
138	Studies Toward the Scaling of Gas‣iquid Photocycloadditions. ChemPhotoChem, 2018, 2, 931-937.	3.0	19
139	Synthesis of Highly Substituted 2-Arylindoles via Copper-Catalyzed Coupling of Isocyanides and Arylboronic Acids. Organic Letters, 2018, 20, 3263-3267.	4.6	26
140	A multi-step continuous flow synthesis of the cystic fibrosis medicine ivacaftor. Reaction Chemistry and Engineering, 2018, 3, 520-526.	3.7	23
141	Towards Versatile Continuousâ€Flow Chemistry and Process Technology Via New Conceptual Microreactor Systems. Bulletin of the Korean Chemical Society, 2018, 39, 757-772.	1.9	27
142	Technoeconomic Optimization of Continuous Crystallization for Three Active Pharmaceutical Ingredients: Cyclosporine, Paracetamol, and Aliskiren. Industrial & Engineering Chemistry Research, 2018, 57, 9489-9499.	3.7	12
143	Advancing Flow Chemistry Portability: A Simplified Approach to Scaling Up Flow Chemistry. Organic Process Research and Development, 2018, 22, 1015-1021.	2.7	30
144	Integrating continuous flow synthesis with in-line analysis and data generation. Organic and Biomolecular Chemistry, 2018, 16, 5946-5954.	2.8	34

#	Article	IF	CITATIONS
145	Continuous Flow Alcoholysis of Dialkyl H-Phosphonates with Aliphatic Alcohols. Molecules, 2018, 23, 1618.	3.8	15
146	Homogeneous and Gas–Liquid Catellaniâ€Type Reaction Enabled by Continuousâ€Flow Chemistry. Chemistry - A European Journal, 2018, 24, 14079-14083.	3.3	28
147	A Fully Automated Continuousâ€Flow Platform for Fluorescence Quenching Studies and Stern–Volmer Analysis. Angewandte Chemie, 2018, 130, 11448-11452.	2.0	12
148	Impact of continuous flow chemistry in the synthesis of natural products and active pharmaceutical ingredients. Anais Da Academia Brasileira De Ciencias, 2018, 90, 1131-1174.	0.8	46
149	Electrosynthesis of new quinone sulfonimide derivatives using a conventional batch and a new electrolyte-free flow cell. Green Chemistry, 2018, 20, 4036-4042.	9.0	22
150	Sequential double C–H functionalization of 2,5-norbornadiene in flow. Reaction Chemistry and Engineering, 2018, 3, 635-639.	3.7	12
151	Biocatalytic synthesis of the Green Note <i>trans</i> -2-hexenal in a continuous-flow microreactor. Beilstein Journal of Organic Chemistry, 2018, 14, 697-703.	2.2	34
152	Visible Light-Mediated Polymerization-Induced Self-Assembly Using Continuous Flow Reactors. Macromolecules, 2018, 51, 5165-5172.	4.8	105
153	Micro-reactor mixing unit interspacing for fast liquid-liquid reactions leading to a generalized scale-up methodology. Chemical Engineering Journal, 2018, 352, 682-694.	12.7	27
154	Amine-Functionalized Sugarcane Bagasse: A Renewable Catalyst for Efficient Continuous Flow Knoevenagel Condensation Reaction at Room Temperature. Molecules, 2018, 23, 43.	3.8	15
155	A Practical and General Amidation Method from Isocyanates Enabled by Flow Technology. Angewandte Chemie - International Edition, 2018, 57, 12126-12130.	13.8	15
156	Continuous Flow Process for Reductive Deoxygenation of ω-Chloroketone in the Synthesis of Vilazodone. Organic Process Research and Development, 2018, 22, 1022-1028.	2.7	8
157	A Fully Automated Continuousâ€Flow Platform for Fluorescence Quenching Studies and Stern–Volmer Analysis. Angewandte Chemie - International Edition, 2018, 57, 11278-11282.	13.8	73
158	Rapid and Mild Synthesis of Amino Acid <i>N</i> â€Carboxy Anhydrides: Basicâ€ŧoâ€Acidic Flash Switching in a Microflow Reactor. Angewandte Chemie, 2018, 130, 11559-11563.	2.0	14
159	Rapid and Mild Synthesis of Amino Acid <i>N</i> arboxy Anhydrides: Basicâ€ŧoâ€Acidic Flash Switching in a Microflow Reactor. Angewandte Chemie - International Edition, 2018, 57, 11389-11393.	13.8	54
160	Radical Carbonylation Mediated by Continuous-Flow Visible-Light Photocatalysis: Access to 2,3-Dihydrobenzofurans. Organic Letters, 2018, 20, 4663-4666.	4.6	45
161	7â€ S tep Flow Synthesis of the HIV Integrase Inhibitor Dolutegravir. Angewandte Chemie - International Edition, 2018, 57, 7181-7185.	13.8	80
162	Flow-photochemical synthesis of the functionalized benzobicyclo[3.2.1]octadiene skeleton. Journal of Molecular Structure, 2018, 1168, 165-174.	3.6	9

	CITATION RE	CITATION REPORT	
#	Article	IF	Citations
163	Incorporating Carbohydrates into Laboratory Curricula. Chemical Reviews, 2018, 118, 7986-8004.	47.7	6
164	A multiparametric analysis of molecular complexities vs. economic data towards the continuous pharmaceutical manufacturing (CPM) of antibiotics. Computer Aided Chemical Engineering, 2018, 43, 1093-1098.	0.5	3
165	The Evolving State of Continuous Processing in Pharmaceutical API Manufacturing: A Survey of Pharmaceutical Companies and Contract Manufacturing Organizations. Organic Process Research and Development, 2018, 22, 1143-1166.	2.7	72
166	High-yielding continuous-flow synthesis of antimalarial drug hydroxychloroquine. Beilstein Journal of Organic Chemistry, 2018, 14, 583-592.	2.2	32
167	An Empirical Understanding of the Glycosylation Reaction. Journal of the American Chemical Society, 2018, 140, 11942-11953.	13.7	101
168	Design and construction of an open source-based photometer and its applications in flow chemistry. Reaction Chemistry and Engineering, 2018, 3, 478-486.	3.7	14
169	Sodiation of Arenes and Heteroarenes in Continuous Flow. Angewandte Chemie - International Edition, 2018, 57, 10748-10751.	13.8	46
170	Copolymers with Controlled Molecular Weight Distributions and Compositional Gradients through Flow Polymerization. Macromolecules, 2018, 51, 4553-4563.	4.8	104
171	Continuous Visibleâ€Light Photoflow Approach for a Manganese atalyzed (Het)Arene Câ^'H Arylation. Angewandte Chemie - International Edition, 2018, 57, 10625-10629.	13.8	83
172	Flow reactors integrated with in-line monitoring using benchtop NMR spectroscopy. Reaction Chemistry and Engineering, 2018, 3, 399-413.	3.7	82
173	Continuous Visibleâ€Light Photoflow Approach for a Manganese atalyzed (Het)Arene Câ^'H Arylation. Angewandte Chemie, 2018, 130, 10785-10789.	2.0	23
174	Liquidâ€Liquid Slugâ€Flowâ€Accelerated [2+2] Photocycloaddition of Cinnamates. ChemPhotoChem, 2018, 2, 865-869.	3.0	19
175	Continuous Manufacturing in Pharmaceutical Process Development and Manufacturing. Annual Review of Chemical and Biomolecular Engineering, 2018, 9, 253-281.	6.8	104
176	Natriierung von Aromaten und Heteroaromaten im kontinuierlichen Durchfluss. Angewandte Chemie, 2018, 130, 10908-10911.	2.0	17
177	Approaches for Performing Reductions under Continuous-Flow Conditions. Synthesis, 2018, 50, 2707-2720.	2.3	15
178	Continuous flow biocatalysis. Chemical Society Reviews, 2018, 47, 5891-5918.	38.1	258
179	Demystifying the Flow: Biocatalytic Reaction Intensification in Microstructured Enzyme Reactors. Biotechnology Journal, 2019, 14, 1800244.	3.5	18
180	Generation and Reaction of Functional Alkyllithiums by Using Microreactors and Their Application to Heterotelechelic Polymer Synthesis. Chemistry - A European Journal, 2019, 25, 13719-13727.	3.3	20

#	Article	IF	CITATIONS
181	Review Article: Spectroscopic microreactors for heterogeneous catalysis. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2019, 37, .	2.1	27
182	Emerging Trends in Polymerization-Induced Self-Assembly. ACS Macro Letters, 2019, 8, 1029-1054.	4.8	423
183	Continuousâ€Flow Diâ€ <i>N</i> â€Alkylation of 1 <i>H</i> â€Benzimidazole in a Fixedâ€Bed Reactor. Chemical Engineering and Technology, 2019, 42, 2215-2222.	1.5	0
184	A robotic platform for flow synthesis of organic compounds informed by Al planning. Science, 2019, 365, .	12.6	548
185	Nanocellulose sponges as efficient continuous flow reactors. Carbohydrate Polymers, 2019, 224, 115184.	10.2	4
186	Oxoâ€Thiolation of Cationically Polymerizable Alkenes Using Flow Microreactors. Chemistry - A European Journal, 2019, 25, 15239-15243.	3.3	10
187	Algorithms for the self-optimisation of chemical reactions. Reaction Chemistry and Engineering, 2019, 4, 1545-1554.	3.7	92
188	Efficient Production of Cyclopropylamine by a Continuous-Flow Microreaction System. Industrial & Engineering Chemistry Research, 2019, 58, 16389-16394.	3.7	13
189	Modular Continuous Flow Synthesis of Imatinib and Analogues. Organic Letters, 2019, 21, 6112-6116.	4.6	36
190	Heumann Indole Flow Chemistry Process. Journal of Organic Chemistry, 2019, 84, 10929-10937.	3.2	5
191	A Mild, Fast, and Scalable Synthesis of Substituted α-Acyloxy Ketones via Multicomponent Reaction Using a Continuous Flow Approach. Frontiers in Chemistry, 2019, 7, 531.	3.6	6
192	Bismuth(III)-Catalyzed Hydration of Terminal Alkynes: Sustainable Synthesis of Methyl Ketones in Batch and Flow. ACS Sustainable Chemistry and Engineering, 2019, 7, 13286-13293.	6.7	13
193	Exploring the Photochemical Reactivity of Multifunctional Photocaged Dienes in Continuous Flow. ChemPhotoChem, 2019, 3, 1146-1152.	3.0	4
194	Catalytic Transformation of Biomass Derivatives to Valueâ€Added Chemicals and Fuels in Continuous Flow Microreactors. ChemCatChem, 2019, 11, 4671-4708.	3.7	67
195	Optimisation by Design of Experiment of Benzimidazol-2-One Synthesis under Flow Conditions. Molecules, 2019, 24, 2447.	3.8	7
196	Metal-Reductant-Free Electrochemical Nickel-Catalyzed Couplings of Aryl and Alkyl Bromides in Acetonitrile. Organic Process Research and Development, 2019, 23, 1746-1751.	2.7	73
197	From <i>p</i> ‥ylene to Ibuprofen in Flow: Three‣tep Synthesis by a Unified Sequence of Chemoselective Câ^'H Metalations. Chemistry - A European Journal, 2019, 25, 11641-11645.	3.3	25
198	Technoeconomic Mixed Integer Nonlinear Programming (MINLP) optimization for design of Liquidâ€Liquid Extraction (LLE) cascades in continuous pharmaceutical manufacturing of atropine. AICHE Journal, 2019, 65, e16738.	3.6	13

#	Article	IF	CITATIONS
199	Practical Continuousâ€Flow Controlled/Living Anionic Polymerization. Chemical Engineering and Technology, 2019, 42, 2154-2163.	1.5	8
200	Continuous Pd-Catalyzed Carbonylative Cyclization Using Iron Pentacarbonyl as a CO Source. Journal of Organic Chemistry, 2019, 84, 14394-14406.	3.2	16
201	Continuousâ€Flow Hydrogenation and Reductive Deuteration of Nitriles: a Simple Access to α,αâ€Dideutero Amines. ChemPlusChem, 2019, 84, 1508-1511.	2.8	11
202	Scalable Wolff–Kishner Reductions in Extreme Process Windows Using a Silicon Carbide Flow Reactor. Organic Process Research and Development, 2019, 23, 2445-2455.	2.7	22
203	Automated Polymer Synthesis Platform for Integrated Conversion Targeting Based on Inline Benchtop NMR. ACS Macro Letters, 2019, 8, 1437-1441.	4.8	55
204	Design and Validation of an Additively Manufactured Flow Cell–Static Mixer Combination for Inline NMR Spectroscopy. Industrial & Engineering Chemistry Research, 2019, 58, 19562-19570.	3.7	7
206	Flow Chemistry: Towards A More Sustainable Heterocyclic Synthesis. European Journal of Organic Chemistry, 2019, 2019, 7188-7217.	2.4	33
207	Künstliche Intelligenz in der organischen Synthese – en route zu autonomer Synthese?. Angewandte Chemie, 2019, 131, 17272-17274.	2.0	2
208	Development of a Telescoped Flow Process for the Safe and Effective Generation of Propargylic Amines. Molecules, 2019, 24, 3658.	3.8	4
209	Memory of Chirality in Flow Electrochemistry: Fast Optimisation with DoE and Online 2Dâ€HPLC. Chemistry - A European Journal, 2019, 25, 16230-16235.	3.3	34
210	A Continuous Stirred-Tank Reactor (CSTR) Cascade for Handling Solid-Containing Photochemical Reactions. Organic Process Research and Development, 2019, 23, 2699-2706.	2.7	64
211	Enhanced Controllability of Fries Rearrangements Using Highâ€Resolution 3Dâ€Printed Metal Microreactor with Circular Channel. Small, 2019, 15, e1905005.	10.0	20
212	Toward Continuousâ€Flow Synthesis of Biologically Interesting Pyrazole Derivatives. Advanced Synthesis and Catalysis, 2019, 361, 5127-5132.	4.3	13
213	Peptideâ€Chain Elongation Using Unprotected Amino Acids in a Microâ€Flow Reactor. Chemistry - A European Journal, 2019, 25, 15091-15097.	3.3	31
214	Investigation of a Flow Step Clogging Incident: A Precautionary Note on the Use of THF in Commercial-Scale Continuous Process. Organic Process Research and Development, 2019, 23, 2556-2561.	2.7	7
215	Artificialâ€Intelligenceâ€Driven Organic Synthesis—En Route towards Autonomous Synthesis?. Angewandte Chemie - International Edition, 2019, 58, 17114-17116.	13.8	27
216	Continuous flow solvent free organic synthesis involving solids (reactants/products) using a screw reactor. Green Chemistry, 2019, 21, 5639-5646.	9.0	34
217	A Practical and Robust Multistep Continuous Process for Manufacturing 5-Bromo- <i>N</i> -(<i>tert</i> -butyl)pyridine-3-sulfonamide. Organic Process Research and Development, 2019, 23, 2088-2095.	2.7	13

#	Article	IF	CITATIONS
218	Coresets for Minimum Enclosing Balls over Sliding Windows. , 2019, , .		11
219	Preparation of silica as catalyst supports with controlled surface property using continuous flow reactor. Applied Catalysis A: General, 2019, 585, 117212.	4.3	5
220	Chemistry in supercritical fluids for the synthesis of metal nanomaterials. Reaction Chemistry and Engineering, 2019, 4, 2030-2054.	3.7	31
221	Accelerated Organic Photoreactions in Flow Microreactors under Gas-Liquid Slug Flow Conditions Using N2 Gas as an Unreactive Substance. Bulletin of the Chemical Society of Japan, 2019, 92, 1467-1473.	3.2	10
222	Micro-electro-flow reactor (μ-EFR) system for ultra-fast arene synthesis and manufacture of daclatasvir. Chemical Communications, 2019, 55, 11852-11855.	4.1	17
223	Continuous flow/waste-minimized synthesis of benzoxazoles catalysed by heterogeneous manganese systems. Green Chemistry, 2019, 21, 5298-5305.	9.0	38
224	Amplification of Elementary Surface Reaction Steps on Transition Metal Surfaces Using Liquid Crystals: Dissociative Adsorption and Dehydrogenation. Journal of the American Chemical Society, 2019, 141, 16003-16013.	13.7	18
225	Direct Transformation of Nitroalkanes to Nitriles Enabled by Visible-Light Photoredox Catalysis and a Domino Reaction Process. Organic Letters, 2019, 21, 7750-7754.	4.6	16
226	A numbering-up metal microreactor for the high-throughput production of a commercial drug by copper catalysis. Lab on A Chip, 2019, 19, 3535-3542.	6.0	46
227	Monitoring Heterogeneously Catalyzed Hydrogenation Reactions at Elevated Pressures Using In-Line Flow NMR. Analytical Chemistry, 2019, 91, 12636-12643.	6.5	11
228	Compact Steam-Methane Reforming for the Production of Hydrogen in Continuous Flow Microreactor Systems. ACS Omega, 2019, 4, 15600-15614.	3.5	15
229	Reconfigurable Flow Platform for Automated Reagent Screening and Autonomous Optimization for Bioinspired Lignans Synthesis. Journal of Organic Chemistry, 2019, 84, 14101-14112.	3.2	26
230	A Green Chemistry Continuum for a Robust and Sustainable Active Pharmaceutical Ingredient Supply Chain. ACS Sustainable Chemistry and Engineering, 2019, 7, 16937-16951.	6.7	37
231	Flow Rhodaelectro-Catalyzed Alkyne Annulations by Versatile C–H Activation: Mechanistic Support for Rhodium(III/IV). Journal of the American Chemical Society, 2019, 141, 17198-17206.	13.7	126
232	Integrating reactive distillation with continuous flow processing. Reaction Chemistry and Engineering, 2019, 4, 368-371.	3.7	13
233	Enabling tools for continuous-flow biphasic liquid–liquid reaction. Reaction Chemistry and Engineering, 2019, 4, 235-243.	3.7	33
234	Immobilized tetrakis(triphenylphosphine)palladium(0) for Suzuki–Miyaura coupling reactions under flow conditions. Reaction Chemistry and Engineering, 2019, 4, 372-382.	3.7	10
235	Development of customized 3D printed stainless steel reactors with inline oxygen sensors for aerobic oxidation of Grignard reagents in continuous flow. Reaction Chemistry and Engineering, 2019, 4, 393-401	3.7	35

#	Article	IF	CITATIONS
236	Continuous-flow catalytic deuterodehalogenation carried out in propylene carbonate. Green Chemistry, 2019, 21, 956-961.	9.0	14
237	Flow-oriented synthetic design in the continuous preparation of the aryl piperazine drug flibanserin. Reaction Chemistry and Engineering, 2019, 4, 652-657.	3.7	21
238	Counting bubbles: precision process control of gas–liquid reactions in flow with an optical inline sensor. Reaction Chemistry and Engineering, 2019, 4, 112-121.	3.7	13
239	Alkyllithium Compounds Bearing Electrophilic Functional Groups: A Flash Chemistry Approach. Angewandte Chemie - International Edition, 2019, 58, 4027-4030.	13.8	34
240	Alkyllithium Compounds Bearing Electrophilic Functional Groups: A Flash Chemistry Approach. Angewandte Chemie, 2019, 131, 4067-4070.	2.0	14
241	Towards a Scalable Synthesis of 2â€Oxabicyclo[2.2.0]hexâ€5â€enâ€3â€one Using Flow Photochemistry. ChemPhotoChem, 2019, 3, 229-232.	3.0	15
242	Real-time liquid-phase organic reaction monitoring with mid-infrared attenuated total reflectance dual frequency comb spectroscopy. Journal of Molecular Spectroscopy, 2019, 356, 39-45.	1.2	11
243	Photochemical benzylic bromination in continuous flow using BrCCl3 and its application to telescoped p-methoxybenzyl protection. Organic and Biomolecular Chemistry, 2019, 17, 1384-1388.	2.8	13
244	Fabrication of Lignocellulose-Based Microreactors: Copper-Functionalized Bamboo for Continuous-Flow CuAAC Click Reactions. ACS Sustainable Chemistry and Engineering, 2019, 7, 3267-3273.	6.7	31
245	Solvent-Free Michaelis–Arbuzov Rearrangement under Flow Conditions. Journal of Organic Chemistry, 2019, 84, 2619-2625.	3.2	15
246	Continuous flow synthesis of a pharmaceutical intermediate: a computational fluid dynamics approach. Reaction Chemistry and Engineering, 2019, 4, 634-642.	3.7	14
247	Landscape and opportunities for active pharmaceutical ingredient manufacturing in developing African economies. Reaction Chemistry and Engineering, 2019, 4, 457-489.	3.7	15
248	Sensitized [2 + 2] intramolecular photocycloaddition of unsaturated enones using UV LEDs in a continuous flow reactor: kinetic and preparative aspects. Reaction Chemistry and Engineering, 2019, 4, 828-837.	3.7	6
249	Continuous flow synthesis of ordered porous materials: from zeolites to metal–organic frameworks and mesoporous silica. Reaction Chemistry and Engineering, 2019, 4, 1699-1720.	3.7	48
250	Continuous Flow Chemo-Enzymatic Baeyer–Villiger Oxidation with Superactive and Extra-Stable Enzyme/Carbon Nanotube Catalyst: An Efficient Upgrade from Batch to Flow. Organic Process Research and Development, 2019, 23, 1386-1395.	2.7	30
251	HCN on Tap: On-Demand Continuous Production of Anhydrous HCN for Organic Synthesis. Organic Letters, 2019, 21, 5326-5330.	4.6	19
252	Life cycle assessment of vitamin D3 synthesis: from batch to photo-high p,T. International Journal of Life Cycle Assessment, 2019, 24, 2111-2127.	4.7	15
253	Visible-Light-Mediated Iodoperfluoroalkylation of Alkenes in Flow and Its Application to the Synthesis of a Key Fulvestrant Intermediate. Organic Letters, 2019, 21, 5341-5345.	4.6	81

	CITATION RE	PORT	
#	ARTICLE	IF	CITATIONS
254	Modularity: Adding New Dimensions to Total Synthesis. Trends in Chemistry, 2019, 1, 630-643.	8.5	28
255	One-Step Synthesis of 2-Fluoroadenine Using Hydrogen Fluoride Pyridine in a Continuous Flow Operation. Organic Process Research and Development, 2019, 23, 1522-1528.	2.7	14
256	Direct electrochemical oxidation of alcohols with hydrogen evolution in continuous-flow reactor. Nature Communications, 2019, 10, 2796.	12.8	131
257	Definitive screening designs for multistep kinetic models in flow. Reaction Chemistry and Engineering, 2019, 4, 1565-1570.	3.7	16
258	An experimental study on synthesis of glycolic acid via carbonylation of formaldehyde using PTFE membrane contactor. Journal of Membrane Science, 2019, 586, 259-266.	8.2	15
259	Proton sponge functionalized polyacrylonitrile fibers as an efficient and recyclable superbasic catalyst for Knoevenagel condensation in Water. Journal of Cleaner Production, 2019, 231, 77-86.	9.3	28
260	A Novel and Efficient Continuous-Flow Route To Prepare Trifluoromethylated <i>N</i> -Fused Heterocycles for Drug Discovery and Pharmaceutical Manufacturing. Industrial & Engineering Chemistry Research, 2019, 58, 10164-10171.	3.7	33
261	Non-aqueous continuous-flow electrophoresis (NACFE): potential separation complement for continuous-flow organic synthesis. Lab on A Chip, 2019, 19, 2156-2160.	6.0	7
262	Experimental methods in chemical engineering: Microâ€reactors. Canadian Journal of Chemical Engineering, 2019, 97, 2578-2587.	1.7	24
263	Spatially Defined Drug Targeting by in Situ Host–Guest Chemistry in a Living Animal. ACS Central Science, 2019, 5, 1035-1043.	11.3	68
264	Monolithiation of 5,5′â€Dibromoâ€2,2′â€bithiophene Using Flow Microreactors: Mechanistic Implications Synthetic Applications. Chemical Engineering and Technology, 2019, 42, 2113-2118.	and 1.5	6
265	Continuous manufacturing $\hat{a} \in $ the Green Chemistry promise?. Green Chemistry, 2019, 21, 3481-3498.	9.0	222
266	Multidimensional dynamic experiments for data-rich process development of reactions in flow. Reaction Chemistry and Engineering, 2019, 4, 1637-1645.	3.7	29
267	Programmable High-Throughput Platform for the Rapid and Scalable Synthesis of Polyester and Polycarbonate Libraries. Journal of the American Chemical Society, 2019, 141, 8921-8927.	13.7	68
268	Miniaturized and Automated Synthesis of Biomolecules—Overview and Perspectives. Advanced Materials, 2019, 31, 1806656.	21.0	15
269	Kinetics Studies on a Multicomponent Knoevenagelâ^'Michael Domino Reaction by an Automated Flow Reactor. ChemistryOpen, 2019, 8, 606-614.	1.9	13
270	Modular 3D Printed Compressed Air Driven Continuousâ€Flow Systems for Chemical Synthesis. European Journal of Organic Chemistry, 2019, 2019, 3783-3787.	2.4	26
271	Mechanistic Study of In Situ Generation and Use of Methanesulfonyl Azide as a Diazo Transfer Reagent with Realâ€Time Monitoring by FlowNMR. European Journal of Organic Chemistry, 2019, 2019, 3575-3580.	2.4	2

#	Article	IF	CITATIONS
272	An improved Balz-Schiemann reaction enabled by ionic liquids and continuous processing. Tetrahedron, 2019, 75, 4261-4265.	1.9	12
273	Revisiting Hydroxyalkylation of Phenols with Cyclic Carbonates. Advanced Synthesis and Catalysis, 2019, 361, 3639-3644.	4.3	11
274	Modular Coiled Flow Inverter with Narrow Residence Time Distribution for Process Development and Production. Chemie-Ingenieur-Technik, 2019, 91, 567-575.	0.8	13
275	Synthetic applications of light, electricity, mechanical force and flow. Nature Reviews Chemistry, 2019, 3, 290-304.	30.2	51
276	Molecular conjugation using non-covalent click chemistry. Nature Reviews Chemistry, 2019, 3, 393-400.	30.2	81
277	Amino-Modified Silica-Supported Copper-Palladium Alloy. Synthesis and Use in Selective Hydrogenation of Disubstituted Nitroarenes in a Flow Micro Reactor. Russian Journal of Organic Chemistry, 2019, 55, 1-6.	0.8	3
278	Fast and Efficient Continuous Flow Method for the Synthesis of Ynones and Pyrazoles. European Journal of Organic Chemistry, 2019, 2019, 3183-3189.	2.4	15
280	The Influence of Residence Time Distribution on Continuous-Flow Polymerization. Macromolecules, 2019, 52, 3551-3557.	4.8	85
281	Continuous Flow Synthesis of Highly Substituted Tetrahydrofurans. European Journal of Organic Chemistry, 2019, 2019, 5326-5333.	2.4	5
282	Cascade Aerobic Selective Oxidation over Contiguous Dual-Catalyst Beds in Continuous Flow. ACS Catalysis, 2019, 9, 5345-5352.	11.2	20
283	Intensified ozonolysis of lignins in a spray reactor: insights into product yields and lignin structure. Reaction Chemistry and Engineering, 2019, 4, 1421-1430.	3.7	15
284	Aminolysis of ethyl acetate in continuous flow and its reaction kinetics. Chinese Journal of Chemical Engineering, 2019, 27, 2948-2952.	3.5	1
285	Ruthenium polypyridyl complex-catalysed aryl alkoxylation of styrenes: improving reactivity using a continuous flow photo-microreactor. Reaction Chemistry and Engineering, 2019, 4, 995-999.	3.7	3
286	Engineering Chemistry Innovation. ACS Medicinal Chemistry Letters, 2019, 10, 703-707.	2.8	14
287	Catalysis in medicinal chemistry. Reaction Chemistry and Engineering, 2019, 4, 1530-1535.	3.7	13
288	An autonomous self-optimizing flow machine for the synthesis of pyridine–oxazoline (PyOX) ligands. Reaction Chemistry and Engineering, 2019, 4, 1608-1615.	3.7	19
289	Continuous-flow synthesis of 3,5-disubstituted pyrazoles <i>via</i> sequential alkyne homocoupling and Cope-type hydroamination. RSC Advances, 2019, 9, 8197-8203.	3.6	15
290	Enabling low power acoustics for capillary sonoreactors. Ultrasonics Sonochemistry, 2019, 56, 105-113.	8.2	2

ARTICLE IF CITATIONS Process Intensification of Continuous-Flow Imine Hydrogenation in Catalyst-Coated Tube Reactors. 291 3.7 15 Industrial & amp; Engineering Chemistry Research, 2019, 58, 4433-4442. Flow mediated metal-free PET-RAFT polymerisation for upscaled and consistent polymer production. 3.7 Reaction Chemistry and Engineering, 2019, 4, 1216-1228. Ethoxylation of p-Fluoronitrobenzene using phase-transfer catalysts under microflow conditions. 293 1.9 5 Journal of Flow Chemistry, 2019, 9, 115-121. Emerging porous materials in confined spaces: from chromatographic applications to flow chemistry. 294 38.1 103 Chemical Society Reviews, 2019, 48, 2566-2595. Improving Productivity of Multiphase Flow Aerobic Oxidation Using a Tube-in-Tube Membrane 295 3.5 10 Contactor. Catalysts, 2019, 9, 95. Annulative Synthesis of Thiazoles and Oxazoles from Alkenyl Sulfoxides and Nitriles via Additive 296 2.7 Pummerer Reaction. Asian Journal of Organic Chemistry, 2019, 8, 1084-1087. Exploring the generation and use of acylketenes with continuous flow processes. Reaction Chemistry 297 3.7 8 and Engineering, 2019, 4, 1559-1564. From enabling technologies to medicinal mechanochemistry: an eco-friendly access to 298 hydantoin-based active pharmaceutical ingredients. Reaction Chemistry and Engineering, 2019, 4, 3.7 1179-1188. Application of the Microwave Technique in Continuous Flow Processing of Organophosphorus 299 2.9 23 Chemical Reactions. Materials, 2019, 12, 788. Self-Immobilizing Biocatalysts Maximize Spaceâ€"Time Yields in Flow Reactors. Catalysts, 2019, 9, 164. 3.5 Inline Reaction Monitoring of Amine-Catalyzed Acetylation of Benzyl Alcohol Using a Microfluidic 301 Stripline Nuclear Magnetic Resonance Setup. Journal of the American Chemical Society, 2019, 141, 13.728 5369-5380. A Microfluidic Split-Flow Technology for Product Characterization in Continuous Low-Volume Nanoparticle Synthesis. Micromachines, 2019, 10, 179. Rapid and Multigram Synthesis of Vinylogous Esters under Continuous Flow: An Access to Transetherification and Reverse Reaction of Vinylogous Esters. Organic Process Research and 303 2.7 3 Development, 2019, 23, 1034-1045. Readily Available Immobilized Pd Catalysts for Suzukiâ€Miyaura Coupling under Continuousâ€flow Conditions. ChemCatChem, 2019, 11, 2427-2431. 304 3.7 Laboratory of the future: a modular flow platform with multiple integrated PAT tools for multistep 305 90 3.7 reactions. Reaction Chemistry and Engineering, 2019, 4, 1571-1578. Sevenâ€Step Continuous Flow Synthesis of Linezolid Without Intermediate Purification. Angewandte 306 Chemie, 2019, 131, 7760-7763. Sevenâ€6tep Continuous Flow Synthesis of Linezolid Without Intermediate Purification. Angewandte 307 13.8 68 Chemie - International Edition, 2019, 58, 7678-7681. The Impact of Recent Developments in Technologies which Enable the Increased Use of Biocatalysts. 2.4 European Journal of Organic Chemistry, 2019, 2019, 3713-3734.

