Functional carbon nitride materials $\hat{a} \in$ "design strategies

Nature Reviews Materials

2,

DOI: 10.1038/natrevmats.2017.30

Citation Report

#	Article	IF	CITATIONS
1	On the wrong side of history. Nature Microbiology, 2017, 2, 17046.	5.9	5
2	Comparative single atom heterogeneous catalysts (SAHCs) on different platforms: a theoretical approach. Catalysis Science and Technology, 2017, 7, 4285-4293.	2.1	36
3	Carbon nitrides: synthesis and characterization of a new class of functional materials. Physical Chemistry Chemical Physics, 2017, 19, 15613-15638.	1.3	339
4	Pharaoh's Serpents: New Insights into a Classic Carbon Nitride Material. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2017, 643, 1572-1580.	0.6	12
5	Optimizing Optical Absorption, Exciton Dissociation, and Charge Transfer of a Polymeric Carbon Nitride with Ultrahigh Solar Hydrogen Production Activity. Angewandte Chemie - International Edition, 2017, 56, 13445-13449.	7.2	536
6	Graphitic carbon nitride (g-C ₃ N ₄)-based photocatalysts for solar hydrogen generation: recent advances and future development directions. Journal of Materials Chemistry A, 2017, 5, 23406-23433.	5.2	472
7	Prospects of electrochemically synthesized hematite photoanodes for photoelectrochemical water splitting: A review. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2017, 33, 54-82.	5.6	101
8	Nanoscale, conformal films of graphitic carbon nitride deposited at room temperature: a method for construction of heterojunction devices. Nanoscale, 2017, 9, 16586-16590.	2.8	20
9	Highly permeable and antifouling reverse osmosis membranes with acidified graphitic carbon nitride nanosheets as nanofillers. Journal of Materials Chemistry A, 2017, 5, 19875-19883.	5.2	103
10	Optimizing Optical Absorption, Exciton Dissociation, and Charge Transfer of a Polymeric Carbon Nitride with Ultrahigh Solar Hydrogen Production Activity. Angewandte Chemie, 2017, 129, 13630-13634.	1.6	135
11	Twinned Growth of Metalâ€Free, Triazineâ€Based Photocatalyst Films as Mixedâ€Dimensional (2D/3D) van der Waals Heterostructures. Advanced Materials, 2017, 29, 1703399.	11.1	59
12	Metallfreie Borâ€haltige Heterogenkatalysatoren. Angewandte Chemie, 2017, 129, 15712-15724.	1.6	19
13	Metalâ€Free Boronâ€Containing Heterogeneous Catalysts. Angewandte Chemie - International Edition, 2017, 56, 15506-15518.	7.2	114
14	Uncondensed Graphitic Carbon Nitride on Reduced Graphene Oxide for Oxygen Sensing via a Photoredox Mechanism. ACS Applied Materials & Interfaces, 2017, 9, 27142-27151.	4.0	28
15	Tailored Graphitic Carbon Nitride Nanostructures: Synthesis, Modification, and Sensing Applications. Advanced Functional Materials, 2017, 27, 1702695.	7.8	149
16	Emerging investigators series: advances and challenges of graphitic carbon nitride as a visible-light-responsive photocatalyst for sustainable water purification. Environmental Science: Water Research and Technology, 2017, 3, 982-1001.	1.2	33
17	Cross-Linked Graphitic Carbon Nitride with Photonic Crystal Structure for Efficient Visible-Light-Driven Photocatalysis. ACS Applied Materials & Interfaces, 2017, 9, 44503-44511.	4.0	31
18	One-step synthesis of graphitic carbon nitride nanosheets for efficient catalysis of phenol removal under visible light. Chinese Journal of Catalysis, 2017, 38, 1711-1718.	6.9	22

TATION REPO

#	Article	IF	Citations
19	Recent advances in functional mesoporous graphitic carbon nitride (mpg-C ₃ N ₄) polymers. Nanoscale, 2017, 9, 10544-10578.	2.8	189
20	Wet-Chemical Preparation of TiO2-Based Composites with Different Morphologies and Photocatalytic Properties. Nanomaterials, 2017, 7, 310.	1.9	53
21	N-rich covalent organic polymer in situ modified TiO2 for highly efficient photocatalytic hydrogen evolution. Science Bulletin, 2018, 63, 369-375.	4.3	14
22	Molecular engineering of polymeric carbon nitride: advancing applications from photocatalysis to biosensing and more. Chemical Society Reviews, 2018, 47, 2298-2321.	18.7	488
23	One-pot annealing preparation of Na-doped graphitic carbon nitride from melamine and organometallic sodium salt for enhanced photocatalytic H2 evolution. International Journal of Hydrogen Energy, 2018, 43, 13953-13961.	3.8	49
24	A facile approach to build Bi2O2CO3/PCN nanohybrid photocatalysts for gaseous acetaldehyde efficient removal. Catalysis Today, 2018, 315, 184-193.	2.2	32
25	Single-atom heterogeneous catalysts based on distinct carbon nitride scaffolds. National Science Review, 2018, 5, 642-652.	4.6	132
26	A New Synthesis Approach for Carbon Nitrides: Poly(triazine imide) and Its Photocatalytic Properties. ACS Omega, 2018, 3, 3892-3900.	1.6	37
27	Dynamic Nuclear Polarization NMR Spectroscopy of Polymeric Carbon Nitride Photocatalysts: Insights into Structural Defects and Reactivity. Angewandte Chemie, 2018, 130, 6964-6968.	1.6	27
28	Dynamic Nuclear Polarization NMR Spectroscopy of Polymeric Carbon Nitride Photocatalysts: Insights into Structural Defects and Reactivity. Angewandte Chemie - International Edition, 2018, 57, 6848-6852.	7.2	53
29	Efficient visible light-driven water oxidation and proton reduction by an ordered covalent triazine-based framework. Energy and Environmental Science, 2018, 11, 1617-1624.	15.6	212
30	Selective photocatalytic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxaldehyde by polymeric carbon nitride-hydrogen peroxide adduct. Journal of Catalysis, 2018, 359, 212-222.	3.1	68
31	Fabrication and photocatalytic properties of flexible g-C3N4/SiO2 composite membrane by electrospinning method. Journal of Materials Science: Materials in Electronics, 2018, 29, 6771-6778.	1.1	30
32	Synthesis and Structure of Melamium Bromide C ₆ N ₁₁ H ₁₀ Br and Melamium Iodide C ₆ N ₁₁ H ₁₀ I. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2018, 644, 186-192.	0.6	6
33	Template-Induced High-Crystalline g-C ₃ N ₄ Nanosheets for Enhanced Photocatalytic H ₂ Evolution. ACS Energy Letters, 2018, 3, 514-519.	8.8	259
34	Engineering oxygen-containing and amino groups into two-dimensional atomically-thin porous polymeric carbon nitrogen for enhanced photocatalytic hydrogen production. Energy and Environmental Science, 2018, 11, 566-571.	15.6	304
35	Carbon, nitrogen and phosphorus containing metal-free photocatalysts for hydrogen production: progress and challenges. Journal of Materials Chemistry A, 2018, 6, 1305-1322.	5.2	144
36	Carbon nitride with electron storage property: Enhanced exciton dissociation for high-efficient photocatalysis. Applied Catalysis B: Environmental, 2018, 236, 99-106.	10.8	99

#	Article	IF	CITATIONS
37	Rapid high-temperature treatment on graphitic carbon nitride for excellent photocatalytic H2-evolution performance. Applied Catalysis B: Environmental, 2018, 233, 80-87.	10.8	79
38	Construction of hierarchical 2D-2D Zn3In2S6/fluorinated polymeric carbon nitride nanosheets photocatalyst for boosting photocatalytic degradation and hydrogen production performance. Applied Catalysis B: Environmental, 2018, 233, 58-69.	10.8	213
39	Polycyclic aromatic compounds-modified graphitic carbon nitride for efficient visible-light-driven hydrogen evolution. Carbon, 2018, 134, 134-144.	5.4	126
40	Microwave assisted <i>in situ</i> decoration of a g-C ₃ N ₄ surface with CdCO ₃ nanoparticles for visible light driven photocatalysis. New Journal of Chemistry, 2018, 42, 6322-6331.	1.4	38
41	Tumor-Targeted Graphitic Carbon Nitride Nanoassembly for Activatable Two-Photon Fluorescence Imaging. Analytical Chemistry, 2018, 90, 4649-4656.	3.2	49
42	Emerging Two-Dimensional Nanomaterials for Electrocatalysis. Chemical Reviews, 2018, 118, 6337-6408.	23.0	1,552
43	Photocatalytic fixation of nitrogen to ammonia: state-of-the-art advancements and future prospects. Materials Horizons, 2018, 5, 9-27.	6.4	586
44	g ₃ N ₄ â€Based Heterostructured Photocatalysts. Advanced Energy Materials, 2018, 8, 1701503.	10.2	1,870
45	Photocatalytic Oxygen Evolution from Functional Triazineâ€Based Polymers with Tunable Band Structures. Angewandte Chemie, 2018, 130, 479-483.	1.6	75
46	The Reactivity of Cyameluric Chloride C ₆ N ₇ Cl ₃ towards Phosphines and Phosphine Oxides. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2018, 644, 121-126.	0.6	8
47	In situ construction of fibrous AgNPs/g-C3N4 aerogel toward light-driven COx-free methanol dehydrogenation at room temperature. Chemical Engineering Journal, 2018, 334, 2401-2407.	6.6	45
48	N-doped graphdiyne for high-performance electrochemical electrodes. Nano Energy, 2018, 44, 144-154.	8.2	182
49	Intercalative hybridization of layered double hydroxide nanocrystals with mesoporous g-C ₃ N ₄ for enhancing visible light-induced H ₂ production efficiency. Dalton Transactions, 2018, 47, 2949-2955.	1.6	14
50	Cobalt manganese spinel as an effective cocatalyst for photocatalytic water oxidation. Applied Catalysis B: Environmental, 2018, 224, 886-894.	10.8	78
51	A novel route combined precursor-hydrothermal pretreatment with microwave heating for preparing holey g-C3N4 nanosheets with high crystalline quality and extended visible light absorption. Applied Catalysis B: Environmental, 2018, 225, 22-29.	10.8	108
52	Photocatalytic Oxygen Evolution from Functional Triazineâ€Based Polymers with Tunable Band Structures. Angewandte Chemie - International Edition, 2018, 57, 470-474.	7.2	278
53	Structural and optical characterization of carbon nitride layers deposited by plasma assisted chemical vapor deposition at various conditions. Thin Solid Films, 2018, 646, 28-35.	0.8	2
54	Exploring the "Goldilocks Zone―of Semiconducting Polymer Photocatalysts by Donor–Acceptor Interactions. Angewandte Chemie, 2018, 130, 14384-14388.	1.6	22

#	Article	IF	CITATIONS
55	Graphitic carbon nitride (g-C ₃ N ₄) electrodes for energy conversion and storage: a review on photoelectrochemical water splitting, solar cells and supercapacitors. Journal of Materials Chemistry A, 2018, 6, 22346-22380.	5.2	244
56	Tuning Nitrogen Content in Graphitic Carbon Nitride by Isonicotinic acid for Highly Efficient Photocatalytic Hydrogen Evolution. ChemCatChem, 2018, 11, 1045.	1.8	9
57	Molecular Doping of Electrochemically Prepared Triazine-Based Carbon Nitride by 2,4,6-Triaminopyrimidine for Improved Photocatalytic Properties. ACS Omega, 2018, 3, 17042-17048.	1.6	20
58	Rational Design of Carbon Nitride Materials by Supramolecular Preorganization of Monomers. ChemCatChem, 2018, 10, 5573-5586.	1.8	105
59	Hierarchical Macro–Mesoporous Polymeric Carbon Nitride Microspheres with Narrow Bandgap for Enhanced Photocatalytic Hydrogen Production. Advanced Materials Interfaces, 2018, 5, 1801241.	1.9	21
60	Ultralong Nanostructured Carbon Nitride Wires and Self-Standing C-Rich Filters from Supramolecular Microspheres. ACS Applied Materials & Interfaces, 2018, 10, 39688-39694.	4.0	34
61	Photocatalytic Carbon Nitride Materials with Nanoscale Features Synthesized from the Rapid and Low-Temperature Decomposition of Trichloromelamine. ACS Applied Nano Materials, 2018, 1, 5944-5956.	2.4	15
62	Carbon nitrides and metal nanoparticles: from controlled synthesis to design principles for improved photocatalysis. Chemical Society Reviews, 2018, 47, 7783-7817.	18.7	238
63	Exploring the "Goldilocks Zone―of Semiconducting Polymer Photocatalysts by Donor–Acceptor Interactions. Angewandte Chemie - International Edition, 2018, 57, 14188-14192.	7.2	118
64	Triazine- and Heptazine-Based Carbon Nitrides: Toxicity. ACS Applied Nano Materials, 2018, 1, 4442-4449.	2.4	41
65	Heterogeneous Organocatalysis for Photoredox Chemistry. ACS Catalysis, 2018, 8, 9790-9808.	5.5	165
66	Local spatial charge separation and proton activation induced by surface hydroxylation promoting photocatalytic hydrogen evolution of polymeric carbon nitride. Nano Energy, 2018, 50, 383-392.	8.2	226
67	Patterned Carbon Nitride–Based Hybrid Aerogel Membranes via 3D Printing for Broadband Solar Wastewater Remediation. Advanced Functional Materials, 2018, 28, 1801121.	7.8	101
68	Sunlight-driven water-splitting using two-dimensional carbon based semiconductors. Journal of Materials Chemistry A, 2018, 6, 12876-12931.	5.2	215
69	Ionothermal Synthesis of Triazine–Heptazineâ€Based Copolymers with Apparent Quantum Yields of 60 % at 420â€nm for Solar Hydrogen Production from "Sea Water― Angewandte Chemie - International Edition, 2018, 57, 9372-9376.	7.2	369
70	Mn-Doped g-C ₃ N ₄ Nanoribbon for Efficient Visible-Light Photocatalytic Water Splitting Coupling with Methylene Blue Degradation. ACS Sustainable Chemistry and Engineering, 2018, 6, 8754-8761.	3.2	93
71	Makroskopische kristalline 2Dâ€Polymere. Angewandte Chemie, 2018, 130, 13942-13959.	1.6	23
72	Towards Macroscopic Crystalline 2D Polymers. Angewandte Chemie - International Edition, 2018, 57, 13748-13763.	7.2	113

