A fossil protein chimera; difficulties in discriminating d modern cross-contamination

Proceedings of the Royal Society B: Biological Sciences 284, 20170544

DOI: 10.1098/rspb.2017.0544

Citation Report

#	Article	IF	CITATIONS
1	A fossil protein chimera; difficulties in discriminating dinosaur peptide sequences from modern cross-contamination. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170544.	1.2	70
2	A Comparison of Common Mass Spectrometry Approaches for Paleoproteomics. Journal of Proteome Research, 2018, 17, 936-945.	1.8	47
3	Domain-Specific Proteogenomic Analysis of Collagens to Evaluate De Novo Sequencing Results and Database Information. Journal of Molecular Evolution, 2018, 86, 293-302.	0.8	4
4	A guide to ancient protein studies. Nature Ecology and Evolution, 2018, 2, 791-799.	3.4	163
5	Mass Spectrometry of Proteins and Archeology. Journal of the Mass Spectrometry Society of Japan, 2018, 66, 214-217.	0.0	0
6	Back to the past: deciphering cultural heritage secrets by protein identification. Applied Microbiology and Biotechnology, 2018, 102, 5445-5455.	1.7	27
7	Introduction to Forensic Proteomics. ACS Symposium Series, 2019, , 1-8.	0.5	2
8	Current status and future perspectives of archaeornithology: reconstructing the palaeoecology of avian species using zooarchaeological bird bones. Japanese Journal of Ornithology, 2019, 68, 289-306.	0.0	0
9	Palaeoproteomic identification of breast milk protein residues from the archaeological skeletal remains of a neonatal dog. Scientific Reports, 2019, 9, 12841.	1.6	11
10	Early Pleistocene enamel proteome from Dmanisi resolves Stephanorhinus phylogeny. Nature, 2019, 574, 103-107.	13.7	135
11	Paleoproteomics of Mesozoic Dinosaurs and Other Mesozoic Fossils. Proteomics, 2019, 19, e1800251.	1.3	28
12	Ancient amino acids from fossil feathers in amber. Scientific Reports, 2019, 9, 6420.	1.6	25
13	A Proteomics Tutorial. ACS Symposium Series, 2019, , 9-28.	0.5	2
14	Proteomic Sample Preparation Techniques: Toward Forensic Proteomic Applications. ACS Symposium Series, 2019, , 29-46.	0.5	0
15	NextGen Serology: Leveraging Mass Spectrometry for Protein-Based Human Body Fluid Identification. ACS Symposium Series, 2019, , 47-80.	0.5	0
16	Informatics Approaches to Forensic Body Fluid Identification by Proteomic Mass Spectrometry. ACS Symposium Series, 2019, , 81-90.	0.5	1
17	Fingermarks as a New Proteomic Specimen: State of the Art and Perspective of In Situ Proteomics. ACS Symposium Series, 2019, , 91-105.	0.5	2
18	Human Identification Using Genetically Variant Peptides in Biological Forensic Evidence. ACS Symposium Series, 2019, , 107-123.	0.5	4

#	Article	IF	CITATIONS
19	Proteomics in the Analysis of Forensic, Archaeological, and Paleontological Bone. ACS Symposium Series, 2019, , 125-141.	0.5	4
20	Proteomics for Microbial Forensics. ACS Symposium Series, 2019, , 143-160.	0.5	0
21	ISO 17025 Accreditation of Method-Based Mass Spectrometry for Bioforensic Analyses. ACS Symposium Series, 2019, , 161-174.	0.5	0
22	Unambiguous Identification of Ricin and Abrin with Advanced Mass Spectrometric Assays. ACS Symposium Series, 2019, , 175-184.	0.5	0
23	Challenges in the Development of Reference Materials for Protein Toxins. ACS Symposium Series, 2019, , 185-202.	0.5	2
24	The Statistical Defensibility of Forensic Proteomics. ACS Symposium Series, 2019, , 203-228.	0.5	1
29	Proteomes of the past: the pursuit of proteins in paleontology. Expert Review of Proteomics, 2019, 16, 881-895.	1.3	11
30	Association between protein profile and postmortem interval in human bone remains. Journal of Proteomics, 2019, 192, 54-63.	1.2	51
31	Collagen sequence analysis of fossil camels, Camelops and c.f. Paracamelus, from the Arctic and sub-Arctic of Plio-Pleistocene North America. Journal of Proteomics, 2019, 194, 218-225.	1.2	44
32	Protein aggregate formation permits millennium-old brain preservation. Journal of the Royal Society Interface, 2020, 17, 20190775.	1.5	11
33	Chemical evidence of preserved collagen inÂ54â€millionâ€yearâ€old fish vertebrae. Palaeontology, 2020, 63, 195-202.	1.0	9
34	First sequencing of ancient coral skeletal proteins. Scientific Reports, 2020, 10, 19407.	1.6	9
35	Genome-centric resolution of novel microbial lineages in an excavated Centrosaurus dinosaur fossil bone from the Late Cretaceous of North America. Environmental Microbiomes, 2020, 15, 8.	2.2	8
36	Ancient protein analysis in archaeology. Science Advances, 2021, 7, .	4.7	52
37	Discovery of proteinaceous moieties in Late Cretaceous dinosaur eggshell. Palaeontology, 2021, 64, 585-595.	1.0	8
38	Trends in deamidation across archaeological bones, ceramics and dental calculus. Methods, 2021, , .	1.9	5
41	Cretaceous dinosaur bone contains recent organic material and provides an environment conducive to microbial communities. ELife, 2019, 8, .	2.8	38
42	Dinosaur paleohistology: review, trends and new avenues of investigation. PeerJ, 2019, 7, e7764.	0.9	22