#	Article	IF	CITATIONS
309	Continuous nitration of alcohols in a Freon flow. Reaction Chemistry and Engineering, 2019, 4, 1303-1308.	3.7	10
310	Reaktionen im kontinuierlichen Strom. Nachrichten Aus Der Chemie, 2019, 67, 81-85.	0.0	0
311	(<i>E</i>)-Selective Friedel–Crafts acylation of alkynes to β-chlorovinyl ketones: defying isomerizations in batch reactions by flow chemistry approaches. Organic Chemistry Frontiers, 2019, 6, 1868-1872.	4.5	20
312	Biomass-Derived Solvents for Sustainable Transition Metal-Catalyzed C–H Activation. ACS Sustainable Chemistry and Engineering, 2019, 7, 8023-8040.	6.7	90
313	Alcohol-based PISA in batch and flow: exploring the role of photoinitiators. Polymer Chemistry, 2019, 10, 2406-2414.	3.9	51
314	Clean Enzymatic Oxidation of 12αâ€Hydroxysteroids to 12â€Oxoâ€Derivatives Catalyzed by Hydroxysteroid Dehydrogenase. Advanced Synthesis and Catalysis, 2019, 361, 2448-2455.	4.3	8
315	C–H functionalization reactions under flow conditions. Chemical Society Reviews, 2019, 48, 2767-2782.	38.1	94
316	Suzuki–Miyaura Coupling Using Monolithic Pd Reactors and Scaling-Up by Series Connection of the Reactors. Catalysts, 2019, 9, 300.	3.5	17
317	Batch and Continuousâ€Flow Iron(II) atalyzed Synthesis of Sulfilimines and Sulfoximines using <i>N</i> â€Mesyloxycarbamates. Chemistry - A European Journal, 2019, 25, 9423-9426.	3.3	19
318	Microflow-based dynamic combinatorial chemistry: a microscale synthesis and screening platform for the rapid and accurate identification of bioactive molecules. Reaction Chemistry and Engineering, 2019, 4, 658-662.	3.7	5
319	Emerging Trends in Flow Chemistry and Applications to the Pharmaceutical Industry. Journal of Medicinal Chemistry, 2019, 62, 6422-6468.	6.4	163
320	Catalytic Enantioselective Flow Processes with Solidâ€Supported Chiral Catalysts. Chemical Record, 2019, 19, 1872-1890.	5.8	53
321	Self-Organization of Fluids in a Multienzymatic Pump System. Langmuir, 2019, 35, 3724-3732.	3.5	30
322	Rapid Oxygen Tolerant Aqueous RAFT Photopolymerization in Continuous Flow Reactors. Macromolecules, 2019, 52, 1609-1619.	4.8	59
323	Highâ€Performance Materials for 3D Printing in Chemical Synthesis Applications. Advanced Materials, 2019, 31, e1805982.	21.0	82
324	Nanoparticle-Hydrogel Composites: From Molecular Interactions to Macroscopic Behavior. Polymers, 2019, 11, 275.	4.5	142
325	Low-budget 3D-printed equipment for continuous flow reactions. Beilstein Journal of Organic Chemistry, 2019, 15, 558-566.	2.2	40
326	Divergent Multistep Continuous Synthetic Transformations of Allylic Alcohol Enabled by Catalysts Immobilized in Ionic Liquid Phases ChemSusChem, 2019, 12, 1684-1691.	6.8	6

#	Article	IF	Citations
327	Green and catalyst-free synthesis of deoxyarbutin in continuous-flow. Reaction Chemistry and Engineering, 2019, 4, 927-931.	3.7	7
328	The literature of heterocyclic chemistry, part XVII, 2017. Advances in Heterocyclic Chemistry, 2019, 129, 337-418.	1.7	5
329	Acoustic Droplet Ejection Enabled Automated Reaction Scouting. ACS Central Science, 2019, 5, 451-457.	11.3	40
330	Synthesis of Functionalized Ketones from Acid Chlorides and Organolithiums by Extremely Fast Micromixing. Chemistry - A European Journal, 2019, 25, 4946-4950.	3.3	24
331	Catalytic Wackerâ€ŧype Oxidations Using Visible Light Photoredox Catalysis. ChemCatChem, 2019, 11, 1889-1892.	3.7	12
332	Flow Synthesis of Iodonium Trifluoroacetates through Direct Oxidation of Iodoarenes by Oxone®. European Journal of Organic Chemistry, 2019, 2019, 2081-2088.	2.4	18
333	Hydroxynitrile lyases covalently immobilized in continuous flow microreactors. Catalysis Science and Technology, 2019, 9, 1189-1200.	4.1	38
334	Asymmetric synthesis with cinchona-decorated cyclodextrin in a continuous-flow membrane reactor. Journal of Catalysis, 2019, 371, 255-261.	6.2	52
335	A Scalable, Combined-Batch, and Continuous-Flow Synthesis of a Bio-Inspired UV-B Absorber. Australian Journal of Chemistry, 2019, 72, 860.	0.9	1
336	Application of Tubular Meso- and Micro-reactors in Organic Synthesis and Photochemistry – Go With the Flow!. Kemija U Industriji, 2019, 68, 477-485.	0.3	0
337	Biocatalytic Oxidation in Continuous Flow for the Generation of Carbohydrate Dialdehydes. ACS Catalysis, 2019, 9, 11658-11662.	11.2	36
338	Continuous-Flow Synthesis of the Azo Pigment Yellow 14 Using a Three-Stream Micromixing Process. Organic Process Research and Development, 2019, 23, 2637-2646.	2.7	15
339	Comprehensive control over molecular weight distributions through automated polymerizations. Polymer Chemistry, 2019, 10, 6315-6323.	3.9	45
340	Continuous Flow Photochemical and Thermal Multi-Step Synthesis of Bioactive 3-Arylmethylene-2,3-Dihydro-1H-Isoindolin-1-Ones. Molecules, 2019, 24, 4527.	3.8	8
341	Novel Cobalt Carbide Catalyst Wall-Coating Method for FeCrAlloy Microchannels Exemplified on Direct Production of Lower Olefins from Syngas. Industrial & Engineering Chemistry Research, 2019, 58, 22967-22976.	3.7	2
342	Safe and Scalable Continuous Flow Azidophenylselenylation of Galactal to Prepare Galactosamine Building Blocks. Organic Process Research and Development, 2019, 23, 2764-2770.	2.7	12
343	Continuous Flow Synthesis of Isoxazoles via Vinyl Azides from Friedel–Crafts Acylation of Alkynes: A Modulated Troubleshooting Optimization Approach. Organic Letters, 2019, 21, 10063-10068.	4.6	22
344	Multigram-scale flow synthesis of the chiral key intermediate of (â^')-paroxetine enabled by solvent-free heterogeneous organocatalysis. Chemical Science, 2019, 10, 11141-11146.	7.4	56

#	Article	IF	CITATIONS
345	Real-time monitoring of solid-phase peptide synthesis using a variable bed flow reactor. Chemical Communications, 2019, 55, 14598-14601.	4.1	36
346	Extending Designed Linear Biocatalytic Cascades for Organic Synthesis. ChemCatChem, 2019, 11, 225-243.	3.7	56
347	Improved Reactor Productivity for the Safe Photoâ€Oxidation of Citronellol Under Visible Light LED Irradiation. ChemPhotoChem, 2019, 3, 122-128.	3.0	16
348	Hochdurchsatzstrategien zur Entdeckung und Optimierung katalytischer Reaktionen. Angewandte Chemie, 2019, 131, 7254-7267.	2.0	16
349	Finding the Perfect Match: A Combined Computational and Experimental Study toward Efficient and Scalable Photosensitized [2 + 2] Cycloadditions in Flow. Organic Process Research and Development, 2019, 23, 78-87.	2.7	52
350	Optimization of Reaction Selectivity Using CFD-Based Compartmental Modeling and Surrogate-Based Optimization. Processes, 2019, 7, 9.	2.8	20
351	Difluorodiazoethane (CF ₂ HCHN ₂): A New Reagent for the Introduction of the Difluoromethyl Group. Chemistry - A European Journal, 2019, 25, 6053-6063.	3.3	56
352	Continuousâ€Flow Pdâ€Catalyzed Carbonylation of Aryl Chlorides with Carbon Monoxide at Elevated Temperature and Pressure. ChemCatChem, 2019, 11, 997-1001.	3.7	4
353	<i>De novo</i> Design of Organic Photocatalysts: Bithiophene Derivatives for the Visibleâ€light Induced Câ''H Functionalization of Heteroarenes. Advanced Synthesis and Catalysis, 2019, 361, 945-950.	4.3	43
354	Exploiting Chemical Toolboxes for the Expedited Generation of Tetracyclic Quinolines as a Novel Class of PXR Agonists. ACS Medicinal Chemistry Letters, 2019, 10, 677-681.	2.8	25
355	Continuous flow processing as a tool for the generation of terpene-derived monomer libraries. Reaction Chemistry and Engineering, 2019, 4, 362-367.	3.7	8
356	High Throughput Strategies for the Discovery and Optimization of Catalytic Reactions. Angewandte Chemie - International Edition, 2019, 58, 7180-7191.	13.8	95
357	Methyl glycosides via Fischer glycosylation: translation from batch microwave to continuous flow processing. Monatshefte Für Chemie, 2019, 150, 11-19.	1.8	11
358	Using Carbon Dioxide as a Building Block in Continuous Flow Synthesis. Advanced Synthesis and Catalysis, 2019, 361, 247-264.	4.3	64
359	Sustaining the Transition from a Petrobased to a Biobased Chemical Industry with Flow Chemistry. Topics in Current Chemistry, 2019, 377, 1.	5.8	104
360	Molecular Weight Distribution of Polymers Produced by Anionic Polymerization Enables Mixability Evaluation. Organic Process Research and Development, 2019, 23, 635-640.	2.7	15
361	Zirconiumâ€Î² Zeoliteâ€Catalyzed Continuousâ€Flow Friedelâ€Crafts Acylation Reaction. Asian Journal of Organic Chemistry, 2019, 8, 316-319.	2.7	20
362	A Laser Driven Flow Chemistry Platform for Scaling Photochemical Reactions with Visible Light. ACS Central Science, 2019, 5, 109-115.	11.3	138

Сіт	ΔΤΙ	אר ק) FD	ORT
	πm			

#	Article	IF	CITATIONS
363	Scalability of Visible-Light-Induced Nickel Negishi Reactions: A Combination of Flow Photochemistry, Use of Solid Reagents, and In-Line NMR Monitoring. Journal of Organic Chemistry, 2019, 84, 4748-4753.	3.2	29
364	Precise Polymer Synthesis by Autonomous Selfâ€Optimizing Flow Reactors. Angewandte Chemie - International Edition, 2019, 58, 3183-3187.	13.8	111
365	Precise Polymer Synthesis by Autonomous Selfâ€Optimizing Flow Reactors. Angewandte Chemie, 2019, 131, 3215-3219.	2.0	11
366	Biocatalysis Using Immobilized Enzymes in Continuous Flow for the Synthesis of Fine Chemicals. Organic Process Research and Development, 2019, 23, 9-18.	2.7	201
367	Inflow boundary conditions determine T-mixer efficiency. Reaction Chemistry and Engineering, 2019, 4, 559-568.	3.7	39
368	Solvent-free organocatalytic preparation of cyclic organic carbonates under scalable continuous flow conditions. Reaction Chemistry and Engineering, 2019, 4, 17-26.	3.7	26
369	Microreaction Technology for Synthetic Chemistry. Chinese Journal of Chemistry, 2019, 37, 161-170.	4.9	34
370	A Continuous Flow Strategy for the Facile Synthesis and Elaboration of Semiâ€Saturated Heterobicyclic Fragments. European Journal of Organic Chemistry, 2019, 2019, 1341-1349.	2.4	6
371	The Use of Molecular Oxygen for Liquid Phase Aerobic Oxidations in Continuous Flow. Topics in Current Chemistry, 2019, 377, 2.	5.8	99
372	Adding Crystals To Minimize Clogging in Continuous Flow Synthesis. Crystal Growth and Design, 2019, 19, 98-105.	3.0	11
373	Organic synthesis in a modular robotic system driven by a chemical programming language. Science, 2019, 363, .	12.6	349
374	Continuous flow palladium-catalyzed trifluoromethylthiolation of C-H bonds. Journal of Flow Chemistry, 2019, 9, 9-12.	1.9	11
375	Continuousâ€flow Synthesis of Aryl Aldehydes by Pd atalyzed Formylation of Aryl Bromides Using Carbon Monoxide and Hydrogen. ChemSusChem, 2019, 12, 326-337.	6.8	15
376	Selective Continuous Flow Iodination Guided by Direct Spectroscopic Observation of Equilibrating Aryl Lithium Regioisomers. Organometallics, 2019, 38, 129-137.	2.3	6
377	Microfluidic immobilized enzyme reactors for continuous biocatalysis. Reaction Chemistry and Engineering, 2020, 5, 9-32.	3.7	82
378	Organic Photocatalysis: Carbon Nitride Semiconductors vs. Molecular Catalysts. European Journal of Organic Chemistry, 2020, 2020, 1294-1309.	2.4	59
379	Continuous flow synthesis of porous materials. Chinese Chemical Letters, 2020, 31, 1448-1461.	9.0	28
380	Screening of functional solvent system for automatic aldehyde and ketone separation in aldol reaction: A combined COSMO-RS and experimental approach. Chemical Engineering Journal, 2020, 385, 123399.	12.7	17

#	Article	IF	CITATIONS
381	Stereospecific Amination of Mesylated Cyclobutanol in Continuous Flow. Organic Process Research and Development, 2020, 24, 802-806.	2.7	7
382	Microwaveâ€Assisted Decarbonylation of Biomassâ€Derived Aldehydes using Pdâ€Doped Hydrotalcites. ChemSusChem, 2020, 13, 312-320.	6.8	21
383	Flow Technology for the Genesis and Use of (Highly) Reactive Organometallic Reagents. Chemistry - A European Journal, 2020, 26, 19-32.	3.3	89
384	Characterizing the Mineral Assemblages of Hot Spring Environments and Applications to Mars Orbital Data. Astrobiology, 2020, 20, 453-474.	3.0	8
385	A Perspective on Continuous Flow Chemistry in the Pharmaceutical Industry. Organic Process Research and Development, 2020, 24, 1802-1813.	2.7	290
386	Recent Advances in Continuousâ€Flow Enantioselective Catalysis. Chemistry - A European Journal, 2020, 26, 5729-5747.	3.3	57
387	Continuous photochemical benzylic bromination using <i>in situ</i> generated Br ₂ : process intensification towards optimal PMI and throughput. Green Chemistry, 2020, 22, 448-454.	9.0	41
388	Polymerizations in Continuous Flow: Recent Advances in the Synthesis of Diverse Polymeric Materials. ACS Macro Letters, 2020, 9, 123-133.	4.8	98
391	Continuousâ€Flow Amide and Ester Reductions Using Neat Borane Dimethylsulfide Complex. ChemSusChem, 2020, 13, 1800-1807.	6.8	13
392	Exploration of flow reaction conditions using machine-learning for enantioselective organocatalyzed Rauhut–Currier and [3+2] annulation sequence. Chemical Communications, 2020, 56, 1259-1262.	4.1	39
393	When robotics met fluidics. Lab on A Chip, 2020, 20, 709-716.	6.0	27
394	A streamlined synthesis of the neurosteroid 3β-methoxypregnenolone assisted by a statistical experimental design and automation. Reaction Chemistry and Engineering, 2020, 5, 300-307.	3.7	5
395	Continuous Flow Enables Metallaphotoredox Catalysis in a Medicinal Chemistry Setting: Accelerated Optimization and Library Execution of a Reductive Coupling between Benzylic Chlorides and Aryl Bromides. Organic Letters, 2020, 22, 410-416.	4.6	33
396	Efficient and Safe Synthesis of 1â€Methylâ€3,5â€Dinitroâ€1,2,4â€Triazole Using Continuous Flow Chemistry. Bulletin of the Korean Chemical Society, 2020, 41, 220-222.	1.9	3
397	Modernization of a Photochemical Reaction for the Undergraduate Laboratory: Continuous Flow Photopinacol Coupling. Journal of Chemical Education, 2020, 97, 586-591.	2.3	17
398	A Novel Approach to Functionalization of Aryl Azides through the Generation and Reaction of Organolithium Species Bearing Masked Azides in Flow Microreactors. Angewandte Chemie, 2020, 132, 1583-1587.	2.0	6
399	A Novel Approach to Functionalization of Aryl Azides through the Generation and Reaction of Organolithium Species Bearing Masked Azides in Flow Microreactors. Angewandte Chemie - International Edition, 2020, 59, 1567-1571.	13.8	27
400	A Biorefinery approach towards development of renewable platform chemicals from sustainable biomass. , 2020, , 135-147.		4

		CITATION RE	PORT	
#	Article		IF	CITATIONS
401	Reactor Technology Concepts for Flow Photochemistry. ChemPhotoChem, 2020, 4, 235-25-	4.	3.0	62
402	Waste minimized synthesis of pharmaceutically active compounds <i>via</i> heterogeneou catalysed C–H oxidation in flow. Green Chemistry, 2020, 22, 397-403.	s manganese	9.0	40
403	Synthesis of Biaryls Having a Piperidylmethyl Group Based on Space Integration of Lithiation Borylation, and Suzuki–Miyaura Coupling. European Journal of Organic Chemistry, 2020, 2		2.4	20
404	Large, Highly Modular Narrow-Gap Electrolytic Flow Cell and Application in Dehydrogenative Cross-Coupling of Phenols. Organic Process Research and Development, 2020, 24, 1916-19	26.	2.7	36
405	Enhanced Hydroformylation in a Continuous Flow Microreactor System. Industrial & En Chemistry Research, 2020, 59, 88-98.	gineering	3.7	14
406	Development of a multistep reaction cascade for the synthesis of a sacubitril precursor in continuous flow. Journal of Flow Chemistry, 2020, 10, 259-270.		1.9	6
407	Electrolyte-free paired electrosynthesis of some pyrimidine derivatives using flow electroche as a powerful technology. Journal of Electroanalytical Chemistry, 2020, 857, 113746.	mistry	3.8	7
408	Tf ₂ O-mediated Reaction of Alkenyl Sulfoxides with Unprotected Anilines in Flor Microreactors. Chemistry Letters, 2020, 49, 160-163.	w	1.3	4
409	Graphene oxide-catalyzed two-step continuous-flow conversion of aryl amine to unsymmetr thioether. Journal of Flow Chemistry, 2020, 10, 389-396.	ical	1.9	2
410	Biocatalytic hydrogenations on carbon supports. Methods in Enzymology, 2020, 630, 303-3	25.	1.0	5
411	Synthetische Photoelektrochemie. Angewandte Chemie, 2020, 132, 11828-11844.		2.0	40
412	Synthetic Photoelectrochemistry. Angewandte Chemie - International Edition, 2020, 59, 117	732-11747.	13.8	261
413	Recent Advances in Droplet Microfluidics. Analytical Chemistry, 2020, 92, 132-149.		6.5	189
414	Flowâ€based <scp>SPPS</scp> for protein synthesis: A perspective. Peptide Science, 2020,	112, e24198.	1.8	15
415	Computational Shape Optimization of Microreactors based on CFD Simulation and Surroga driven Optimization. Computer Aided Chemical Engineering, 2020, 48, 925-930.	te Model	0.5	3
416	Design Space Investigation for Development of Continuous Flow Syntheses of Active Pharm Ingredients. Computer Aided Chemical Engineering, 2020, 48, 961-966.	aceutical	0.5	0
417	Visible Light Photocatalytic Synthesis of Tetrahydroquinolines Under Batch and Flow Condit European Journal of Organic Chemistry, 2020, 2020, 5995-5999.	ions.	2.4	13
418	Flow grams-per-hour production enabled by hierarchical bimodal porous silica gel supported palladium column reactor having low pressure drop. Catalysis Today, 2020, 388-389, 231-23		4.4	6

#	Article	IF	CITATIONS
419	Continuous synthesis of 2,5-hexanedione through direct C–C coupling of acetone in a Hilbert fractal photo microreactor. Reaction Chemistry and Engineering, 2020, 5, 2250-2259.	3.7	5
420	Electron-Donor–Acceptor Complex-Enabled Flow Methodology for the Hydrotrifluoromethylation of Unsaturated β-Keto Esters. Organic Letters, 2020, 22, 8598-8602.	4.6	16
421	Transition-metal catalyzed asymmetric reactions under continuous flow from 2015 to early 2020. Green Synthesis and Catalysis, 2020, 1, 121-133.	6.8	70
422	Is it time for biocatalysis in fragment-based drug discovery?. Chemical Science, 2020, 11, 11104-11112.	7.4	20
423	The rise of continuous flow biocatalysis – fundamentals, very recent developments and future perspectives. Reaction Chemistry and Engineering, 2020, 5, 2155-2184.	3.7	121
424	Optimization and Scale-Up of the Continuous Flow Acetylation and Nitration of 4-Fluoro-2-methoxyaniline to Prepare a Key Building Block of Osimertinib. Organic Process Research and Development, 2020, 24, 2217-2227.	2.7	25
425	A Widely Applicable Dual Catalytic System for Cross-Electrophile Coupling Enabled by Mechanistic Studies. ACS Catalysis, 2020, 10, 12642-12656.	11.2	35
426	Hydrogenation without H2 Using a Palladium Membrane Flow Cell. Cell Reports Physical Science, 2020, 1, 100105.	5.6	28
427	Continuous-Flow Synthesis of Cationic Lipid SST-01 via Safe and Scalable Aerobic Oxidation and Reductive Amination. Organic Process Research and Development, 2020, 24, 1988-1995.	2.7	8
428	Continuous Flow Upgrading of Selected C ₂ –C ₆ Platform Chemicals Derived from Biomass. Chemical Reviews, 2020, 120, 7219-7347.	47.7	222
429	Carbon as a Simple Support for Redox Biocatalysis in Continuous Flow. Organic Process Research and Development, 2020, 24, 2281-2287.	2.7	12
430	A facile iron catalyzed cross-coupling reaction under micro-flow conditions. Journal of Flow Chemistry, 2020, 10, 491-495.	1.9	2
431	Evolution of flow-oriented design strategies in the continuous preparation of pharmaceuticals. Reaction Chemistry and Engineering, 2020, 5, 1527-1555.	3.7	28
432	Visible-Light-Induced Trifluoromethylation/Cyclization of 1,7-Enynes in Continuous Flow. ACS Sustainable Chemistry and Engineering, 2020, 8, 11729-11736.	6.7	17
433	Flow Chemistry for Cycloaddition Reactions. ChemSusChem, 2020, 13, 5138-5163.	6.8	15
435	Tandem Photoredox Catalysis: Enabling Carbonylative Amidation of Aryl and Alkylhalides. Angewandte Chemie, 2020, 132, 18805-18813.	2.0	8
436	Recent Advances in Continuous-Flow Reactions Using Metal-Free Homogeneous Catalysts. Catalysts, 2020, 10, 1321.	3.5	11
437	Design of a Kilogram Scale, Plug Flow Photoreactor Enabled by High Power LEDs. Organic Process Research and Development, 2020, 24, 2935-2940.	2.7	42

#	Article	IF	CITATIONS
438	A mineralogically-inspired silver–bismuth hybrid material: Structure, stability and application for catalytic benzyl alcohol dehydrogenations under continuous flow conditions. Molecular Catalysis, 2020, 498, 111263.	2.0	3
440	Unified Strategy to Amphenicol Antibiotics: Asymmetric Synthesis of (â^)-Chloramphenicol, (â^)-Azidamphenicol, and (+)-Thiamphenicol and Its (+)-3-Floride. Journal of Organic Chemistry, 2020, 85, 15360-15367.	3.2	13
441	Polystyrene-Cross-Linking Triphenylphosphine on a Porous Monolith: Enhanced Catalytic Activity for Aryl Chloride Cross-Coupling in Biphasic Flow. Industrial & Engineering Chemistry Research, 2020, 59, 15179-15187.	3.7	7
442	Synthesis of 2,4,6-Trinitrotoluene (TNT) Using Flow Chemistry. Molecules, 2020, 25, 3586.	3.8	9
443	Continuous Flow as Enabling Technology: Synthesis of Heteroaromatic Sulfinates as Bench Stable Cross-Coupling Partners. Organic Letters, 2020, 22, 6082-6085.	4.6	10
444	Continuous Flow Preparation of (Hetero)benzylic Lithiums via Iodine–Lithium Exchange Reaction under Barbier Conditions. Organic Letters, 2020, 22, 5895-5899.	4.6	15
445	Integrated Batch and Continuous Flow Process for the Synthesis of Goniothalamin. ACS Omega, 2020, 5, 18472-18483.	3.5	18
446	Scalable continuous flow hydrogenations using Pd/Al2O3-coated rectangular cross-section 3D-printed static mixers. Catalysis Today, 2022, 383, 55-63.	4.4	24
447	Selective hydrogenation of nitroaromatics to <i>N</i> -arylhydroxylamines in a micropacked bed reactor with passivated catalyst. RSC Advances, 2020, 10, 28585-28594.	3.6	4
448	A safe and efficient process for the preparation of difluoromethane in continuous flow. Chinese Journal of Chemical Engineering, 2020, 28, 1860-1865.	3.5	2
449	Optimization and sustainability assessment of a continuous flow Ru-catalyzed ester hydrogenation for an important precursor of a l²2-adrenergic receptor agonist. Green Chemistry, 2020, 22, 5762-5770.	9.0	16
450	Decomplexation as a rate limitation in the thiol-Michael addition of <i>N</i> -acrylamides. Organic and Biomolecular Chemistry, 2020, 18, 6364-6377.	2.8	6
451	Bridging Lab and Industry with Flow Electrochemistry. IScience, 2020, 23, 101720.	4.1	89
452	Digitising chemical synthesis in automated and robotic flow. Chemical Science, 2020, 11, 11973-11988.	7.4	26
453	A Highâ€Yielding Synthesis of EIDDâ€⊋801 from Uridine**. European Journal of Organic Chemistry, 2020, 2020, 6736-6739.	2.4	29
454	Enabling intensification of multiphase chemical processes with additive manufacturing. Advances in Colloid and Interface Science, 2020, 285, 102294.	14.7	4
456	Telescoped continuous flow synthesis of phenyl acrylamide. Journal of Flow Chemistry, 2020, 10, 673-679.	1.9	2
457	<i>E</i> – <i>Z</i> isomerization of 3-benzylidene-indolin-2-ones using a microfluidic photo-reactor. RSC Advances, 2020, 10, 28630-28634.	3.6	10