#	Article	IF	CITATIONS
73	Nanoscale Probing of Local Hydrogen Heterogeneity in Disordered Carbon Nitrides with Vibrational Electron Energy-Loss Spectroscopy. ACS Nano, 2018, 12, 5463-5472.	7.3	42
74	Transferrable polymeric carbon nitride/nitrogen-doped graphene films for solid state optoelectronics. Carbon, 2018, 138, 69-75.	5.4	20
75	Nanofluidic Ion Transport and Energy Conversion through Ultrathin Free tanding Polymeric Carbon Nitride Membranes. Angewandte Chemie - International Edition, 2018, 57, 10123-10126.	7.2	197
76	Visible Light-Responsive Photocatalysts—From TiO2 to Carbon Nitrides and Boron Carbon Nitride. Advances in Inorganic Chemistry, 2018, 72, 49-92.	0.4	9
77	Nanofluidic Ion Transport and Energy Conversion through Ultrathin Free‣tanding Polymeric Carbon Nitride Membranes. Angewandte Chemie, 2018, 130, 10280-10283.	1.6	34
78	Photoredox Catalytic Organic Transformations using Heterogeneous Carbon Nitrides. Angewandte Chemie - International Edition, 2018, 57, 15936-15947.	7.2	339
79	Photoredoxkatalytische organische Umwandlungen an heterogenen Kohlenstoffnitriden. Angewandte Chemie, 2018, 130, 16164-16176.	1.6	55
80	Carbon Nitride Decorated Ball-Flower like Co3O4 Hybrid Composite: Hydrothermal Synthesis and Ethanol Gas Sensing Application. Nanomaterials, 2018, 8, 132.	1.9	55
81	Controllable synthesis of graphitic carbon nitride nanomaterials for solar energy conversion and environmental remediation: the road travelled and the way forward. Catalysis Science and Technology, 2018, 8, 4576-4599.	2.1	99
82	Fluorescent Sulphur―and Nitrogenâ€Containing Porous Polymers with Tuneable Donor–Acceptor Domains for Lightâ€Driven Hydrogen Evolution. Chemistry - A European Journal, 2018, 24, 11916-11921.	1.7	38
83	Electronic structure of heterojunction MoO2/g-C3N4 catalyst for oxidative desulfurization. Applied Catalysis B: Environmental, 2018, 238, 263-273.	10.8	178
84	Reduced recombination and low-resistive transport of electrons for photo-redox reactions in metal-free hybrid photocatalyst. Applied Physics Letters, 2018, 112, .	1.5	23
85	Stable H-Terminated Edges, Variable Semiconducting Properties, and Solar Cell Applications of C ₃ N Nanoribbons: A First-Principles Study. ACS Omega, 2018, 3, 8777-8786.	1.6	9
86	Tuning the Intrinsic Properties of Carbon Nitride for High Quantum Yield Photocatalytic Hydrogen Production. Advanced Science, 2018, 5, 1800820.	5.6	92
87	A Review of Preciousâ€Metalâ€Free Bifunctional Oxygen Electrocatalysts: Rational Design and Applications in Znâ^'Air Batteries. Advanced Functional Materials, 2018, 28, 1803329.	7.8	524
88	United in Nitride: The Highly Condensed Boron Phosphorus Nitride BP ₃ N ₆ . Angewandte Chemie, 2018, 130, 13386-13389.	1.6	18
89	United in Nitride: The Highly Condensed Boron Phosphorus Nitride BP ₃ N ₆ . Angewandte Chemie - International Edition, 2018, 57, 13202-13205.	7.2	29
90	Synthesis of Polymeric Carbon Nitride Films with Adhesive Interfaces for Solar Water Splitting Devices. ACS Catalysis, 2018, 8, 8774-8780.	5.5	72

#	Article	IF	CITATIONS
91	Ionothermal Synthesis of Triazine–Heptazineâ€Based Copolymers with Apparent Quantum Yields of 60 % at 420 nm for Solar Hydrogen Production from "Sea Water― Angewandte Chemie, 2018, 130, 9516-952	$0.^{1.6}$	73
92	Shining Light on Carbon Nitrides: Leveraging Temperature To Understand Optical Gap Variations. Chemistry of Materials, 2018, 30, 4253-4262.	3.2	28
93	Enhancement of photocatalytic hydrogen evolution activity of porous oxygen doped g-C3N4 with nitrogen defects induced by changing electron transition. Applied Catalysis B: Environmental, 2019, 240, 30-38.	10.8	285
94	Single-atom molybdenum immobilized on photoactive carbon nitride as efficient photocatalysts for ambient nitrogen fixation in pure water. Journal of Materials Chemistry A, 2019, 7, 19831-19837.	5.2	108
95	Carbon Nitride Transforms into a High Lithium Storage Capacity Nitrogen-Rich Carbon. ACS Nano, 2019, 13, 9279-9291.	7.3	58
96	Perspectives on and Precautions for the Uses of Electric Spectroscopic Methods in Label-free Biosensing Applications. ACS Sensors, 2019, 4, 2216-2227.	4.0	56
97	Heterostructured MXene and g-C3N4 for high-rate lithium intercalation. Nano Energy, 2019, 65, 104030.	8.2	54
98	Graphitic carbon nitride nanostructures: Catalysis. Applied Materials Today, 2019, 16, 388-424.	2.3	58
99	Increasing Solar Absorption of Atomically Thin 2D Carbon Nitride Sheets for Enhanced Visible‣ight Photocatalysis. Advanced Materials, 2019, 31, e1807540.	11.1	166
100	Turn Off-On Electrochemiluminescence Sensor Based on MnO ₂ /Carboxylated Graphitic Carbon Nitride Nanocomposite for Ultrasensitive L-Cysteine Detection. Journal of the Electrochemical Society, 2019, 166, B994-B999.	1.3	15
101	Real-time optical and electronic sensing with a β-amino enone linked, triazine-containing 2D covalent organic framework. Nature Communications, 2019, 10, 3228.	5.8	117
102	Functional materials in desalination: A review. Desalination, 2019, 468, 114077.	4.0	111
103	Electrochemiluminescence for Characterizing the Polymerization Process during Graphitic Carbon Nitride Synthesis. ChemElectroChem, 2019, 6, 3742-3746.	1.7	10
104	Incorporating <i>p</i> â€Phenylene as an Electronâ€Donating Group into Graphitic Carbon Nitride for Efficient Charge Separation. ChemSusChem, 2019, 12, 4285-4292.	3.6	22
105	Significantly Enhanced Charge Separation in Rippled Monolayer Graphitic C 3 N 4. ChemCatChem, 2019, 11, 6252-6257.	1.8	9
106	Protonic acid-assisted universal synthesis of defect abundant multifunction carbon nitride semiconductor for highly-efficient visible light photocatalytic applications. Applied Catalysis B: Environmental, 2019, 258, 118011.	10.8	38
107	Controlling the Chemical Bonding of Highly Dispersed Co Atoms Anchored on an Ultrathin g-C ₃ N ₄ @Carbon Sphere for Enhanced Electrocatalytic Activity of the Oxygen Evolution Reaction. Inorganic Chemistry, 2019, 58, 10802-10811.	1.9	27
108	Nanoscale lightning rod effect in 3D carbon nitride nanoneedle: Enhanced charge collection and separation for efficient photocatalysis. Journal of Catalysis, 2019, 375, 361-370.	3.1	55

#	Article	IF	CITATIONS
109	Insight into the Enhanced Hydrogen Evolution Activity of 2,4-Diaminopyrimidine-Doped Graphitic Carbon Nitride Photocatalysts. Journal of Physical Chemistry C, 2019, 123, 2228-2237.	1.5	25
110	Synthesis of Thiocyameluric Acid C ₆ N ₇ S ₃ H ₃ , Its Reaction to Alkali Metal Thiocyamelurates and Organic Tris(dithio)cyamelurates. Chemistry - A European Journal, 2019, 25, 15555-15564.	1.7	5
111	Dual-defect-modified graphitic carbon nitride with boosted photocatalytic activity under visible light. Scientific Reports, 2019, 9, 14873.	1.6	43
112	Highly Selective CO2 Capture and Its Direct Photochemical Conversion on Ordered 2D/1D Heterojunctions. Joule, 2019, 3, 2792-2805.	11.7	189
113	Ionic Carbon Nitrides in Solar Hydrogen Production and Organic Synthesis: Exciting Chemistry and Economic Advantages. ChemCatChem, 2019, 11, 6166-6176.	1.8	56
114	Merging Singleâ€Atomâ€Dispersed Iron and Graphitic Carbon Nitride to a Joint Electronic System for Highâ€Efficiency Photocatalytic Hydrogen Evolution. Small, 2019, 15, e1905166.	5.2	80
115	A mini-review on the synthesis and structural modification of g-C ₃ N ₄ -based materials, and their applications in solar energy conversion and environmental remediation. Sustainable Energy and Fuels, 2019, 3, 2907-2925.	2.5	158
116	Controlled synthesis of three dimensional mesoporous C3N4 with ordered porous structure for room temperature Suzuki coupling reaction. Molecular Catalysis, 2019, 477, 110548.	1.0	7
117	Photocatalytic Applications of Heterostructure Graphitic Carbon Nitride: Pollutant Degradation, Hydrogen Gas Production (water splitting), and CO2 Reduction. Nanoscale Research Letters, 2019, 14, 234.	3.1	77
118	A hybrid of g-C ₃ N ₄ and porphyrin-based covalent organic frameworks <i>via</i> liquid-assisted grinding for enhanced visible-light-driven photoactivity. Dalton Transactions, 2019, 48, 14989-14995.	1.6	76
119	SERS-Active Cu Nanoparticles on Carbon Nitride Support Fabricated Using Pulsed Laser Ablation. Nanomaterials, 2019, 9, 1223.	1.9	7
120	Tailoring of crystalline structure of carbon nitride for superior photocatalytic hydrogen evolution. Journal of Colloid and Interface Science, 2019, 556, 324-334.	5.0	20
121	Recent Advances in Graphene-like 2D Materials for Spintronics Applications. Chemistry of Materials, 2019, 31, 8260-8285.	3.2	119
122	Hydrogen peroxide-assisted synthesis of oxygen-doped carbon nitride nanorods for enhanced photocatalytic hydrogen evolution. RSC Advances, 2019, 9, 28421-28431.	1.7	6
123	Sulfur- and Nitrogen-Containing Porous Donor–Acceptor Polymers as Real-Time Optical and Chemical Sensors. Macromolecules, 2019, 52, 7696-7703.	2.2	32
124	Recent Developments in Polymeric Carbon Nitride-Derived Photocatalysts and Electrocatalysts for Nitrogen Fixation. ACS Catalysis, 2019, 9, 10260-10278.	5.5	116
125	Lanthanide-centered luminescence evolution and potential anti-counterfeiting application of Tb ³⁺ /Eu ³⁺ grafted melamine cyanurate hydrogen-bonded triazine frameworks. Materials Chemistry Frontiers, 2019, 3, 579-586.	3.2	15
126	Emerging trends in sensors based on carbon nitride materials. Analyst, The, 2019, 144, 1475-1491.	1.7	65

#	Article	IF	CITATIONS
127	Graphitic carbon nitride based materials for electrochemical energy storage. Journal of Materials Chemistry A, 2019, 7, 901-924.	5.2	178
128	Enzymes Immobilized on Carbon Nitride (C 3 N 4) Cooperating with Metal Nanoparticles for Cascade Catalysis. Advanced Materials Interfaces, 2019, 6, 1801664.	1.9	25
129	Direct functionalization of methane into ethanol over copper modified polymeric carbon nitride via photocatalysis. Nature Communications, 2019, 10, 506.	5.8	190
130	Novel design of hollow g-C ₃ N ₄ nanofibers decorated with MoS ₂ and S, N-doped graphene for ternary heterostructures. Dalton Transactions, 2019, 48, 2170-2178.	1.6	16
131	Solid salt confinement effect: An effective strategy to fabricate high crystalline polymer carbon nitride for enhanced photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2019, 246, 349-355.	10.8	136
132	Advances in constructing polymeric carbon-nitride-based nanocomposites and their applications in energy chemistry. Sustainable Energy and Fuels, 2019, 3, 611-655.	2.5	47
133	Carbon nitride as a new way to facilitate the next generation of carbon-based supercapacitors. Sustainable Energy and Fuels, 2019, 3, 2176-2204.	2.5	64
134	A free-standing carbon nitride actuator is driven by the ambient humidity. Diamond and Related Materials, 2019, 97, 107434.	1.8	6
135	The facile synthesis and enhanced photocatalytic activity of a graphitic carbon nitride isotype heterojunction with ordered mesopores. New Journal of Chemistry, 2019, 43, 10915-10925.	1.4	10
136	Effect of mechanochemical preparation of 2D g-C3N4 on electronic properties and efficiency of photocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2019, 44, 17922-17929.	3.8	12
137	Organic motif's functionalization via covalent linkage in carbon nitride: An exemplification in photocatalysis. Carbon, 2019, 152, 40-58.	5.4	54
138	Thermal annealing-induced structural reorganization in polymeric photocatalysts for enhanced hydrogen evolution. Chemical Communications, 2019, 55, 7756-7759.	2.2	29
139	Construction of a Nanoporous Highly Crystalline Hexagonal Boron Nitride from an Amorphous Precursor for Catalytic Dehydrogenation. Angewandte Chemie - International Edition, 2019, 58, 10626-10630.	7.2	55
140	Construction of a Nanoporous Highly Crystalline Hexagonal Boron Nitride from an Amorphous Precursor for Catalytic Dehydrogenation. Angewandte Chemie, 2019, 131, 10736-10740.	1.6	7
141	Red carbon dots: Optical property regulations and applications. Materials Today, 2019, 30, 52-79.	8.3	221
142	Rationally engineered active sites for efficient and durable hydrogen generation. Nature Communications, 2019, 10, 2281.	5.8	59
143	Directional Charge Transport in Layered Twoâ€Dimensional Triazineâ€Based Graphitic Carbon Nitride. Angewandte Chemie, 2019, 131, 9494-9498.	1.6	15
144	Directional Charge Transport in Layered Twoâ€Dimensional Triazineâ€Based Graphitic Carbon Nitride. Angewandte Chemie - International Edition, 2019, 58, 9394-9398.	7.2	60

#	Article	IF	CITATIONS
145	From Heptazines to Triazines – On the Formation of Poly(triazine imide). Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2019, 645, 857-862.	0.6	27
146	One-pot production of γ-valerolactone from furfural using Zr-graphitic carbon nitride/H-β composite. International Journal of Hydrogen Energy, 2019, 44, 14527-14535.	3.8	28
147	Green synthesis of ultrathin edge-activated foam-like carbon nitride nanosheets for enhanced photocatalytic performance under visible light irradiation. Sustainable Energy and Fuels, 2019, 3, 1764-1775.	2.5	18
148	Insight into the role of Ni–Fe dual sites in the oxygen evolution reaction based on atomically metal-doped polymeric carbon nitride. Journal of Materials Chemistry A, 2019, 7, 14001-14010.	5.2	97
149	Ammelinium Sulfate Monohydrate and Ammelinium Sulfate Cyanuric Acid – Synthesis and Structural Characterization. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2019, 645, 848-856.	0.6	0
150	Boron Phosphorus Nitride at Extremes: PN ₆ Octahedra in the Highâ€Pressure Polymorph βâ€BP ₃ N ₆ . Angewandte Chemie - International Edition, 2019, 58, 9060-9063.	7.2	13
151	Enhancing Visibleâ€Light Hydrogen Evolution Performance of Crystalline Carbon Nitride by Defect Engineering. ChemSusChem, 2019, 12, 3257-3262.	3.6	101
152	Amphiphilic two-dimensional graphitic carbon nitride nanosheets for visible-light-driven phase-boundary photocatalysis. Journal of Materials Chemistry A, 2019, 7, 13071-13079.	5.2	114
153	Graphitic carbon nitride (g–C3N4)–based metal-free photocatalysts for water splitting: A review. Carbon, 2019, 149, 693-721.	5.4	618
154	Recent advances in noble metal free doped graphitic carbon nitride based nanohybrids for photocatalysis of organic contaminants in water: A review. Applied Materials Today, 2019, 15, 494-524.	2.3	393
155	Graphene oxide in carbon nitride: from easily processed precursors to a composite material with enhanced photoelectrochemical activity and long-term stability. Journal of Materials Chemistry A, 2019, 7, 11718-11723.	5.2	30
156	Boron Phosphorus Nitride at Extremes: PN 6 Octahedra in the Highâ€Pressure Polymorph βâ€BP 3 N 6. Angewandte Chemie, 2019, 131, 9158-9161.	1.6	8
157	Structure Elucidation of a Melam–Melem Adduct by a Combined Approach of Synchrotron Xâ€ray Diffraction and DFT Calculations. Chemistry - A European Journal, 2019, 25, 8415-8424.	1.7	7
158	Interfacial engineering of graphitic carbon nitride (g-C3N4)-based metal sulfide heterojunction photocatalysts for energy conversion: A review. Chinese Journal of Catalysis, 2019, 40, 289-319.	6.9	413
161	Tuning interfacial electronic properties of carbon nitride as an efficient catalyst for ultra-deep oxidative desulfurization of fuels. Molecular Catalysis, 2019, 468, 100-108.	1.0	25
162	Crystallization, cyanamide defect and ion induction of carbon nitride: Exciton polarization dissociation, charge transfer and surface electron density for enhanced hydrogen evolution. Applied Catalysis B: Environmental, 2019, 251, 206-212.	10.8	76
163	Heptazine-based porous polymer for selective CO2 sorption and visible light photocatalytic oxidation of benzyl alcohol. Microporous and Mesoporous Materials, 2019, 282, 9-14.	2.2	12
164	A "ship-in-a-bottle―strategy to fabricate highly crystallized nanoporous graphitic C ₃ N ₄ microspheres under pressurized conditions. Journal of Materials Chemistry A, 2019, 7, 8952-8959.	5.2	37