#	Article	IF	Citations
43	In situ SEM/EDS compositional characterization of osteocytes and blood vessels in fossil and extant turtles on untreated bone surfaces; different preservational pathways microns away. PeerJ, 2020, 8, e9833.	0.9	11
46	Perspectivas atuais sobre tecidos moles n $ ilde{A}$ 50 mineralizados em f $ ilde{A}$ 3sseis de dinossauros n $ ilde{A}$ 50 avianos. Terrae Didatica, 0, 16, e020028.	0.0	0
48	Applications of mass spectrometry-based proteomics in archaeology and palaeoanthropology. Anthropological Science, 2020, 128, 1-19.	0.2	0
51	Identification of Chitin in Pliocene Fungi Using Py-GC × GC-TOFMS: Potential Implications for the Study of the Evolution of the Fungal Clade in Deep Time. Analytical Chemistry, 2022, 94, 1958-1964.	3.2	2
52	Deep Time Paleoproteomics: Looking Forward. Journal of Proteome Research, 2022, 21, 9-19.	1.8	12
53	Chemistry and Analysis of Organic Compounds in Dinosaurs. Biology, 2022, 11, 670.	1.3	11
54	Extinct species identification from late middle Pleistocene and earlier Upper Pleistocene bone fragments and tools not recognizable from their osteomorphological study by an enhanced proteomics protocol. Archaeometry, 2023, 65, 196-212.	0.6	6
55	Comprehensive Metabolic and Taxonomic Reconstruction of an Ancient Microbial Mat From the McMurdo Ice Shelf (Antarctica) by Integrating Genetic, Metaproteomic and Lipid Biomarker Analyses. Frontiers in Microbiology, 0, 13, .	1.5	7
56	Paleoproteomics. Chemical Reviews, 2022, 122, 13401-13446.	23.0	42
57	One step further in biomechanical models in palaeontology: a nonlinear finite element analysis review. PeerJ, 0, 10, e13890.	0.9	5
58	Soft-Tissue, Rare Earth Element, and Molecular Analyses of Dreadnoughtus schrani, an Exceptionally Complete Titanosaur from Argentina. Biology, 2022, 11, 1158.	1.3	6
59	The diagenetic fate of collagen as revealed by analytical pyrolysis of fossil fish scales from deep time. Geobiology, 2023, 21, 378-389.	1.1	5
60	Biomolecular histology as a novel proxy for ancient <scp>DNA</scp> and protein sequence preservation. Ecology and Evolution, 2022, 12, .	0.8	2
61	Independent Evidence for the Preservation of Endogenous Bone Biochemistry in a Specimen of Tyrannosaurus rex. Biology, 2023, 12, 264.	1.3	1
63	Diversity and Phylogeny of Marsupials and Their Stem Relatives (Metatheria)., 2023,, 1-66.		0
64	Paléoprotéomique appliquée au site de Waziers, le «ÂBas‑Terroir » (Nord). Quaternaire, 2023, , 9-22	. 0.1	3
65	Diversity and Phylogeny of Marsupials and Their Stem Relatives (Metatheria)., 2023,, 23-88.		1
66	Inflammatory Arthritis. , 2023, , 229-308.		0

Article IF Citations