#	Article	IF	CITATIONS
458	Continuous Synthesis of Aryl Amines from Phenols Utilizing Integrated Packedâ€Bed Flow Systems. Angewandte Chemie, 2020, 132, 16025-16030.	2.0	5
459	Convenient Continuous Flow Synthesis of <i>N</i> -Methyl Secondary Amines from Alkyl Mesylates and Epoxides. Organic Process Research and Development, 2020, 24, 2157-2168.	2.7	3
460	Sustainable flow approaches to active pharmaceutical ingredients. Green Chemistry, 2020, 22, 5937-5955.	9.0	56
461	Design, Synthesis, and Selfâ€Assembly of Janus Bottlebrush Polymers. Macromolecular Rapid Communications, 2020, 41, e2000357.	3.9	24
462	Catalytic Oxidation of <i>o</i> -Chlorotoluene with Oxygen to <i>o</i> -Chlorobenzaldehyde in a Microchannel Reactor. Organic Process Research and Development, 2020, 24, 2034-2042.	2.7	5
463	A Synthetic Approach to Dimetalated Arenes Using Flow Microreactors and the Switchable Application to Chemoselective Cross-Coupling Reactions. Journal of the American Chemical Society, 2020, 142, 17039-17047.	13.7	35
464	Development of a packed-bed flow process for the production scale hydrogenation of 7-oxo-lithocholic acid to ursodeoxycholic acid. Journal of Flow Chemistry, 2020, 10, 637-646.	1.9	5
465	Zinc-Catalyzed Alkylation of Aromatic Amines in Continuous Flow. Organic Process Research and Development, 2020, 24, 2078-2084.	2.7	4
466	In situ monitoring of photocatalyzed isomerization reactions on a microchip flow reactor by IR-MALDI ion mobility spectrometry. Analytical and Bioanalytical Chemistry, 2020, 412, 7899-7911.	3.7	4
467	Continuous-flow synthesis of (E)-2-Hexenal intermediates using a two-stage microreactor system. Journal of Flow Chemistry, 2020, 10, 661-672.	1.9	0
468	A Vilsmeier Chloroformylation by Continuous Flow Chemistry. Organic Process Research and Development, 2020, 24, 2260-2265.	2.7	9
469	Continuous flow synthesis of lipophilic cations derived from benzoic acid as new cytotoxic chemical entities in human head and neck carcinoma cell lines. RSC Medicinal Chemistry, 2020, 11, 1210-1225.	3.9	3
470	Formal synthesis of schulzeines B and C: A new route to Gurjar's lactams. Journal of the Chinese Chemical Society, 2020, 67, 2198-2203.	1.4	0
471	Optimization of a Catalytic Chemoenzymatic Tandem Reaction for the Synthesis of Natural Stilbenes in Continuous Flow. Catalysts, 2020, 10, 1404.	3.5	9
472	Sheet-Type Flow Process Using Magnetic-Field-Induced Heating with Single-Mode Microwaves Applied to a Continuous Metal Nanoparticle Synthesis. Industrial & Engineering Chemistry Research, 2020, 59, 20447-20454.	3.7	8
473	Ionic Liquid/Water Continuous-Flow System with Compartmentalized Spaces for Automatic Product Purification of Biotransformation with Enzyme Recycling. Industrial & Engineering Chemistry Research, 2020, 59, 21001-21011.	3.7	7
474	How to approach flow chemistry. Chemical Society Reviews, 2020, 49, 8910-8932.	38.1	131
475	Continuous flow synthesis of arylhydrazines <i>via</i> nickel/photoredox coupling of <i>tert</i> -butyl carbazate with aryl halides. Chemical Communications, 2020, 56, 14621-14624.	4.1	9

		CITATION REPORT		
#	Article		IF	CITATIONS
476	Emerging Concepts in Carbon Nitride Organic Photocatalysis. ChemPlusChem, 2020, 8	35, 2499-2517.	2.8	47
477	Rearrangement of 3-Hydroxyazetidines into 2-Oxazolines. Journal of Organic Chemistr 7276-7286.	y, 2020, 85,	3.2	10
478	Management of the Heat of Reaction under Continuous Flow Conditions Using In-Line Technologies. Organic Process Research and Development, 2020, 24, 1095-1103.	Monitoring	2.7	8
479	Sunscreen-Assisted Selective Photochemical Transformations. Molecules, 2020, 25, 21	.25.	3.8	4
480	Flow Photochemistry as a Tool in Organic Synthesis. Chemistry - A European Journal, 2 16952-16974.	020, 26,	3.3	77
481	Fluoro‣ubstituted Methyllithium Chemistry: External Quenching Method Using Flov Angewandte Chemie, 2020, 132, 11016-11020.	v Microreactors.	2.0	16
482	Continuous flow as a benign strategy for the synthesis of Thioesters via selective C-N b Journal of Flow Chemistry, 2020, 10, 507-515.	oond cleavage.	1.9	2
483	Selective DIBAL-H Monoreduction of a Diester Using Continuous Flow Chemistry: Fron Kilo Lab. Organic Process Research and Development, 2020, 24, 2326-2335.	n Benchtop to	2.7	8
484	Conjugated porous polymers: incredibly versatile materials with far-reaching applicatio Society Reviews, 2020, 49, 3981-4042.	ns. Chemical	38.1	162
485	Polymer Synthesis in Continuous Flow Reactors. Progress in Polymer Science, 2020, 10	07, 101256.	24.7	87
486	Development of a Versatile Modular Flow Chemistry Benchtop System. Organic Proces Development, 2020, 24, 2105-2112.	ss Research and	2.7	5
487	Rapid Model-Based Optimization of a Two-Enzyme System for Continuous Reductive A Organic Process Research and Development, 2020, 24, 1969-1977.	mination in Flow.	2.7	16
488	A Continuous Flow Sulfuryl Chloride-Based Reaction—Synthesis of a Key Intermediat toward Emtricitabine and Lamivudine. Organic Process Research and Development, 20	e in a New Route 120, 24, 2271-2280.	2.7	5
489	A Visibleâ€Lightâ€Powered Polymerization Method for the Immobilization of Enantios Organocatalysts into Microreactors. Chemistry - A European Journal, 2020, 26, 13152-	elective 13156.	3.3	8
490	Scale-up and Optimization of a Continuous Flow Synthesis of an $\hat{l}\pm$ -Thio- \hat{l}^2 -chloroacryla Process Research and Development, 2020, 24, 1978-1987.	amide. Organic	2.7	3
491	Development of a Large-Scale Cyanation Process Using Continuous Flow Chemistry Er Synthesis of Remdesivir. Organic Process Research and Development, 2020, 24, 2113-		2.7	51
492	Continuous flow Suzuki–Miyaura couplings in water under micellar conditions in a C catalyzed by Fe/ppm Pd nanoparticles. Green Chemistry, 2020, 22, 3441-3444.	STR cascade	9.0	24
493	Preparation of Mono- and Diisocyanates in Flow from Renewable Carboxylic Acids. Org Research and Development, 2020, 24, 2342-2346.	anic Process	2.7	19

#	Article	IF	CITATIONS
494	A modular 3D printed isothermal heat flow calorimeter for reaction calorimetry in continuous flow. Reaction Chemistry and Engineering, 2020, 5, 1410-1420.	3.7	13
495	Labâ€Scale Microreactor Plant for the Study of Methylations with Liquid Chloromethane. Chemical Engineering and Technology, 2020, 43, 1733-1740.	1.5	3
496	Multikilogram per Hour Continuous Photochemical Benzylic Brominations Applying a Smart Dimensioning Scale-up Strategy. Organic Process Research and Development, 2020, 24, 2208-2216.	2.7	50
497	Enhancing Four-Carbon Olefin Production from Acetylene over Copper Nanoparticles in Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2020, 12, 31496-31502.	8.0	13
498	Continuous flow synthesis of aryl aldehydes by Pd-catalyzed formylation of phenol-derived aryl fluorosulfonates using syngas. RSC Advances, 2020, 10, 22449-22453.	3.6	10
499	Process intensification of a photochemical oxidation reaction using a Rotor-Stator Spinning Disk Reactor: A strategy for scale up. Chemical Engineering Journal, 2020, 400, 125875.	12.7	56
500	Flow chemistry remains an opportunity for chemists and chemical engineers. Current Opinion in Chemical Engineering, 2020, 29, 42-50.	7.8	42
501	Fully Automated Chemical Synthesis: Toward the Universal Synthesizer. Organic Process Research and Development, 2020, 24, 2064-2077.	2.7	48
502	Continuous Production of Five Active Pharmaceutical Ingredients in Flexible Plug-and-Play Modules: A Demonstration Campaign. Organic Process Research and Development, 2020, 24, 2183-2196.	2.7	50
503	Ir/Ni Photoredox Dual Catalysis with Heterogeneous Base Enabled by an Oscillatory Plug Flow Photoreactor. Organic Process Research and Development, 2020, 24, 2319-2325.	2.7	41
504	3D-Printed Labware for High-Throughput Immobilization of Enzymes. Journal of Organic Chemistry, 2020, 85, 8480-8488.	3.2	9
505	3D-printed PEEK reactors and development of a complete continuous flow system for chemical synthesis. Reaction Chemistry and Engineering, 2020, 5, 1300-1310.	3.7	19
506	Understanding monoacylation of symmetrical diamines: A kinetic study of acylation reaction of m-phenylenediamine and benzoic anhydride in microreactor. Chemical Engineering Journal, 2020, 398, 125584.	12.7	14
507	Closing the radical gap in chemical synthesis. Science, 2020, 368, 1312-1313.	12.6	5
508	Self-optimising processes and real-time-optimisation of organic syntheses in a microreactor system using Nelder–Mead and design of experiments. Reaction Chemistry and Engineering, 2020, 5, 1281-1299.	3.7	27
509	General route to design polymer molecular weight distributions through flow chemistry. Nature Communications, 2020, 11, 3094.	12.8	83
510	Membrane Microreactors for the Onâ€Đemand Generation, Separation, and Reaction of Gases. Chemistry - A European Journal, 2020, 26, 13108-13117.	3.3	19
511	Automated radial synthesis of organic molecules. Nature, 2020, 579, 379-384.	27.8	140

#	ARTICLE	IF	CITATIONS
512	A universal reactor platform for batch and flow: application to homogeneous and heterogeneous hydrogenation. Reaction Chemistry and Engineering, 2020, 5, 1903-1908.	3.7	10
513	Design Space Identification and Visualization for Continuous Pharmaceutical Manufacturing. Pharmaceutics, 2020, 12, 235.	4.5	11
514	Acyl azide generation and amide bond formation in continuous-flow for the synthesis of peptides. Reaction Chemistry and Engineering, 2020, 5, 645-650.	3.7	12
515	Continuousâ€Flow Synthesis of ZIFâ€8 Biocomposites with Tunable Particle Size. Angewandte Chemie, 2020, 132, 8200-8204.	2.0	21
516	Merging singlet-oxygen induced furan oxidations with organocatalysis: synthesis of enantiopure cyclopentanones and hydrindanes. Organic and Biomolecular Chemistry, 2020, 18, 2817-2822.	2.8	15
517	Preparation of Functionalized Aryl, Heteroaryl, and Benzylic Potassium Organometallics Using Potassium Diisopropylamide in Continuous Flow. Angewandte Chemie - International Edition, 2020, 59, 12321-12325.	13.8	24
518	A Glimpse into Green Chemistry Practices in the Pharmaceutical Industry. ChemSusChem, 2020, 13, 2859-2875.	6.8	69
519	Reaction Cycling for Kinetic Analysis in Flow. Journal of Organic Chemistry, 2020, 85, 5464-5474.	3.2	14
520	Herstellung funktioneller Arylâ€, Heteroaryl―und benzylischer Organokalium‧pezies mittels Kaliumdiisopropylamid im kontinuierlichen Durchfluss. Angewandte Chemie, 2020, 132, 12419-12424.	2.0	11
521	Micro-flow synthesis of β-amino acid derivatives <i>via</i> a rapid dual activation approach. Chemical Communications, 2020, 56, 4527-4530.	4.1	13
522	Fluoro‣ubstituted Methyllithium Chemistry: External Quenching Method Using Flow Microreactors. Angewandte Chemie - International Edition, 2020, 59, 10924-10928.	13.8	60
523	Dichloromethylation of enones by carbon nitride photocatalysis. Nature Communications, 2020, 11, 1387.	12.8	83
524	Continuous-flow synthesis and application of polymer-supported BODIPY Photosensitisers for the generation of singlet oxygen; process optimised by in-line NMR spectroscopy. Journal of Flow Chemistry, 2020, 10, 327-345.	1.9	20
525	The Future of Molecular Machines. ACS Central Science, 2020, 6, 347-358.	11.3	220
526	Heterogeneous photocatalysis in flow chemical reactors. Beilstein Journal of Organic Chemistry, 2020, 16, 1495-1549.	2.2	54
527	Heterogeneous Catalysts "on the Move― Flow Chemistry with Fluid Immobilised (Bio)Catalysts. European Journal of Organic Chemistry, 2020, 2020, 6062-6067.	2.4	14
528	Laccase Did It again: A Scalable and Clean Regeneration System for NAD+ and Its Application in the Synthesis of 12-oxo-Hydroxysteroids. Catalysts, 2020, 10, 677.	3.5	10
529	C(sp ³)–H functionalizations of light hydrocarbons using decatungstate photocatalysis in flow. Science, 2020, 369, 92-96.	12.6	263

#	Article	IF	CITATIONS
530	Reaction Calorimetry in Continuous Flow Mode: A New Approach for the Thermal Characterization of High Energetic and Fast Reactions. Organic Process Research and Development, 2020, 24, 2004-2016.	2.7	12
531	Continuous Synthesis of Aryl Amines from Phenols Utilizing Integrated Packedâ€Bed Flow Systems. Angewandte Chemie - International Edition, 2020, 59, 15891-15896.	13.8	16
532	Competing Roles of Two Kinds of Ligand during Nonclassical Crystallization of Pillaredâ€Layer Metalâ€Organic Frameworks Elucidated Using Microfluidic Systems. Chemistry - A European Journal, 2020, 26, 8889-8896.	3.3	3
533	Artificial Intelligence for Computer-Aided Synthesis In Flow: Analysis and Selection of Reaction Components. Frontiers in Chemical Engineering, 2020, 2, .	2.7	16
534	Tandem Photoredox Catalysis: Enabling Carbonylative Amidation of Aryl and Alkylhalides. Angewandte Chemie - International Edition, 2020, 59, 18646-18654.	13.8	49
535	Copper-based nanocatalysts produced via laser-induced ex situ generation for homo- and cross-coupling reactions. Chemical Engineering Science, 2020, 227, 115940.	3.8	6
536	Continuous flow synthesis of zeolite FAU in an oscillatory baffled reactor. Journal of Advanced Manufacturing and Processing, 2020, 2, e10038.	2.4	3
537	Flow Synthesis of Biologically-Relevant Compound Libraries. Molecules, 2020, 25, 909.	3.8	3
538	Dinitration of o-toluic acid in continuous-flow: process optimization and kinetic study. Journal of Flow Chemistry, 2020, 10, 429-436.	1.9	10
539	Continuous Kinetic Sampling of Flow Polymerizations via Inline UV–Vis Spectroscopy. Macromolecular Rapid Communications, 2020, 41, e2000029.	3.9	13
540	Continuous syntheses of carbon-supported Pd and Pd@Pt core–shell nanoparticles using a flow-type single-mode microwave reactor. RSC Advances, 2020, 10, 6571-6575.	3.6	12
541	Organocatalytic Cascade Knoevenagel–Michael Addition Reactions: Direct Synthesis of Polysubstituted 2-Amino-4H-Chromene Derivatives. Catalysis Letters, 2020, 150, 2331-2351.	2.6	17
542	Continuous photocatalyzed aerobic oxidation of benzylic organotrifluoroborates to benzaldehydes under Taylor flow conditions. Journal of Flow Chemistry, 2020, 10, 347-352.	1.9	10
543	The Medicinal Chemistry in the Era of Machines and Automation: Recent Advances in Continuous Flow Technology. Journal of Medicinal Chemistry, 2020, 63, 6624-6647.	6.4	91
544	Reworking Organic Synthesis for the Modern Age: Synthetic Strategies Based on Continuous-Flow Addition and Condensation Reactions with Heterogeneous Catalysts. Journal of Organic Chemistry, 2020, 85, 5132-5145.	3.2	62
545	Arduinoâ€based slider setup for gas–liquid mass transfer investigations: Experiments and CFD simulations. AICHE Journal, 2020, 66, e16953.	3.6	15
546	Tropylium-promoted prenylation reactions of phenols in continuous flow. Journal of Flow Chemistry, 2020, 10, 161-166.	1.9	17
547	Continuous Flow Conditions for High Temperature Formation of a Benzodioxan Pharmaceutical Intermediate: Rapid Scaleup for Early Phase Material Delivery. Organic Process Research and Development, 2020, 24, 1938-1947.	2.7	9

ARTICLE IF CITATIONS Multivariate analysis of inline benchtop NMR data enables rapid optimization of a complex nitration in 548 3.7 34 flow. Reaction Chemistry and Engineering, 2020, 5, 677-684. 549 Heterogeneous Photocatalysis in Organic Synthesis. ChemPhotoChem, 2020, 4, 456-475. 147 Continuous flow photoinduced phenothiazine derivatives catalyzed atom transfer radical 550 5.4 14 polymerization. European Polymer Journal, 2020, 126, 109565. Scaling continuous API synthesis from milligram to kilogram: extending the enabling benefits of micro to the plant. Journal of Flow Chemistry, 2020, 10, 73-92. Continuous flow synthesis of 2,2â€2-diselenobis(benzoic acid) and derivatives. Reaction Chemistry and 552 3.7 11 Engineering, 2020, 5, 641-644. Robust Organic Photosensitizers Immobilized on a Vinylimidazolium Functionalized Support for 1.8 Singlet Oxygen Generation under Continuous-Flow Conditions. Synlett, 2020, 31, 497-501. Efficient Nicotinamide Adenine Dinucleotide Phosphate [NADP(H)] Recycling in Closedâ€Loop 554 4.3 30 Continuous Flow Biocatalysis. Advanced Synthesis and Catalysis, 2020, 362, 2894-2901. Principles of coâ€axial illumination for photochemical reactions: Part 1. Model development. Journal of 2.4 Advanced Manufacturing and Processing, 2020, 2, . Mixing Performance in a Distributed-Feed Plate-Type Reactor with Multinozzle Injection for Fine 556 3.7 10 Chemical Production Scale. Industrial & amp; Engineering Chemistry Research, 2020, 59, 3655-3668. <i>Compartmentalized</i> cross-linked enzymatic <i>nano</i>-aggregates (<i>c</i>-CLE<i>n</i>A) for efficient in-flow biocatalysis. Chemical Science, 2020, 11, 2765-2769. Total Synthesis of Farnesin through an Excitedâ€State Nazarov Reaction. Angewandte Chemie -558 13.8 38 International Edition, 2020, 59, 7444-7449. Investigation into an Unexpected Impurity: A Practical Approach to Process Development for the Addition of Grignard Reagents to Aldehydes Using Continuous Flow Synthesis. Organic Process Research and Development, 2020, 24, 405-414. Continuousâ€Flow Synthesis of ZIFâ€8 Biocomposites with Tunable Particle Size. Angewandte Chemie -561 13.8 55 International Edition, 2020, 59, 8123-8127. Experimental and Numerical Studies of the Phase-Transfer-Catalyzed Wittig Reaction in Liquid–Liquid 3.7 Slug-Flow Microchannels. Industrial & amp; Engineering Chemistry Research, 2020, 59, 4397-4410. Scalable Continuous Vortex Reactor for Gram to Kilo Scale for UV and Visible Photochemistry. 563 2.7 43 Organic Process Research and Development, 2020, 24, 201-206. An oscillatory plug flow photoreactor facilitates semi-heterogeneous dual nickel/carbon nitride 564 68 photocatalytic Cã̃€"N couplings. Reaction Chemistry and Engineering, 2020, 5, 597-604. Scalable Synthesis of Functionalized Ferrocenyl Azides and Amines Enabled by Flow Chemistry. 565 4.6 16 Organic Letters, 2020, 22, 902-907. Regioselective/electro-oxidative intermolecular [3 + 2] annulation for the preparation of indolines. Chemical Science, 2020, 11, 2181-2186.

#	Article	IF	CITATIONS
567	Direct and Scalable Electroreduction of Triphenylphosphine Oxide to Triphenylphosphine. Journal of the American Chemical Society, 2020, 142, 3024-3031.	13.7	72
568	Ruthenium-Based Complexes Bearing Quaternary Ammonium Tags as Versatile Catalysts for Olefin Metathesis: From the Discovery to Practical Applications. Organic Process Research and Development, 2020, 24, 125-145.	2.7	12
569	Development of a Continuous Flow Photoisomerization Reaction Converting Isoxazoles into Diverse Oxazole Products. Journal of Organic Chemistry, 2020, 85, 2607-2617.	3.2	15
570	A chemo-enzymatic tandem reaction in a mixture of deep eutectic solvent and water in continuous flow. Reaction Chemistry and Engineering, 2020, 5, 263-269.	3.7	38
571	Continuous flow synthesis of the URAT1 inhibitor lesinurad. Reaction Chemistry and Engineering, 2020, 5, 865-872.	3.7	13
572	High-Throughput Process for the Discovery of Antimicrobial Polymers and Their Upscaled Production via Flow Polymerization. Macromolecules, 2020, 53, 631-639.	4.8	55
573	Visible-Light Flow Reactor Packed with Porous Carbon Nitride for Aerobic Substrate Oxidations. ACS Applied Materials & Interfaces, 2020, 12, 8176-8182.	8.0	40
574	Evaluation of Sponge Metal Catalysts in a Trickle Bed Reactor for the Continuous Hydrogenation of an Aliphatic Nitro Intermediate. Organic Process Research and Development, 2020, 24, 1909-1915.	2.7	17
575	DERA in Flow: Synthesis of a Statin Side Chain Precursor in Continuous Flow Employing Deoxyribose-5-Phosphate Aldolase Immobilized in Alginate-Luffa Matrix. Catalysts, 2020, 10, 137.	3.5	12
576	Continuous flow aminolysis under high temperature and pressure. Journal of Flow Chemistry, 2020, 10, 145-156.	1.9	7
577	Practical Considerations and Examples in Adapting Amidations to Continuous Flow Processing in Early Development. Organic Process Research and Development, 2020, 24, 2311-2318.	2.7	6
578	Continuous-Flow Synthesis of \hat{l}^2 -Amino Acid Esters by Lipase-Catalyzed Michael Addition of Aromatic Amines. Catalysts, 2020, 10, 432.	3.5	4
579	N-Acetylation of Amines in Continuous-Flow with Acetonitrile—No Need for Hazardous and Toxic Carboxylic Acid Derivatives. Molecules, 2020, 25, 1985.	3.8	7
580	Organolithium Bases in Flow Chemistry: A Review. Organic Process Research and Development, 2020, 24, 1814-1838.	2.7	60
581	Nâ€Methylated Peptide Synthesis via Generation of an Acyl Nâ€Methylimidazolium Cation Accelerated by a BrÃ,nsted Acid. Angewandte Chemie, 2020, 132, 13025-13030.	2.0	9
582	Nâ€Methylated Peptide Synthesis via Generation of an Acyl Nâ€Methylimidazolium Cation Accelerated by a BrÃ,nsted Acid. Angewandte Chemie - International Edition, 2020, 59, 12925-12930.	13.8	31
583	Singlet Oxygen and Dyes: Synthesis with Visible Light is Where the Future Lies. ChemPhotoChem, 2020, 4, 385-387.	3.0	3
584	The Effect of Coupling Mode in the Vibrational Strong Coupling Regime. ChemPhotoChem, 2020, 4, 612-617.	3.0	19

#	Article	IF	CITATIONS
585	Modular continuous flow synthesis of orthogonally protected 6-deoxy glucose glycals. Organic and Biomolecular Chemistry, 2020, 18, 3254-3257.	2.8	4
586	Structure, Reactivity, and Synthetic Applications of Sodium Diisopropylamide. Synthesis, 2020, 52, 1478-1497.	2.3	29
587	Multiplexed Online Monitoring of Microfluidic Free-Flow Electrophoresis via Mass Spectrometry. Analytical Chemistry, 2020, 92, 6764-6769.	6.5	13
588	Continuous Flow Organophosphorus Chemistry. European Journal of Organic Chemistry, 2020, 2020, 5236-5277.	2.4	19
589	Rapid, Heterogeneous Biocatalytic Hydrogenation and Deuteration in a Continuous Flow Reactor. ChemCatChem, 2020, 12, 3913-3918.	3.7	15
590	A safe and compact flow platform for the neutralization of a mustard gas simulant with air and light. Green Chemistry, 2020, 22, 4105-4115.	9.0	31
591	Supported Bifunctional Chiral Thioureas as Catalysts in the Synthesis of 3â€Aminoâ€2â€Oxindoles through Enantioselective azaâ€Friedelâ€Crafts Reaction: Application in Continuous Flow Processes. Advanced Synthesis and Catalysis, 2020, 362, 2744-2754.	4.3	26
592	Oxidative Esterification of 5â€Hydroxymethylfurfural under Flow Conditions Using a Bimetallic Co/Ru Catalyst. ChemCatChem, 2020, 12, 3504-3511.	3.7	13
593	Photo-oxidation of Cyclopentadiene Using Continuous Processing: Application to the Synthesis of (1R,4S)-4-Hydroxycyclopent-2-en-1-yl Acetate. Organic Process Research and Development, 2020, 24, 2304-2310.	2.7	6
594	Continuous-Flow Accelerated Sulfation of Heparan Sulfate Intermediates. Organic Letters, 2020, 22, 3402-3406.	4.6	9
595	Development and Scale-up of the Rapid Synthesis of Triphenyl Phosphites in Continuous Flow. ACS Omega, 2020, 5, 9503-9509.	3.5	3
596	Dearomatization of 3-cyanoindoles by (3 + 2) cycloaddition: from batch to flow chemistry. Organic and Biomolecular Chemistry, 2020, 18, 3481-3486.	2.8	18
597	Recent advances in continuous-flow organocatalysis for process intensification. Reaction Chemistry and Engineering, 2020, 5, 1017-1052.	3.7	62
598	Continuous Flow Synthesis of 2 <i>H</i> â€Thiopyrans via <i>thia</i> â€Diels–Alder Reactions of Photochemically Generated Thioaldehydes. European Journal of Organic Chemistry, 2021, 2021, 64-71.	2.4	10
599	Continuous flow photo-RAFT and light-PISA. Chemical Engineering Journal, 2021, 420, 127663.	12.7	26
600	An integrated methane dehydroaromatization and chemical looping process. Chemical Engineering Journal, 2021, 406, 127168.	12.7	8
601	Continuous Flow Sodiation of Substituted Acrylonitriles, Alkenyl Sulfides and Acrylates. Angewandte Chemie - International Edition, 2021, 60, 731-735.	13.8	29
602	Multiâ€Step Continuousâ€Flow Organic Synthesis: Opportunities and Challenges. Chemistry - A European Journal, 2021, 27, 4817-4838.	3.3	61