#	Article	IF	CITATIONS
165	Synthesis of Porous Boron-Doped Carbon Nitride: Adsorption Capacity and Photo-Regeneration Properties. International Journal of Environmental Research and Public Health, 2019, 16, 581.	1.2	13
166	Novel Photocatalytic Nanocomposite Made of Polymeric Carbon Nitride and Metal Oxide Nanoparticles. Molecules, 2019, 24, 874.	1.7	9
167	Thermo- and Photoresponsive Actuators with Freestanding Carbon Nitride Films. ACS Applied Materials & Interfaces, 2019, 11, 12770-12776.	4.0	29
168	Doping-Induced Hydrogen-Bond Engineering in Polymeric Carbon Nitride To Significantly Boost the Photocatalytic H ₂ Evolution Performance. ACS Applied Materials & Interfaces, 2019, 11, 17341-17349.	4.0	71
169	Visibleâ€Lightâ€Driven Photocatalytic Hydrogenation of Olefins Using Water as the H Source. ChemCatChem, 2019, 11, 2596-2599.	1.8	28
170	Artificial Photosynthesis with Polymeric Carbon Nitride: When Meeting Metal Nanoparticles, Single Atoms, and Molecular Complexes. Small, 2019, 15, e1900772.	5.2	84
171	Boosting photocatalytic hydrogen evolution achieved by rationally designed/constructed carbon nitride with ternary cobalt phosphosulphide. Journal of Colloid and Interface Science, 2019, 548, 303-311.	5.0	23
172	Graphitic carbon nitride synthesized by simple pyrolysis: role of precursor in photocatalytic hydrogen production. New Journal of Chemistry, 2019, 43, 6909-6920.	1.4	116
173	Noble Metal-Free Photocatalysts Consisting of Graphitic Carbon Nitride, Nickel Complex, and Nickel Oxide Nanoparticles for Efficient Hydrogen Generation. ACS Applied Materials & Interfaces, 2019, 11, 14986-14996.	4.0	42
174	A facile approach to constructing Pd@PCN–Se nano-composite catalysts for selective alcohol oxidation reactions. Journal of Materials Chemistry A, 2019, 7, 10918-10923.	5.2	41
175	Porous oxygen-doped carbon nitride: supramolecular preassembly technology and photocatalytic degradation of organic pollutants under low-intensity light irradiation. Environmental Science and Pollution Research, 2019, 26, 15710-15723.	2.7	27
176	Tailoring carbon nitride properties and photoactivity by interfacial engineering of hydrogen-bonded frameworks. Nanoscale, 2019, 11, 5564-5570.	2.8	21
177	Recent Advances in the Development of Water Oxidation Electrocatalysts at Mild pH. Small, 2019, 15, e1805103.	5.2	206
178	In-situ growth of Zn–AgIn5S8 quantum dots onÂg-C3N4 towards 0D/2D heterostructured photocatalysts with enhanced hydrogen production. International Journal of Hydrogen Energy, 2019, 44, 15882-15891.	3.8	135
179	Gold Nanoparticle-Decorated g-C ₃ N ₄ Nanosheets for Controlled Generation of Reactive Oxygen Species upon 670 nm Laser Illumination. ACS Applied Materials & Interfaces, 2019, 11, 10589-10596.	4.0	75
180	Electro- and Solar-Driven Fuel Synthesis with First Row Transition Metal Complexes. Chemical Reviews, 2019, 119, 2752-2875.	23.0	615
181	Accessing the rich carbon nitride materials chemistry by heat treatments of ammonium thiocyanate, NH ₄ SCN. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2019, 75, 621-633.	0.5	2
182	Size-Dependent in Vitro Biocompatibility and Uptake Process of Polymeric Carbon Nitride. ACS Applied Materials & Interfaces, 2019, 11, 47739-47749.	4.0	14

ARTICLE IF CITATIONS # Salt-template-assisted construction of honeycomb-like structured g-C3N4 with tunable band structure for enhanced photocatalytic H2 production. Applied Catalysis B: Environmental, 2019, 240, 183 10.8 143 64-71. Phenylboronic acid functionalized C3N4 facultative hydrophilic materials for enhanced enrichment 184 38 of glycopeptides. Talanta, 2019, 191, 509-518. Detection of divalent copper with improved accuracy by dual suppression of electrochemiluminescent 185 1.9 2 recovery. Journal of Electroanalytical Chemistry, 2019, 834, 145-149. Understanding Charge Transport in Carbon Nitride for Enhanced Photocatalytic Solar Fuel 186 93 Production. Accounts of Chemical Research, 2019, 52, 248-257. Highly Crystalline Kâ€Intercalated Polymeric Carbon Nitride for Visibleâ€Light Photocatalytic Alkenes and 187 5.6 67 Alkynes Deuterations. Advanced Science, 2019, 6, 1801403. Sub-5 nm Ultra-Fine FeP Nanodots as Efficient Co-Catalysts Modified Porous g-C₃N₄ for Precious-Metal-Free Photocatalytic Hydrogen Evolution under 188 4.0 208 Visible Light. ACS Applied Materials & amp; Interfaces, 2019, 11, 5651-5660. Artificial light-driven ion pump for photoelectric energy conversion. Nature Communications, 2019, 189 5.8 167 10, 74. Insight into the Catalytic Behavior in Nitroarenes Reduction over Nonâ€Noble Metals Modified Polymer Carbon Nitride. ChemistrySelect, 2019, 4, 190-195. Crystalline Carbon Nitride Semiconductors for Photocatalytic Water Splitting. Angewandte Chemie, 191 378 1.6 2019, 131, 6225-6236. Crystalline Carbon Nitride Semiconductors for Photocatalytic Water Splitting. Angewandte Chemie -7.2 481 International Edition, 2019, 58, 6164-6175. Ammonium cyamelurates: synthesis and crystalline structures. Structural Chemistry, 2019, 30, 425-434. 193 1.0 10 Tuning the Porosity and Photocatalytic Performance of Triazineâ€Based Graphdiyne Polymers through 194 3.6 39 Polymorphism. ChémSusChem, 2019, 12, 194-199. Adsorption enhanced photocatalytic degradation sulfadiazine antibiotic using porous carbon nitride 195 6.6 83 nanosheets with carbon vacancies. Chemical Engineering Journal, 2020, 382, 123017. Emerging surface strategies on graphitic carbon nitride for solar driven water splitting. Chemical Engineering Journal, 2020, 382, 122812. 6.6 L-cysteine functionalized straticulate C3N4 for the selective enrichment of glycopeptides. Journal of 197 20 1.8 Chromatography A, 2020, 1610, 460545. Boosting faradaic reactions of metal oxides on polymeric carbon nitride/PANI hybrid. Energy Storage 14 Materials, 2020, 25, 487-494. Fe-Pt nanoclusters modified Mott-Schottky photocatalysts for enhanced ammonia synthesis at 199 10.8 40 ambient conditions. Applied Catalysis B: Environmental, 2020, 262, 118276. Preparation of 3D porous g-C3N4@V2O5 composite electrode via simple calcination and chemical 2.8 precipitation for supercapacitors. Journal of Alloys and Compounds, 2020, 817, 152707.

#	Article	IF	CITATIONS
201	Nanostructured Carbon Nitrides for CO ₂ Capture and Conversion. Advanced Materials, 2020, 32, e1904635.	11.1	188
202	Molecular engineering of polymeric carbon nitride based Donor-Acceptor conjugated copolymers for enhanced photocatalytic full water splitting. Journal of Colloid and Interface Science, 2020, 560, 743-754.	5.0	70
203	Facile one-step "polymerization-exfoliation―route to crystalline graphitic carbon nitride nanosheets for increased photocatalytic hydrogen evolution. Applied Surface Science, 2020, 501, 144259.	3.1	18
204	Synthesis of hierarchically mesoporous polymeric carbon nitride with mesoporous melamine as a precursor for enhanced photocatalytic performance. Chemical Engineering Journal, 2020, 380, 122535.	6.6	25
205	Modifying Crystallinity, Morphology, and Photophysical Properties of Carbon Nitride by Using Crystals as Reactants. Israel Journal of Chemistry, 2020, 60, 544-549.	1.0	4
206	Particulate Photocatalysts for Light-Driven Water Splitting: Mechanisms, Challenges, and Design Strategies. Chemical Reviews, 2020, 120, 919-985.	23.0	1,605
207	Charge Transfer Modulated Activity of Carbonâ€Based Electrocatalysts. Advanced Energy Materials, 2020, 10, 1901227.	10.2	156
208	Preparation characterization and non-isothermal decomposition kinetics of different carbon nitride sheets. Egyptian Journal of Petroleum, 2020, 29, 21-29.	1.2	27
209	Introducing graphitic carbon nitride nanosheets as supersandwich-type assembly on porous electrode for ultrasensitive electrochemiluminescence immunosensing. Analytica Chimica Acta, 2020, 1097, 62-70.	2.6	18
210	A [001]â€Oriented Hittorf's Phosphorus Nanorods/Polymeric Carbon Nitride Heterostructure for Boosting Wideâ€Spectrumâ€Responsive Photocatalytic Hydrogen Evolution from Pure Water. Angewandte Chemie - International Edition, 2020, 59, 868-873.	7.2	164
211	A Firstâ€Principles Study of C ₃ N Nanostructures: Control and Engineering of the Electronic and Magnetic Properties of Nanosheets, Tubes and Ribbons. ChemPhysChem, 2020, 21, 164-174.	1.0	34
212	A [001]â€Oriented Hittorf's Phosphorus Nanorods/Polymeric Carbon Nitride Heterostructure for Boosting Wideâ€Spectrumâ€Responsive Photocatalytic Hydrogen Evolution from Pure Water. Angewandte Chemie, 2020, 132, 878-883.	1.6	40
213	Synthesis of nitrogen vacancies g-C3N4 with increased crystallinity under the controlling of oxalyl dihydrazide: Visible-light-driven photocatalytic activity. Applied Surface Science, 2020, 505, 144576.	3.1	25
214	Engineering the excited state of graphitic carbon nitride nanostructures by covalently bonding with graphene quantum dots. Theoretical Chemistry Accounts, 2020, 139, 1.	0.5	13
215	Gold nanoparticles decorated three-dimensional porous graphitic carbon nitrides for sensitive anodic stripping voltammetric analysis ofÂtrace arsenic(III). Journal of Alloys and Compounds, 2020, 823, 153723.	2.8	20
216	Oxidized SWCNT and MWCNT as co-catalysts of polymeric carbon nitride for photocatalytic hydrogen evolution. Applied Surface Science, 2020, 508, 145144.	3.1	17
217	Synergy of dopants and defects in ultrathin 2D carbon nitride sheets to significantly boost the photocatalytic hydrogen evolution. Chemical Engineering Journal, 2020, 385, 123938.	6.6	28
218	Enhanced photocatalytic performance of polymeric carbon nitride through combination of iron loading and hydrogen peroxide treatment. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 589, 124383.	2.3	5

#	Article	IF	CITATIONS
219	Building Oxime-Ni ²⁺ Complex on Polymeric Carbon Nitride: Molecular-Level Design of Highly Efficient Hydrogen Generation Photocatalysts. ACS Applied Materials & Interfaces, 2020, 12, 868-876.	4.0	40
220	Graphitic Carbon Nitride (gâ€C ₃ N ₄): An Interface Enabler for Solidâ€State Lithium Metal Batteries. Angewandte Chemie, 2020, 132, 3728-3733.	1.6	32
221	Constructing Builtâ€in Electric Field in Ultrathin Graphitic Carbon Nitride Nanosheets by N and O Codoping for Enhanced Photocatalytic Hydrogen Evolution Activity. Small, 2020, 16, e1905700.	5.2	79
222	Recent developments in carbon nitride based films for photoelectrochemical water splitting. Sustainable Energy and Fuels, 2020, 4, 485-503.	2.5	68
223	Graphitic Carbon Nitride Doped Copper–Manganese Alloy as High–Performance Electrode Material in Supercapacitor for Energy Storage. Nanomaterials, 2020, 10, 2.	1.9	59
224	Graphitic Carbon Nitride (g ₃ N ₄): An Interface Enabler for Solid‣tate Lithium Metal Batteries. Angewandte Chemie - International Edition, 2020, 59, 3699-3704.	7.2	220
225	Noble Metal Free, Visible Light Driven Photocatalysis Using TiO 2 Nanotube Arrays Sensitized by Pâ€Đoped C 3 N 4 Quantum Dots. Advanced Optical Materials, 2020, 8, 1901275.	3.6	48
226	K+-induced crystallization of polymeric carbon nitride to boost its photocatalytic activity for H2 evolution and hydrogenation of alkenes. Applied Catalysis B: Environmental, 2020, 268, 118457.	10.8	67
227	Sulfur-doped g-C3N4/rGO porous nanosheets for highly efficient photocatalytic degradation of refractory contaminants. Journal of Materials Science and Technology, 2020, 41, 117-126.	5.6	220
228	Overall Photocatalytic Water Splitting of Crystalline Carbon Nitride with Facet Engineering. CheM, 2020, 6, 2439-2441.	5.8	21
229	Atomic-Level Insights into the Edge Active ReS ₂ Ultrathin Nanosheets for High-Efficiency Light-to-Hydrogen Conversion. , 2020, 2, 1484-1494.		65
230	Photo- and electro-catalysis evolution of superior thin g-C3N4 nanosheets with their microstructure and Ni Fe oxide composite. Materials Characterization, 2020, 169, 110655.	1.9	8
231	<i>In situ</i> photo-derived MnOOH collaborating with Mn ₂ Co ₂ C@C dual co-catalysts boost photocatalytic overall water splitting. Journal of Materials Chemistry A, 2020, 8, 17120-17127.	5.2	24
232	Restacked melon as highly-efficient photocatalyst. Nano Energy, 2020, 77, 105124.	8.2	7
233	Robust route to highly porous graphitic carbon nitride microtubes with preferred adsorption ability via rational design of one-dimension supramolecular precursors for efficient photocatalytic CO2 conversion. Nano Energy, 2020, 77, 105104.	8.2	71
234	Carbon-based materials for photo- and electrocatalytic synthesis of hydrogen peroxide. Nanoscale, 2020, 12, 16008-16027.	2.8	63
235	Influence of different bismuth oxyhalides on the photocatalytic activity of graphitic carbon nitride: a comparative study under natural sunlight. Materials Advances, 2020, 1, 1262-1272.	2.6	40
	P―and F 0â€doped Carbon Nitride Nanocatalysts for Photocatalytic CO ₂ Reduction and		

