Thermoelectric performance optimization when consid back pressure applied to engine exhaust waste heat rec

Energy 133, 584-592 DOI: 10.1016/j.energy.2017.05.133

Citation Report

#	Article	IF	CITATIONS
1	Assessment of the energy recovery potential of a thermoelectric generator system for passenger vehicles under various drive cycles. Energy, 2018, 143, 363-371.	8.8	28
2	Internal combustion engine waste heat recovery by a thermoelectric generator inserted at combustion chamber walls. International Journal of Energy Research, 2018, 42, 4853-4865.	4.5	21
3	Prediction of the fuel economy potential for a skutterudite thermoelectric generator in light-duty vehicle applications. Applied Energy, 2018, 231, 68-79.	10.1	38
4	Theoretical analysis on a segmented annular thermoelectric generator. Energy, 2018, 157, 297-313.	8.8	55
5	Evaluation of the energy recovery potential of thermoelectric generators in diesel engines. Journal of Cleaner Production, 2019, 241, 118412.	9.3	51
6	Experimental Evaluation of a Diesel Cogeneration System for Producing Power and Drying Aromatic Herbs. Sustainability, 2019, 11, 5121.	3.2	4
7	Predictive energy-saving optimization based on nonlinear model predictive control for cooperative connected vehicles platoon with V2V communication. Energy, 2019, 189, 116120.	8.8	61
8	Automotive exhaust thermoelectric generators: Current status, challenges and future prospects. Energy Conversion and Management, 2019, 195, 1138-1173.	9.2	172
9	Fuel economy analysis under a WLTP cycle on a mid-size vehicle equipped with a thermoelectric energy recovery system. Energy, 2019, 179, 306-314.	8.8	37
10	Simple analytic model for optimally sizing thermoelectric generator module arrays for waste heat recovery. Applied Thermal Engineering, 2019, 146, 795-804.	6.0	13
11	Performance optimization of a class of combined thermoelectric heating devices. Science China Technological Sciences, 2020, 63, 2640-2648.	4.0	77
12	Compact automotive thermoelectric generator with embedded heat pipes for thermal control. Energy, 2020, 197, 117154.	8.8	48
14	Performance enhancement of a natural-gas-fired high-temperature thermoelectric generation system: Design, experiment and modelling optimization. Journal of Power Sources, 2021, 493, 229704.	7.8	4
15	Analytical design model for waste heat thermoelectric generator and experimental verification. Energy Conversion and Management, 2022, 252, 115034.	9.2	17
16	Performance assessment of annular thermoelectric generators for automobile exhaust waste heat recovery. Energy, 2022, 246, 123375.	8.8	23
17	Experimental investigation of a splitting CO2 transcritical power cycle in engine waste heat recovery. Energy, 2022, 244, 123126.	8.8	10
18	Effect of Exhaust Backpressure on Performance of a Diesel Engine: Neural Network based Sensitivity Analysis. International Journal of Automotive Technology, 2022, 23, 215-223.	1.4	5
19	Investigations on Supercharging and Turbo-Compounding of a Single Cylinder Diesel Engine. , 0, , .		5

CITATION REPORT

#	Article	IF	CITATIONS
20	Matching and optimization for a thermoelectric generator applied in an extended-range electric vehicle for waste heat recovery. Applied Energy, 2022, 313, 118783.	10.1	13
21	Review of thermoelectric generation for internal combustion engine waste heat recovery. Progress in Energy and Combustion Science, 2022, 91, 101009.	31.2	62
22	Numerical investigation of an exhaust thermoelectric generator with a perforated plate. Energy, 2023, 263, 125776.	8.8	25
23	Experimental and modeling analysis on thermoelectric heat recovery to maximize the performance of next-generation diesel engines dedicated for future electrified powertrains. Applied Thermal Engineering, 2023, 219, 119530.	6.0	10
24	Fuel saving potential analysis of bifunctional vehicular waste heat recovery system using thermoelectric generator and organic Rankine cycle. Energy, 2023, 263, 125717.	8.8	10
25	Experimental study on influence of high exhaust backpressure on diesel engine performance via energy and exergy analysis. Energy, 2023, 263, 125788.	8.8	5
26	Thermodynamic analysis of power recovery of marine diesel engine under high exhaust backpressure by additional electrically driven compressor. Energy, 2023, 266, 126470.	8.8	1
27	Heating load, COP and exergetic efficiency optimizations for TEG-TEH combined thermoelectric device with Thomson effect and external heat transfer. Energy, 2023, 270, 126824.	8.8	23
28	Numerical investigation of a thermoelectric generator system with embedded sickle-shaped fins. Applied Thermal Engineering, 2024, 236, 121741.	6.0	5