#	Article	IF	CITATIONS
603	Flow Photochemistry for Singleâ€Chain Polymer Nanoparticle Synthesis. Angewandte Chemie - International Edition, 2021, 60, 2042-2046.	13.8	18
604	Rapid, automated determination of reaction models and kinetic parameters. Chemical Engineering Journal, 2021, 413, 127017.	12.7	33
605	Integrating abiotic chemical catalysis and enzymatic catalysis in living cells. Organic and Biomolecular Chemistry, 2021, 19, 37-45.	2.8	9
606	Synthesis of Bioâ€Based Methylcyclopentadiene from 2,5â€Hexanedione: A Sustainable Route to High Energy Density Jet Fuels. ChemSusChem, 2021, 14, 339-343.	6.8	23
607	Harnessing Photoexcited Redox Centers of Semiconductor Photocatalysts for Advanced Synthetic Chemistry. Solar Rrl, 2021, 5, 2000444.	5.8	11
608	Effect of mixing on mass transfer characterization in continuous slugs and dispersed droplets in biphasic slug flow microreactors. Chemical Engineering Journal, 2021, 406, 126885.	12.7	27
609	Continuous-flow Si–H functionalizations of hydrosilanes <i>via</i> sequential organolithium reactions catalyzed by potassium <i>tert</i> -butoxide. Green Chemistry, 2021, 23, 1193-1199.	9.0	14
610	Recent Advances in Metal-Catalyzed, Electrochemical Coupling Reactions of sp2 Halides/Boronic Acids and sp3 Centers. Synthesis, 2021, 53, 879-888.	2.3	9
611	Liquid-phase synthesis of methyl isobutyl ketone over bifunctional heterogeneous catalysts comprising cross-linked perfluorinated sulfonic acid Aquivion polymers and supported Pd nanoparticles. Applied Catalysis A: General, 2021, 610, 117957.	4.3	5
612	Kinetic optimization of multilayered photocatalytic reactors. Chemical Engineering Journal, 2021, 421, 127794.	12.7	4
613	Natriierung von Substituierten Acrylonitrilen, Alkenylsulfiden und Acrylaten im Kontinuierlichen Durchfluss. Angewandte Chemie, 2021, 133, 742-746.	2.0	12
614	From circular synthesis to material manufacturing: advances, challenges, and future steps for using flow chemistry in novel application area. Reaction Chemistry and Engineering, 2021, 6, 756-786.	3.7	31
615	Flow Photochemistry for Single hain Polymer Nanoparticle Synthesis. Angewandte Chemie, 2021, 133, 2070-2074.	2.0	2
616	Synthesis of Biâ€functional Immobilized Polymer Catalysts via a Twoâ€step Radiationâ€induced Graft Polymerization Process. ChemCatChem, 2021, 13, 1498-1502.	3.7	2
617	Flow Synthesis of 2â€{Methyl(pyridinâ€2â€yl)amino]ethanol: An Experimental and Computational Study. Chemical Engineering and Technology, 2021, 44, 283-290.	1.5	3
618	Hydrogen Production from Methanolâ€Water Mixture over Immobilized Iridium Complex Catalysts in Vaporâ€Phase Flow Reaction. ChemSusChem, 2021, 14, 1074-1081.	6.8	21
619	Scalable Synthesis of Benzotriazoles via [3+2] Cycloaddition of Azides and Arynes in Flow. European Journal of Organic Chemistry, 2021, 2021, 979-982.	2.4	9
620	Flow chemistry experiments in the undergraduate teaching laboratory: synthesis of diazo dyes and disulfides. Journal of Flow Chemistry, 2021, 11, 7-12.	1.9	14

	CITATION	LEPURT	
#	Article	IF	CITATIONS
621	Sustainable Chemistry – An Interdisciplinary Matrix Approach. ChemSusChem, 2021, 14, 251-265.	6.8	4
622	Application of Flow Chemistry in Halogenation. Chinese Journal of Organic Chemistry, 2021, 41, 1002.	1.3	7
623	Cost-Effective Flow Peptide Synthesis: Metamorphosis of HPLC. Organic Process Research and Development, 2021, 25, 182-191.	2.7	14
624	Biphasic nucleophilic aromatic substitution using a microreactor under droplet formation conditions. Reaction Chemistry and Engineering, 2021, 6, 720-725.	3.7	0
625	Enzymatic electrochemical continuous flow cascade synthesis of substituted benzimidazoles. Reaction Chemistry and Engineering, 2021, 6, 937-943.	3.7	3
626	Resonance in Chirogenesis and Photochirogenesis: Colloidal Polymers Meet Chiral Optofluidics. Symmetry, 2021, 13, 199.	2.2	3
627	Efficient Synthesis of Biologically Active Peptides Based on Micro-flow Amide Bond Formation. , 2021, , 139-160.		0
628	Continuous flow heterogeneous catalytic reductive aminations under aqueous micellar conditions enabled by an oscillatory plug flow reactor. Green Chemistry, 2021, 23, 5625-5632.	9.0	19
629	Continuous slurry plug flow Fe/ppm Pd nanoparticle-catalyzed Suzuki–Miyaura couplings in water utilizing novel solid handling equipment. Green Chemistry, 2021, 23, 7724-7730.	9.0	17
630	Green strategies for transition metal-catalyzed C–H activation in molecular syntheses. Organic Chemistry Frontiers, 2021, 8, 4886-4913.	4.5	59
631	Chemo-enzymatic oxidative cleavage of isosafrole for the synthesis of piperonal. Reaction Chemistry and Engineering, 2021, 6, 1591-1600.	3.7	2
632	Exploiting a silver–bismuth hybrid material as heterogeneous noble metal catalyst for decarboxylations and decarboxylative deuterations of carboxylic acids under batch and continuous flow conditions. Green Chemistry, 2021, 23, 4685-4696.	9.0	7
633	Cross-dehydrogenative coupling: a sustainable reaction for C–C bond formations. Green Chemistry, 2021, 23, 6789-6862.	9.0	130
634	Continuous nitration of o-dichlorobenzene in micropacked-bed reactor: process design and modelling. Journal of Flow Chemistry, 2021, 11, 171-179.	1.9	14
635	Photochemistry in Flow for Drug Discovery. Topics in Medicinal Chemistry, 2021, , 71-119.	0.8	1
636	From solution-based nonconventional activation methods to mechanochemical procedures: The hydantoin case. , 2021, , 421-452.		0
637	Flow synthesis approaches to privileged scaffolds – recent routes reviewed for green and sustainable aspects. Green Chemistry, 2021, 23, 2233-2292.	9.0	39
638	Unified Synthesis of Azepines by Visible-Light-Mediated Dearomative Ring Expansion of Aromatic <i>N</i> -Ylides. Organic Letters, 2021, 23, 525-529.	4.6	14

#	Article	IF	CITATIONS
639	A 3D-printed continuous flow platform for the synthesis of methylaluminoxane. Green Chemistry, 2021, 23, 4087-4094.	9.0	5
640	Selective separation of amines from continuous processes using automated pH controlled extraction. Reaction Chemistry and Engineering, 2021, 6, 1806-1810.	3.7	4
641	Analytical-scale synthesis of aryl-SF4Cl via flow microfluidic technology. Journal of Flow Chemistry, 2021, 11, 107-115.	1.9	6
642	Photocatalyst- and additive-free site-specific C(sp ³)–H hydrazination of glycine derivatives and peptides. Green Chemistry, 2021, 23, 5082-5087.	9.0	19
643	Process intensification of ozonolysis reactions using dedicated microstructured reactors. Reaction Chemistry and Engineering, 2021, 6, 2253-2258.	3.7	13
644	Rapid and mild synthesis of Au–NHC complexes in a simple two-phase flow reactor. Dalton Transactions, 2021, 50, 7969-7975.	3.3	2
645	Enzyme Cascade Reaction Engineering. , 2021, , 109-124.		1
646	Continuous-Flow Synthesis of Thioureas, Enabled by Aqueous Polysulfide Solution. Molecules, 2021, 26, 303.	3.8	9
647	Continuous-flow step-economical synthesis of thiuram disulfides <i>via</i> visible-light photocatalytic aerobic oxidation. Green Chemistry, 2021, 23, 1280-1285.	9.0	13
648	Role of cellular solids in heterogeneous photocatalytic applications. , 2021, , 305-330.		0
649	Solar fuels and feedstocks: the quest for renewable black gold. Energy and Environmental Science, 2021, 14, 1402-1419.	30.8	25
650	Enone-promoted decarboxylation of trans-4-hydroxy-l-proline in flow: a side-by-side comparison to batch. Reaction Chemistry and Engineering, 2021, 6, 486-493.	3.7	4
651	Visible-Light-Mediated Oxidative Debenzylation Enables the Use of Benzyl Ethers as Temporary Protecting Groups. Organic Letters, 2021, 23, 514-518.	4.6	36
652	Use of Perylene Diimides in Synthetic Photochemistry. European Journal of Organic Chemistry, 2021, 2021, 1193-1200.	2.4	25
653	Development of Pd-supported Catalysts for the Conversion of Palm Oil to Biohydrogenated Diesel in a Microscale-based Reactor. Chemical and Biochemical Engineering Quarterly, 2021, 35, 1-15.	0.9	1
654	Engineering aspects of FlowNMR spectroscopy setups for online analysis of solution-phase processes. Reaction Chemistry and Engineering, 2021, 6, 1548-1573.	3.7	15
655	Combining radial and continuous flow synthesis to optimize and scale-up the production of medicines. Reaction Chemistry and Engineering, 2021, 6, 220-224.	3.7	15
656	Continuous flow synthesis of xylidines via biphasic nitration of xylenes and nitro-reduction. Journal of Flow Chemistry, 2021, 11, 193-208.	1.9	5

#	Article	IF	CITATIONS
657	Research Progress of Microfluidic Technique in Synthesis of Micro/Nano Materials. Acta Chimica Sinica, 2021, 79, 809.	1.4	4
658	A sustainable strategy for the straightforward preparation of 2 <i>H</i> -azirines and highly functionalized <i>NH</i> -aziridines from vinyl azides using a single solvent flow-batch approach. Beilstein Journal of Organic Chemistry, 2021, 17, 203-209.	2.2	9
659	Application of reactor engineering concepts in continuous flow chemistry: a review. Reaction Chemistry and Engineering, 2021, 6, 1295-1326.	3.7	27
660	Soft and effective detoxification of a VX simulant in a nylon 3D printed basic flow reactor. Green Chemistry, 2021, 23, 7522-7527.	9.0	5
661	Concepts for flow chemistry with whole-cell biocatalysts. Reaction Chemistry and Engineering, 2021, 6, 977-988.	3.7	11
662	Photoredox Asymmetric Nucleophilic Dearomatization of Indoles with Neutral Radicals. ACS Catalysis, 2021, 11, 998-1007.	11.2	26
663	Flash chemistry enables high productivity metalation-substitution of 5-alkyltetrazoles. Chemical Science, 2021, 12, 13413-13424.	7.4	6
664	Fragment-based drug discovery: opportunities for organic synthesis. RSC Medicinal Chemistry, 2021, 12, 321-329.	3.9	35
665	Development of a continuous flow synthesis of FGIN-1-27 enabled by in-line ¹⁹ F NMR analyses and optimization algorithms. Reaction Chemistry and Engineering, 2021, 6, 1983-1992.	3.7	3
666	1,4-Diazepines. , 2022, , 243-268.		1
667	High-Throughput Synthesis of (<i>S</i>)-α-Phellandrene through Three-Step Sequential Continuous-Flow Reactions. Organic Process Research and Development, 2021, 25, 192-198.	2.7	10
668	Flow Chemistry in Drug Discovery: Challenges and Opportunities. Topics in Medicinal Chemistry, 2021, , 1-22.	0.8	1
669	Benzoic acid resin (BAR): a heterogeneous redox organocatalyst for continuous flow synthesis of benzoquinones from β-O-4 lignin models. Green Chemistry, 2021, 23, 2308-2316.	9.0	4
671	Stereoselective organocatalysis and flow chemistry. Physical Sciences Reviews, 2021, 6, .	0.8	3
672	Toward Machine Learning-Enhanced High-Throughput Experimentation. Trends in Chemistry, 2021, 3, 120-132.	8.5	66
673	Efficient Continuous-Flow H–D Exchange Reaction of Aromatic Nuclei in D2O/2-PrOH Mixed Solvent in a Catalyst Cartridge Packed with Platinum on Carbon Beads. Bulletin of the Chemical Society of Japan, 2021, 94, 600-605.	3.2	11
674	Diethylene Glycol/NaBr Catalyzed CO ₂ Insertion into Terminal Epoxides: From Batch to Continuous Flow. ChemCatChem, 2021, 13, 2005-2016.	3.7	12
675	Obtaining Kinetics From Continuous Processes: Sampling Multiple Time Points Concurrently With a Single Valve Rotation. Chemistry Methods, 2021, 1, 131-134.	3.8	3

#	Article	IF	CITATIONS
676	Advanced Realâ€Time Process Analytics for Multistep Synthesis in Continuous Flow**. Angewandte Chemie, 2021, 133, 8220-8229.	2.0	19
677	A Novel and Practical Continuous Flow Chemical Synthesis of Cannabidiol (CBD) and its CBDV and CBDB Analogues. European Journal of Organic Chemistry, 2021, 2021, 1286-1289.	2.4	13
679	Advanced Realâ€Time Process Analytics for Multistep Synthesis in Continuous Flow**. Angewandte Chemie - International Edition, 2021, 60, 8139-8148.	13.8	98
680	High-pressure asymmetric hydrogenation in a customized flow reactor and its application in multi-step flow synthesis of chiral drugs. Journal of Flow Chemistry, 2021, 11, 763-772.	1.9	11
681	Diffusion of a reagent from a slowly rising droplet with accompanying surface chemical reaction. Journal of Physics: Conference Series, 2021, 1809, 012005.	0.4	3
682	Rhodaelectro-Catalyzed Câ€"H and Câ€"C Activation. CCS Chemistry, 2021, 3, 1529-1552.	7.8	65
683	Hydrogen Production from Methanolâ€Water Mixture over Immobilized Iridium Complex Catalysts in Vaporâ€Phase Flow Reaction. ChemSusChem, 2021, 14, 994-994.	6.8	3
684	Flow chemistry for process optimisation using design of experiments. Journal of Flow Chemistry, 2021, 11, 75-86.	1.9	32
685	Selfâ€sealing thermoplastic fluoroelastomer enables rapid fabrication of modular microreactors. Nano Select, 2021, 2, 1385-1402.	3.7	3
686	Integrated Continuous Pharmaceutical Technologies—A Review. Organic Process Research and Development, 2021, 25, 721-739.	2.7	72
687	A Modular, Argon-Driven Flow Platform for Natural Product Synthesis and Late-Stage Transformations. Organic Letters, 2021, 23, 2370-2374.	4.6	8
688	Use of Lithium Diisopropylamide in Flow: Operability and Safety Challenges Encountered on a Multigram Scale. Organic Process Research and Development, 2021, 25, 988-1000.	2.7	9
689	Effect of Aspect Ratio on the Mixing Performance in the Kenics Static Mixer. Processes, 2021, 9, 464.	2.8	11
690	Organic Electrochemistry: Molecular Syntheses with Potential. ACS Central Science, 2021, 7, 415-431.	11.3	335
691	Electrosynthesis in Laminar Flow Using a Flow Microreactor. Chemical Record, 2021, 21, 2164-2177.	5.8	14
692	Flow-Through PolyHIPE Silver-Based Catalytic Reactor. Polymers, 2021, 13, 880.	4.5	9
693	Performance study and comparison between catalytic static mixer and packed bed in heterogeneous hydrogenation of vinyl acetate. Journal of Flow Chemistry, 2021, 11, 515-523.	1.9	12
694	A Practical Transferring Method from Batch to Flow Synthesis of Dipeptides via Acid Chloride Assisted by Simulation of the Reaction Rate. Chemistry Letters, 2021, 50, 1254-1258.	1.3	4

#	Article	IF	CITATIONS
695	Accelerated Synthesis of a Ni ₂ Cl ₂ (BTDD) Metal–Organic Framework in a Continuous Flow Reactor for Atmospheric Water Capture. ACS Sustainable Chemistry and Engineering, 2021, 9, 3996-4003.	6.7	26
696	Synthesis of the Lipophilic Amine Tail of Abediterol Enabled by Multiphase Flow Transformations. Organic Process Research and Development, 2021, 25, 947-959.	2.7	8
697	Developments in the Dehydrogenative Electrochemical Synthesis of 3,3′,5,5′â€īetramethylâ€2,2′â€biphe Chemistry - A European Journal, 2021, 27, 8252-8263.	nol. 3.3	12
698	Rapid and Mild Lactamization Using Highly Electrophilic Triphosgene in a Microflow Reactor. Chemistry - A European Journal, 2021, 27, 7525-7532.	3.3	11
699	Cavitation as a plausible driving force for the prebiotic formation of N9 purine nucleosides. Cell Reports Physical Science, 2021, 2, 100375.	5.6	7
700	Emerging concepts in photocatalytic organic synthesis. IScience, 2021, 24, 102209.	4.1	109
701	Divergent Synthesis of Graft and Branched Copolymers through Spatially Controlled Photopolymerization in Flow Reactors. Macromolecules, 2021, 54, 3430-3446.	4.8	32
702	Towards a Novel Computer-Aided Optimization of Microreactors: Techno-Economic Evaluation of an Immobilized Enzyme System. Symmetry, 2021, 13, 524.	2.2	1
703	Continuous Fluidic Techniques for the Precise Synthesis of Metalâ€Organic Frameworks. ChemPlusChem, 2021, 86, 650-661.	2.8	8
705	The Prospects of Application of Microfluidics for Synthesis of Compounds from the Alkylene Guanidine Series. Polymer Science - Series D, 2021, 14, 305-311.	0.6	2
706	C-N Bond Formation by Consecutive Continuous-Flow Reductions towards A Medicinally Relevant Piperazine Derivative. Molecules, 2021, 26, 2040.	3.8	1
707	Total Synthesis of (+)â€Alsmaphorazineâ€C and Formal Synthesis of (+)‣trictamine: A Photoâ€Fries Approach Angewandte Chemie - International Edition, 2021, 60, 10603-10607.	' 13.8	12
708	Intensified Continuous Flow Synthesis and Workup of 1,5-Disubstituted Tetrazoles Enhanced by Real-Time Process Analytics. Organic Process Research and Development, 2021, 25, 1206-1214.	2.7	15
709	Half a century with Achmatowicz rearrangement. Tetrahedron, 2021, 85, 132058.	1.9	16
710	Pd/TiO 2 Coated in a Microscaleâ€Based Reactor by Electrophoretic Deposition for Biohydrogenated Diesel Production. Chemical Engineering and Technology, 2021, 44, 1206-1213.	1.5	0
711	Sustainable Aldehyde Oxidations in Continuous Flow Using <i>in Situ</i> Generated Performic Acid. ACS Sustainable Chemistry and Engineering, 2021, 9, 5519-5525.	6.7	15
713	Total Synthesis of (+)â€Alsmaphorazineâ€C and Formal Synthesis of (+)â€Strictamine: A Photoâ€Fries Approach Angewandte Chemie, 2021, 133, 10697-10701.	^{l.} 2.0	1
714	Regioselective Synthesis of α-Functional Stilbenes via Precise Control of Rapid <i>cis</i> – <i>trans</i> lsomerization in Flow. Organic Letters, 2021, 23, 2904-2910.	4.6	6

#	Article	IF	CITATIONS
715	Flow Chemistry under Extreme Conditions: Synthesis of Macrocycles with Musklike Olfactoric Properties. Journal of Organic Chemistry, 2021, 86, 13924-13933.	3.2	12
716	Bismuth Subnitrate-Catalyzed Markovnikov-Type Alkyne Hydrations under Batch and Continuous Flow Conditions. Molecules, 2021, 26, 2864.	3.8	2
717	Development of Continuous Flow Systems to Access Secondary Amines Through Previously Incompatible Biocatalytic Cascades**. Angewandte Chemie - International Edition, 2021, 60, 18660-18665.	13.8	44
718	High-Yielding Flow Synthesis of a Macrocyclic Molecular Hinge. Journal of the American Chemical Society, 2021, 143, 7553-7565.	13.7	13
719	(2â€Ethylhexyl)sodium: A Hexaneâ€Soluble Reagent for Br/Naâ€Exchanges and Directed Metalations in Continuous Flow. Angewandte Chemie - International Edition, 2021, 60, 14296-14301.	13.8	32
720	Development of Solid Catalysts for Selective Reactions and their Application to Continuous-Flow Reactions. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2021, 79, 472-482.	0.1	0
721	Upscaling Mechanochemistry: Challenges and Opportunities for Sustainable Industry. Trends in Chemistry, 2021, 3, 335-339.	8.5	70
722	Palladium atalyzed Domino Synthesis of 2,3â€Ðifunctionalized Indoles <i>via</i> Migratory Insertion of Isocyanides in Batch and Continuous Flow. Advanced Synthesis and Catalysis, 2021, 363, 3220-3226.	4.3	12
723	Assessing the Role of Site Isolation and Compartmentalization in Packed-Bed Flow Reactors for Processes Involving Wolf-and-Lamb Scenarios. ACS Catalysis, 2021, 11, 6234-6242.	11.2	10
724	Development of Continuous Flow Systems to Access Secondary Amines Through Previously Incompatible Biocatalytic Cascades**. Angewandte Chemie, 2021, 133, 18808-18813.	2.0	3
725	Scale-up of micro- and milli-reactors: An overview of strategies, design principles and applications. Chemical Engineering Science: X, 2021, 10, 100097.	1.5	81
726	Matteson Reaction under Flow Conditions: Iterative Homologations of Terpenes. Organic Letters, 2021, 23, 4300-4304.	4.6	15
727	Reproducible and rapid synthesis of a conjugated polymer by Stille polycondensation in flow: Effects of reaction parameters on molecular weight. Chemical Engineering Journal, 2021, 412, 128572.	12.7	18
729	(2â€Ethylhexyl)natrium: Ein hexanlösliches Reagenz für Br/Naâ€Austauschreaktionen und dirigierte Metallierungen im kontinuierlichen Durchfluss. Angewandte Chemie, 2021, 133, 14416-14421.	2.0	9
730	Application of Continuous Flow in Tazobactam Synthesis. Organic Process Research and Development, 2021, 25, 1648-1657.	2.7	10
731	Azobenzene: a Visibleâ€Light Chemical Actinometer for the Characterization of Fluidic Photosystems. Helvetica Chimica Acta, 2021, 104, e2100071.	1.6	3
732	Chemoselective Polymerizations. Progress in Polymer Science, 2021, 117, 101397.	24.7	16
733	Comparative Life Cycle Assessment of Different Production Processes for Waterborne Polyurethane Dispersions. ACS Sustainable Chemistry and Engineering, 2021, 9, 8980-8989.	6.7	15

#	Article	IF	CITATIONS
734	Automated synthesis of gadopentetate dimeglumine through solid-liquid reaction in femtosecond laser fabricated microfluidic chips. Chinese Chemical Letters, 2022, 33, 1077-1080.	9.0	3
735	Absolute Asymmetric Catalysis, from Concept to Experiment: A Narrative. Synlett, 2021, 32, 2013-2035.	1.8	4
736	"Snapshot―Trapping of Multiple Transient Azolyllithiums in Batch. Chemistry - A European Journal, 2021, 27, 10267-10273.	3.3	12
737	Formation and Utility of Reactive Ketene Intermediates Under Continuous Flow Conditions. Tetrahedron, 2021, , 132305.	1.9	7
738	Pentafluoroethylation of Carbonyl Compounds Using HFC-125 in a Flow Microreactor System. Journal of Organic Chemistry, 2021, 86, 14044-14053.	3.2	7
739	Rapid Optimization of Photoredox Reactions for Continuous-Flow Systems Using Microscale Batch Technology. ACS Central Science, 2021, 7, 1126-1134.	11.3	52
740	Streamlining Design, Engineering, and Applications of Enzymes for Sustainable Biocatalysis. ACS Sustainable Chemistry and Engineering, 2021, 9, 8032-8052.	6.7	60
741	Radical philicity and its role in selective organic transformations. Nature Reviews Chemistry, 2021, 5, 486-499.	30.2	169
742	Enantioselective Organocatalyzed <i>aza</i> â€Michael Addition Reaction of 2â€Hydroxybenzophenone Imines to Nitroolefins under Batch and Flow Conditions. Advanced Synthesis and Catalysis, 2021, 363, 3845-3851.	4.3	7
743	Stereoselective Visibleâ€Light Catalyzed Cyclization of Bis(enones): A Viable Approach to the Synthesis of Enantiomerically Enriched Cyclopentane Rings. European Journal of Organic Chemistry, 2021, 2021, 4521-4524.	2.4	11
744	Continuous-Flow Asymmetric Synthesis of (3 <i>R</i>)-3-Hydroxyl-5-hexenoates with Co-Immobilized Ketoreductase and <i>Lactobacillus kefir</i> Dehydrogenase Integrating Greener Inline Microfluidic Liquid–Liquid Extractors and Membrane Separators. ACS Sustainable Chemistry and Engineering, 2021, 9, 8990-9000.	6.7	15
745	Continuous Flow Synthesis of α-Trifluoromethylthiolated Esters and Amides from Carboxylic Acids: a Telescoped Approach. Journal of Organic Chemistry, 2021, 86, 14207-14212.	3.2	4
746	Expanding the Tool Kit of Automated Flow Synthesis: Development of In-line Flash Chromatography Purification. Journal of Organic Chemistry, 2021, 86, 14079-14094.	3.2	12
747	The Longer Route can be Better: Electrosynthesis in Extended Path Flow Cells. Chemical Record, 2021, 21, 2472-2487.	5.8	9
748	"Snapshot―Trapping of Multiple Transient Azolyllithiums in Batch. Chemistry - A European Journal, 2021, 27, 10214-10214.	3.3	1
749	Catalytic Static Mixer-Enabled Hydrogenation of a Key Fenebrutinib Intermediate: Real-Time Analysis for a Stable and Scalable Process. Organic Process Research and Development, 2021, 25, 1988-1995.	2.7	12
750	Multistep batch-flow hybrid synthesis of a terbinafine precursor. Journal of Flow Chemistry, 2022, 12, 51-57.	1.9	1
751	Analysis of Stereochemical Stability of Dynamic Chiral Molecules Using an Automated Microflow Measurement System. Journal of Organic Chemistry, 2021, 86, 9651-9657.	3.2	7

щ		IF	Citations
#	ARTICLE Scale-Up of Ozonolysis using Inherently Safer Technology in Continuous Flow under Pressure: Case	IF	CHATIONS
752	Study on Î ² -Pinene. Organic Process Research and Development, 2021, 25, 1589-1597.	2.7	13
753	Electroreduction of Acetochlor at Silver Cathodes in Aqueous Media. Journal of the Electrochemical Society, 2021, 168, 075502.	2.9	1
754	Parameter assessment for scale-up of co- and counter-current photochemical reactors using non-collimated LEDs. Chemical Engineering Research and Design, 2021, 171, 408-420.	5.6	3
755	Synthesis of Enantiopure Unnatural Amino Acids by Metallaphotoredox Catalysis. Organic Process Research and Development, 2021, 25, 1966-1973.	2.7	30
756	Photoiodization of toluene in a microflow platform. Journal of Flow Chemistry, 2022, 12, 41-49.	1.9	0
757	Quantitative Sustainability Assessment of Flow Chemistry–From Simple Metrics to Holistic Assessment. ACS Sustainable Chemistry and Engineering, 2021, 9, 9508-9540.	6.7	38
758	Daisy-Chaining Photo- and Thermal Chemistry: Multistep Continuous Flow Synthesis of Visible-Light-Mediated Photochemistry with a High-Temperature Cascade Reaction. Organic Process Research and Development, 2021, 25, 1943-1949.	2.7	3
759	Singlet Oxygen Photosensitization Using Graphene-Based Structures and Immobilized Dyes: A Review. ACS Applied Nano Materials, 2021, 4, 7563-7586.	5.0	25
760	Organic–inorganic hybrid electro-optic material with Disperse Red 1 chromophore fabricated by flow chemistry. Journal of Flow Chemistry, 2022, 12, 79-90.	1.9	0
761	Continuous Flow Synthesis of [Au(NHC)(Aryl)] (NHC=Nâ€Heterocyclic Carbene) Complexes. Chemistry - A European Journal, 2021, 27, 13342-13345.	3.3	11
762	Twoâ€Step Continuousâ€Flow Synthesis of Fungicide Metalaxyl through Catalytic Câ^'N Bondâ€Formation Processes. Advanced Synthesis and Catalysis, 0, , .	4.3	3
763	Continuous-Flow Catalysis. Catalysts, 2021, 11, 1066.	3.5	0
764	Microfluidic plasmas: Novel technique for chemistry and chemical engineering. Chemical Engineering Journal, 2021, 417, 129355.	12.7	56
765	Catalytic <i>Syn</i> -Selective Nitroaldol Approach to Amphenicol Antibiotics: Evolution of a Unified Asymmetric Synthesis of (â^')-Chloramphenicol, (â^')-Azidamphenicol, (+)-Thiamphenicol, and (+)-Florfenicol. Journal of Organic Chemistry, 2021, 86, 11557-11570.	3.2	17
766	Unlocking the Accessibility of Alkyl Radicals from Boronic Acids through Solvent-Assisted Organophotoredox Activation. ACS Catalysis, 2021, 11, 10862-10870.	11.2	35
767	Exploiting Continuous Processing for Challenging Diazo Transfer and Telescoped Copper-Catalyzed Asymmetric Transformations. Journal of Organic Chemistry, 2021, 86, 13955-13982.	3.2	3
768	Platinum atalyzed Alkene Hydrosilylation: Solventâ€Free Process Development from Batch to a Membraneâ€Integrated Continuous Process. ChemSusChem, 2021, 14, 3810-3814.	6.8	7
769	Bodipy-Containing Porous Microcapsules for Flow Heterogeneous Photocatalysis. ACS Applied Materials & Interfaces, 2021, 13, 38722-38731.	8.0	15