#	Article	IF	CITATIONS
237	Graphitic Carbon Nitride Films: Emerging Paradigm for Versatile Applications. ACS Applied Materials & Interfaces, 2020, 12, 53571-53591.	4.0	57
238	Carbon nitride nanotube-based materials for energy and environmental applications: a review of recent progresses. Journal of Materials Chemistry A, 2020, 8, 25626-25648.	5.2	66
239	Emergence of Heptazine-Based Graphitic Carbon Nitride within Hydrogel Nanocomposites for Scarless Healing of Burn Wounds. ACS Applied Polymer Materials, 2020, 2, 5743-5755.	2.0	8
240	Revealing Optical Properties of Amorphous Two-Dimensional Colloidal Nanosheets for Altering Nanochannels. ACS Sustainable Chemistry and Engineering, 2020, 8, 17133-17142.	3.2	1
241	Improved Quantum Yield and Excellent Luminescence Stability of Europiumâ€Incorporated Polymeric Hydrogenâ€Bonded Heptazine Frameworks Due to an Efficient Hydrogenâ€Bonding Effect. Advanced Functional Materials, 2020, 30, 2003656.	7.8	20
242	Multifunctional Visibleâ€Light Powered Micromotors Based on Semiconducting Sulfur―and Nitrogenâ€Containing Donor–Acceptor Polymer. Advanced Functional Materials, 2020, 30, 2002701.	7.8	42
243	Efficient Kr/Xe separation from triangular g-C ₃ N ₄ nanopores, a simulation study. Journal of Materials Chemistry A, 2020, 8, 17747-17755.	5.2	6
244	A new concept: Volume photocatalysis for efficient H2 generation Using low polymeric carbon nitride as an example. Applied Catalysis B: Environmental, 2020, 279, 119379.	10.8	104
245	Molecular engineering of CxNy: Topologies, electronic structures and multidisciplinary applications. Chinese Chemical Letters, 2020, 31, 3047-3054.	4.8	54
246	Relaxation of Excited Electrons on Carbon Nitrides Investigated by Electrochemiluminescence and Photoluminescence Spectra. Journal of Physical Chemistry C, 2020, 124, 19314-19323.	1.5	9
247	S, Na Co-Doped Graphitic Carbon Nitride/Reduced Graphene Oxide Hollow Mesoporous Spheres for Photoelectrochemical Catalysis Application. ACS Applied Nano Materials, 2020, 3, 7982-7991.	2.4	21
248	A review on graphitic carbon nitride (g-C3N4) based nanocomposites: Synthesis, categories, and their application in photocatalysis. Journal of Alloys and Compounds, 2020, 846, 156446.	2.8	359
249	Mesoporous Polymeric Cyanamideâ€Triazoleâ€Heptazine Photocatalysts for Highlyâ€Efficient Water Splitting. Small, 2020, 16, e2003162.	5.2	27
250	Vertical graphene nano-antennas for solar-to-hydrogen energy conversion. Solar Energy, 2020, 208, 379-387.	2.9	13
251	Surface Coordination Chemistry of Atomically Dispersed Metal Catalysts. Chemical Reviews, 2020, 120, 11810-11899.	23.0	325
252	Elucidating the structure of the graphitic carbon nitride nanomaterials <i>via</i> X-ray photoelectron spectroscopy and X-ray powder diffraction techniques. Dalton Transactions, 2020, 49, 12805-12813.	1.6	60
253	Semiconductor photocatalysis to engineering deuterated N-alkyl pharmaceuticals enabled by synergistic activation of water and alkanols. Nature Communications, 2020, 11, 4722.	5.8	41
254	Graphitic carbon nitride nanotubes: a new material for emerging applications. RSC Advances, 2020, 10, 34059-34087.	1.7	35

#	Article	IF	CITATIONS
255	Production of Metalâ€Free C, N Alternating Nanoplatelets and Their In Vivo Fluorescence Imaging Performance without Labeling. Advanced Functional Materials, 2020, 30, 2004800.	7.8	5
256	Unraveling the mechanisms of S-doped carbon nitride for photocatalytic oxygen reduction to H ₂ O ₂ . Physical Chemistry Chemical Physics, 2020, 22, 21099-21107.	1.3	29
257	Mechanochemical Synthesis of Nitrogen-Deficient Mesopore-Rich Polymeric Carbon Nitride with Highly Enhanced Photocatalytic Performance. ACS Sustainable Chemistry and Engineering, 2020, 8, 18606-18615.	3.2	33
258	Functional group defect design in polymeric carbon nitride for photocatalytic application. APL Materials, 2020, 8, .	2.2	16
259	CaCl ₂ -Activated Carbon Nitride: Hierarchically Nanoporous Carbons with Ultrahigh Nitrogen Content for Selective CO ₂ Adsorption. ACS Applied Nano Materials, 2020, 3, 5965-5977.	2.4	19
260	Graphitic carbon nitride with thermally-induced nitrogen defects: an efficient process to enhance photocatalytic H ₂ production performance. RSC Advances, 2020, 10, 18632-18638.	1.7	18
261	From Triazine to Heptazine: Origin of Graphitic Carbon Nitride as a Photocatalyst. ACS Omega, 2020, 5, 12557-12567.	1.6	61
262	Edge activation of an inert polymeric carbon nitride matrix with boosted absorption kinetics and near-infrared response for efficient photocatalytic CO ₂ reduction. Journal of Materials Chemistry A, 2020, 8, 11761-11772.	5.2	42
263	Theoretical Study on Drum-Shaped Polymers (1,3,5-Triazine) _{2<i>n</i>} Composed of Nonplanar π-Extended Polymerization Units. ACS Omega, 2020, 5, 11618-11628.	1.6	1
264	A pseudo-metal-free strategy for constructing high performance photoelectrodes. Journal of Materials Chemistry A, 2020, 8, 12767-12773.	5.2	4
265	Polymeric carbon nitrides and related metal-free materials for energy and environmental applications. Journal of Materials Chemistry A, 2020, 8, 11075-11116.	5.2	142
266	Nitrogen defects-rich porous graphitic carbon nitride for efficient photocatalytic hydrogen evolution. Journal of Colloid and Interface Science, 2020, 578, 788-795.	5.0	22
267	Black Phosphorus and Carbon Nitride Hybrid Photocatalysts for Photoredox Reactions. Advanced Functional Materials, 2020, 30, 2002021.	7.8	75
268	Electrophoretic deposition of supramolecular complexes for the formation of carbon nitride films. Sustainable Energy and Fuels, 2020, 4, 3879-3883.	2.5	14
269	Realization of ultrathin red 2D carbon nitride sheets to significantly boost the photoelectrochemical water splitting performance of TiO2 photoanodes. Chemical Engineering Journal, 2020, 396, 125267.	6.6	16
270	Awakening nÂ→Âï€* electronic transition by breaking hydrogen bonds in graphitic carbon nitride for increased photocatalytic hydrogen generation. Chemical Engineering Journal, 2020, 399, 125847.	6.6	36
271	From polymeric carbon nitride to carbon materials: extended application to electrochemical energy conversion and storage. Nanoscale, 2020, 12, 8636-8646.	2.8	36
272	Ultrathin 2D Graphitic Carbon Nitride on Metal Films: Underpotential Sodium Deposition in Adlayers for Sodiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2020, 59, 9067-9073.	7.2	68

#	Article	IF	CITATIONS
273	Spatially separating redox centers on 2D carbon nitride with cobalt single atom for photocatalytic H ₂ O ₂ production. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6376-6382.	3.3	245
274	Visible-light photocatalysts: Prospects and challenges. APL Materials, 2020, 8, .	2.2	156
275	Ultrathin 2D Graphitic Carbon Nitride on Metal Films: Underpotential Sodium Deposition in Adlayers for Sodiumâ€lon Batteries. Angewandte Chemie, 2020, 132, 9152-9158.	1.6	10
276	Molecular-level insights on the reactive facet of carbon nitride single crystals photocatalysing overall water splitting. Nature Catalysis, 2020, 3, 649-655.	16.1	427
277	Electroluminescence from sodium-doped polymeric carbon nitride film. Chemical Physics Letters, 2020, 749, 137475.	1.2	7
278	Environmentally Friendly Nonâ€Metal Solar Photocatalyst C ₃ N ₄ for Efficient Nitrogen Fixation as Foliar Fertilizer. ChemistrySelect, 2020, 5, 7720-7727.	0.7	6
279	Graphitic Carbon Nitride Nanomaterials for Multicolor Light-Emitting Diodes and Bioimaging. ACS Applied Nano Materials, 2020, 3, 6798-6805.	2.4	37
280	Cs3Bi2I9/g-C3N4 as a new binary photocatalyst for efficient visible-light photocatalytic processes. Separation and Purification Technology, 2020, 251, 117320.	3.9	56
281	Metal-free photocatalysts for hydrogen evolution. Chemical Society Reviews, 2020, 49, 1887-1931.	18.7	374
282	In-situ hydroxyl modification of monolayer black phosphorus for stable photocatalytic carbon dioxide conversion. Applied Catalysis B: Environmental, 2020, 269, 118760.	10.8	147
283	Pegylated carbon nitride nanosheets for enhanced reactive oxygen species generation and photodynamic therapy under hypoxic conditions. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 25, 102167.	1.7	10
284	Functional carbon nitride materials for water oxidation: from heteroatom doping to interface engineering. Nanoscale, 2020, 12, 6937-6952.	2.8	34
285	Embedded carbon in a carbon nitride hollow sphere for enhanced charge separation and photocatalytic water splitting. Nanoscale, 2020, 12, 7339-7346.	2.8	19
286	Band Modulation and Interfacial Engineering to Generate Efficient Visible-Light-Induced Bifunctional Photocatalysts. ACS Sustainable Chemistry and Engineering, 2020, 8, 2919-2930.	3.2	35
287	Ultrathin Defective C–N Coating to Enable Nanostructured Li Plating for Li Metal Batteries. ACS Nano, 2020, 14, 1866-1878.	7.3	83
288	Neat 3D C3N4 monolithic aerogels embedded with carbon aerogels via ring-opening polymerization with high photoreactivity. Applied Catalysis B: Environmental, 2020, 266, 118652.	10.8	21
289	Shine Bright Like a Diamond: New Light on an Old Polymeric Semiconductor. Advanced Materials, 2020, 32, e1908140.	11.1	57
290	Large-scale synthesis of crystalline g-C ₃ N ₄ nanosheets and high-temperature H ₂ sieving from assembled films. Science Advances, 2020, 6, eaay9851.	4.7	105

#	Article	IF	CITATIONS
291	A 3D Hierarchical Pancake-Like Porous Carbon Nitride for Highly Enhanced Visible-Light Photocatalytic H2 Evolution. Catalysts, 2020, 10, 77.	1.6	2
292	Transparent conductive oxides in photoanodes for solar water oxidation. Nanoscale Advances, 2020, 2, 626-632.	2.2	19
293	A novel solar photo-Fenton system with self-synthesizing H2O2: Enhanced photo-induced catalytic performances and mechanism insights. Applied Surface Science, 2020, 512, 145650.	3.1	51
294	Accelerating the Hole Mobility of Graphitic Carbon Nitride for Photocatalytic Hydrogen Evolution via 2D/2D Heterojunction Structural Advantages and Ni(OH) ₂ Characteristic. Solar Rrl, 2020, 4, 1900538.	3.1	28
295	Exploring recent advances in silver halides and graphitic carbon nitride-based photocatalyst for energy and environmental applications. Arabian Journal of Chemistry, 2020, 13, 8271-8300.	2.3	33
296	Boosting Photocatalytic CO ₂ Reduction Efficiency by Heterostructures of NH ₂ -MIL-101(Fe)/g-C ₃ N ₄ . ACS Applied Energy Materials, 2020, 3, 3946-3954.	2.5	125
297	Graphitic Carbon Nitride–Nickel Catalyst: From Material Characterization to Efficient Ethanol Electrooxidation. ACS Sustainable Chemistry and Engineering, 2020, 8, 7244-7255.	3.2	38
298	Revisiting the Limiting Factors for Overall Waterâ€ S plitting on Organic Photocatalysts. Angewandte Chemie, 2020, 132, 16418-16433.	1.6	9
299	Revisiting the Limiting Factors for Overall Waterâ€ 5 plitting on Organic Photocatalysts. Angewandte Chemie - International Edition, 2020, 59, 16278-16293.	7.2	72
300	Evaluation of Two Potassium-Based Activation Agents for the Production of Oxygen- and Nitrogen-Doped Porous Carbons. Energy & Fuels, 2020, 34, 6101-6112.	2.5	21
301	Phosphorus-doped polymeric carbon nitride nanosheets for enhanced photocatalytic hydrogen production. APL Materials, 2020, 8, .	2.2	37
302	In Situ Synthesis of Phosphorusâ€Doped Polymeric Carbon Nitride Sheets for Photoelectrochemical Water Oxidation. Solar Rrl, 2020, 4, 2000168.	3.1	25
303	An overview on g-C3N4 as a robust photocatalyst towards the sustainable generation of H2 energy. Materials Today: Proceedings, 2021, 35, 175-178.	0.9	11
304	Synthesis of carbon nitride in moist environments: A defect engineering strategy toward superior photocatalytic hydrogen evolution reaction. Journal of Energy Chemistry, 2021, 54, 403-413.	7.1	21
305	Role of Dopants on the Local Electronic Structure of PolymericÂCarbon Nitride Photocatalysts. Small Methods, 2021, 5, e2000707.	4.6	11
306	Polymer photocatalysts for solar-to-chemical energy conversion. Nature Reviews Materials, 2021, 6, 168-190.	23.3	361
307	One-pot synthesis of array-like sulfur-doped carbon nitride with covalently crosslinked ultrathin MoS2 cocatalyst for drastically enhanced photocatalytic hydrogen evolution. Journal of Materials Science and Technology, 2021, 75, 59-67.	5.6	16
308	Design of p-n homojunctions in metal-free carbon nitride photocatalyst for overall water splitting. Chinese Journal of Catalysis, 2021, 42, 501-509.	6.9	61