#	ARTICLE	IF	CITATIONS
770	Design and scale-up of continuous di-nitration reaction using pinched tube flow reactor. Journal of Flow Chemistry, 0, , 1.	1.9	2
771	Application Limits of the Ferrioxalate Actinometer**. ChemPhotoChem, 2021, 5, 947-956.	3.0	15
772	Advances in the <i>E → Z</i> Isomerization of Alkenes Using Small Molecule Photocatalysts. Chemical Reviews, 2022, 122, 2650-2694.	47.7	184
773	Visible-Light-Induced Deaminative Alkylation/Cyclization of Alkyl Amines with <i>N</i> -Methacryloyl-2-phenylbenzoimidazoles in Continuous-Flow Organo-Photocatalysis. Journal of Organic Chemistry, 2021, 86, 12908-12921.	3.2	26
774	Towards the Standardization of Flow Chemistry Protocols for Organic Reactions. Chemistry Methods, 2021, 1, 454-467.	3.8	41
775	Flow Chemistryâ€Enabled Divergent and Enantioselective Total Syntheses of Massarinolinâ€A, Purpurolidesâ€B, D, E, 2,3â€Deoxypurpurolideâ€C, and Structural Revision of Massarinolinâ€A. Angewandte Chemie, 0, , .	2.0	1
776	Integrated Multistep Photochemical and Thermal Continuous Flow Reactions: Production of Bicyclic Lactones with Kilogram Productivity. Organic Process Research and Development, 2021, 25, 2052-2059.	2.7	3
777	Photoredox-Catalyzed Dehydrogenative Csp ³ –Csp ² Cross-Coupling of Alkylarenes to Aldehydes in Flow. Journal of Organic Chemistry, 2021, 86, 13559-13571.	3.2	11
778	Photocatalysis in the Life Science Industry. Chemical Reviews, 2022, 122, 2907-2980.	47.7	183
779	Gram-Scale Domino Synthesis in Batch and Flow Mode of Azetidinium Salts. Journal of Organic Chemistry, 2021, 86, 14113-14120.	3.2	3
780	Synthesis of α-Amino Acid Derivatives through the Iridium-catalyzed α-C-H Amidation of 2-Acylimidazoles with Dioxazolones under Continuous-flow. Chemistry Letters, 2021, 50, 1722-1724.	1.3	1
780 781		1.3 2.7	1 0
	with Dioxazolones under Continuous-flow. Chemistry Letters, 2021, 50, 1722-1724. Automated High-Pressure Atline Analysis of Photo-High-P,T Vitamin D3 Microfluidic Synthesis.		
781	with Dioxazolones under Continuous-flow. Chemistry Letters, 2021, 50, 1722-1724. Automated High-Pressure Atline Analysis of Photo-High-P,T Vitamin D3 Microfluidic Synthesis. Frontiers in Chemical Engineering, 2021, 3, . Unveiling Organocatalysts Action – Investigating Immobilized Catalysts at Steadyâ€State Operation via	2.7	0
781 782	 with Dioxazolones under Continuous-flow. Chemistry Letters, 2021, 50, 1722-1724. Automated High-Pressure Atline Analysis of Photo-High-P,T Vitamin D3 Microfluidic Synthesis. Frontiers in Chemical Engineering, 2021, 3, . Unveiling Organocatalysts Action – Investigating Immobilized Catalysts at Steadyâ€State Operation via Labâ€onâ€aâ€Chip Technology. ChemCatChem, 0, , . Development and Scale-Up of a Novel Photochemical C–N Oxidative Coupling. Organic Process 	2.7 3.7	0 4
781 782 783	 with Dioxazolones under Continuous-flow. Chemistry Letters, 2021, 50, 1722-1724. Automated High-Pressure Atline Analysis of Photo-High-P,T Vitamin D3 Microfluidic Synthesis. Frontiers in Chemical Engineering, 2021, 3, . Unveiling Organocatalysts Action – Investigating Immobilized Catalysts at Steadyâ€State Operation via Labâ€onâ€aâ€Chip Technology. ChemCatChem, 0, , . Development and Scale-Up of a Novel Photochemical C–N Oxidative Coupling. Organic Process Research and Development, 2021, 25, 2205-2220. Switchable Chemoselectivity of Reactive Intermediates Formation and Their Direct Use in A Flow 	2.73.72.7	0 4 13
781 782 783 784	 with Dioxazolones under Continuous-flow. Chemistry Letters, 2021, 50, 1722-1724. Automated High-Pressure Atline Analysis of Photo-High-P,T Vitamin D3 Microfluidic Synthesis. Frontiers in Chemical Engineering, 2021, 3, . Unveiling Organocatalysts Action – Investigating Immobilized Catalysts at Steadyâ€6tate Operation via Labâ€onâ€aâ€Chip Technology. ChemCatChem, 0, , . Development and Scale-Up of a Novel Photochemical C–N Oxidative Coupling. Organic Process Research and Development, 2021, 25, 2205-2220. Switchable Chemoselectivity of Reactive Intermediates Formation and Their Direct Use in A Flow Microreactor. Chemistry - A European Journal, 2021, 27, 16107-16111. Flow dearomatization of electron-poor 3-fluoromethylthioindoles by 1,3-dipolar cycloaddition. 	 2.7 3.7 2.7 3.3 1.9 	0 4 13 9

#	Article	IF	CITATIONS
788	Ene-reductase transformation of massoia lactone to δ-decalactone in a continuous-flow reactor. Scientific Reports, 2021, 11, 18794.	3.3	8
789	Automated, Multistep Continuousâ€Flow Synthesis of 2,6â€Dideoxy and 3â€Aminoâ€2,3,6â€trideoxy Monosaccharide Building Blocks. Angewandte Chemie - International Edition, 2021, 60, 23171-23175.	13.8	22
790	Development of 3D+G printing for the design of customizable flow reactors. Chemical Engineering Journal, 2022, 430, 132670.	12.7	15
791	Scalable Synthesis of Norbornadienes via <i>in situ</i> Cracking of Dicyclopentadiene Using Continuous Flow Chemistry. European Journal of Organic Chemistry, 2021, 2021, 5337-5342.	2.4	7
792	Continuous Flow Synthesis of a Blocked Polyisocyanate: Process Intensification, Reaction Monitoring Via In-Line FTIR Analysis, and Comparative Life Cycle Assessment. Organic Process Research and Development, 2021, 25, 2367-2379.	2.7	4
793	Sustainable hydrogen production by plasmonic thermophotocatalysis. Catalysis Today, 2021, 380, 156-186.	4.4	39
794	Continuous synthesis of isobutylaluminoxanes in a compact and integrated approach. Chemical Engineering Journal, 2021, 425, 131750.	12.7	4
795	Connecting experimental degradation kinetics to theoretical models for photocatalytic reactors: The influence of mass transport limitations. Chemical Engineering Science, 2021, 245, 116835.	3.8	12
796	Enhancing the amination reaction of 4-nitrochlorobenzene in a tubular reactor. Chemical Engineering and Processing: Process Intensification, 2021, 169, 108636.	3.6	3
797	Selective Photooxygenation of Dihydroartemisinic Acid in a Reusable Microreactor with Physically Immobilized Photocatalysts. Materials Research Bulletin, 2022, 145, 111540.	5.2	6
798	Process parameter and kinetic study for the azidation of a zidovudine intermediate with sodium azide in microreactors. Chemical Engineering Journal, 2022, 429, 132207.	12.7	6
799	Continuous dimethyldioxirane generation for polymer epoxidation. Polymer Chemistry, 2021, 12, 489-493.	3.9	5
800	Future medicinal chemists experience flow chemistry: optimization by experimental design of the limiting synthetic step to the antifungal drug econazole nitrate. Journal of Flow Chemistry, 2021, 11, 67-73.	1.9	2
801	Synthesis of nanomaterials and compounds via microwave irradiation as a greener alternative. , 2021, , 315-358.		1
802	Rh(i)- and Rh(ii)-catalyzed C–H alkylation of benzylamines with alkenes and its application in flow chemistry. Chemical Science, 2021, 12, 3202-3209.	7.4	12
803	Continuous flow strategies for using fluorinated greenhouse gases in fluoroalkylations. Chemical Society Reviews, 2021, 50, 7378-7394.	38.1	35
804	Furan platform chemicals beyond fuels and plastics. Green Chemistry, 2021, 23, 7458-7487.	9.0	43
805	Implementing Continuous Manufacturing for the Final Methylation Step in the AMG 397 Process to Deliver Key Quality Attributes. Organic Process Research and Development, 2021, 25, 486-499.	2.7	11

#	Article	IF	CITATIONS
806	Zirconium Oxideâ€Catalyzed Direct Amidation of Unactivated Esters under Continuousâ€Flow Conditions. Advanced Synthesis and Catalysis, 2021, 363, 2529-2535.	4.3	14
807	Rapid formation of 2-lithio-1-(triphenylmethyl)imidazole and substitution reactions in flow. Reaction Chemistry and Engineering, 2021, 6, 2018-2023.	3.7	3
808	Recent advances in urea- and thiourea-containing compounds: focus on innovative approaches in medicinal chemistry and organic synthesis. RSC Medicinal Chemistry, 2021, 12, 1046-1064.	3.9	78
809	Sodium and Potassium Complexes in Organic Synthesis. , 2022, , 57-77.		1
810	Protecting-group-free synthesis of thiol-functionalized degradable polyesters. Polymer Chemistry, 2021, 12, 1749-1757.	3.9	4
811	A modular, low footprint and scalable flow platform for the expedient $\hat{I}\pm$ -aminohydroxylation of enolizable ketones. Green Chemistry, 2021, 23, 2336-2351.	9.0	14
812	A photochemical ring expansion of 6- to 8-membered nitrogen heterocycles by [1,3]-sigmatropic rearrangement. Chemical Communications, 2021, 57, 4556-4559.	4.1	7
813	Microchannel measurements of viscosity for both gases and liquids. Lab on A Chip, 2021, 21, 2805-2811.	6.0	8
814	Development of highly efficient Friedel–Crafts alkylations with alcohols using heterogeneous catalysts under continuous-flow conditions. RSC Advances, 2021, 11, 24424-24428.	3.6	6
815	Flow Biocatalysis: A Challenging Alternative for the Synthesis of APIs and Natural Compounds. International Journal of Molecular Sciences, 2021, 22, 990.	4.1	55
816	Continuous flow asymmetric synthesis of chiral active pharmaceutical ingredients and their advanced intermediates. Green Chemistry, 2021, 23, 6117-6138.	9.0	62
817	Cobalt catalysed aminocarbonylation of thiols in batch and flow for the preparation of amides. RSC Advances, 2021, 11, 30398-30406.	3.6	4
818	Flow synthesis kinetics for lomustine, an anti-cancer active pharmaceutical ingredient. Reaction Chemistry and Engineering, 2021, 6, 1819-1828.	3.7	11
819	A continuous flow synthesis of [1.1.1]propellane and bicyclo[1.1.1]pentane derivatives. Chemical Communications, 2021, 57, 2871-2874.	4.1	22
820	Total Synthesis of Farnesin through an Excitedâ€ S tate Nazarov Reaction. Angewandte Chemie, 2020, 132, 7514-7519.	2.0	18
821	Continuous high-pressure operation of a pharmaceutically relevant Krapcho dealkoxycarbonylation reaction. Journal of Flow Chemistry, 2019, 9, 123-131.	1.9	3
822	Development of a sustainable continuous flow approach toward allantoin. Journal of Flow Chemistry, 2020, 10, 251-257.	1.9	3
823	The resource gateway: Microfluidics and requirements engineering for sustainable space systems. Chemical Engineering Science, 2020, 225, 115774.	3.8	14

#	Article	IF	CITATIONS
824	Living with our machines: Towards a more sustainable future. Current Opinion in Green and Sustainable Chemistry, 2020, 25, 100353.	5.9	9
825	Electrochemistry in continuous systems. Current Opinion in Green and Sustainable Chemistry, 2020, 26, 100355.	5.9	17
826	Digitizing Chemistry Using the Chemical Processing Unit: From Synthesis to Discovery. Accounts of Chemical Research, 2021, 54, 253-262.	15.6	61
827	Continuous-Flow Production of Isosorbide from Aqueous-Cellulosic Derivable Feed over Sustainable Heterogeneous Catalysts. ACS Sustainable Chemistry and Engineering, 2021, 9, 927-935.	6.7	23
828	Organometallic Chemistry in Flow in the Pharmaceutical Industry. RSC Green Chemistry, 2019, , 86-128.	0.1	4
829	CHAPTER 7. Continuous-flow Photooxygenations: An Advantageous and Sustainable Oxidation Methodology with a Bright Future. RSC Catalysis Series, 2020, , 181-251.	0.1	2
830	Mechanochemical synthesis of Cu ₂ S bonded 2D-sulfonated organic polymers: continuous production of dimethyl carbonate (DMC) <i>via</i> preheating of reactants. Green Chemistry, 2020, 22, 5619-5627.	9.0	13
831	Cloud-inspired multiple scattering for light intensified photochemical flow reactors. Reaction Chemistry and Engineering, 2020, 5, 1058-1063.	3.7	11
832	Continuous one-flow multi-step synthesis of active pharmaceutical ingredients. Reaction Chemistry and Engineering, 2020, 5, 1186-1197.	3.7	63
833	Ligand-protected gold/silver superatoms: current status and emerging trends. Chemical Science, 2020, 11, 12233-12248.	7.4	69
834	Recent Advances on Copper-Catalyzed C–C Bond Formation via C–H Functionalization. Synthesis, 2020, 52, 2613-2622.	2.3	5
835	Review—The Design, Performance and Continuing Development of Electrochemical Reactors for Clean Electrosynthesis. Journal of the Electrochemical Society, 2020, 167, 155525.	2.9	62
836	Robust Continuous-Flow Synthesis of Deuterium-Labeled <i>β</i> -Nitroalcohols Catalyzed by Basic Anion Exchange Resin. Bulletin of the Chemical Society of Japan, 2020, 93, 1000-1006.	3.2	3
837	An intensified chlorination process of 4-nitroaniline in a liquid–liquid microflow system. Reaction Chemistry and Engineering, 2021, 6, 2259-2265.	3.7	3
838	A continuous flow process for biaryls based on sequential Suzuki–Miyaura coupling and supercritical carbon dioxide extraction. Reaction Chemistry and Engineering, 2021, 6, 2248-2252.	3.7	3
839	Aerobic Dehydrogenative Coupling of Naphthols and Phenols with a Ru(OH) x /Al 2 O 3 Catalyst under Continuousá€Flow Conditions. ChemistrySelect, 2021, 6, 10106-10110.	1.5	0
840	Lithium aluminum hydride in flow: overcoming exotherms, solids, and gas evolution en route to chemoselective reductions. Journal of Flow Chemistry, 2022, 12, 131-140.	1.9	2
841	Continuousâ€Flow Preparation of Benzotropolones: Combined Batch and Flow Synthesis of Epigenetic Modulators of the (JmjC)â€Containing Domain. ChemistrySelect, 2021, 6, 10717-10721.	1.5	1

#	Article	IF	Citations
842	Synthesis of Tailored Segmented Polyurethanes Utilizing Continuous-Flow Reactors and Real-Time Process Monitoring. Chemistry of Materials, 2021, 33, 7986-7993.	6.7	6
843	Continuous flow synthesis of Celecoxib from 2-bromo-3,3,3-trifluoropropene. Journal of Flow Chemistry, 2021, , 1-5.	1.9	6
844	Photoredox Iridium–Nickel Dual Catalyzed Cross-Electrophile Coupling: From a Batch to a Continuous Stirred-Tank Reactor via an Automated Segmented Flow Reactor. Organic Process Research and Development, 2021, 25, 2323-2330.	2.7	12
845	Enabling Techniques for Organic Synthesis. Journal of Organic Chemistry, 2021, 86, 14242-14244.	3.2	6
847	Znanstveno-istraživaÄka djelatnost Zavoda za organsku kemiju u razdoblju 2009. – 2019 Kemija U Industriji, 2019, 68, 497-506.	0.3	0
848	Perspectives on the Use of Flow Systems to Carry Out Organic Photochemical Reactions. RSC Green Chemistry, 2019, , 129-152.	0.1	0
849	Integrated Microreaction Systems of Microdevices with Conventional Equipment. RSC Green Chemistry, 2019, , 440-460.	0.1	0
852	Vortex Fluidic Ethenolysis, Integrating a Rapid Quench of Ruthenium Olefin Metathesis Catalysts. Australian Journal of Chemistry, 2020, 73, 1138.	0.9	2
853	Continuous Multiphase Flow Nitration and Cryogenic Flow Formylation: Enabling Process Development and Manufacturing of Pharmaceutical Intermediates. Organic Process Research and Development, 2021, 25, 2473-2481.	2.7	4
854	CHAPTER 8. Aerobic Oxidation Reactions in the Fine Chemicals and Pharmaceutical Industries. RSC Catalysis Series, 2020, , 252-290.	0.1	0
855	Continuous flow synthesis and antimicrobial evaluation of NHC* silver carboxylate derivatives of SBC3 <i>in vitro</i> and <i>in vivo</i> . Metallomics, 2021, 13, .	2.4	9
856	Prozesstechnik: Ein grüner Bruder für PET. Nachrichten Aus Der Chemie, 2020, 68, 39-41.	0.0	0
857	Achieving selectivity in porphyrin bromination through a DoE-driven optimization under continuous flow conditions. Journal of Flow Chemistry, 2021, 11, 163-169.	1.9	1
858	A Machine Learningâ€Enabled Autonomous Flow Chemistry Platform for Process Optimization of Multiple Reaction Metrics. Chemistry Methods, 2021, 1, 71-77.	3.8	25
859	Reaction of Diphenyldiazomethane with Benzoic Acids in Batch and Continuous Flow. Journal of Chemical Education, 2021, 98, 469-477.	2.3	2
860	Continuous flow cationic polymerizations. Chemical Engineering Journal, 2022, 430, 132791.	12.7	13
861	The Discovery and Chemical Development of BMS-919373: A Selective <i>I</i> _{Kur} Inhibitor for the Potential Treatment of Atrial Fibrillation. ACS Symposium Series, 2020, , 43-97.	0.5	0
862	Aerobic Oxidations Reactions Using Metal-free Homogeneous Systems. RSC Catalysis Series, 2020, , 104-130.	0.1	0

#	Article	IF	CITATIONS
863	CHAPTER 15. Economic Analysis of Continuous Crystallisation. , 2020, , 542-576.		0
864	Introduction: Catalysis, Oxygen and Sustainability … <i>Quo vadis</i> ?. RSC Catalysis Series, 2020, , 1-15.	0.1	Ο
865	Innovative Process Development of Pharmaceutical Intermediates under Continuous Flow System. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2020, 78, 240-249.	0.1	0
866	In-flow enantioselective homogeneous organic synthesis. Green Processing and Synthesis, 2021, 10, 768-778.	3.4	2
867	Automated and continuous synthesis of drug substances. Chemical Engineering Research and Design, 2022, 177, 493-501.	5.6	6
869	Silica-Supported Copper for the Preparation of <i>trans-</i> 4,5-Diamino-Cyclopent-2-Enones under Continuous Flow Conditions. ACS Sustainable Chemistry and Engineering, 2021, 9, 16038-16043.	6.7	9
870	Continuous Flow Synthesis of Propofol. Molecules, 2021, 26, 7183.	3.8	13
871	Mild Microfluidic Approaches to Oxide Nanoparticles Synthesis. Chemistry - A European Journal, 2022, 28, .	3.3	4
873	Highly Selective Hydrogenative Conversion of Nitriles into Tertiary, Secondary, and Primary Amines under Flow Reaction Conditions. ChemSusChem, 2022, 15, .	6.8	7
874	Generation of Tosyl Azide in Continuous Flow Using an Azide Resin, and Telescoping with Diazo Transfer and Rhodium Acetate-Catalyzed O–H Insertion. Organic Process Research and Development, 2021, 25, 2772-2785.	2.7	7
875	Tunable and Practical Homogeneous Organic Reductants for Cross-Electrophile Coupling. Journal of the American Chemical Society, 2021, 143, 21024-21036.	13.7	23
876	Continuous Flow Synthesis of Anticancer Drugs. Molecules, 2021, 26, 6992.	3.8	5
877	Advances on the Merger of Electrochemistry and Transition Metal Catalysis for Organic Synthesis. Chemical Reviews, 2022, 122, 3180-3218.	47.7	173
878	Total Synthesis of Entrectinib with Key Photoâ€Redox Mediated Crossâ€Coupling in Flow. European Journal of Organic Chemistry, 2022, 2022, .	2.4	1
879	Enabling Technology for Supramolecular Chemistry. Frontiers in Chemistry, 2021, 9, 774987.	3.6	13
880	Nitro to amine reductions using aqueous flow catalysis under ambient conditions. IScience, 2021, 24, 103472.	4.1	10
881	Effects of fluid film properties on fouling in biphasic flow systems. Chemical Engineering Science, 2022, 249, 117293.	3.8	1
882	Modern nanoscience: Convergence of AI, robotics, and colloidal synthesis. Applied Physics Reviews, 2021, 8, .	11.3	18

#	Article	IF	CITATIONS
883	Drug Discovery Automation and Library Synthesis in Flow. Topics in Medicinal Chemistry, 2021, , 421-479.	0.8	1
884	Automation isn't automatic. Chemical Science, 2021, 12, 15473-15490.	7.4	44
885	Stille, Heck, and Sonogashira coupling and hydrogenation catalyzed by porous-silica-gel-supported palladium in batch and flow. Green Processing and Synthesis, 2021, 10, 722-728.	3.4	7
886	Flash Electrochemical Approach to Carbocations. Angewandte Chemie, 2022, 134, .	2.0	0
887	Combination of Asymmetric Organo―and Biocatalysis in Flow Processes and Comparison with their Analogous Batch Syntheses. European Journal of Organic Chemistry, 2022, 2022, .	2.4	11
888	Continuous kilogram-scale process for the synthesis strategy of 1,3,5-trimethyl-2-nitrobenzene in microreactor. Chemical Engineering Research and Design, 2022, 178, 179-188.	5.6	6
890	Sustainable C–H functionalization under ball-milling, microwave-irradiation and aqueous media. Green Chemistry, 2022, 24, 2296-2320.	9.0	20
891	Rapid Continuous-Flow Water-Free Synthesis of Ultrapure Ionic Liquids Assisted by Microwaves. Organic Process Research and Development, 2022, 26, 207-214.	2.7	5
892	Wavelength dependent photoextrusion and tandem photo-extrusion reactions of ninhydrin bis-acetals for the synthesis of 8-ring lactones, benzocyclobutenes and orthoanhydrides. Chemical Communications, 2022, 58, 1546-1549.	4.1	2
893	Steps, hops and turns: examining the effects of channel shapes on mass transfer in continuous electrochemical reactors. Reaction Chemistry and Engineering, 2022, 7, 264-268.	3.7	1
894	Simple Fabrication of a Continuous-Flow Photocatalytic Reactor Using Dopamine-Assisted Immobilization onto a Fluoropolymer Tubing. Industrial & Engineering Chemistry Research, 2022, 61, 1322-1331.	3.7	5
896	A microfluidic valve with bubble trap and zero dead volume. Review of Scientific Instruments, 2022, 93, 014105.	1.3	1
897	Tunable Production of (<i>R</i>)- or (<i>S</i>)-Citronellal from Geraniol via a Bienzymatic Cascade Using a Copper Radical Alcohol Oxidase and Old Yellow Enzyme. ACS Catalysis, 2022, 12, 1111-1116.	11.2	19
898	Modeling and Simulation of Reaction Environment in Photoredox Catalysis: A Critical Review. Frontiers in Chemical Engineering, 2022, 3, .	2.7	1
899	Flash Electrochemical Approach to Carbocations. Angewandte Chemie - International Edition, 2022, 61,	13.8	19
901	Sustainable chemical and biological technologies for the production of enantiopure added-value molecules in biorefineries. , 2022, , 295-335.		1
902	C(sp ³)â^'H Arylation Promoted by a Heterogeneous Palladiumâ€Nâ€Heterocyclic Carbene Complex in Batch and Continuous Flow. ChemSusChem, 2022, 15, .	6.8	11
903	Application of a System Model for Continuous Manufacturing of an Active Pharmaceutical Ingredient in an Industrial Environment. Journal of Pharmaceutical Innovation, 2022, 17, 1333-1346.	2.4	5

#	Article	IF	CITATIONS
904	Continuous Flow Synthesis of NHCâ€Coinage Metal Amido and Thiolato Complexes: A Mechanismâ€based Process Development. Chemistry Methods, 2022, 2, .	3.8	7
905	NMR relaxation time measurements of solvent effects in an organocatalysed asymmetric aldol reaction over silica SBA-15 supported proline. Reaction Chemistry and Engineering, 2022, 7, 269-274.	3.7	14
906	Photobiocatalysis in Continuous Flow. Frontiers in Catalysis, 2022, 1, .	3.9	18
907	Reaching New Biocatalytic Reactivity Using Continuous Flow Reactors. Chemistry - A European Journal, 2022, 28, .	3.3	18
908	Continuous flow technology-a tool for safer oxidation chemistry. Reaction Chemistry and Engineering, 2022, 7, 490-550.	3.7	25
909	Autonomous Multiâ€6tep and Multiâ€Objective Optimization Facilitated by Realâ€Time Process Analytics. Advanced Science, 2022, 9, e2105547.	11.2	37
910	Direct integration of gold-carbon nanotube hybrids in continuous-flow microfluidic chips: A versatile approach for nanocatalysis. Journal of Colloid and Interface Science, 2022, 613, 359-367.	9.4	6
911	Multi-step chemo-enzymatic synthesis of azelaic and pelargonic acids from the soapstock of high-oleic sunflower oil refinement. Green Chemistry, 2022, 24, 2082-2093.	9.0	6
912	Automated flow and real-time analytics approach for screening functional group tolerance in heterogeneous catalytic reactions. Catalysis Science and Technology, 2022, 12, 1799-1811.	4.1	6
913	Development of a continuous flow process for the synthesis of mesotrione. Journal of Flow Chemistry, 2022, 12, 197-205.	1.9	2
914	Black Swan in Phase Transfer Catalysis: Influence of Mixing Mode on the Stereoselectivity of Glycosylation. European Journal of Organic Chemistry, 2022, 2022, .	2.4	11
915	Sustainable Sorbitol Dehydration to Isosorbide using Solid Acid Catalysts: Transition from Batch Reactor to Continuousâ€Flow System. ChemSusChem, 2022, 15, .	6.8	13
916	Liquid–liquid two-phase flow and size distribution of droplets in milli-channels: Effect of gravity. International Journal of Multiphase Flow, 2022, 150, 104005.	3.4	1
917	Astropharmacy: Pushing the boundaries of the pharmacists' role for sustainable space exploration. Research in Social and Administrative Pharmacy, 2022, 18, 3612-3621.	3.0	9
918	Retro-aza-Michael reaction in continuous flow. Approaches to synthesis of adaline and euphococcinine related products. Tetrahedron, 2022, 109, 132686.	1.9	0
919	Intensified Continuous Flow Michaelis–Arbuzov Rearrangement toward Alkyl Phosphonates. Organic Process Research and Development, 0, , .	2.7	3
920	Understanding flow chemistry for the production of active pharmaceutical ingredients. IScience, 2022, 25, 103892.	4.1	16
921	Multiple wavelength (365–475Ânm) complete actinometric characterization of Corning® Lab Photo Reactor using azobenzene as a highly soluble, cheap and robust chemical actinometer. Photochemical and Photobiological Sciences, 2022, 21, 421-432.	2.9	4