ARTICLE IF CITATIONS Solvothermal synthesis of various C₃N₄ films on FTO substrates and their 309 1.9 4 photocatalytic and sensing applications. Journal of the American Ceramic Society, 2021, 104, 722-732. Photocatalytic conversion of biomass-based monosaccharides to lactic acid by ultrathin porous 10.8 108 oxygen doped carbon nitride. Applied Catalysis B: Environmental, 2021, 283, 119520. Photoexcited single metal atom catalysts for heterogeneous photocatalytic H2O2 production: Pragmatic guidelines for predicting charge separation. Applied Catalysis B: Environmental, 2021, 282, 311 10.8 74 119589. Rapid synthesis of tetragonal zirconia nanoparticles by microwave-solvothermal route and its photocatalytic activity towards organic dyes and hexavalent chromium in single and binary component systems. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 608, Recent Progress on Carbon Nitride and Its Hybrid Photocatalysts for CO₂ Reduction. 313 3.1 34 Solar Rrl, 2021, 5, 2000478. Oxygen-doped crystalline carbon nitride with greatly extended visible-light-responsive range for photocatalytic H2 generation. Applied Catalysis B: Environmental, 2021, 283, 119636. 10.8 On the rapid in situ oxidation of two-dimensional V2CTz MXene in culture cell media and their 315 3.8 30 cytotoxicity. Materials Science and Engineering C, 2021, 119, 111431. Review MXenes as a new type of nanomaterial for environmental applications in the photocatalytic 2.3 88 degradation of water pollutants. Ceramics International, 2021, 47, 7321-7343. Soft-template synthesis of sp2-carbon linked polymeric carbon nitride porous nanotubes with 317 3.1 19 enhanced photócatalytic hydrogen evolution. Applied Surface Science, 2021, 541, 148427. Highly antifouling and chlorine resistance polyamide reverse osmosis membranes with g-C3N4 nanosheets as nanofiller. Separation and Purification Technology, 2021, 258, 117980. Bridging Functional Groups Governing the Charge Transfer Dynamic in an Amorphous Carbon Nitride 319 12 3.1Allotropic Heterojunction toward Efficient Solar Hydrogen Evolution. Solar Rrl, 2021, 5, . Efficient aerobic oxidation of alcohols to esters by acidified carbon nitride photocatalysts. Journal 3.1 of Catalysis, 2021, 393, 116-125. Cobalt Single Atoms on Tetrapyridomacrocyclic Support for Efficient Peroxymonosulfate Activation. 321 4.6 185 Environmental Science & amp; Technology, 2021, 55, 1242-1250. Intrinsic defect engineering in graphitic carbon nitride for photocatalytic environmental 6.6 purification: A review to fill existing knowledge gaps. Chemical Engineering Journal, 2021, 421, 127729. Facile construction of O-doped crystalline / non-crystalline g-C3N4 embedded nano-homojunction for 323 77 5.4efficiently photocatalytic H2 evolution. Carbon, 2021, 172, 602-612. Effect of interlaced energy bands in polymeric carbon nitride nanotubes on the greatly enhanced 324 visible-light photocatalytic hydrogen evolution. Chemical Engineering Journal, 2021, 417, 127956. Interfacial Engineering for Improved Photocatalysis in a Charge Storing 2D Carbon Nitride: Melamine 325 10.2 64 Functionalized Poly(heptazine imide). Advanced Energy Materials, 2021, 11, 2003016. Structural design of small-molecule carbon-nitride dyes for photocatalytic hydrogen evolution. Dyes and Pigments, 2021, 185, 108946.

ARTICLE IF CITATIONS A facile one-step fabrication of holey carbon nitride nanosheets for visible-light-driven hydrogen 327 10.8 87 evolution. Applied Catalysis B: Environmental, 2021, 283, 119637. Atomic―and Molecularâ€Level Functionalizations of Polymeric Carbon Nitride for Solar Fuel 3.1 Production. Solar Rrl, 2021, 5, 2000440. Memory Devices for Flexible and Neuromorphic Device Applications. Advanced Intelligent Systems, 329 3.3 14 2021, 3, 2000206. Surface oxidation for enhancing the hydrogen evolution reaction of metal nitrides: a theoretical study on vanadium nitride. Materials Ádvances, 0, , . The Potential of Nitride Materials. Springer Series in Materials Science, 2021, , 13-25. 331 0.4 0 Mechanistic Insights into the Synthesis of Platinum–Rare Earth Metal Nanoalloys by a Solid-State 3.2 Chemical Route. Chemistry of Materials, 2021, 33, 535-546. Combination of Carbon Nitride and Semiconductors for the Enhancement of the Photocatalytic 333 Degradation of Organic Pollutants and Hydrogen Production. RSC Nanoscience and Nanotechnology, 0.2 0 2021, , 318-370. Semiconductor photocatalysts and mechanisms of carbon dioxide reduction and nitrogen fixation 334 2.5 under UV and visible light. Russian Chemical Reviews, 2021, 90, 1520-1543. Recent Progress in 2D Catalysts for Photocatalytic and Electrocatalytic Artificial Nitrogen Reduction 335 10.2 73 to Ammonia. Advanced Energy Materials, 2021, 11, 2003294. A two-dimensional arsenene/g-C₃N₄ van der Waals heterostructure: a highly 2.5 efficient photocatalyst for water splitting. Sustainable Energy and Fuels, 2021, 5, 2249-2256. Photocatalytic degradation of phenol over carbon nitrides prepared by urea and melamine 337 0.3 0 precursors. AIP Conference Proceedings, 2021, , . Research progress on the photocatalytic activation of methane to methanol. Green Chemistry, 2021, 4.6 39 23, 3526-3541. Conjugated microporous polymers as a visible light driven platform for photo-redox conversion of 339 4.6 27 biomass derived chemicals. Green Chemistry, 2021, 23, 3607-3611. Design of melem-based supramolecular assemblies for the synthesis of polymeric carbon nitrides with 340 5.2 enhanced photocatalytic activity. Journal of Materials Chemistry A, 2021, 9, 17855-17864. Graphitic carbon nitride nanosheets with low O_{N1}-doping content as efficient 341 2.2 15 photocatalysts for organic pollutant degradation. Environmental Science: Nano, 2021, 8, 460-469. Functionalized Graphitic Carbon Nitrides for Environmental and Sensing Applications. Advanced 342 2.8 29 Energy and Sustainability Research, 2021, 2, 2000073. Photocatalyst for Highâ€Performance H 2 Production: Gaâ€Doped Polymeric Carbon Nitride. Angewandte 343 1.6 21 Chemie, 2021, 133, 6189-6194. Recent Progress in Polymorphs of Carbon Nitride: Synthesis, Properties, and Their Applications. 344 Macromolecular Rapid Communications, 2021, 42, e2000676.

#	Article	IF	CITATIONS
345	Controllable growth of graphdiyne layered nanosheets for high-performance water oxidation. Materials Chemistry Frontiers, 2021, 5, 4153-4159.	3.2	19
346	Photocatalyst for Highâ€Performance H ₂ Production: Gaâ€Doped Polymeric Carbon Nitride. Angewandte Chemie - International Edition, 2021, 60, 6124-6129.	7.2	108
347	Sulphur Doped Graphitic Carbon Nitride as a Dual Biosensing Platform for the Detection of Cancer Biomarker CA15–3. Journal of the Electrochemical Society, 2021, 168, 017507.	1.3	16
348	Controlled Nucleation and Growth of Carbon Nitride Films on CNT Fiber Fabric for Photoelectrochemical Applications. Advanced Sustainable Systems, 0, , 2000265.	2.7	4
349	Porous Carbon Nitride Thin Strip: Precise Carbon Doping Regulating Delocalized Ï€â€Electron Induces Elevated Photocatalytic Hydrogen Evolution. Small, 2021, 17, e2006622.	5.2	73
350	Graphitic Carbon Nitride-based New Advanced Materials for Photocatalytic Applications. Current Analytical Chemistry, 2021, 17, 150-165.	0.6	6
351	Photodriven Charge Accumulation and Carrier Dynamics in a Waterâ€ 5 oluble Carbon Nitride Photocatalyst. ChemSusChem, 2021, 14, 1728-1736.	3.6	21
352	Low-Temperature Synthesis of Solution Processable Carbon Nitride Polymers. Molecules, 2021, 26, 1646.	1.7	11
353	Boosting CO ₂ Capture and Its Photochemical Conversion on Bismuth Surface. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2000671.	0.8	4
354	Polymeric Carbon Nitrideâ€Derived Photocatalysts for Water Splitting and Nitrogen Fixation. Small, 2021, 17, e2005149.	5.2	45
355	Covalent Organic Frameworks for Sunlight-driven Hydrogen Evolution. Chemistry Letters, 2021, 50, 676-686.	0.7	15
356	cPCN-Regulated SnO2 Composites Enables Perovskite Solar Cell with Efficiency Beyond 23%. Nano-Micro Letters, 2021, 13, 101.	14.4	31
357	Facile Construction of a Hollow In ₂ S ₃ /Polymeric Carbon Nitride Heterojunction for Efficient Visible-Light-Driven CO ₂ Reduction. ACS Sustainable Chemistry and Engineering, 2021, 9, 5942-5951.	3.2	37
358	The ordered mesoporous carbon nitride-graphene aerogel nanocomposite for high-performance supercapacitors. Journal of Power Sources, 2021, 494, 229741.	4.0	34
359	Harnessing the Potential of Graphitic Carbon Nitride for Optoelectronic Applications. Advanced Optical Materials, 2021, 9, 2100146.	3.6	22
360	Light on peroxide. Nature Catalysis, 2021, 4, 350-351.	16.1	12
361	FeNi Nanoparticles Coated on Nâ€doped Ultrathin Grapheneâ€like Nanosheets as Stable Bifunctional Catalyst for Znâ€Air Batteries. Chemistry - an Asian Journal, 2021, 16, 1592-1602.	1.7	6
362	Topochemical Intercalation of Graphitic Carbon Nitride with Alkali Metals in Ethylenediamine. Journal of Physical Chemistry C, 2021, 125, 9947-9955.	1.5	6

		CITATION REPORT		
#	ARTICLE		IF	Citations
363	Wafer-scale growth of two-dimensional graphitic carbon nitride films. Matter, 2021, 4,	1625-1638.	5.0	52
364	Enhanced Electrochemical Performance of Hydrothermally Exfoliated Hexagonal Boron Nanosheets for Applications in Electrochemistry. Journal of the Electrochemical Society 056512.	Nitride ,, 2021, 168,	1.3	10
365	Ultrafast electron extraction by 2D carbon nitride modified with CoS cocatalyst for eff photocatalytic performance. Colloids and Surfaces A: Physicochemical and Engineering 617, 126151.		2.3	14
366	Laser-driven growth of structurally defined transition metal oxide nanocrystals on carb photoelectrodes in milliseconds. Nature Communications, 2021, 12, 3224.	on nitride	5.8	15
367	Azacalix[3]triazines: A Substructure of Triazineâ€Based Graphitic Carbon Nitride Featu Interactions. Angewandte Chemie - International Edition, 2021, 60, 16377-16381.	ring Anionâ€ ï €	7.2	6
368	Realization of Strong Room-Temperature Ferromagnetism in Atomically Thin 2D Carbo by Thermal Annealing. ACS Nano, 2021, 15, 12069-12076.	n Nitride Sheets	7.3	27
369	Azacalix[3]triazines: A Substructure of Triazineâ€Based Graphitic Carbon Nitride Featu Interactions. Angewandte Chemie, 2021, 133, 16513-16517.	ring Anionâ€ ï €	1.6	1
370	A dual strategy for synthesizing carbon/defect comodified polymeric carbon nitride po nanotubes with boosted photocatalytic hydrogen evolution and synchronous contami degradation. Applied Catalysis B: Environmental, 2021, 287, 119995.		10.8	66
371	Construction of K ⁺ Ion Gradient in Crystalline Carbon Nitride to Accelerat Dissociation and Charge Separation for Visible Light H ₂ Production. ACS 11, 6995-7005.		5.5	100
372	Tuning the Coordination Environment to Effect the Electrocatalytic Behavior of a Singl Catalyst toward the Nitrogen Reduction Reaction. Journal of Physical Chemistry C, 202 11963-11974.	e-Atom 1, 125,	1.5	21
373	Electrocatalytic Nitrogen Reduction by Transition Metal Single-Atom Catalysts on Poly Nitride. Journal of Physical Chemistry C, 2021, 125, 13880-13888.	meric Carbon	1.5	28
374	Highly elastic wrinkled structures for stable and low volume-expansion lithium-metal a Science China Materials, 2021, 64, 2675-2682.	nodes.	3.5	7
375	Carbon nitride of five-membered rings with low optical bandgap for photoelectrochem biosensing. CheM, 2021, 7, 2708-2721.	ical	5.8	64
376	Graphitic carbon nitride (g-C3N4) incorporated TiO2–B nanowires as efficient photo dye sensitized solar cells. Materials Chemistry and Physics, 2021, 266, 124520.	anode material in	2.0	19
377	A Tourâ€Guide through Carbon Nitrideâ€Land: Structure―and Dimensionalityâ€Depe Photo(Electro)Chemical Energy Conversion and Storage. Advanced Energy Materials, 2		10.2	81
378	Engineered Polymeric Carbon Nitride Additive for Energy Storage Materials: A Review. Functional Materials, 2021, 31, 2102300.	Advanced	7.8	26
379	Construction of Au modified direct Z-scheme g-C3N4/defective ZnO heterostructure w high-performance for tetracycline degradation. Applied Surface Science, 2021, 555, 14	vith stable 19696.	3.1	44
380	Emerging graphitic carbon nitride-based membranes for water purification. Water Rese 117207.	earch, 2021, 200,	5.3	53

#	Article	IF	CITATIONS
381	Photoredox atalyzed Simultaneous Olefin Hydrogenation and Alcohol Oxidation over Crystalline Porous Polymeric Carbon Nitride. ChemSusChem, 2021, 14, 3344-3350.	3.6	16
382	Homogeneous Carbon/Potassiumâ€Incorporation Strategy for Synthesizing Red Polymeric Carbon Nitride Capable of Nearâ€Infrared Photocatalytic H ₂ Production. Advanced Materials, 2021, 33, e2101455.	11.1	144
383	One-Step Chemical Vapor Deposition Synthesis of Hierarchical Ni and N Co-Doped Carbon Nanosheet/Nanotube Hybrids for Efficient Electrochemical CO ₂ Reduction at Commercially Viable Current Densities. ACS Catalysis, 2021, 11, 10333-10344.	5.5	32
384	Highly fluorescent g-C3N4 nanobelts derived from bulk g-C3N4 for NO2 gas sensing. Journal of Hazardous Materials, 2021, 416, 126195.	6.5	33
385	Unique Dual‣ites Boosting Overall CO ₂ Photoconversion by Hierarchical Electron Harvesters. Small, 2021, 17, e2103796.	5.2	38
386	Water-splitting photoelectrodes consisting of heterojunctions of carbon nitride with a p-type low bandgap double perovskite oxide. Nanotechnology, 2021, 32, 485407.	1.3	13
387	A Study in Red: The Overlooked Role of Azoâ€Moieties in Polymeric Carbon Nitride Photocatalysts with Strongly Extended Optical Absorption. Chemistry - A European Journal, 2021, 27, 17188-17202.	1.7	4
388	Inâ€situ Construction of Ultraâ€Thin Graphitic Carbon Nitride Supported Lanthanum Oxide Nanosheet Heterostructures with Enhanced Photocatalytic Hydrogen Evolution Activity. ChemPhotoChem, 2022, 6, .	1.5	0
389	Light-driven catalytic conversion of CO2 with heterogenized molecular catalysts based on fourth period transition metals. Coordination Chemistry Reviews, 2021, 443, 214018.	9.5	43
390	Mild adsorption of carbon nitride (C3N3) nanosheet on a cellular membrane reveals its suitable biocompatibility. Colloids and Surfaces B: Biointerfaces, 2021, 205, 111896.	2.5	3
391	Photoelectrochemistry-driven selective hydroxyl oxidation of polyols: Synergy between Au nanoparticles and C3N4 nanosheets. Chem Catalysis, 2021, 1, 1260-1272.	2.9	15
392	A strategy to construct (reduced graphene oxide, γ-Fe2O3)/C3N4 step-scheme photocatalyst for visible-light water splitting. Catalysis Communications, 2021, 157, 106327.	1.6	7
393	Ultrafast Interlayer Charge Separation, Enhanced Visible‣ight Absorption, and Tunable Overpotential in Twisted Graphitic Carbon Nitride Bilayers for Water Splitting. Advanced Materials, 2021, 33, e2104695.	11.1	26
394	In-situ construction of morphology-controllable 0D/1D g-C3N4 homojunction with enhanced photocatalytic activity. Applied Surface Science, 2021, 563, 150317.	3.1	24
395	Defect engineering in polymeric carbon nitride photocatalyst: Synthesis, properties and characterizations. Advances in Colloid and Interface Science, 2021, 296, 102523.	7.0	49
396	Roles of Metal-Free Materials in Photoelectrodes for Water Splitting. Accounts of Materials Research, 2021, 2, 933-943.	5.9	12
397	Carbon nanomaterials: Synthesis, properties and applications in electrochemical sensors and energy conversion systems. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 272, 115341.	1.7	40
398	Ni single atoms anchored on nitrogen-doped graphene as H2-Evolution cocatalyst of SrTiO3(Al)/CoO for photocatalytic overall water splitting. Carbon, 2021, 183, 763-773.	5.4	22

#	Article	IF	CITATIONS
399	Visible light active Boron doped phenyl-g-C3N4 nanocomposites for decomposition of Dyes. Surfaces and Interfaces, 2021, 26, 101394.	1.5	4
400	Ferromagnetism with high magnetoresistance in Ag decorated graphitic carbon nitride. Journal of Magnetism and Magnetic Materials, 2021, 535, 167941.	1.0	6
401	Insights into mechanisms, kinetics and pathway of continuous visible-light photodegradation of PPCPs via porous g-C3N4 with highly dispersed Fe(III) active sites. Chemical Engineering Journal, 2021, 423, 130095.	6.6	18
402	Selectively constructing nitrogen vacancy in carbon nitrides for efficient syngas production with visible light. Applied Catalysis B: Environmental, 2021, 297, 120496.	10.8	31
403	Facile construction of Fe/Pd-doped graphite carbon nitride for effective removal of doxorubicin: Performance, mechanism and degradation pathways. Applied Catalysis B: Environmental, 2021, 299, 120686.	10.8	17
404	2D sp2 carbon-conjugated triazine covalent organic framework photocatalysis for blue light-induced selective oxidation of sulfides with O2. Applied Catalysis B: Environmental, 2021, 299, 120691.	10.8	48
405	Construction of fish-scale tubular carbon nitride-based heterojunction with boosting charge separation in photocatalytic tetracycline degradation and H2O2 production. Chemical Engineering Journal, 2021, 426, 130831.	6.6	92
406	Multiple application of SAzyme based on carbon nitride nanorod-supported Pt single-atom for H2O2 detection, antibiotic detection and antibacterial therapy. Chemical Engineering Journal, 2022, 427, 131572.	6.6	42
407	Effect of carbon nitride synthesized by different modification strategies on the performance of carbon nitride/PVDF photocatalytic composite membranes. Journal of Hazardous Materials, 2022, 422, 126877.	6.5	14
408	Mo-O-Bi Bonds as interfacial electron transport bridges to fuel CO2 photoreduction via in-situ reconstruction of black Bi2MoO6/BiO2-x heterojunction. Chemical Engineering Journal, 2022, 429, 132204.	6.6	83
409	Role of transition metal oxides in g-C3N4-based heterojunctions for photocatalysis and supercapacitors. Journal of Energy Chemistry, 2022, 64, 214-235.	7.1	117
410	Defective polymeric carbon nitride: Fabrications, photocatalytic applications and perspectives. Chemical Engineering Journal, 2022, 427, 130991.	6.6	85
411	The band engineering of 2D-hybridized PCN-Sb ₂ MoO ₆ -Bi ₂ O ₃ nanomaterials with dual Z-scheme heterojunction for enhanced photocatalytic water splitting without sacrificial agents. Sustainable Energy and Fuels, 2021, 5, 2325-2334.	2.5	5
412	Fundamentals of Photocatalysis for Energy Conversion. Materials Horizons, 2021, , 5-17.	0.3	Ο
413	Organic photoelectrode engineering: accelerating photocurrent generation <i>via</i> donor–acceptor interactions and surface-assisted synthetic approach. Journal of Materials Chemistry A, 2021, 9, 7162-7171.	5.2	13
414	Chapter 8. Composites of Carbon Nanodots for Hydrogen Energy Generation. , 2021, , 173-195.		Ο
415	What does graphitic carbon nitride really look like?. Physical Chemistry Chemical Physics, 2021, 23, 2853-2859.	1.3	12
416	Synergistic Doping and Surface Decoration of Carbon Nitride Macrostructures by Single Crystal Design. ACS Applied Energy Materials, 2021, 4, 1868-1875.	2.5	12

#	Article	IF	CITATIONS
417	Recent advancements and opportunities of decorated graphitic carbon nitride toward solar fuel production and beyond. Sustainable Energy and Fuels, 2021, 5, 4457-4511.	2.5	25
419	Graphitic carbon nitride nanodots: electronic structure and its influence factors. Journal of Materials Science, 2020, 55, 5488-5498.	1.7	3
420	One-step preparation of novel K+ and cyano-group co-doped crystalline polymeric carbon nitride with highly efficient H2 evolution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 601, 125023.	2.3	28
421	Scalable one-step template-free synthesis of ultralight edge-functionalized g-C3N4 nanosheets with enhanced visible light photocatalytic performance. Separation and Purification Technology, 2020, 250, 117085.	3.9	22
422	Photothermal conversion assisted photocatalytic hydrogen evolution from amorphous carbon nitrogen nanosheets with nitrogen vacancies. Physical Chemistry Chemical Physics, 2020, 22, 4453-4463.	1.3	21
423	A boron-decorated melon-based carbon nitride as a metal-free photocatalyst for N ₂ fixation: a DFT study. Physical Chemistry Chemical Physics, 2020, 22, 21872-21880.	1.3	18
424	Au nanoparticle-embedded, nitrogen-deficient hollow mesoporous carbon nitride spheres for nitrogen photofixation. Journal of Materials Chemistry A, 2020, 8, 16218-16231.	5.2	74
425	Theoretical Study on Pyramidal C7N6–H3R3 Molecules. Australian Journal of Chemistry, 2019, 72, 501.	0.5	1
426	Enabling Pt-free photocatalytic hydrogen evolution on polymeric melon: Role of amorphization for overcoming the limiting factors. Physical Review Materials, 2018, 2, .	0.9	7
427	Emerging Electrocatalysts for Water Oxidation under Nearâ€Neutral CO ₂ Reduction Conditions. Advanced Materials, 2022, 34, e2105852.	11.1	34
428	Self‣upporting 3D Carbon Nitride with Tunable n → π* Electronic Transition for Enhanced Solar Hydrogen Production. Advanced Materials, 2021, 33, e2104361.	11.1	105
429	Photocatalytic Air Purification Using Functional Polymeric Carbon Nitrides. Advanced Science, 2021, 8, e2102376.	5.6	24
430	Selfâ€Assembled Fullerene Nanostructures: Synthesis and Applications. Advanced Functional Materials, 2022, 32, 2106924.	7.8	61
431	Multi-dimensional applications of graphitic carbon nitride nanomaterials – A review. Journal of Molecular Liquids, 2021, 344, 117820.	2.3	46
432	Gradient Zn-Doped Poly Heptazine Imides Integrated with a van der Waals Homojunction Boosting Visible Light-Driven Water Oxidation Activities. ACS Catalysis, 2021, 11, 13463-13471.	5.5	54
433	2D/2D Heterojunction systems for the removal of organic pollutants: A review. Advances in Colloid and Interface Science, 2021, 297, 102540.	7.0	51
434	A review of recent advances in manganese-based supercapacitors. Journal of Energy Storage, 2021, 44, 103322.	3.9	56
435	Synthesis of Atomically Thin g-C ₃ N ₄ Nanosheets via Supercritical CO ₂ Doping with Single-Atom Cobalt for Photocatalytic Hydrogen Evolution. ACS Applied Materials & Interfaces, 2021, 13, 52560-52570.	4.0	35

#	Article	IF	CITATIONS
436	New Spiral Form of Carbon Nitride with Ultrasoftness and Tunable Electronic Structures. ACS Omega, 2021, 6, 516-522.	1.6	3
437	Graphitic carbon nitride-based photocatalysts for hydrogen production. , 2022, , 213-236.		3

438 H₂ and CH₄ production from bio-alcohols using condensed poly(heptazine) Tj ETQq0 0 0 rgBT /Overlock 10 Tr

439	Fully Condensed Poly (Triazine Imide) Crystals: Extended π onjugation and Structural Defects for Overall Water Splitting. Angewandte Chemie, 2022, 134, .	1.6	14
440	Fully Condensed Poly (Triazine Imide) Crystals: Extended Ï€â€Conjugation and Structural Defects for Overall Water Splitting. Angewandte Chemie - International Edition, 2022, 61, .	7.2	114
441	Thermal stability of polymeric carbon nitride (PCN)-Al2O3–ZrO2 nanocomposites used in photocatalysis. Journal of Thermal Analysis and Calorimetry, 2022, 147, 7675-7682.	2.0	4
442	Graphitic Azaâ€Fused Ï€â€Conjugated Networks: Construction, Engineering, and Taskâ€Specific Applications. Advanced Materials, 2022, 34, e2107947.	11.1	17
444	Efficient strategies for boosting the performance of 2D graphitic carbon nitride nanomaterials during photoreduction of carbon dioxide to energy-rich chemicals. Materials Today Chemistry, 2022, 23, 100605.	1.7	13
445	Hierarchically Porous Polymeric Carbon Nitride as a Volume Photocatalyst for Efficient H ₂ Generation under Strong Irradiation. Solar Rrl, 2022, 6, 2100823.	3.1	27
446	Designing stable 2D materials solely from VIA elements. Applied Physics Letters, 2021, 119, .	1.5	6
447	Photocatalytic Inactivation of Viruses Using Graphitic Carbon Nitride-Based Photocatalysts: Virucidal Performance and Mechanism. Catalysts, 2021, 11, 1448.	1.6	18
448	Boosting photocatalytic hydrogen production by creating isotype heterojunctions and single-atom active sites in highly-crystallized carbon nitride. Science Bulletin, 2022, 67, 520-528.	4.3	29
449	Bifunctional Carbon Nitride Exhibiting both Enhanced Photoactivity and Residual Catalytic Activity in the Post-Irradiation Dark Period. ACS Catalysis, 2021, 11, 14941-14955.	5.5	28
450	Novel Two-Step Surface Boron Decoration of Graphitic Carbon Nitride Photoelectrodes for Efficient Charge Transport and Separation. Journal of Physical Chemistry C, 2021, 125, 25207-25216.	1.5	9
451	Metal–Organic Framework-Derived Tubular In ₂ O ₃ –C/CdIn ₂ S ₄ Heterojunction for Efficient Solar-Driven CO ₂ Conversion. ACS Applied Materials & Interfaces, 2022, 14, 20375-20384.	4.0	26
452	Boosting Photocatalytic Activity Using Carbon Nitride Based 2D/2D van der Waals Heterojunctions. Chemistry of Materials, 2021, 33, 9012-9092.	3.2	88
453	Polytriazine imide-LiCl semiconductor for highly efficient photooxidation of benzyl alcohol to benzaldehyde. Journal of Chemical Sciences, 2021, 133, 1.	0.7	0
454	Preparation of Na-Doped Defect g-C ₃ N ₄ via Molten Salt Method. Material Sciences, 2021, 11, 1211-1224.	0.0	1

#	Article	IF	CITATIONS
455	Cutting COFâ€like C ₄ N to Give Colloidal Quantum Dots: Towards Optical Encryption and Bidirectional Sulfur Chemistry via Functional Group and Edge Effects. Angewandte Chemie - International Edition, 2022, 61, e202114182.	7.2	15
456	Cutting COFâ€like C ₄ N to Give Colloidal Quantum Dots: Towards Optical Encryption and Bidirectional Sulfur Chemistry via Functional Group and Edge Effects. Angewandte Chemie, 2022, 134, .	1.6	1
457	Nitrogen vacancy-rich porous carbon nitride nanosheets for efficient photocatalytic H2O2 production. Materials Today Energy, 2022, 24, 100926.	2.5	20
458	Highly efficient hydrogen evolution from water splitting on heptazine polymer with three types of defects. Applied Surface Science, 2022, 580, 152070.	3.1	7
459	High-crystalline polymeric carbon nitride flake composed porous nanotubes with significantly improved photocatalytic water splitting activity: The optimal balance between crystallinity and surface area. Chemical Engineering Journal, 2022, 432, 134388.	6.6	27
460	An S-scheme heterojunction constructed from α-Fe ₂ O ₃ and In-doped carbon nitride for high-efficiency CO ₂ photoreduction. Catalysis Science and Technology, 2022, 12, 1520-1529.	2.1	16
461	Green heterogeneous catalysis. , 2022, , 193-242.		1
462	Towards micromachine intelligence: potential of polymers. Chemical Society Reviews, 2022, 51, 1558-1572.	18.7	36
463	Facile regeneration of oxidized porous carbon nitride rods by the de-aromatization of the heptazine network in bulk g-C ₃ N ₄ . Inorganic Chemistry Frontiers, 2022, 9, 1107-1114.	3.0	9
464	Semiconducting Polymers for Oxygen Evolution Reaction under Light Illumination. Chemical Reviews, 2022, 122, 4204-4256.	23.0	180
465	Advances of the functionalized carbon nitrides for electrocatalysis. , 2022, 4, 211-236.		33
466	Trioctylphosphine Oxide (TOPO)-Assisted Facile Fabrication of Phosphorus-Incorporated Nanostructured Carbon Nitride Toward Photoelectrochemical Water Splitting with Enhanced Activity. Inorganic Chemistry, 2022, 61, 1368-1376.	1.9	10
467	A brief review of s-triazine graphitic carbon nitride. Carbon Letters, 2022, 32, 703-712.	3.3	15
468	Machine learning assisted high-throughput screening of transition metal single atom based superb hydrogen evolution electrocatalysts. Journal of Materials Chemistry A, 2022, 10, 6679-6689.	5.2	74
469	Overcoming Electron Transfer Efficiency Bottlenecks for Hydrogen Production in Highly Crystalline Carbon Nitrideâ€Based Materials. Advanced Sustainable Systems, 2022, 6, .	2.7	29
470	Solvent-Mediated Synthesis of Hierarchical MOFs and Derived Urchin-Like Pd@SC/HfO ₂ with High Catalytic Activity and Stability. ACS Applied Materials & Interfaces, 2022, 14, 5887-5896.	4.0	12
471	Graphitic carbon nitride for electrocatalysis. , 2022, , 193-224.		2
472	Excited State Dynamics in Dual-Defects Modified Graphitic Carbon Nitride. Journal of Physical Chemistry Letters, 2022, 13, 1033-1041.	2.1	16