#	Article	IF	CITATIONS
922	A continuous-flow protocol for photoredox-catalyzed multicomponent Petasis reaction. STAR Protocols, 2022, 3, 101162.	1.2	3
923	Batch or flow chemistry? – a current industrial opinion on process selection. Current Opinion in Chemical Engineering, 2022, 36, 100798.	7.8	21
924	Continuous stirred-tank reactor cascade platform for self-optimization of reactions involving solids. Reaction Chemistry and Engineering, 2022, 7, 1315-1327.	3.7	22
925	A micro-flow rapid dual activation approach for urethane-protected α-amino acid <i>N</i> -carboxyanhydride synthesis. Organic and Biomolecular Chemistry, 2022, 20, 3303-3310.	2.8	8
926	Process analytical technology (PAT): applications to flow processes for active pharmaceutical ingredient (API) development. Reaction Chemistry and Engineering, 2022, 7, 1419-1428.	3.7	12
927	How the substrate affects amination reaction kinetics of nitrochlorobenzene. Reaction Chemistry and Engineering, 2022, 7, 833-838.	3.7	1
928	Continuous flow Meerwein–Ponndorf–Verley reduction of HMF and furfural using basic zirconium carbonate. RSC Advances, 2022, 12, 7980-7989.	3.6	5
929	Study of the Pauson–Khand reaction in flow over alkynylphenyl vinyl ethers: towards the synthesis of tricyclic multisubstituted benzofurans. RSC Advances, 2022, 12, 7313-7317.	3.6	0
930	Anionic polymerizations in a microreactor. Reaction Chemistry and Engineering, 2022, 7, 1026-1036.	3.7	3
931	Modern advancements in continuous-flow aided kinetic analysis. Reaction Chemistry and Engineering, 2022, 7, 1037-1046.	3.7	16
932	Flow-Injection Methods in Water Analysis—Recent Developments. Molecules, 2022, 27, 1410.	3.8	13
933	Recent Advances in Photoinduced Perfluoroalkylation Using Perfluoroalkyl Halides as the Radical Precursors. Synthesis, 2022, 54, 1919-1938.	2.3	29
934	Recent Developments for the Deuterium and Tritium Labeling of Organic Molecules. Chemical Reviews, 2022, 122, 6634-6718.	47.7	186
935	Microfluidicsâ€Assisted Synthesis of Hierarchical Cu ₂ 0 Nanocrystal as C ₂ ‣elective CO ₂ Reduction Electrocatalyst. Small Methods, 2022, 6, e2200074.	8.6	19
936	Continuous Flow Processes as an Enabling Tool for the Synthesis of Constrained Pseudopeptidic Macrocycles. Journal of Organic Chemistry, 2022, 87, 3519-3528.	3.2	4
937	"Green Is the Color†An Update on Ecofriendly Aspects of Organoselenium Chemistry. Molecules, 2022, 27, 1597.	3.8	25
938	Continuous Flow Synthesis of A2E Guided by Design of Experiments and High-Throughput Studies. ACS Bio & Med Chem Au, 0, , .	3.7	0
939	Development and Process Intensification of an Efficient Flow–Cascade Reaction Sequence in the Synthesis of Afizagabar. Organic Process Research and Development, 2022, 26, 1223-1235.	2.7	4

#	Article	IF	Citations
940	Using Oxygen as the Primary Oxidant in a Continuous Process: Application to the Development of an Efficient Route to AZD4635. Organic Process Research and Development, 2022, 26, 1048-1053.	2.7	3
941	Scale-Up of Diazonium Salts and Azides in a Three-Step Continuous Flow Sequence. Organic Process Research and Development, 2022, 26, 1308-1317.	2.7	8
942	High Yielding Continuous-Flow Synthesis of Norketamine. Organic Process Research and Development, 2022, 26, 1145-1151.	2.7	5
943	Sustainable Catalytic Transformation of Biomassâ€Derived 5â€Hydroxymethylfurfural to 2,5â€Bis(hydroxymethyl)tetrahydrofuran. ChemSusChem, 2022, 15, .	6.8	11
944	Unveiling the Synthetic Potential of Substituted Phenols as Fully Recyclable Organophotoredox Catalysts for the Iodosulfonylation of Olefins. ACS Catalysis, 2022, 12, 4290-4295.	11.2	20
945	Waste-Minimized Continuous-Flow Synthesis of Oxindoles Exploiting a Polymer-Supported N Heterocyclic Palladium Carbene Complex in a CPME/Water Azeotrope. ACS Sustainable Chemistry and Engineering, 2022, 10, 3766-3776.	6.7	10
946	One-Pot Transformation of Salicylaldehydes to Spiroepoxydienones <i>via</i> the Adler–Becker Reaction in a Continuous Flow. ACS Omega, 2022, 7, 11570-11577.	3.5	0
947	Enantioselective Organophotocatalytic Telescoped Synthesis of a Chiral Privileged Active Pharmaceutical Ingredient. Chemistry - A European Journal, 2022, 28, .	3.3	12
949	Joule heating of ionic conductors using zero-phase frequency alternating current to suppress electrochemical reactions. Engineering, 2022, , .	6.7	4
950	Synthesis of piperidine and pyrrolidine derivatives by electroreductive cyclization of imine with terminal dihaloalkanes in a flow microreactor. Beilstein Journal of Organic Chemistry, 2022, 18, 350-359.	2.2	4
951	Photochemical Deracemization of a Medicinallyâ€Relevant Benzopyran using an Oscillatory Flow Reactor. Chemistry - A European Journal, 2022, 28, .	3.3	16
952	Flexible homogeneous hydroformylation: on-demand tuning of aldehyde branching with a cyclic fluorophosphite ligand. Journal of Catalysis, 2022, 409, 105-117.	6.2	12
953	Electrochemical Hydroxylation of Electronâ€Rich Arenes in Continuous Flow. European Journal of Organic Chemistry, 2022, 2022, .	2.4	11
954	Biocatalysts used for multi-step reactions in continuous flow. Chemical Engineering Journal, 2022, 437, 135400.	12.7	11
955	Microreactor-based chemo-enzymatic ROP-ROMP platform for continuous flow synthesis of bottlebrush polymers. Chemical Engineering Journal, 2022, 437, 135284.	12.7	5
956	Rapid Kinetic Screening via Transient <i>Timesweep</i> Experiments in Continuous Flow Reactors. Chemistry Methods, 2022, 2, .	3.8	7
957	Self-Optimization of Continuous Flow Electrochemical Synthesis Using Fourier Transform Infrared Spectroscopy and Gas Chromatography. Applied Spectroscopy, 2022, 76, 38-50.	2.2	9
958	Scalable Subsecond Synthesis of Drug Scaffolds via Aryllithium Intermediates by Numbered-up 3D-Printed Metal Microreactors. ACS Central Science, 2022, 8, 43-50.	11.3	6

#	Article	IF	CITATIONS
959	Mass Transfer in Hierarchical Silica Monoliths Loaded With Pt in the Continuous-Flow Liquid-Phase Hydrogenation of p-Nitrophenol. Frontiers in Chemical Engineering, 2021, 3, .	2.7	3
960	Flow synthesis of an α-amino boronic ester as a key precursor of bortezomib drug. Reaction Chemistry and Engineering, 2022, 7, 1285-1288.	3.7	2
961	The Photochemical Activity of a Halogen-Bonded Complex Enables the Microfluidic Light-Driven Alkylation of Phenols. Organic Letters, 2022, 24, 2961-2966.	4.6	22
962	Continuous flow process for preparing budesonide. Journal of Flow Chemistry, 2022, , 1-10.	1.9	0
965	Automation and Microfluidics for the Efficient, Fast, and Focused Reaction Development of Asymmetric Hydrogenation Catalysis. ChemSusChem, 2022, 15, .	6.8	4
966	Rapid Synthesis of α-Chiral Piperidines via a Highly Diastereoselective Continuous Flow Protocol. Organic Letters, 2022, 24, 3205-3210.	4.6	5
967	Artificial neural networks and data fusion enable concentration predictions for inline process analytics. , 2022, 1, 405-412.		3
968	Reaction Kinetics of Carboxylic Acids Over a Dense Anatase Titanium Dioxide Photocatalyst. SSRN Electronic Journal, 0, , .	0.4	0
969	Continuous flow mechanochemistry: reactive extrusion as an enabling technology in organic synthesis. Chemical Society Reviews, 2022, 51, 4243-4260.	38.1	58
970	Metal-free photo-induced heteroarylations of C–H and C–C bonds of alcohols by flow chemistry. Green Chemistry, 2022, 24, 4498-4503.	9.0	6
971	Comparison of Derivativeâ€Free Algorithms for their Applicability in Selfâ€Optimization of Chemical Processes. Chemistry Methods, 2022, 2, .	3.8	2
972	Laboratory Ozonolysis Using an Integrated Batch–DIY Flow System for Renewable Material Production. ACS Omega, 2022, 7, 15350-15358.	3.5	6
973	<i>N</i> â€Hydroxyphthalimide Catalyzed Aerobic Oxidation of Aldehydes under Continuous Flow Conditions. Advanced Synthesis and Catalysis, 2022, 364, 1998-2008.	4.3	9
974	Flash Colloidal Gold Nanoparticle Assembly in a Milli Flow System: Implications for Thermoplasmonic and for the Amplification of Optical Signals. ACS Applied Nano Materials, 2022, 5, 6964-6971.	5.0	0
975	Continuous Solid Particle Flow in Microreactors for Efficient Chemical Conversion. Industrial & Engineering Chemistry Research, 2022, 61, 6269-6291.	3.7	15
976	Direct preparation of batteryâ€grade lithium carbonate via a nucleation–crystallization isolating process intensified by a microâ€liquid film reactor. Canadian Journal of Chemical Engineering, 2023, 101, 870-882.	1.7	3
977	Continuous diameter increase reactor – a reactor concept for maximizing productivity by a controlled diameter extension. Journal of Flow Chemistry, 2022, 12, 247-254.	1.9	1
978	Numerical simulation and experimental study of an efficient multi-orifice-impinging transverse (MOIT) jet mixer. International Journal of Chemical Reactor Engineering, 2022, 20, 791-803.	1.1	2

#	Article	IF	CITATIONS
979	Uncovering the Potential of Boronic Acid and Derivatives as Radical Source in Photo(electro)chemical Reactions. Advanced Synthesis and Catalysis, 2022, 364, 1643-1665.	4.3	28
980	Bromide Oxidation: A Safe Strategy for Electrophilic Brominations. European Journal of Organic Chemistry, 2022, 2022, .	2.4	13
981	Automated Peptide Synthesizers and Glycoprotein Synthesis. Frontiers in Chemistry, 2022, 10, .	3.6	6
982	Metal-free catalyzed aerobic oxidation of 2-nitro-4-methylsulfone toluene to 2-nitro-4-methylsulfonylbenzoic acid using a continuous-flow reactor. Journal of Flow Chemistry, 0, , 1.	1.9	1
983	Flow Conditions ontrolled Divergent Oxidative Cyclization of Reticulineâ€Type Alkaloids to Aporphine and Morphinandienone Natural Products. European Journal of Organic Chemistry, 2022, 2022, .	2.4	3
984	Synthesis of 3- <i>epi</i> -Hypatulin B Featuring a Late-Stage Photo-Oxidation in Flow. Organic Letters, 2022, 24, 4305-4309.	4.6	5
985	Flow chemistry of main group and transition metal complexes. Trends in Chemistry, 2022, 4, 584-607.	8.5	7
986	Construction of an α-chiral pyrrolidine library with a rapid and scalable continuous flow protocol. Reaction Chemistry and Engineering, 2022, 7, 1779-1785.	3.7	2
987	Addressing the quantitative conversion bottleneck in single-atom catalysis. Nature Communications, 2022, 13, 2807.	12.8	23
988	Flow chemistry in the synthesis of organochalcogen compounds. , 2022, , 83-122.		0
988 989		2.2	0
	Flow chemistry in the synthesis of organochalcogen compounds. , 2022, , 83-122. Shift of the reaction equilibrium at high pressure in the continuous synthesis of neuraminic acid.	2.2	
989	Flow chemistry in the synthesis of organochalcogen compounds. , 2022, , 83-122. Shift of the reaction equilibrium at high pressure in the continuous synthesis of neuraminic acid. Beilstein Journal of Organic Chemistry, 0, 18, 567-579. Modular allylation of C(sp ³)–H bonds by combining decatungstate photocatalysis and		2
989 990	Flow chemistry in the synthesis of organochalcogen compounds. , 2022, , 83-122. Shift of the reaction equilibrium at high pressure in the continuous synthesis of neuraminic acid. Beilstein Journal of Organic Chemistry, 0, 18, 567-579. Modular allylation of C(sp ³)–H bonds by combining decatungstate photocatalysis and HWE olefination in flow. Chemical Science, 2022, 13, 7325-7331. Recent Advances in the Solid- and Solution-Phase Synthesis of Peptides and Proteins Using Microflow	7.4	2 20
989 990 991	Flow chemistry in the synthesis of organochalcogen compounds. , 2022, , 83-122. Shift of the reaction equilibrium at high pressure in the continuous synthesis of neuraminic acid. Beilstein Journal of Organic Chemistry, 0, 18, 567-579. Modular allylation of C(sp ³)–H bonds by combining decatungstate photocatalysis and HWE olefination in flow. Chemical Science, 2022, 13, 7325-7331. Recent Advances in the Solid- and Solution-Phase Synthesis of Peptides and Proteins Using Microflow Technology. Organic Process Research and Development, 2022, 26, 1751-1765. Analytical Tools Integrated in Continuous-Flow Reactors: Which One for What?. Organic Process	7.4 2.7	2 20 10
989 990 991 992	Flow chemistry in the synthesis of organochalcogen compounds. , 2022, , 83-122. Shift of the reaction equilibrium at high pressure in the continuous synthesis of neuraminic acid. Beilstein Journal of Organic Chemistry, 0, 18, 567-579. Modular allylation of C(sp ³)â€"H bonds by combining decatungstate photocatalysis and HWE olefination in flow. Chemical Science, 2022, 13, 7325-7331. Recent Advances in the Solid- and Solution-Phase Synthesis of Peptides and Proteins Using Microflow Technology. Organic Process Research and Development, 2022, 26, 1751-1765. Analytical Tools Integrated in Continuous-Flow Reactors: Which One for What?. Organic Process Research and Development, 2022, 26, 1766-1793. Green process intensification using microreactor technology for the synthesis of biobased chemicals	7.4 2.7 2.7	2 20 10 23
989 990 991 992 993	Flow chemistry in the synthesis of organochalcogen compounds. , 2022, , 83-122. Shift of the reaction equilibrium at high pressure in the continuous synthesis of neuraminic acid. Beilstein Journal of Organic Chemistry, 0, 18, 567-579. Modular allylation of C(sp ³)âC"H bonds by combining decatungstate photocatalysis and HWE olefination in flow. Chemical Science, 2022, 13, 7325-7331. Recent Advances in the Solid- and Solution-Phase Synthesis of Peptides and Proteins Using Microflow Technology. Organic Process Research and Development, 2022, 26, 1751-1765. Analytical Tools Integrated in Continuous-Flow Reactors: Which One for What?. Organic Process Research and Development, 2022, 26, 1766-1793. Green process intensification using microreactor technology for the synthesis of biobased chemicals and fuels. Chemical Engineering and Processing: Process Intensification, 2022, 177, 109002. Crystal Engineering of Pharmaceutical Cocrystals in the Discovery and Development of Improved	7.4 2.7 2.7 3.6	2 20 10 23 14

#	Article	IF	CITATIONS
997	Depolymerization of Lignin by Homogeneous Photocatalysis. Springer Handbooks, 2022, , 1537-1562.	0.6	1
998	Incorporative Mixing in Microreactors: Influence on Reactions and Importance of Inlet Designation. SSRN Electronic Journal, 0, , .	0.4	0
999	Development of a palladium-catalyzed decarboxylative arene cross-coupling of pyrrole derivatives in a flow reactor. Journal of Flow Chemistry, 0, , .	1.9	0
1001	Homogeneous Organic Electron Donors in Nickel-Catalyzed Reductive Transformations. Journal of Organic Chemistry, 2022, 87, 7589-7609.	3.2	17
1002	Continuous-Flow Reactor Synthesis for Homogeneous 1 nm-Sized Extremely Small High-Entropy Alloy Nanoparticles. Journal of the American Chemical Society, 2022, 144, 11525-11529.	13.7	60
1003	Bayesian Optimization of Computer-Proposed Multistep Synthetic Routes on an Automated Robotic Flow Platform. ACS Central Science, 2022, 8, 825-836.	11.3	47
1004	Six‣tep Continuous Flow Synthesis of Diclofenac Sodium via Cascade Etherification/Smiles Rearrangement Strategy: Tackling the Issues of Batch Processing. Chemistry - A European Journal, 0, , .	3.3	3
1005	Robust and Self leaning Electrochemical Production of Periodate. ChemSusChem, 2022, 15, .	6.8	6
1006	Fixed Bed Continuous Hydrogenations in Trickle Flow Mode: A Pharmaceutical Industry Perspective. Organic Process Research and Development, 2022, 26, 2190-2223.	2.7	15
1008	Process Intensive Synthesis of Propofol Enabled by Continuous Flow Chemistry. Organic Process Research and Development, 2022, 26, 2330-2336.	2.7	5
1012	A One-Pot Photochemical Method for the Generation of Functionalized Aminocyclopentanes. Organic Letters, 2022, 24, 4344-4348.	4.6	13
1013	Importance of Monitoring the Synthesis of Lightâ€Interacting Nanoparticles – A Review on In Situ, Ex Situ, and Online Timeâ€Resolved Studies. Advanced Optical Materials, 2022, 10, .	7.3	4
1015	Comprehensive studies of continuous flow reversible addition–fragmentation chain transfer copolymerization and its application for photoimaging materials. Polymer Chemistry, 2022, 13, 4535-4546.	3.9	7
1016	An integrated resource-efficient microfluidic device for parallelised studies of immobilised chiral catalysts in continuous flow <i>via</i> miniaturized LC/MS-analysis. Reaction Chemistry and Engineering, 0, , .	3.7	1
1017	Operator-independent high-throughput polymerization screening based on automated inline NMR and online SEC. , 2022, 1, 519-526.		13
1018	Electrooxidative Annulation of Unsaturated Molecules via Directed C—H Activation. Chinese Journal of Organic Chemistry, 2022, 42, 1286.	1.3	0
1019	Techno-economic analyses. , 2022, , 373-412.		0
1020	An Overview on the Production of Biodiesel Enabled by Continuous Flow Methodologies. Catalysts, 2022, 12, 717.	3.5	16

#	Article	IF	CITATIONS
1021	Continuous flow synthesis of azobenzenes via Baeyer–Mills reaction. Beilstein Journal of Organic Chemistry, 0, 18, 781-787.	2.2	8
1022	Direct C–H metallation of tetrahydrofuran and application in flow. , 2022, 1, 558-564.		6
1023	Synthesis of odorants in flow and their applications in perfumery. Beilstein Journal of Organic Chemistry, 0, 18, 754-768.	2.2	3
1024	Process design of two-step mononitration of m-xylene in a microreactor. Journal of Flow Chemistry, 2022, 12, 327-336.	1.9	4
1025	Visible Lightâ€induced Decarboxylative Alkylations Enabled by Electron Donorâ€Acceptor Complex. Asian Journal of Organic Chemistry, 2022, 11, .	2.7	7
1026	Diastereoselectivity is in the Details: Minor Changes Yield Major Improvements to the Synthesis of Bedaquiline**. Chemistry - A European Journal, 2022, 28, .	3.3	4
1027	Flow and mixing in a tube-in-tube millireactor with multiholes jet and twist tapes. Journal of Flow Chemistry, 0, , .	1.9	0
1028	Continuous Flow Synthesis of 1,4-Benzothiazines Using Ambivalent Reactivity of (<i>E</i>)-β-Chlorovinyl Ketones: A Point of Reaction Control Enabled by Flow Chemistry. Organic Letters, 2022, 24, 5287-5292.	4.6	3
1030	Solventâ€Free Hydrogenation of Squalene Using Parts per Million Levels of Palladium Supported on Carbon Nanotubes: Shift from Batch Reactor to Continuousâ€Flow System. ChemSusChem, 2022, 15, .	6.8	7
1031	A green access to supported cinchona alkaloid amide catalysts for heterogeneous enantioselective allylsilylation of aldehydes and process intensity evaluation in batch and flow. Green Synthesis and Catalysis, 2022, 3, 272-277.	6.8	6
1032	Scaled up and telescoped synthesis of propofol under continuous-flow conditions. Journal of Flow Chemistry, 2022, 12, 371-379.	1.9	8
1033	4,7-Diarylbenzo[<i>c</i>][1,2,5]thiadiazoles as fluorophores and visible light organophotocatalysts. Organic Chemistry Frontiers, 2022, 9, 5473-5484.	4.5	6
1034	Selective skeletal editing of polycyclic arenes using organophotoredox dearomative functionalization. Nature Communications, 2022, 13, .	12.8	11
1035	Autonomous Chemical Experiments: Challenges and Perspectives on Establishing a Self-Driving Lab. Accounts of Chemical Research, 2022, 55, 2454-2466.	15.6	52
1036	Recent advances in chemical fixation of CO2 based on flow chemistry. Chinese Chemical Letters, 2023, 34, 107782.	9.0	8
1037	Continuous-Flow Synthesis of Perfluoroalkyl Ketones via Perfluoroalkylation of Esters Using HFC-23 and HFC-125 under a KHMDS–Triglyme System. Bulletin of the Chemical Society of Japan, 2022, 95, 1396-1406.	3.2	3
1038	Axial Chirality in the Sotorasib Drug Substance, Part 2: Leveraging a High-Temperature Thermal Racemization to Recycle the Classical Resolution Waste Stream. Organic Process Research and Development, 2022, 26, 2636-2645.	2.7	12
1039	Visible-Light-Promoted Photoaddition of <i>N</i> -Nitrosopiperidines to Alkynes: Continuous Flow Chemistry Approach to Tetrahydroimidazo[1,2- <i>a</i>]pyridine 1-Oxides. Organic Letters, 2022, 24, 5840-5844.	4.6	6

#	Article	IF	CITATIONS
1040	On Demand Flow Platform for the Generation of Anhydrous Dinitrogen Trioxide and Its Further Use in Nâ€Nitrosative Reactions. Angewandte Chemie, 0, , .	2.0	1
1041	Synthesis of Thiomorpholine via a Telescoped Photochemical Thiol–Ene/Cyclization Sequence in Continuous Flow. Organic Process Research and Development, 2022, 26, 2532-2539.	2.7	8
1042	Flow chemistry in the multi-step synthesis of natural products. Green Synthesis and Catalysis, 2022, 3, 243-258.	6.8	26
1043	Continuous-Flow Synthesis of <i>syn</i> -2-Amino-1,3-diol via Catalytic Hydrogenation: A Vital Intermediate of (+)-Thiamphenicol and (+)-Florfenicol. Organic Process Research and Development, 2022, 26, 2656-2664.	2.7	1
1044	Microfluidic asymmetrical synthesis and chiral analysis. Journal of Industrial and Engineering Chemistry, 2022, 115, 62-91.	5.8	2
1045	Electrosynthesis of βâ€Acyloxyâ€Î³â€Selenyl Amines via Migratory Oxyselenation of <i>N</i> â€Acyl Allylamines. Advanced Synthesis and Catalysis, 2022, 364, 3466-3471.	4.3	11
1046	On Demand Flow Platform for the Generation of Anhydrous Dinitrogen Trioxide and Its Further Use in <i>N</i> â€Nitrosative Reactions. Angewandte Chemie - International Edition, 2022, 61, .	13.8	14
1047	Synthesis of new heterocyclic resveratrol analogues in milli- and microreactors: intensification of the Wittig reaction. Journal of Flow Chemistry, 2022, 12, 429-440.	1.9	8
1048	Synthesis of perfluoroaryl sulfides at electron-poor arenes via an S Ar step with an unexpected mechanism. Cell Reports Physical Science, 2022, 3, 101010.	5.6	5
1049	Challenges Arising from Continuousâ€Flow Olefin Metathesis. Angewandte Chemie - International Edition, 2022, 61, .	13.8	9
1050	Intraligand Charge Transfer Enables Visibleâ€Lightâ€Mediated Nickelâ€Catalyzed Crossâ€Coupling Reactions**. Angewandte Chemie - International Edition, 2022, 61, .	13.8	19
1051	Incorporative mixing in microreactors: Influence on reactions and importance of inlet designation. Chemical Engineering Journal, 2023, 451, 138942.	12.7	13
1052	A palladium polyaniline complex: a simple and efficient catalyst for batch and flow Suzuki–Miyaura cross-couplings. Chemical Communications, 2022, 58, 10845-10848.	4.1	4
1053	Autonomous model-based experimental design for rapid reaction development. Reaction Chemistry and Engineering, 2022, 7, 2375-2384.	3.7	11
1054	Design of Value Function Trajectory for State of Control in Continuous Manufacturing System. Computer Aided Chemical Engineering, 2022, , 2173-2178.	0.5	0
1055	A continuous flow investigation of sulfonyl chloride synthesis using <i>N</i> -chloroamides: optimization, kinetics and mechanism. Reaction Chemistry and Engineering, 2022, 7, 2582-2592.	3.7	3
1056	Development of a modular photoreactor for the upscaling of continuous flow photochemistry. Reaction Chemistry and Engineering, 2022, 7, 2280-2284.	3.7	5
1057	Automated stopped-flow library synthesis for rapid optimisation and machine learning directed experimentation. Chemical Science, 2022, 13, 12087-12099.	7.4	12

#	Article	IF	CITATIONS
1058	Accelerating colloidal quantum dot innovation with algorithms and automation. Materials Advances, 2022, 3, 6950-6967.	5.4	7
1059	Continuous-flow self-supported seATRP using a sonicated microreactor. Chemical Science, 2022, 13, 12326-12331.	7.4	9
1060	Catalytic asymmetric total synthesis of diazabicyclooctane Î ² -lactamase inhibitors avibactam and relebactam. Chemical Communications, 2022, 58, 10869-10872.	4.1	5
1061	The Continuous-flow Synthesis of 1H-Indazoles via Reaction of o-Fluorobenzaldehydes with tert-Butyl Carbazate under High Teperature. Heterocycles, 2022, 104, 1584.	0.7	0
1062	An enantio- and diastereoselective approach to indoloquinolizidines in continuous flow. Organic and Biomolecular Chemistry, 2022, 20, 8273-8279.	2.8	1
1063	Metal/catalyst-free sequential C–N bond forming cascades at room temperature: environment-friendly one-pot synthesis of 5-aminoimidazoles from aryl glyoxals, anilines, and amidines. Green Chemistry, 2022, 24, 6501-6510.	9.0	0
1064	Chemistry must respond to the crisis of transgression of planetary boundaries. Chemical Science, 2022, 13, 11710-11720.	7.4	10
1065	Rapid optimisation of API crystallisation in a segmented flow reactor with a continuous, variable temperature gradient. Reaction Chemistry and Engineering, 0, , .	3.7	2
1066	Sustainable separations in pharmaceutical manufacturing. , 2022, , 155-200.		1
1067	Antibody–Drug Conjugate Synthesis Using Continuous Flow Microreactor Technology. Organic Process Research and Development, 2022, 26, 2766-2770.	2.7	15
1068	Heterogeneous metallaphotoredox catalysis in a continuous-flow packed-bed reactor. Beilstein Journal of Organic Chemistry, 0, 18, 1123-1130.	2.2	4
1069	Synthesis and Activity of Ionic Antioxidant-Functionalized PAMAMs and PPIs Dendrimers. Polymers, 2022, 14, 3513.	4.5	1
1070	Rapid Catalysis for Aerobic Oxidation of Alcohols Based on Nitroxyl-Radical-Free Copper(II) under Ambient Conditions. Industrial & Engineering Chemistry Research, 2022, 61, 13408-13415.	3.7	7
1071	Synthesis of Lobeglitazone intermediates seeking for continuous drug production in flow capillary microreactor. Journal of Industrial and Engineering Chemistry, 2022, 116, 239-249.	5.8	4
1072	On drug discovery against infectious diseases and academic medicinal chemistry contributions. Beilstein Journal of Organic Chemistry, 0, 18, 1355-1378.	2.2	0
1073	Intraligand Charge Transfer Enables Visibleâ€Lightâ€Mediated Nickel atalyzed Cross oupling Reactions**. Angewandte Chemie, 2022, 134, .	2.0	5
1074	Advances in Thermo-, Photo-, and Electrocatalytic Continuous Conversion of Carbon Dioxide into Liquid Chemicals. ACS Sustainable Chemistry and Engineering, 2022, 10, 12906-12932.	6.7	8
1075	Challenges Arising from Continuous Flow Olefin Metathesis. Angewandte Chemie, 0, , .	2.0	0

#	Article	IF	CITATIONS
1076	Self-healing and polymer welding of soft and stiff epoxy thermosets via silanolates. Advanced Composites and Hybrid Materials, 2022, 5, 3068-3080.	21.1	34
1077	Continuous Flow Biocatalytic Reductive Amination by Coâ€Entrapping Dehydrogenases with Agarose Gel in a 3Dâ€Printed Mould Reactor. ChemBioChem, 2022, 23, .	2.6	7
1078	Multicomponent Direct Assembly of <i>N</i> -Heterospirocycles Facilitated by Visible-Light-Driven Photocatalysis. Journal of Organic Chemistry, 2022, 87, 13204-13223.	3.2	4
1079	Continuous Flow Generation of Acylketene Intermediates via Nitrogen Extrusion. Journal of Organic Chemistry, 2022, 87, 12297-12305.	3.2	1
1082	Continuousâ€Flow Divergent Lithiation of 2,3â€Dihalopyridines: Deprotolithiation versus Halogen Dance. Chemistry - A European Journal, 2022, 28, .	3.3	8
1083	Direct Synthesis of Oxaspirolactones in Batch, Photoflow, and Silica Gel-Supported Solvent-free Conditions via Visible-Light Photo- and Heterogeneous BrÃ,nsted Acid Relay Catalysis. Green Chemistry, 0, , .	9.0	1
1084	Dual role of benzophenone enables a fast and scalable C-4 selective alkylation of pyridines in flow. Chemical Science, 2022, 13, 12527-12532.	7.4	7
1085	Robust palladium catalysts on nickel foam for highly efficient hydrogenations. Catalysis Science and Technology, 2022, 12, 6992-6997.	4.1	2
1086	Anionic synthesis and end-functionalization of polymyrcene in a flow microreactor system. Reaction Chemistry and Engineering, 0, , .	3.7	3
1087	Organometallic flow chemistry: <i>solvento</i> complexes. Dalton Transactions, 2022, 51, 17354-17360.	3.3	2
1088	Development of a flow process for an easy and fast access to 2-pyrone derivatives. Reaction Chemistry and Engineering, 0, , .	3.7	0
1089	Synthesis of novel chiral spiro-β-lactams from nitrile oxides and 6-(<i>Z</i>)-(benzoylmethylene)penicillanate: batch, microwave-induced and continuous flow methodologies. RSC Advances, 2022, 12, 30879-30891.	3.6	1
1090	Will the next generation of chemical plants be in miniaturized flow reactors?. Lab on A Chip, 2023, 23, 1349-1357.	6.0	13
1091	Simple Enzyme Immobilization for Flow Chemistry? An Assessment of Available Strategies for an Acetaldehyde-Dependent Aldolase. Molecules, 2022, 27, 6483.	3.8	0
1092	Synthesis of α,β-Unsaturated Ketones in Water: The Claisen–Schmidt Condensation Revisited. ACS Sustainable Chemistry and Engineering, 2022, 10, 14271-14279.	6.7	4
1093	Strategies for Transferring Photobiocatalysis to Continuous Flow Exemplified by Photodecarboxylation of Fatty Acids. ACS Catalysis, 2022, 12, 14040-14049.	11.2	17
1094	Photoredox C _{sp} ³ â^'C _{sp} ² Reductive Cross ouplings of Cereblon Ligands for PROTAC Linker Exploration in Batch and Flow. ChemCatChem, 2022, 14, .	3.7	9
1095	Divergent Construction of Heterocycles by SOMOphilic Isocyanide Insertion under N-Heterocyclic Carbene Catalysis. Organic Letters, 2022, 24, 7654-7658.	4.6	9

#	Article	IF	CITATIONS
1096	Investigations of mixing and heat transfer in a structured tubeâ€inâ€tube millireactor by numerical, experimental and statistical methods. Asia-Pacific Journal of Chemical Engineering, 0, , .	1.5	0
1097	Taming Highly Unstable Radical Anions and 1,4-Organodilithiums by Flow Microreactors: Controlled Reductive Dimerization of Styrenes. Jacs Au, 2022, 2, 2514-2521.	7.9	8
1098	Continuous crystallization and its potential use in drug substance Manufacture: A review. Journal of Crystal Growth, 2023, 601, 126958.	1.5	10
1099	Exploring ultrafast flow chemistry by autonomous self-optimizing platform. Chemical Engineering Journal, 2023, 453, 139707.	12.7	7
1100	Merging dual photoredox/cobalt catalysis and boronic acid (derivatives) activation for the Minisci reaction. Organic Chemistry Frontiers, 2022, 9, 6958-6967.	4.5	6
1101	Process Development of a Triphasic Continuous Flow Suzuki–Miyaura Coupling Reaction in a Plug Flow Reactor. Organic Process Research and Development, 2022, 26, 3283-3289.	2.7	1
1102	Micro-Flow <i>N</i> -Acylation Using Highly Electrophilic Acyl Ammonium Cations for Peptide and Urethane-Protected <i>N</i> -Carboxyanhydride Syntheses. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2022, 80, 986-993.	0.1	0
1103	Flow Photo-On-Demand Phosgenation Reactions with Chloroform. Organic Process Research and Development, 2022, 26, 3336-3344.	2.7	7
1104	Femtosecond laser-engineered 3D microfluidic chips: Synthesis system sprouting highly efficient multiphase organic reactions. Chinese Chemical Letters, 2023, 34, 107985.	9.0	1
1105	Enabling Technologies in Carbohydrate Chemistry: Automated Glycan Assembly, Flow Chemistry and Data Science. ChemBioChem, 2023, 24, .	2.6	4
1106	Solar Panel Technologies for Light-to-Chemical Conversion. Accounts of Chemical Research, 2022, 55, 3376-3386.	15.6	20
1107	Hydrodynamics and mass transfer of liquid-liquid two-phase flow in circular milli-channels: Sizing-up effect. Journal of the Taiwan Institute of Chemical Engineers, 2022, 141, 104602.	5.3	2
1108	自动化和智能化的化å¦å•æ^• Scientia Sinica Chimica, 2022, , .	0.4	0
1109	A liquid-phase continuous-flow peptide synthesizer for preparing C-terminal free peptides. Reaction Chemistry and Engineering, 2023, 8, 863-870.	3.7	2
1110	Diverse continuous photooxygenation reactions of (+) and (â^')-α-pinenes to the corresponding pinocarvones or <i>trans</i> -pinocarveols. Reaction Chemistry and Engineering, 2023, 8, 790-797.	3.7	1
1111	Process Intensification of Dendritic Fibrous Nanospheres of Silica (KCC-1) via continuous flow: A Scalable, and Sustainable Route to a Conventional Batch Synthesis. Reaction Chemistry and Engineering, 0, , .	3.7	0
1112	Fluorescent organometallic dyads and triads: establishing spatial relationships. Chemical Science, 2023, 14, 350-361.	7.4	0
1113	Isocyanide chemistry enabled by continuous flow technology. Reaction Chemistry and Engineering, 2023, 8, 656-660.	3.7	2

#	Article	IF	CITATIONS
1114	Indium chloride catalysed benzyl bromination using continuous flow technology. Organic and Biomolecular Chemistry, 0, , .	2.8	1
1115	Flow chemistry: A green opportunity for organochalcogen chemistry. Current Opinion in Green and Sustainable Chemistry, 2023, 39, 100725.	5.9	Ο
1116	Engineering discrete synthetic macromolecules for biomedical applications. Nano Today, 2023, 48, 101728.	11.9	9
1117	Chemoselective borylation of bromoiodoarene in continuous flow: synthesis of bromoarylboronic acids. Journal of Flow Chemistry, 2023, 13, 21-29.	1.9	2
1118	Continuous Flow Photooxidative Degradation of Azo Dyes with Biomassâ€derived Carbon Dots. ChemPhotoChem, 0, , .	3.0	1
1120	Photochemical Synthesis of Pyrazolines from Tetrazoles in Flow. SynOpen, 0, , .	1.7	1
1121	Continuous Flow Chemistry Synthesis of Spirocyclic Sultams and Isoquinolines through Rhodium atalyzed Câ^'H Activation European Journal of Organic Chemistry, 2022, 2022, .	2.4	2
1122	Continuous, stable, and safe organometallic reactions in flow at room temperature assisted by deep eutectic solvents. CheM, 2022, 8, 3382-3394.	11.7	20
1123	Minireview: recent efforts toward upgrading lignin-derived phenols in continuous flow. Journal of Flow Chemistry, 0, , .	1.9	0
1124	Upgrading of Biobased Glycerol to Glycerol Carbonate as a Tool to Reduce the CO2 Emissions of the Biodiesel Fuel Life Cycle. Bioengineering, 2022, 9, 778.	3.5	0
1125	Engineering Single Atom Catalysts for Flow Production: From Catalyst Design to Reactor Understandings. Accounts of Materials Research, 2023, 4, 27-41.	11.7	7
1126	Development of an Automated Platform for C(sp ³)â^'C(sp ³) Bond Formation via XAT Chemistry. ChemCatChem, 2023, 15, .	3.7	4
1127	Introduction and Strategy. Springer Theses, 2023, , 1-16.	0.1	0
1128	Parametric Analysis and Optimization of Vanillin Hydrodeoxygenation Over a Sulfided Ni-Mo/δ-Al2O3 Catalyst Under Continuous-Flow Conditions. Topics in Catalysis, 0, , .	2.8	0
1129	Microreactor Technology: Identifying Focus Fields and Emerging Trends by Using CiteSpace II. ChemPlusChem, 2023, 88, .	2.8	2
1130	Inline purification in continuous flow synthesis – opportunities and challenges. Beilstein Journal of Organic Chemistry, 0, 18, 1720-1740.	2.2	7
1131	Continuous flow synthesis of phenyl glucosazone and its conversion to 2H-1,2,3-Triazole building blocks. Journal of Flow Chemistry, 2023, 13, 211-215.	1.9	2
1132	Process Intensification and Increased Safety for the On-Demand Continuous Flow Synthesis of Dithiothreitol, a Crucial Component in Polymerase Chain Reaction Testing Kits. Organic Process Research and Development, 2023, 27, 227-232.	2.7	2

#	Article	IF	CITATIONS
1133	Modern flow chemistry – prospect and advantage. Beilstein Journal of Organic Chemistry, 0, 19, 33-35.	2.2	4
1134	Electrophilic cyclization of reticuline-type alkaloids in flow via o-quinol intermediates. Journal of Flow Chemistry, 0, , .	1.9	0
1135	Polymerâ€Supported Phosphoricâ€Acid Catalysed Enantioselective Pictetâ€Spengler Cyclisation for the Synthesis of Quaternary Tryptolines in Batch/Continuous Flow. Advanced Synthesis and Catalysis, 2023, 365, 527-534.	4.3	3
1136	Generation of 1,2-Difluorobenzene via a Photochemical Fluorodediazoniation Step in a Continuous Flow Mode. Organic Process Research and Development, 2023, 27, 322-330.	2.7	5
1137	The E factor at 30: a passion for pollution prevention. Green Chemistry, 2023, 25, 1704-1728.	9.0	54
1138	Alternate end-game strategies towards Nirmatrelvir synthesis: Defining a continuous flow process for the preparation of an anti-COVID drug. Tetrahedron Letters, 2023, 116, 154344.	1.4	4
1139	Continuous Flow Epoxidation of Alkenes Using a Homogeneous Manganese Catalyst with Peracetic Acid. Organic Process Research and Development, 2023, 27, 262-268.	2.7	6
1140	Control of a complex multistep process for the production of mesalazine. Journal of Process Control, 2023, 122, 59-68.	3.3	3
1141	Micromixing Intensification within a Combination of T-Type Micromixer and Micropacked Bed. Micromachines, 2023, 14, 45.	2.9	0
1142	Homogeneous Catalysis at its Edge: Highâ€Temperature Ruâ€Catalysed Amination of Alcohols under Continuous Flow Conditions. ChemCatChem, 2023, 15, .	3.7	1
1143	Safe and Rapid Synthesis and Utilization of 2-Azidopyridine and Related Derivatives via Continuous Flow Diazotization. Current Organic Chemistry, 2023, 27, .	1.6	0
1144	Continuous Flow Synthesis of <i>N</i> -Sulfonyl-1,2,3-triazoles for Tandem Relay Cu/Rh Dual Catalysis. Journal of Organic Chemistry, 2023, 88, 1200-1214.	3.2	2
1145	Regulating the Gas–Liquid Slug Flow in Microchannels through High-Frequency Pulsatile Perturbations. Industrial & Engineering Chemistry Research, 2023, 62, 1997-2007.	3.7	3
1146	Continuous Flow Synthesis of Non‣ymmetrical Ureas from CO ₂ . Asian Journal of Organic Chemistry, 2023, 12, .	2.7	2
1147	Towards Antibiotic Synthesis in Continuous-Flow Processes. Molecules, 2023, 28, 1421.	3.8	1
1148	Development of a two-phase flow reaction system for DNA-encoded amide coupling. Reaction Chemistry and Engineering, 2023, 8, 1334-1340.	3.7	3
1149	A field guide to flow chemistry for synthetic organic chemists. Chemical Science, 2023, 14, 4230-4247.	7.4	67
1150	Continuous one-pot synthesis of new spiro-fused indoles from biobased building blocks using carbamoylation and imidation reactions under ultrasonic irradiation. Journal of Flow Chemistry, 0, , .	1.9	0

ITATION

P

#	Article	IF	CITATIONS
1151	Hybrid modeling supported development of an industrial small-molecule flow chemistry process. Computers and Chemical Engineering, 2023, 170, 108127.	3.8	3
1152	Ex-situ generation and synthetic utilization of bare trifluoromethyl anion in flow via rapid biphasic mixing. Nature Communications, 2023, 14, .	12.8	3
1153	Flow Synthesis of Gigantic Porphyrinic Cages: Facile Synthesis of P ₁₂ L ₂₄ and Discovery of Kinetic Product P ₉ L ₁₈ . Chemistry - A European Journal, 2023, 29, .	3.3	0
1154	Fast Isomerization Before Isomerizationâ€Hydroformylation: Probing the Neglected Period with A Novel Microfluidic Device. Angewandte Chemie - International Edition, 2023, 62, .	13.8	4
1155	Enantioselective Catalytic Addition of Nâ€Acyl Radicals: In Batch and In Flow Organophotoredox αâ€Amination of Aldehydes. European Journal of Organic Chemistry, 2023, 26, .	2.4	2
1156	A protocol for the gram-scale synthesis of polyfluoroaryl sulfides via an S Ar step. STAR Protocols, 2023, 4, 102043.	1.2	2
1157	Numerical Simulation Study of Nozzle Structure of Liquid-Gas Ejector. Theoretical Foundations of Chemical Engineering, 2022, 56, 1204-1214.	0.7	0
1158	Flow photochemistry — from microreactors to large-scale processing. Current Opinion in Chemical Engineering, 2023, 39, 100897.	7.8	5
1159	Continuous Flow Synthesis of Substituted 3,4-Propylenedioxythiophene Derivatives. Organic Process Research and Development, 2023, 27, 358-366.	2.7	1
1160	Fischer indole synthesis in DMSO/AcOH/H ₂ O under continuous flow conditions. Journal of Chemical Research, 2023, 47, 174751982211503.	1.3	Ο
1161	Quid Pro Flow. Journal of the American Chemical Society, 2023, 145, 4355-4365.	13.7	24
1162	Carrierâ€Free Enzyme Immobilizates for Flow Chemistry. Chemie-Ingenieur-Technik, 2023, 95, 531-542.	0.8	2
1163	Gene knockdown in HaCaT cells by small interfering RNAs entrapped in grapefruit-derived extracellular vesicles using a microfluidic device. Scientific Reports, 2023, 13, .	3.3	1
1164	In situ Reaction Monitoring in Photocatalytic Organic Synthesis. ChemCatChem, 2023, 15, .	3.7	2
1165	Verification of preparations of (1H-indol-3-yl)methyl electrophiles and development of their microflow rapid generation and substitution. Communications Chemistry, 2023, 6, .	4.5	5
1166	Continuous Flow Photochemical Synthesis of 3-Methyl-4-arylmethylene Isoxazole-5(4H)-ones through Organic Photoredox Catalysis and Investigation of Their Larvicidal Activity. Catalysts, 2023, 13, 518.	3.5	2
1167	Continuous-Flow Diazotization of Weakly Basic Aromatic Amines in a Microreaction System. Industrial & Engineering Chemistry Research, 2023, 62, 4995-5001.	3.7	1
1168	Continuous flow synthesis of 6-monoamino-6-monodeoxy-β-cyclodextrin. Beilstein Journal of Organic Chemistry, 0, 19, 294-302.	2.2	Ο

#	Article	IF	CITATIONS
1169	Process Intensification of a Napabucasin Manufacturing Method Utilizing Microflow Chemistry. ACS Omega, 2023, 8, 10373-10382.	3.5	3
1171	Stereoselective [2 + 2] photodimerization: a viable strategy for the synthesis of enantiopure cyclobutane derivatives. Organic and Biomolecular Chemistry, 2023, 21, 2899-2904.	2.8	3
1172	Scalable Palladium-Catalyzed C(sp3)–H Carbonylation of Alkylamines in Batch and Continuous Flow. Organic Process Research and Development, 2023, 27, 649-658.	2.7	0
1173	Metal-free synthesis of an estetrol key intermediate under intensified continuous flow conditions. Reaction Chemistry and Engineering, 2023, 8, 1565-1575.	3.7	3
1174	Rapid plugged flow synthesis of nucleoside analogues via Suzuki-Miyaura coupling and heck Alkenylation of 5-lodo-2'-deoxyuridine (or cytidine). Journal of Flow Chemistry, 2023, 13, 293-310.	1.9	3
1175	Synthesis of Biorenewable Terpene Monomers Using Enzymatic Epoxidation under Heterogeneous Batch and Continuous Flow Conditions. ACS Sustainable Chemistry and Engineering, 2023, 11, 4885-4893.	6.7	2
1176	Fast Isomerization Before Isomerizationâ€Hydroformylation: Probing the Neglected Period with A Novel Microfluidic Device. Angewandte Chemie, 2023, 135, .	2.0	0
1177	Continuousâ€Flow Enantioselective 1,4â€Addition Reactions of Malonates with Nitroolefins on Niâ€6upported Mesoporous Silica Materials with Coâ€feeding of a Chiral Ligand. Advanced Synthesis and Catalysis, 2023, 365, 1526-1530.	4.3	1
1178	FOMSy: 3D-printed flexible open-source microfluidic system and flow synthesis of PET-tracer. Journal of Flow Chemistry, 2023, 13, 247-256.	1.9	3
1179	Flow Electrochemistry for the <i>N</i> â€Nitrosation of Secondary Amines. Chemistry - A European Journal, 2023, 29, .	3.3	3
1180	Continuous Flow-Facilitated CB2 Agonist Synthesis, Part 2: Cyclization, Chlorination, and Amination. Organic Process Research and Development, 2023, 27, 601-609.	2.7	4
1181	Advanced In-Line Purification Technologies in Multistep Continuous Flow Pharmaceutical Synthesis. Organic Process Research and Development, 0, , .	2.7	3
1182	Continuous Flow-Facilitated CB2 Agonist Synthesis, Part 1: Azidation and [3 + 2] Cycloaddition. Organic Process Research and Development, 2023, 27, 592-600.	2.7	4
1183	Recent Advances in the Multistep Continuous Preparation of Apis and Fine Chemicals. Current Topics in Medicinal Chemistry, 2023, 23, .	2.1	1
1184	Continuous-Flow Synthesis of Δ ⁹ -Tetrahydrocannabinol and Δ ⁸ -Tetrahydrocannabinol from Cannabidiol. Journal of Organic Chemistry, 2023, 88, 6227-6231.	3.2	4
1185	An integrated five-step continuous flow synthesis of 2-(1-cyclohexenyl)ethylamine: a key intermediate for morphinans. Reaction Chemistry and Engineering, 0, , .	3.7	0
1186	Photocontrolled RAFT polymerization: past, present, and future. Chemical Society Reviews, 2023, 52, 3035-3097.	38.1	33
1188	Micro-Batch flow reactor for the photoproduction of H2O2 from water/real seawater. Journal of Flow Chemistry, 2023, 13, 185-192.	1.9	3

#	Article	IF	CITATIONS
1189	Continuous-flow and safe synthesis of 3-amino-4-amidoximinofurazan. Reaction Chemistry and Engineering, 0, , .	3.7	1
1190	On-line SFC-UV/Vis-MS using flow selection interfaces to monitor continuous flow single and sequential stage organic reactions in supercritical carbon dioxide. Journal of Supercritical Fluids, 2023, 199, 105957.	3.2	0
1191	From Batch to the Semi-Continuous Flow Hydrogenation of pNB, pNZ-Protected Meropenem. Pharmaceutics, 2023, 15, 1322.	4.5	0
1192	Challenges in unconventional catalysis. Catalysis Today, 2023, 420, 114180.	4.4	12
1193	Processing of Chemicals at Scale. , 2021, , 330-414.		0
1194	Homogeneous and heterogeneous strategies of enantioselective hydrogenation: Critical evaluation and future prospects. Chem Catalysis, 2023, 3, 100631.	6.1	2
1196	Making photochemistry scalable – an operationally simple falling film looping photoreactor. Reaction Chemistry and Engineering, 2023, 8, 2211-2222.	3.7	1
1197	Microfluidic steam-based synthesis of luminescent carbon quantum dots as sensing probes for nitrite detection. Green Processing and Synthesis, 2023, 12, .	3.4	1
1198	Fundamental and Development of Microreaction Technology for the Application of Fine Chemicals Synthesis. Journal of Chemical Engineering of Japan, 2023, 56, .	0.6	0
1199	Merging Continuous Flow Technology, Photochemistry and Biocatalysis to Streamline Steroid Synthesis. Advanced Synthesis and Catalysis, 2023, 365, 4024-4048.	4.3	2
1200	Flow chemistry based catalytic hydrogenation for improving the synthesis of 1-deoxynojirimycin (DNJ) from an l-sorbose derived precursor. Carbohydrate Research, 2023, 529, 108845.	2.3	2
1201	Autocatalytic flow chemistry. Scientific Reports, 2023, 13, .	3.3	0
1202	Anti-solvent crystallization behavior of triphenylmethanol in a droplet-based microfluidic device. Chemical Engineering Science, 2023, 280, 118971.	3.8	1
1203	Tuning Electrode Reactivity through Organometallic Complexes. ACS Applied Materials & Interfaces, 2023, 15, 28851-28878.	8.0	5
1204	Continuous catalytic aerobic oxidation of o‑chlorotoluene to o-chlorobenzoic acid under slug flow conditions. Journal of Flow Chemistry, 0, , .	1.9	0
1205	The influence of chain scission on the molecular weight of conjugated polymers in a continuous flow reactor. Polymer Degradation and Stability, 2023, 215, 110442.	5.8	2
1206	External Flash Generation of Carbenoids Enables Monodeuteration of Dihalomethanes. Chemistry - A European Journal, 2023, 29, .	3.3	7
1207	Prinzipien der Syntheseplanung. , 2023, , 881-949.		0

#	Article	IF	CITATIONS
1208	Continuous heterogeneous synthesis of hexafluoroacetone and its machine learning-assisted optimization. Journal of Flow Chemistry, 2023, 13, 337-346.	1.9	2
1209	Current State of Microflow Trifluoromethylation Reactions. Chemical Record, 2023, 23, .	5.8	1
1210	From batch to flow chemistry in the nickel-catalyzed allylation of 2-oxindoles and 2-coumaranones with allyl alcohol: towards more selective and sustainable reactions. Reaction Chemistry and Engineering, 0, , .	3.7	0
1211	Energetic Material Synthesis: Scale-up Using a Novel Modular Microflow Reactor Setup. Organic Process Research and Development, 0, , .	2.7	0
1212	Chemoselective Nitro Reduction using Nitrogenâ€Doped Carbonâ€Encapsulated Ni Catalyst and Yâ€Type Packed Bed Column for Continuous Flow Reaction. Advanced Synthesis and Catalysis, 0, , .	4.3	1
1213	Selectively Aerobic Oxidation of Benzylic C—H Bonds Enabled by Dual Anthracene and Cerium Catalysis under Continuous-Flow Conditions ^{â~} . Acta Chimica Sinica, 2023, 81, 435.	1.4	0
1214	Ultra-fast and sustainable formal [3 + 3] cycloadditions enabled by mixed variable optimization on an automated micromole scale flow platform. Reaction Chemistry and Engineering, 2023, 8, 2446-2454.	3.7	3
1215	Design and evaluation of co-currently illuminated two-phase bubbly flow photochemical reactors. Chemical Engineering Journal, 2023, 470, 144192.	12.7	0
1216	Multistep continuous flow synthesis of Erlotinib. Chinese Chemical Letters, 2024, 35, 108721.	9.0	0
1217	Two-step continuous flow process of sodium tanshinone IIA sulfonate using a 3D circular cyclone-type microreactor. Chinese Chemical Letters, 2024, 35, 108738.	9.0	1
1218	Continuous synthesis of grafted polyesters through successive photocontrolled BIT-RDRP and ROP strategy in flow tube reactors. Polymer Chemistry, 0, , .	3.9	0
1219	Efficient degassing and ppm-level oxygen monitoring flow chemistry system. Reaction Chemistry and Engineering, 2023, 8, 2052-2059.	3.7	0
1220	C3-Alkylation of furfural derivatives by continuous flow homogeneous catalysis. Beilstein Journal of Organic Chemistry, 0, 19, 582-592.	2.2	0
1221	A Continuousâ€Flow Method for the Transformation from Amides to Nitriles Catalyzed by CeO ₂ in Acetonitrile. Advanced Synthesis and Catalysis, 2023, 365, 1618-1622.	4.3	3
1222	The α-alkylation of ketones in flow. Reaction Chemistry and Engineering, 2023, 8, 1839-1842.	3.7	2
1223	Process Development of Heterogeneous Rh Catalyzed Carbene Transfer Reactions Under Continuous Flow Conditions. ChemSusChem, 2023, 16, .	6.8	0
1224	Humin Formation on SBA-15-pr-SO ₃ H Catalysts during the Alcoholysis of Furfuryl Alcohol to Ethyl Levulinate: Effect of Pore Size on Catalyst Stability, Transport, and Adsorption. ACS Applied Materials & Interfaces, 2023, 15, 24528-24540.	8.0	2
1225	Flow photolysis of aryldiazoacetates leading to dihydrobenzofurans <i>via</i> intramolecular C–H insertion. Organic and Biomolecular Chemistry, 2023, 21, 4770-4780.	2.8	0

#	Article	IF	CITATIONS
1227	A practical flow synthesis of hydrazine derivatives from alcohols. New Journal of Chemistry, 2023, 47, 11394-11397.	2.8	2
1228	Photocatalytic and Electrochemical Borylation and Silylation Reactions. Chemical Record, 2023, 23, .	5.8	0
1229	The Application of Microwaves, Ultrasounds, and Their Combination in the Synthesis of Nitrogen-Containing Bicyclic Heterocycles. International Journal of Molecular Sciences, 2023, 24, 10722.	4.1	2
1230	Autonomous kinetic model identification using optimal experimental design and retrospective data analysis: methane complete oxidation as a case study. Reaction Chemistry and Engineering, 0, , .	3.7	0
1231	Modular Photochemical Flow Synthesis of Structurally Diverse Benzyne and Triazine Precursors. Advanced Synthesis and Catalysis, 2023, 365, 2628-2635.	4.3	4
1232	Enantioselective and Step-Economic Synthesis of the Chiral Amine Fragment in the Tyrosine Kinase Inhibitor Repotrectinib by Direct Asymmetric Reductive Amination under Batch and Flow. Organic Process Research and Development, 0, , .	2.7	0
1233	Flow detoxification of a sulfur mustard simulant with organometallic compounds enabled by an optimization algorithm. Reaction Chemistry and Engineering, 2023, 8, 2658-2663.	3.7	1
1234	Polymerization Induced Microphase Separation for the Fabrication of Nanostructured Materials. Angewandte Chemie, 2023, 135, .	2.0	2
1235	Polymerization Induced Microphase Separation for the Fabrication of Nanostructured Materials. Angewandte Chemie - International Edition, 2023, 62, .	13.8	9
1236	Continuous flow synthesis of pyridinium salts accelerated by multi-objective Bayesian optimization with active learning. Chemical Science, 2023, 14, 8061-8069.	7.4	5
1237	Visible-Light-Mediated TiO ₂ -Catalyzed Aerobic Dehydrogenation of N-Heterocycles in Batch and Flow. Journal of Organic Chemistry, 2023, 88, 10682-10692.	3.2	2
1238	Continuous Flow Chemistry: A Novel Technology for the Synthesis of Marine Drugs. Marine Drugs, 2023, 21, 402.	4.6	0
1239	Continuous flow process development for the synthesis of an industrial raw material via solvent-free aromatic Claisen rearrangement. Journal of Flow Chemistry, 0, , .	1.9	0
1240	Continuous Ligand-Free Catalysis Using a Hybrid Polymer Network Support. Jacs Au, 0, , .	7.9	0
1241	Development of an amine transaminase-lipase cascade for chiral amide synthesis under flow conditions. Green Chemistry, 2023, 25, 6041-6050.	9.0	2
1242	Synthesis of cyclic carbonates from CO ₂ cycloaddition to bio-based epoxides and glycerol: an overview of recent development. RSC Advances, 2023, 13, 22717-22743.	3.6	4
1243	Transesterification of Methyl Acetate Using a Flow-Type Membrane Reactor with a Zeolite Membrane. Industrial & Engineering Chemistry Research, 2023, 62, 12191-12198.	3.7	1
1244	Continuous Flow Synthesis of Cycloparaphenylene Buildingâ€Blocks on a Large Scale. Chemistry - A European Journal, 0, , .	3.3	0