#	Article	IF	CITATIONS
473	K/O co-doping and introduction of cyano groups in polymeric carbon nitride towards efficient simultaneous solar photocatalytic water splitting and biorefineries. Green Chemistry, 2022, 24, 2104-2113.	4.6	36
474	Monolayer Graphitic Carbon Nitride as Metal-Free Catalyst with Enhanced Performance in Photo- and Electro-Catalysis. Nano-Micro Letters, 2022, 14, 55.	14.4	40
475	Graphitic carbon nitride-based nanoplatforms for biosensors: design strategies and applications. Materials Today Chemistry, 2022, 24, 100770.	1.7	20
476	Shedding a Light on the Colloidal Architectures of a Metal-free Polymeric Semiconductor Graphitic Carbon Nitride. RSC Nanoscience and Nanotechnology, 2022, , 193-209.	0.2	0
477	Construction of single-atom catalysts for electro-, photo- and photoelectro-catalytic applications: State-of-the-art, opportunities, and challenges. Materials Today, 2022, 53, 217-237.	8.3	34
478	Improvement of the Photoelectrochemical Water Oxidation Property of N-Si Photoanode by Functionalized Coox-Nife Ldh Bi-Layers. SSRN Electronic Journal, 0, , .	0.4	0
479	Ultrafine Grains Coherently Precipitated from Ultra-Thin Nife-Ldh Nanosheets Around Surface Defects Strengthen Photocatalytic Hydrogen Production. SSRN Electronic Journal, 0, , .	0.4	0
480	Modification of graphite carbon nitride by adding an ultra-micro amount of triaminotriphenylamine for superior photocatalytic hydrogen evolution. New Journal of Chemistry, 2022, 46, 9057-9063.	1.4	4
481	Potassium Cyamelurate K3[C6n7o3] Rod: A New Visible-Light Photocatalyst for Homogeneous/Heterogeneous Degradation of Antibiotics. SSRN Electronic Journal, 0, , .	0.4	0
482	Functionalized Graphitic Carbon Nitrides for Photocatalytic H ₂ O ₂ Production: Desired Properties Leading to Rational Catalyst Design. KONA Powder and Particle Journal, 2023, 40, 124-148.	0.9	2
483	Microscopic Functionality of Fen4 Sites in Polymeric Carbon Nitride for Efficient H2s Oxidation. SSRN Electronic Journal, 0, , .	0.4	0
484	Biomimetic Nanochannels: From Fabrication Principles to Theoretical Insights. Small Methods, 2022, 6, e2101255.	4.6	18
485	Crystalline C ₃ N ₄ /CeO ₂ composites as photocatalyst for hydrogen production in visible light. IOP Conference Series: Earth and Environmental Science, 2022, 997, 012018.	0.2	0
486	Synthesis and Characterization of CN Thin Films Produced by DC-Pulsed Sputtering in an CH3CH2OH-N2 Atmosphere. Advances in Science, Technology and Engineering Systems, 2022, 7, 53-59.	0.4	0
487	Photocatalytic Water‧plitting by Organic Conjugated Polymers: Opportunities and Challenges. Chemical Record, 2022, 22, e202100336.	2.9	24
488	Introducing Spin Polarization into Mixedâ€Dimensional Van der Waals Heterostructures for <scp>Highâ€Efficiency Visibleâ€Light</scp> Photocatalysis. Energy and Environmental Materials, 2023, 6, .	7.3	8
489	Ion-Induced Synthesis of Crystalline Carbon Nitride Ultrathin Nanosheets from Mesoporous Melon for Efficient Photocatalytic Hydrogen Evolution with Synchronous Highly Selective Oxidation of Benzyl Alcohol. ACS Applied Materials & Interfaces, 2022, 14, 13419-13430.	4.0	20
490	State of the art advancement in rational design of g-C3N4 photocatalyst for efficient solar fuel transformation, environmental decontamination and future perspectives. International Journal of Hydrogen Energy, 2022, 47, 10837-10867.	3.8	51

#	Article	IF	CITATIONS
491	Charge carrier nonadiabatic dynamics in non-metal doped graphitic carbon nitride. Journal of Chemical Physics, 2022, 156, 094702.	1.2	22
492	Ionothermal Synthesis of Covalent Triazine Frameworks in a NaClâ€KClâ€ZnCl ₂ Eutectic Salt for the Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2022, 61, .	7.2	67
493	Ionothermal Synthesis of Covalent Triazine Frameworks in a NaClâ€KClâ€ZnCl ₂ Eutectic Salt for the Hydrogen Evolution Reaction. Angewandte Chemie, 2022, 134, .	1.6	7
494	A Triad Photoanode for Visible Lightâ€Driven Water Oxidation via Immobilization of Molecular Polyoxometalate on Polymeric Carbon Nitride. Advanced Sustainable Systems, 2022, 6, .	2.7	6
495	Molecular Design of Covalent Triazine Frameworks with Anisotropic Charge Migration for Photocatalytic Hydrogen Production. Small, 2022, 18, e2200129.	5.2	33
496	In-Plane Charge Transport Dominates the Overall Charge Separation and Photocatalytic Activity in Crystalline Carbon Nitride. ACS Catalysis, 2022, 12, 4648-4658.	5.5	69
497	Review—Strategic Design of Layered Double Hydroxides and Graphitic Carbon Nitride Heterostructures for Photoelectrocatalytic Water Splitting Applications. Journal of the Electrochemical Society, 2022, 169, 046515.	1.3	9
498	In Situ Fabrication of NiS ₂ -Decorated Graphitic Carbon Nitride/Metal–Organic Framework Nanostructures for Photocatalytic H ₂ Evolution. ACS Applied Nano Materials, 2022, 5, 5416-5424.	2.4	11
499	Photochemical Hydrogen Storage with Hexaazatrinaphthylene (HATN). ChemPhysChem, 2022, , .	1.0	2
500	Nickel-modified polymeric carbon nitride for improving TiO2-based photoanode: photoelectrocatalytical evaluation and mechanistical insights. Materials Today Nano, 2022, 18, 100192.	2.3	5
501	Bimetallic nanoparticles meet polymeric carbon nitride: Fabrications, catalytic applications and perspectives. Coordination Chemistry Reviews, 2022, 462, 214500.	9.5	41
502	Onion-liked carbon-embedded graphitic carbon nitride for enhanced photocatalytic hydrogen evolution and dye degradation. Applied Catalysis B: Environmental, 2022, 308, 121216.	10.8	67
503	Carbon nitride-based Z-scheme heterojunctions for solar-driven advanced oxidation processes. Journal of Hazardous Materials, 2022, 434, 128866.	6.5	36
504	Janus Aluminum Oxysulfide Al2OS: A promising 2D direct semiconductor photocatalyst with strong visible light harvesting. Applied Surface Science, 2022, 589, 152997.	3.1	21
505	Time-resolved spectroscopy of oligomerized phenyl modified carbon nitride. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 645, 128931.	2.3	1
506	Highly fluorescent carbon nitride oligomer with aggregation-induced emission characteristic for plastic staining. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 276, 121238.	2.0	4
507	Water-assisted formation of amine-bridged carbon nitride: A structural insight into the photocatalytic performance for H2 evolution under visible light. Applied Catalysis B: Environmental, 2022, 310, 121313.	10.8	37
508	Intermediate-induced repolymerization for constructing self-assembly architecture: Red crystalline carbon nitride nanosheets for notable hydrogen evolution. Applied Catalysis B: Environmental, 2022, 310, 121323.	10.8	15

#	Article	IF	CITATIONS
509	Local Spatial Polarization Induced Efficient Charge Separation of Squaraineâ€Linked COF for Enhanced Photocatalytic Performance. Advanced Functional Materials, 2022, 32, .	7.8	56
510	Thermal Conductivity of Graphitic Carbon Nitride Nanotubes: A Molecular Dynamics Study. Advances in Condensed Matter Physics, 2021, 2021, 1-6.	0.4	3
511	Monodisperse Carbon Nitride Nanosheets as Multifunctional Additives for Efficient and Durable Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 61215-61226.	4.0	9
512	Hydroxyl-Rich Porous Silica Nanosheets Decorated with Oxygen-Doped Carbon Nitride Nanoparticles for Photocatalytic Degradation of Rhodamine B. ACS Applied Nano Materials, 2022, 5, 818-831.	2.4	15
513	Review of Graphitic Carbon Nitride and Its Composite Catalysts for Selective Reduction of CO ₂ . ACS Applied Nano Materials, 2021, 4, 12845-12890.	2.4	37
514	An isolation strategy to anchor atomic Ni or Co cocatalysts on TiO2(A) for photocatalytic hydrogen production. Nano Research, 2022, 15, 5848-5856.	5.8	20
515	Size Effects of the Anions in the Ionothermal Synthesis of Carbon Nitride Materials. Chemistry - A European Journal, 2022, 28, .	1.7	18
516	Loofah-like carbon nitride sponge towards the highly-efficient photocatalytic transfer hydrogenation of nitrophenols with water as the hydrogen source. Chemical Engineering Journal, 2022, 444, 136430.	6.6	12
517	Photocatalytic elimination of moxifloxacin by two-dimensional graphitic carbon nitride nanosheets: Enhanced activity, degradation mechanism and potential practical application. Separation and Purification Technology, 2022, 292, 121067.	3.9	37
518	Efficient degradation of organic pollutants by enhanced interfacial internal electric field induced via various crystallinity carbon nitride homojunction. Applied Catalysis B: Environmental, 2022, 312, 121388.	10.8	45
519	Nitrogen-rich porous polymeric carbon nitride with enhanced photocatalytic activity for synergistic removal of organic and heavy metal pollutants. Environmental Science: Nano, 2022, 9, 2388-2401.	2.2	6
520	Advances in Carbon Nitride-Based Materials and Their Electrocatalytic Applications. ACS Catalysis, 2022, 12, 5605-5660.	5.5	46
521	High-Index Organic Polymeric Carbon Nitride-Based Photonic Devices for Telecommunication Wavelengths. ACS Photonics, 2022, 9, 1717-1723.	3.2	2
522	Z-scheme P-doped-g-C3N4/Fe2P/red-P ternary composite enables efficient two-electron photocatalytic pure water splitting. Catalysis Today, 2023, 409, 119-127.	2.2	9
523	Functional Carbon Nitride Materials in Photoâ€Fentonâ€Like Catalysis for Environmental Remediation. Advanced Functional Materials, 2022, 32, .	7.8	93
524	Single-Atom Mo Anchored on a Poly(heptazine imide) Nanosheet as a Novel Electrocatalyst Showing Excellent Behavior toward Nitrogen Reduction Reaction. Journal of Physical Chemistry C, 2022, 126, 7859-7869.	1.5	5
525	Donor–Acceptor Modification of Carbon Nitride for Enhanced Photocatalytic Hydrogen Evolution. Advanced Sustainable Systems, 2023, 7, .	2.7	14
526	One-pot preparation of biocompatible folate-functionalized graphitic carbon nitride quantum dots for targeted bioimaging. Chemical Engineering Journal, 2022, , 136932.	6.6	9

#	Article	IF	Citations
527	Hydrogen-Bonded Aggregates Featuring <i>n</i> → π* Electronic Transition for Efficient Visible-Light-Responsive Photocatalysis. ACS Catalysis, 2022, 12, 6276-6284.	5.5	11
528	Potential-resolved wavelength tunable electrochemiluminescence from graphitic carbon nitride heterostructure. Electrochimica Acta, 2022, 420, 140433.	2.6	6
529	Understanding (photo)electrocatalysis for the conversion of methane to valuable chemicals through partial oxidation processes. Journal of Materials Chemistry A, 2022, 10, 19107-19128.	5.2	9
530	Potassium cyamelurate K3[C6N7O3] rod: A new visible-light photocatalyst for homogeneous/heterogeneous degradation of antibiotics. Applied Catalysis A: General, 2022, 641, 118669.	2.2	9
531	Single Atom Catalysts for Selective Methane Oxidation to Oxygenates. ACS Nano, 2022, 16, 8557-8618.	7.3	48
532	Formamidinium halide salts as precursors of carbon nitrides. Carbon, 2022, 196, 1035-1046.	5.4	9
533	Improving photocatalytic hydrogen production via ultrafine-grained precipitates formed nearby surface defects of NiFe-LDH nanosheets. Chemical Engineering Journal, 2022, 446, 137301.	6.6	23
534	Construction of high-performance g-C ₃ N ₄ -based photo-Fenton catalysts by ferrate-induced defect engineering. Inorganic Chemistry Frontiers, 2022, 9, 4091-4100.	3.0	7
535	Molecular engineering of g-C ₃ N ₄ with spatial charge separation for enhancing photocatalytic performances. Materials Chemistry Frontiers, 0, , .	3.2	5
536	Efficacious and sustained release of an anticancer drug mitoxantrone from new covalent organic frameworks using protein corona. Chemical Science, 2022, 13, 7920-7932.	3.7	15
537	CO2 Reduction Using Molecular Photocatalysts. Springer Handbooks, 2022, , 1429-1452.	0.3	1
538	Synergic Photocatalytic CH ₄ Conversion to C1 liquid products using Fe oxides species-modified g-C ₃ N ₄ . Catalysis Science and Technology, 0, , .	2.1	Ο
539	Microscopic functionality of FeN4 sites in polymeric carbon nitride for efficient H2S oxidation. Applied Surface Science, 2022, 600, 154011.	3.1	6
540	Laser direct writing derived robust carbon nitride films with efficient photonâ€ŧoâ€electron conversion for multifunctional photoelectrical applications. , 2022, 4, 1228-1241.		6
541	Emerging polymeric-based material with photocatalytic functionality for sustainable technologies. Journal of Industrial and Engineering Chemistry, 2022, 113, 32-71.	2.9	4
542	Tailoring the particle sizes of Pt5Ce alloy nanoparticles for the oxygen reduction reaction. , 2022, 1, 100025.		2
543	From pure water to hydrogen peroxide on a novel 2,5,8-triamino-tri-s-triazine (melem)-derived photocatalyst with a high apparent quantum efficiency. Journal of Colloid and Interface Science, 2022, 625, 680-691.	5.0	4
544	Doping Engineering in Polymeric Carbon Nitride for Low-Onset-Potential Photoelectrochemical Water Splitting. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
545	Phosphorus Tailors the <i>d</i> â€Band Center of Copper Atomic Sites for Efficient CO ₂ Photoreduction under Visible‣ight Irradiation. Angewandte Chemie - International Edition, 2022, 61, .	7.2	73
546	Phosphorus Tailors the dâ€Band Center of Copper Atomic Sites for Efficient CO2 Photoreduction under Visibleâ€Light Irradiation. Angewandte Chemie, 0, , .	1.6	0
547	Carbohydrate-regulated synthesis of ultrathin porous nitrogen-vacancy polymeric carbon nitride for highly efficient Visible-light hydrogen evolution. Chemical Engineering Journal, 2022, 450, 138010.	6.6	6
548	Enhanced visible light absorption CdS-decorated direct Z-scheme g-C3N4/TiO2 for improved photocatalysis and hydrogen generation. Journal of Materials Research, 2022, 37, 2241-2256.	1.2	4
549	Defect-rich ultrathin poly-heptazine-imide-framework nanosheets with alkali-ion doping for photocatalytic solar hydrogen and selective benzylamine oxidation. Nano Research, 2022, 15, 8760-8770.	5.8	7
550	Poly(heptazine imide) with Enlarged Interlayers Spacing for Efficient Photocatalytic NO Decomposition. Applied Catalysis B: Environmental, 2022, 317, 121719.	10.8	13
551	Effective modification of photocatalytic and piezocatalytic performances for poly(heptazine imide) by carbon dots decoration. Dalton Transactions, 2022, 51, 13015-13021.	1.6	6
552	Three Coordinate Nitrogen (N3c) Vacancies from In-Situ Hydrogen Bond Breaking Over Polymeric Carbon Nitride for Efficient Photocatalysis. SSRN Electronic Journal, 0, , .	0.4	0
553	Improving hydrogen production for carbon-nitride-based materials: crystallinity, cyanimide groups and alkali metals in solution working synergistically. Journal of Materials Chemistry A, 2022, 10, 18156-18161.	5.2	10
554	Carbon nitride photocatalyst with internal electric field induced photogenerated carriers spatial enrichment for enhanced photocatalytic water splitting. Materials Today, 2022, 58, 100-109.	8.3	24
555	Tuning nitrogen defects and doping sulfur in carbon nitride for enhanced visible light photocatalytic activity. Frontiers of Chemical Science and Engineering, 2023, 17, 93-101.	2.3	3
556	Efficient degradation of tetracycline under the conditions of high-salt and coexisting substances by magnetic CuFe2O4/g-C3N4 photo-Fenton process. Chemosphere, 2022, 308, 136204.	4.2	10
557	Unblocking Ionâ€occluded Pore Channels in Poly(triazine imide) Framework for Proton Conduction. Angewandte Chemie, 2022, 134, .	1.6	2
558	Synergies of Adjacent Sites in Atomically Dispersed Ruthenium toward Achieving Stable Hydrogen Evolution. Inorganic Chemistry, 2022, 61, 13453-13461.	1.9	73
559	Unblocking Ionâ€occluded Pore Channels in Poly(triazine imide) Framework for Proton Conduction. Angewandte Chemie - International Edition, 2022, 61, .	7.2	9
560	Revealing Phosphorus Nitrides up to the Megabar Regime: Synthesis of α′â€P ₃ N _{5,} δâ€P ₃ N ₅ and PN ₂ . Chemistry - A European Journal, 2022, 28, .	1.7	6
561	Synthesis of vacant graphitic carbon nitride in argon atmosphere and its utilization for photocatalytic hydrogen generation. Scientific Reports, 2022, 12, .	1.6	8
562	Molecular engineered graphitic carbon nitride with strong and stable electrochemiluminescence for immunosensing. Microchemical Journal, 2022, 181, 107846.	2.3	6