#	Article	IF	Citations
1245	Development of a microfluidic photochemical flow reactor concept by rapid prototyping. Frontiers in Chemistry, 0, 11, .	3.6	2
1246	Direct Arylation of Thiophenes in Continuous Flow. ChemistrySelect, 2023, 8, .	1.5	0
1247	Multi-step Flow Synthesis of the Anthelmintic Drug Praziquantel. SynOpen, 2023, 07, 362-370.	1.7	0
1248	The catalytic activity of copper/nickel supported on mesoporous aluminum catalyst towards cyclohexene epoxidation in continuous reactor. Journal of Saudi Chemical Society, 2023, 27, 101715.	5.2	0
1249	Continuous flow enantioselective processes catalysed by cinchona alkaloid derivatives. , 2023, , 100025.		0
1250	Synthesis of Acid Hydrazides from Carboxylic Acids in Continuous Flow. Organic Process Research and Development, 2023, 27, 1677-1683.	2.7	2
1251	Stereoselective Synthesis of Iminosugarâ€ <i>C</i> â€Glycosides through Addition of Organometallic Reagents to <i>N</i> â€ <i>tert</i> â€Butanesulfinyl Glycosylamines: A Comprehensive Study. European Journal of Organic Chemistry, 2023, 26, .	2.4	1
1253	Rapid, solvent-minimized and sustainable access to various types of ferroelectric-fluid molecules by harnessing mechano-chemical technology. Journal of Materials Chemistry C, 2023, 11, 12525-12542.	5.5	3
1254	Application of an Oscillatory Plug Flow Reactor to Enable Scalable and Fast Reactions in Water Using a Biomassâ€Based Polymeric Additive**. ChemSusChem, 2024, 17, .	6.8	0
1255	Advances in Continuous Flow Fluorination Reactions. Chemistry - an Asian Journal, 0, , .	3.3	1
1256	Chemical Engineering beyond Earth: Astrochemical Engineering in the Space Age. Sustainability, 2023, 15, 13227.	3.2	0
1257	Preparation of Insoluble Bis(2-bromoacetyl)biphenyl via a Photoultrasound Enhanced Continuous Flow Reaction. Industrial & Engineering Chemistry Research, 2023, 62, 15290-15299.	3.7	0
1258	Synthesize in a Smart Way: A Brief Introduction to Intelligence and Automation in Organic Synthesis. Challenges and Advances in Computational Chemistry and Physics, 2023, , 227-275.	0.6	0
1259	Strategies for Achieving Oxygen Tolerance in Reversible Addition–Fragmentation Chain Transfer Polymerization. Macromolecular Chemistry and Physics, 2023, 224, .	2.2	4
1260	Development of a Continuous Flow Baldwin Rearrangement Process and Its Comparison to Traditional Batch Mode. Organic Process Research and Development, 0, , .	2.7	0
1261	Comparative Study of Batch and Continuous Flow Reactors in Selective Hydrogenation of Functional Groups in Organic Compounds: What Is More Effective?. International Journal of Molecular Sciences, 2023, 24, 14136.	4.1	1
1262	Quantifying the Impact of Intraparticle Convection within Fixed Beds Formed by Catalytic Particles with Low Macro-Porosities. ACS Engineering Au, 2023, 3, 335-351.	5.1	1
1263	Digitisation of a modular plug and play 3D printed continuous flow system for chemical synthesis. , 0, , .		0

#	Article	IF	CITATIONS
1264	Mixer Design and Flow Rate as Critical Variables in Flow Chemistry Affecting the Outcome of a Chemical Reaction: A Review. Inventions, 2023, 8, 128.	2.5	3
1265	Tools and new metric (Macrocyclization Environmental Impact - MEI) to tackle the sustainability of macrocyclization reactions. Catalysis Today, 2024, 426, 114407.	4.4	0
1266	Recent advances in microfluidic fiberâ€spinning chemistry. Journal of Polymer Science, 2024, 62, 447-462.	3.8	0
1267	Electrocatalytic Reduction of (Hetero)Aryl Halides in a Protonâ€Exchange Membrane Reactor and its Application for Deuteration. ChemElectroChem, 2023, 10, .	3.4	0
1268	Three-Dimensional-Printed Vortex Tube Reactor for Continuous Flow Synthesis of Polyglycolic Acid Nanoparticles with High Productivity. Nanomaterials, 2023, 13, 2679.	4.1	2
1269	Flow Photo-on-Demand Synthesis of Vilsmeier Reagent and Acyl Chlorides from Chloroform and Its Applications to Continuous Flow Synthesis of Carbonyl Compounds. Organic Process Research and Development, 0, , .	2.7	0
1270	High Throughput Multidimensional Kinetic Screening in Continuous Flow Reactors. Angewandte Chemie - International Edition, 2023, 62, .	13.8	2
1271	High Throughput Multidimensional Kinetic Screening in Continuous Flow Reactors. Angewandte Chemie, 2023, 135, .	2.0	0
1272	Applications of Flow Chemistry in Total Synthesis of Natural Products. Current Organic Chemistry, 2023, 27, 1072-1089.	1.6	1
1273	Reaction of Highly Volatile Organic Compounds with Organolithium Species in Flow Microreactor. Synlett, 0, , .	1.8	1
1274	Continuous Flow Oxidation of Alcohols Using TEMPO/NaOCl for the Selective and Scalable Synthesis of Aldehydes. Organic Process Research and Development, 0, , .	2.7	0
1275	Rapid and Safe Continuousâ€Flow Simmonsâ€Smith Cyclopropanation using a Zn/Cu Couple Column. Advanced Synthesis and Catalysis, 2024, 366, 710-716.	4.3	2
1276	Effect of Solvent on the Rate of Ozonolysis: Development of a Homogeneous Flow Ozonolysis Protocol. Journal of Organic Chemistry, 2023, 88, 13720-13726.	3.2	2
1277	Continuous flow synthesis and applications of carbon dots: a mini-review. , 2023, 1, 100001.		0
1278	Scalable and Sustainable Synthesis of Calcium Dobesilate via Integrated Five-Step Continuous-Flow Chemistry. ACS Sustainable Chemistry and Engineering, 2023, 11, 14682-14690.	6.7	0
1279	Dynamic experiments in flow accelerate reaction network definition in a complex hydrogenation using catalytic static mixers. Reaction Chemistry and Engineering, 0, , .	3.7	0
1280	Recent Advancements in Typical Friedel–Crafts Alkylation Reactions Focused on Targeting Arene Nucleophiles. Synthesis, 2024, 56, 368-388.	2.3	5
1282	Kinetics Study of the Peroxidation of <i>tert</i> Butyl Alcohol to <i>tert</i> Butyl Hydrogen Peroxide in a Microreactor. Organic Process Research and Development, 0, , .	2.7	0

#	Article	IF	CITATIONS
1283	Copper-Catalyzed Asymmetric Allyl Alkylation Using Grignard Reagents under Continuous Flow. Chinese Journal of Organic Chemistry, 2023, 43, 3174.	1.3	0
1284	Semi-supervised Machine Learning Approach for Reaction Stoichiometry and Kinetic Model Identification using Spectral Data from Flow Reactors. Reaction Chemistry and Engineering, 0, , .	3.7	0
1285	A cyanide-free synthesis of nitriles exploiting flow chemistry. Reaction Chemistry and Engineering, 0, ,	3.7	0
1286	Photoredox-catalyzed direct C–H monofluoromethylation of heteroarenes. New Journal of Chemistry, 2023, 47, 20642-20652.	2.8	2
1287	Synthesis of Hydroxylated Stilbenes in a Batch and Flow Reactor: An Overview. ChemistrySelect, 2023, 8, .	1.5	0
1288	Flow Optimization of Photoredox-Mediated Metal-Free Ring-Opening Metathesis Polymerization. ACS Macro Letters, 0, , 1479-1485.	4.8	0
1290	Electrochemical Synthesis of Sulfonamides in Singleâ€Pass Flow. ChemElectroChem, 2023, 10, .	3.4	3
1291	Recent developments of automated flow chemistry in pharmaceutical compounds synthesis. Journal of Flow Chemistry, 0, , .	1.9	0
1292	Additive manufacturing technologies applied to the electrochemical valorization of biomass. Current Research in Green and Sustainable Chemistry, 2023, 7, 100386.	5.6	0
1293	Telescoped Two-Step Continuous-Flow Synthesis of Vanillin. ACS Sustainable Chemistry and Engineering, 2023, 11, 16322-16329.	6.7	0
1294	Photoâ€induced Multiphasic Reactions in Flow Process: A Decade of Progress. Asian Journal of Organic Chemistry, 2023, 12, .	2.7	0
1295	Flow synthesis of conjugated polymers: exploring the effects of solvent and catalyst on molecular weight. Polymer Chemistry, 2023, 14, 5200-5207.	3.9	0
1296	Divergent Chemo―and Biocatalytic Route to 16 <i>β</i> â€Methylcorticoids: Asymmetric Synthesis of Betamethasone Dipropionate, Clobetasol Propionate, and Beclomethasone Dipropionate. Angewandte Chemie - International Edition, 2024, 63, .	13.8	0
1297	Oneâ€Flow Synthesis of Substituted Indoles via Sequential 1,2â€Addition/Nucleophilic Substitution of Indolylâ€3 arbaldehydes. Chemistry - an Asian Journal, 0, , .	3.3	0
1298	Asymmetric electrochemical synthesis in flow. Journal of Flow Chemistry, 0, , .	1.9	0
1299	Continuous Flow Generation of Highly Reactive Organometallic Intermediates: A Recent Update. Journal of Flow Chemistry, 0, , .	1.9	1
1301	CuNPs@Al2O3-cellulose composite for the ligand-free Suzuki cross-coupling reactions in batch and continuous flow process. Journal of Organometallic Chemistry, 2024, 1004, 122954.	1.8	0
1302	Green chemistry approach for stereoselective aldol condensation catalyzed by amino acids under microflow conditions. Chemical Engineering Research and Design, 2024, 201, 169-175.	5.6	0

#	Article	IF	CITATIONS
1303	Synthesis of small protein domains by automated flow chemistry. Reaction Chemistry and Engineering, 2023, 9, 58-69.	3.7	0
1304	Leveraging flow chemistry for the synthesis of trisubstituted isoxazoles. Journal of Flow Chemistry, 2023, 13, 405-411.	1.9	0
1305	Sulfur Tetrafluoride (SF ₄) as a Deoxyfluorination Reagent for Organic Synthesis in Continuous Flow Mode. Organic Process Research and Development, 0, , .	2.7	1
1306	Optimal synthesis conditions for NBF-modified 8,13-dihydroberberine derivatives. New Journal of Chemistry, 0, , .	2.8	0
1307	Impact of gas-solid direct contact on gas-liquid-solid reaction performance in a flow reactor. Journal of Flow Chemistry, 0, , .	1.9	0
1308	A modular flow platform for sulfur(VI) fluoride exchange ligation of small molecules, peptides and proteins. , 2024, 3, 185-191.		2
1309	Computational Studies towards the Optimization of the Synthesis of 1,2,4â€Triazolo[1,5â€ <i>a</i>]pyridineâ€2â€carboxylate: Advantages of Continuous Flow Processing. European Journal of Organic Chemistry, 2024, 27, .	2.4	0
1310	Development of a Continuous Flow Grignard Reaction to Manufacture a Key Intermediate of Ipatasertib. Organic Process Research and Development, 0, , .	2.7	1
1312	Automated multistep synthesis of 2-pyrazolines in continuous flow. Reaction Chemistry and Engineering, 2024, 9, 558-565.	3.7	0
1313	Continuous Flow Synthesis of the PARP-1/2 Inhibitor HYDAMTIQ: Synthetic Strategy, Optimization, and Green Metrics Evaluation. Organic Process Research and Development, 0, , .	2.7	1
1314	Enhancing the Scalability of Crystallization-Driven Self-Assembly Using Flow Reactors. ACS Macro Letters, 0, , 1636-1641.	4.8	1
1315	Heterogeneous photocatalysis for biomass valorization to organic acids. Green Chemistry, 2023, 25, 10338-10365.	9.0	Ο
1316	Preparation of Aminals under Continuous Flow Conditions. Journal of Chemical Education, 2023, 100, 4728-4733.	2.3	0
1317	Divergent Chemo―and Biocatalytic Route to 16 <i>β</i> â€Methylcorticoids: Asymmetric Synthesis of Betamethasone Dipropionate, Clobetasol Propionate, and Beclomethasone Dipropionate. Angewandte Chemie, 2024, 136, .	2.0	Ο
1318	A Proportional–Integral Feedback Controlled Automatic Flow Chemistry System to Produce Onâ€Đemand AgAu Alloy Nanoboxes. Small Structures, 0, , .	12.0	0
1319	Photocatalytic metalâ€free oxidation of alcohols with molecular oxygen in supercritical CO ₂ medium. ChemPhotoChem, 2024, 8, .	3.0	0
1320	A low-volume flow electrochemical microreactor for rapid and automated process optimization. Reaction Chemistry and Engineering, 2023, 9, 31-36.	3.7	1
1321	lridium-catalyzed Asymmetric, Complete Hydrogenation of Pyrimidinium Salts under Batch and Flow. Green Chemistry, 0, , .	9.0	0

#	Article	IF	CITATIONS
1322	Covalent organic framework crystallization using a continuous flow packed-bed reactor. CrystEngComm, 0, , .	2.6	0
1323	Enabling High Throughput Kinetic Experimentation by Using Flow as a Differential Kinetic Technique**. Angewandte Chemie - International Edition, 2024, 63, .	13.8	0
1324	Continuous flow synthesis: A promising platform for the future of nanoparticle-based drug delivery. Journal of Drug Delivery Science and Technology, 2024, 91, 105265.	3.0	0
1325	Enabling High Throughput Kinetic Experimentation by Using Flow as a Differential Kinetic Technique**. Angewandte Chemie, 2024, 136, .	2.0	0
1326	Surface-Immobilized ZnN _{<i>x</i>} Sites as High-Performance Catalysts for Continuous Flow Knoevenagel Condensation in Water. ACS Applied Materials & Interfaces, 0, , .	8.0	0
1327	Continuous biomanufacturing in upstream and downstream processing. ChemistrySelect, 2023, .	1.5	0
1328	Multiphasic Continuousâ€Flow Reactors for Handling Gaseous Reagents in Organic Synthesis: Enhancing Efficiency and Safety in Chemical Processes. Angewandte Chemie, 2024, 136, .	2.0	0
1329	Multiphasic Continuousâ€Flow Reactors for Handling Gaseous Reagents in Organic Synthesis: Enhancing Efficiency and Safety in Chemical Processes. Angewandte Chemie - International Edition, 2024, 63, .	13.8	0
1330	Durability of Photosensitizers in a Photo-oxidation Reaction in a Novel Oscillatory Baffled Photo Reactor. Pharmaceutical Fronts, 0, , .	0.8	0
1331	Development and Kilogram-Scale Implementation of a Flavin-Catalyzed Photoredox Fluorodecarboxylation. Organic Process Research and Development, 2024, 28, 266-272.	2.7	1
1332	A multistep (semi)-continuous biocatalytic setup for the production of polycaprolactone. Reaction Chemistry and Engineering, 2024, 9, 713-727.	3.7	0
1333	Photochemical routes to artemisinin. , 2023, , 301-330.		0
1334	Differential microthermometry enables high-throughput calorimetry. Energy and Environmental Science, 0, , .	30.8	0
1335	å∰结构纳米通é"å†…æº¶èŤæµ"度æ¢⁻度驱动的剪å^‡æµ• Scientia Sinica: Physica, Mechanica Et Astr	on@mica, :	2023,,.
1337	Environmental Impact Differences of Single-Chain Nanoparticle Production by Batch and Flow Chemistry. Organic Process Research and Development, 0, , .	2.7	0
1338	Openâ€source flow setup for rapid and efficient [¹⁸ F]fluoride drying for automation of PET tracer syntheses. Journal of Labelled Compounds and Radiopharmaceuticals, 2024, 67, 40-58.	1.0	0
1339	Reaction Kinetics using a Chemputable Framework for Data Collection and Analysis. Angewandte Chemie - International Edition, 2024, 63, .	13.8	0
1340	Reaction Kinetics using a Chemputable Framework for Data Collection and Analysis. Angewandte Chemie, 2024, 136, .	2.0	0

#	Article	IF	CITATIONS
1341	Environmentally Benign Flash Synthetic Chemistry Using Flow Microreactors. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2024, 82, 2-13.	0.1	0
1342	Uncommon building blocks in liquid crystals. Liquid Crystals, 0, , 1-26.	2.2	0
1343	Efficient construction of a \hat{l}^2 -naphthol library under continuous flow conditions. RSC Advances, 2024, 14, 2673-2677.	3.6	0
1344	Modular synthesis of congested l² ^{2,2} -amino acids <i>via</i> the merger of photocatalysis and oxidative functionalisations. Chemical Communications, 2024, 60, 1456-1459.	4.1	1
1345	A Photo-Enzymatic Cascade to Access Dihydrocoumarins from Incompatibility to Compatibility. Molecular Catalysis, 2024, 554, 113852.	2.0	0
1346	Ultra-concurrent Remote Laboratory for Microfluidic Applications. Lecture Notes in Networks and Systems, 2023, , 463-476.	0.7	2
1347	Microflow Synthesis of Unsymmetrical <i>H</i> -Phosphonates via Sequential and Direct Substitution of Chlorine Atoms in Phosphorus Trichloride with Alkoxy Groups. Journal of Organic Chemistry, 2024, 89, 1777-1783.	3.2	0
1348	Illuminating continuous flow. , 2024, 3, 139-140.		0
1349	In Continuo Pdâ€Catalysed Cross Coupling Reactions of Organolithium Reagents with Aryl Bromides Under Aerobic Conditions. European Journal of Organic Chemistry, 2024, 27, .	2.4	1
1350	Selective oxidation of veratryl alcohol to veratraldehyde using more active catalyst in a continuous reactor. Journal of Saudi Chemical Society, 2024, 28, 101804.	5.2	0
1351	Continuous flow synthesis of the ionizable lipid ALC-0315. Reaction Chemistry and Engineering, 2024, 9, 959-966.	3.7	0
1352	Synthesis of CHF ₂ -Containing Heterocycles through Oxy-difluoromethylation Using Low-Cost 3D Printed PhotoFlow Reactors. Organic Letters, 2024, 26, 2877-2882.	4.6	0
1353	Elucidation of the kinetic stabilities of carbenoid species by integration of theoretical and experimental studies. Reaction Chemistry and Engineering, 2024, 9, 1173-1178.	3.7	0
1354	Continuous Direct Mechanocatalytic Suzukiâ€Miyaura Coupling via Twinâ€Screw Extrusion. Chemistry - A European Journal, 2024, 30, .	3.3	0
1355	Application of Taylor Vortex Flow Reactor Enabling Precise Control of Nucleation in Reactive Crystallization. Organic Process Research and Development, 0, , .	2.7	0
1356	Flowmicro In‣ine Analysisâ€Driven Design of Reactions Mediated by Unstable Intermediates: Flash Monitoring Approach. Chemistry - A European Journal, 2024, 30, .	3.3	0
1357	Enantioselective Flow Synthesis of a Tetrahydroquinoline SERM Enabled by Immobilized Chiral Phosphoric Acid Catalysis and Diboronic Acid Mediated Selective Nitro Reduction. Advanced Synthesis and Catalysis, 2024, 366, 1024-1030.	4.3	0
1358	A Silicaâ€Supported Yttrium Triflate Packed Bed Reactor for Continuous Flow Michael Addition of Indoles to Benzylidene Malonates. Advanced Synthesis and Catalysis, 2024, 366, 1001-1006.	4.3	0

#	Article	IF	CITATIONS
1359	In flow only. , 2024, 3, 133-133.		0
1360	Palladium-Catalyzed Aminations in Flowâ€ ⁻ <i>on Water</i> . ACS Catalysis, 2024, 14, 1545-1552.	11.2	1
1361	Continuous Flow Synthesis of 4â€methylâ€3â€oxoâ€nâ€phenylâ€pentanamide. ChemistrySelect, 2024, 9, .	1.5	0
1362	Overview of Recent Scale-Ups in Organic Electrosynthesis (2000–2023). Organic Process Research and Development, 2024, 28, 338-366.	2.7	1
1363	Inâ€situ Oxidation and Coupling of Anilines towards Unsymmetric Azobenzenes Using Flow Chemistry. ChemSusChem, 0, , .	6.8	0
1364	A dynamic knowledge graph approach to distributed self-driving laboratories. Nature Communications, 2024, 15, .	12.8	1
1365	Continuous Flow Multigram-Scale Synthesis of Cetylpyridinium Chloride. , 2024, 01, .		0
1366	The continuous flow synthesis of azos. Journal of Flow Chemistry, 0, , .	1.9	1
1367	Continuous Polymer Synthesis and Manufacturing of Polyurethane Elastomers Enabled by Automation. ACS Polymers Au, 2024, 4, 120-127.	4.1	0
1368	Indirect H2O2 synthesis without H2. Nature Communications, 2024, 15, .	12.8	0
1369	Micro-flow heteroatom alkylation <i>via</i> TfOH-mediated rapid <i>in situ</i> generation of carbocations and subsequent nucleophile addition. Chemical Communications, 2024, 60, 2497-2500.	4.1	0
1370	Photochemical Reaction Made Simpler for Undergraduate Laboratory. Journal of Chemical Education, 2024, 101, 669-674.	2.3	0
1371	Flash Organometallic Catalysis Uncovered by Continuous Microfluidic Devices. ChemPlusChem, 0, , .	2.8	0
1372	Oxidative spirolactonisation for modular access of \hat{I}^3 -spirolactones via a radical tandem annulation pathway. Chinese Chemical Letters, 2024, , 109565.	9.0	0
1373	A Continuous Process for Manufacturing Apremilast. Part I: Process Development and Intensification by Utilizing Flow Chemistry Principles. Organic Process Research and Development, 0, , .	2.7	1
1374	Surface nanodroplets as platforms for small scale chemical engineering. Chemical Engineering Journal, 2024, 483, 149252.	12.7	0
1375	Amberlyst-A26-Mediated Corey–Chaykovsky Cyclopropanation of 9-Alkylidene-9 <i>H</i> -fluorene under Continuous Process. Journal of Organic Chemistry, 2024, 89, 2283-2293.	3.2	0
1376	Synthesis of Substituted Pentafluorosulfanylpyrazoles Under Flow Conditions. Journal of Organic Chemistry, 2024, 89, 3552-3562.	3.2	0

#	Article	IF	CITATIONS
1377	A robust, versatile, and reusable heterogeneous hydrogenation catalyst based on a simple Ni(II) diimine complex and its application to the syntheses of amines. , 2024, 3, 100036.		0
1378	A Continuous Process for Manufacturing Apremilast. Part II: Process Characterization to Establish a Parametric Control Strategy. Organic Process Research and Development, 0, , .	2.7	0
1379	Development of a Continuous Flow Process for the Efficient Preparation of Anti-Tuberculosis-Specific Drug TBAJ-876. Organic Process Research and Development, 0, , .	2.7	0
1380	Advances of batch-variation control for photovoltaic polymers. Nano Energy, 2024, 123, 109397.	16.0	0
1381	Continuous Flow Synthesis of a Key Intermediate Common to Gefitinib and Larotinib. Organic Process Research and Development, 2024, 28, 780-789.	2.7	0
1382	Dynamic Spinning Disc Reactor Technology to Enable In Situ Solid Product Formation in a Diazotization and Azo Coupling Sequence. Organic Process Research and Development, 0, , .	2.7	0
1383	Stereoselective Photocatalytic Transformations in Continuous Flow. , 2024, , .		0
1384	A three-minute gram-scale synthesis of amines via ultrafast "on-water―in continuo organolithium addition to imines. Cell Reports Physical Science, 2024, 5, 101838.	5.6	0
1385	A thiol–ene mediated approach for peptide bioconjugation using â€~green' solvents under continuous flow. Organic and Biomolecular Chemistry, 2024, 22, 2203-2210.	2.8	0
1386	Green and sustainable approaches for the Friedel–Crafts reaction between aldehydes and indoles. Beilstein Journal of Organic Chemistry, 0, 20, 379-426.	2.2	0
1387	Continuous-flow copper hydride-catalyzed reduction of 2,1-benzoisoxazoles. Reaction Chemistry and Engineering, 0, , .	3.7	0
1388	Lab-scale flow chemistry? Just do it yourself!. Journal of Flow Chemistry, 2024, 14, 257-279.	1.9	0
1389	Continuous flow synthesis of C-acyloxy-substituted aziridines in microchannel reactor: Addition of carboxylic acids to 2-methylenaziridines. Tetrahedron Letters, 2024, 138, 154982.	1.4	0
1390	Autonomous reaction Pareto-front mapping with a self-driving catalysis laboratory. , 2024, 1, 240-250.		0
1391	Flow Chemistry for Synthesis of 2-(C-Glycosyl)acetates from Pyranoses via Tandem Wittig and Michael Reactions. Organic Process Research and Development, 0, , .	2.7	0
1392	Access semi-stabilized and unstabilized diazo compounds using iodosylbenzene. Journal of Flow Chemistry, 2024, 14, 109-118.	1.9	0
1393	FlowAR: A Mixed Reality Program to Introduce Continuous Flow Concepts. Journal of Chemical Education, 0, , .	2.3	0
1394	Dynamic modeling and robust optimal operation of the hydrothermal synthesis of zeolites in a continuous oscillatory baffled reactor. Chemical Engineering and Processing: Process Intensification, 2024, 198, 109728.	3.6	0

	Сітат	ION REPORT	
#	Article	IF	Citations
1395	The impact of UV light on synthetic photochemistry and photocatalysis. Nature Chemistry, 0, , .	13.6	0
1396	Flow synthesis development and photocatalytic activity optimization of copper oxide nanoparticles using design of experiments. Chemical Engineering Journal, 2024, 486, 150131.	12.7	0
1397	Chiral Auxiliaries in Continuous Flow Processes. , 2024, , .		0
1398	New Progress of Fully Continuous Flow Reaction Technologies in Pharmaceutical Synthesis (2019–2022). Chinese Journal of Organic Chemistry, 2024, 44, 378.	1.3	0
1399	Numerical study of thermal-hydraulic performance enhancement in a shell-and-tube milli-reactor. International Communications in Heat and Mass Transfer, 2024, 153, 107348.	5.6	0
1400	Ultrasonic or Microwave Modified Continuous Flow Chemistry for the Synthesis of Tetrahydrocannabinol: Observing Effects of Various Solvents and Acids. ACS Omega, 0, , .	3.5	0
1401	Continuous Flow Chemistry with Solids: A Review. Organic Process Research and Development, 0, , .	2.7	0
1402	High performance flow-focusing droplet microreactor. Extractive separation of rare earths as case of study. Chemical Engineering Journal, 2024, 486, 150136.	12.7	0
1403	Continuous Flow Synthesis of Benzotriazin-4(3 <i>H</i>)-ones via Visible Light Mediated Nitrogen-Centered Norrish Reaction. Organic Letters, 2024, 26, 2371-2375.	4.6	0
1404	Digital Pareto-front mapping of homogeneous catalytic reactions. Reaction Chemistry and Engineering, 2024, 9, 787-794.	3.7	0
1405	Highly Productive Flow Synthesis for Lithiation, Borylation, and/or Suzuki Coupling Reaction. Organic Process Research and Development, 0, , .	2.7	0
1406	Effect of monomethyl itaconate on thermal stabilization and rheological properties of narrow polydispersity polyacrylonitrile synthesized in continuous flow. European Polymer Journal, 2024, 210, 112931.	5.4	0
1407	Computer-aided automated flow chemical synthesis of polymers. Giant, 2024, 18, 100252.	5.1	0
1408	Where is chemistry's moon? Highlights from the 1 st conference for the Center of the Transformation of Chemistry (CTC) at Ringberg Castle 2023. Green Chemistry, 0, , .	9.0	0
1409	An Overview of the Synthesis of Hexafluoroisopropanol and Its Key Intermediates. Pharmaceutical Fronts, 2024, 06, e1-e8.	0.8	0