#	Article	IF	CITATIONS
563	Impact of transition metal incorporation on the photocatalytic CO2 reduction activity of polymeric carbon nitride. Journal of CO2 Utilization, 2022, 64, 102162.	3.3	3
564	Thin-walled vesicular Triazole-CN-PDI with electronic n→í€* excitation and directional movement for enhanced atrazine photodegradation. Chemical Engineering Journal, 2023, 451, 138445.	6.6	18
565	A general acetic acid vapour etching strategy to synthesize layered carbon nitride with carbon vacancies for efficient photoredox catalysis. Journal of Materials Chemistry A, 2022, 10, 16873-16882.	5.2	7
566	Hygroelectric-photovoltaic coupling generator using self-assembled bio-nano hybrids. Chemical Engineering Journal, 2023, 452, 139169.	6.6	9
567	Photoelectrochemical alcohols oxidation over polymeric carbon nitride photoanodes with simultaneous H ₂ production. Journal of Materials Chemistry A, 2022, 10, 16585-16594.	5.2	13
568	An efficient strategy for photocatalytic hydrogen peroxide production over oxygen-enriched graphitic carbon nitride with sodium phosphate. Chinese Journal of Catalysis, 2022, 43, 2690-2698.	6.9	9
569	Recent advances in high-crystalline conjugated organic polymeric materials for photocatalytic CO ₂ conversion. Nanoscale, 2022, 14, 15217-15241.	2.8	13
570	A review on recent advances in selective and sensitive detection of heavy toxic metal ions in water using g-C ₃ N ₄ -based heterostructured composites. Materials Chemistry Frontiers, 2022, 6, 2610-2650.	3.2	13
571	Modulating the anodic electrochemiluminescence of graphitic carbon nitride by thiophene doping. New Journal of Chemistry, 2022, 46, 16114-16120.	1.4	1
572	Novel V-Bioio3/G-C3n4/Wc Schottky Heterojunction with Optimizing Optical Absorption and Charge Transfer for Abatement of Tetracycline Antibiotics. SSRN Electronic Journal, 0, , .	0.4	0
573	Construction of a Novel S-Scheme Heterojunction Piezoelectric Photocatalyst V-BiOIO3/FTCN and Immobilization with Floatability for Tetracycline Degradation. SSRN Electronic Journal, 0, , .	0.4	0
574	Radical defects modulate the photocatalytic response in 2D-graphitic carbon nitride. Chemical Science, 2022, 13, 9927-9939.	3.7	20
575	Supramolecular assembly-derived carbon-nitrogen-based functional materials for photo/electrochemical applications: progress and challenges. , 2023, 2, 20220032.		4
576	Carbon Nitride Nanosheet-Based Photochromic Physical Unclonable Functions for Anticounterfeiting Applications. ACS Applied Nano Materials, 2022, 5, 14722-14732.	2.4	16
577	Orthogonal Charge Transfer by Precise Positioning of Silver Single Atoms and Clusters on Carbon Nitride for Efficient Piezocatalytic Pure Water Splitting. Angewandte Chemie, 0, , .	1.6	0
578	Structure–Property Relationship of Cyanoâ€Functionalized Conjugated Polymers for Photocatalytic Hydrogen Production. Chemistry - A European Journal, 2023, 29, .	1.7	10
579	Polymeric Carbon Nitride-based Single Atom Photocatalysts for CO2 Reduction to C1 Products. Chemical Research in Chinese Universities, 2022, 38, 1197-1206.	1.3	7
580	Recent Advances in Graphitic Carbon Nitrides (g ₃ N ₄) as Photoluminescence Sensing Probe: A Review. ChemistrySelect, 2022, 7, .	0.7	6

#	Article	IF	CITATIONS
581	Special sea urchin-like CdS/g-C3N4 photocatalyst with high specific surface area and efficient charge separation. Journal of Materials Science, 2022, 57, 17609-17621.	1.7	5
582	Facilitating Molecular Activation and Proton Feeding by Dual Active Sites on Polymeric Carbon Nitride for Efficient CO ₂ Photoreduction. Angewandte Chemie, 2022, 134, .	1.6	7
583	Boosting Photosynthetic H ₂ O ₂ of Polymeric Carbon Nitride by Layer Configuration Regulation and Fluoride–Potassium Double-Site Modification. ACS Applied Materials & Interfaces, 2022, 14, 43328-43338.	4.0	7
584	Facilitating Molecular Activation and Proton Feeding by Dual Active Sites on Polymeric Carbon Nitride for Efficient CO ₂ Photoreduction. Angewandte Chemie - International Edition, 2022, 61, .	7.2	34
585	Orthogonal Charge Transfer by Precise Positioning of Silver Single Atoms and Clusters on Carbon Nitride for Efficient Piezocatalytic Pure Water Splitting. Angewandte Chemie - International Edition, 2022, 61, .	7.2	93
586	Fast hydrogen purification through graphitic carbon nitride nanosheet membranes. Nature Communications, 2022, 13, .	5.8	21
587	Engineering Microstructure of a Robust Polymer Anode by Moderate Pyrolysis for High-Performance Sodium Storage. ACS Applied Materials & Interfaces, 2022, 14, 49641-49649.	4.0	2
588	A Novel Nanocomposite Based on Triazine Based Covalent Organic Polymer Blended with Porous g-C3N4 for Photo Catalytic Dye Degradation of Rose Bengal and Fast Green. Molecules, 2022, 27, 7168.	1.7	5
589	Engineering Holey Defects on 2D Graphitic Carbon Nitride Nanosheets by Solvolysis in Organic Solvents. ACS Catalysis, 2022, 12, 13763-13780.	5.5	22
590	Halogen–Hydrogen Bonding for the Synthesis of Efficient Polymeric Carbonâ€Nitride Photocatalysts. Solar Rrl, 2022, 6, .	3.1	3
591	A warm-white light-emitting diode based on single-component emitter aromatic carbon nitride. Nature Communications, 2022, 13, .	5.8	19
592	Modification of Polymeric Carbon Nitride with Au–CeO2 Hybrids to Improve Photocatalytic Activity for Hydrogen Evolution. Molecules, 2022, 27, 7489.	1.7	2
593	Heptazineâ€Based Orderedâ€Distorted Copolymers with Enhanced Visibleâ€Light Absorption for Photocatalytic Hydrogen Production. ChemSusChem, 2022, 15, .	3.6	32
594	Post-synthetic modification of graphitic carbon nitride with PCl3 and POCl3 for enhanced photocatalytic degradation of organic compounds. Diamond and Related Materials, 2022, 130, 109439.	1.8	5
595	3D g-C3N4/Mn3O4 heterostructures towards high energy density supercapacitor. Journal of Electroanalytical Chemistry, 2022, 926, 116928.	1.9	3
596	Coupled adsorption and photocatalysis of g-C3N4 based composites: Material synthesis, mechanism, and environmental applications. Chemical Engineering Journal, 2023, 453, 139755.	6.6	87
597	Construction of a novel S-scheme heterojunction piezoelectric photocatalyst V-BiOIO3/FTCN and immobilization with floatability for tetracycline degradation. Journal of Hazardous Materials, 2023, 443, 130251.	6.5	52
598	Carbon-Nitride-Based Materials for Advanced Lithium–Sulfur Batteries. Nano-Micro Letters, 2022, 14, .	14.4	19

#	Article	IF	CITATIONS
599	Extraordinary Ultrahigh apacity and Long Cycle Life Lithiumâ€ion Batteries Enabled by Graphitic Carbon Nitrideâ€Perylene Polyimide Composites. Energy and Environmental Materials, 2023, 6, .	7.3	4
600	Chlorine-mediated synthesis of self-exfoliated and wavy-structured graphitic carbon nitride nanosheets for enhanced photocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2023, 48, 3893-3900.	3.8	2
601	Quantitatively regulating the ketone structure of triazine-based covalent organic frameworks for efficient visible-light photocatalytic degradation of organic pollutants: Tunable performance and mechanisms. Journal of Hazardous Materials, 2023, 444, 130366.	6.5	12
602	Detecting and Quantifying Wavelengthâ€Đependent Electrons Transfer in Heterostructure Catalyst via In Situ Irradiation XPS. Advanced Science, 2023, 10, .	5.6	23
603	Nitrogen-rich carbon nitride inducing electron delocalization of Co-N4 site to enhance electrocatalytic carbon dioxide reduction. Applied Catalysis B: Environmental, 2023, 323, 122199.	10.8	17
604	Comprehensive Review for an Efficient Charge Transfer in Single Atomic Site Catalyst/Organic Polymers toward Photocatalytic CO ₂ Reduction. Advanced Materials Interfaces, 2023, 10, .	1.9	8
605	Construction of terbium oxide/polymer carbon nitride heterojunction for boosting photocatalytic overall water splitting without cocatalyst. Applied Catalysis A: General, 2023, 650, 118986.	2.2	12
606	Low bandgap carbon nitride nanoparticles incorporated in titania nanotube arrays by in situ electrophoretic anodization for photocatalytic CO2 reduction. Chemical Engineering Journal, 2023, 456, 141067.	6.6	7
607	Edge-grafting carbon nitride with aromatic rings for highly-efficient charge separation and enhanced photocatalytic hydrogen evolution. Catalysis Science and Technology, 2023, 13, 528-535.	2.1	2
608	Recent advances in structural engineering of photocatalysts for environmental remediation. Environmental Research, 2023, 219, 115084.	3.7	10
609	Higher-than-common temperature short-time processed polymeric carbon nitride nanosheets as an efficient photocatalyst for H2 production. Journal of Alloys and Compounds, 2023, 938, 168386.	2.8	2
610	Synthesis and modification of ultrathin g-C3N4 for photocatalytic energy and environmental applications. Renewable and Sustainable Energy Reviews, 2023, 173, 113110.	8.2	43
611	Framework structure engineering of polymeric carbon nitrides and its recent applications. Progress in Materials Science, 2023, 133, 101056.	16.0	23
612	Multifunctional semiconducting carbon nitrides enabling sequential fluorescent sensing of telomerase activity and internal self-checking. Sensors and Actuators B: Chemical, 2023, 378, 133170.	4.0	2
613	Mesoporous Carbon Nitride with ï€-Electron-Rich Domains and Polarizable Hydroxyls Fabricated via Solution Thermal Shock for Visible-Light Photocatalysis. ACS Nano, 2022, 16, 21002-21012.	7.3	20
614	Fast light-switchable polymeric carbon nitride membranes for tunable gas separation. Nature Communications, 2022, 13, .	5.8	12
615	Lamellar carbon nitride membrane for enhanced ion sieving and water desalination. Nature Communications, 2022, 13, .	5.8	16
616	Role of Seawater Ions in Forming an Effective Interface between Photocatalyst/Cocatalyst. ACS Applied Materials & Interfaces, 2023, 15, 1219-1226.	4.0	3

#	Article	IF	CITATIONS
617	Carbon Nitride-Based Catalysts for High Pressure CO2 Photoreduction. Catalysts, 2022, 12, 1628.	1.6	2
618	Polymeric carbon nitrides produced from different gaseous conditions and their photocatalytic performance for degrading organic pollutants. Carbon Letters, 2023, 33, 803-809.	3.3	2
619	Favoring the generation and utilization of photocatalytic reactive species over g-C ₃ N ₄ nanosheets by controllable edge C modification. Sustainable Energy and Fuels, 0, , .	2.5	1
620	Defectâ€Induced Activity Enhancement of Selfâ€Exfoliated Carbon Nitrides for Solar Hydrogen Evolution. ChemCatChem, 2023, 15, .	1.8	2
621	Hydrophobized poly(heptazine imide) for highly effective photocatalytic hydrogen peroxide production in a biphasic fatty alcohol–water system. Journal of Materials Chemistry A, 2023, 11, 2314-2325.	5.2	8
622	Carbonâ€Nitride Popcorn—A Novel Catalyst Prepared by Selfâ€Propagating Combustion of Nitrogenâ€Rich Triazenes. Small, 2023, 19, .	5.2	3
623	Investigation of biological activity and hyperthermia application of a quaternary magnetic nanobiocomposite based on funtionalized carbon nitride nanosheets by carboxymethyl cellulose hydrogel and silk fibroin. Cellulose, 0, , .	2.4	0
624	Doping Engineering in Polymeric Carbon Nitride for Lowâ€Onsetâ€Potential Photoelectrochemical Applications. ChemistrySelect, 2023, 8, .	0.7	2
626	Manipulating electronic structure and light absorption of carbon nitride via P-doping and local crystallization for efficient photocatalytic reduction of CO2. Journal of CO2 Utilization, 2023, 68, 102392.	3.3	11
627	Construction of Benzodithiophene-Based Donor–Acceptor-Type Covalent Triazine Frameworks with Tunable Structure for Photocatalytic Hydrogen Evolution. ACS Applied Energy Materials, 2023, 6, 930-938.	2.5	6
628	S-doped C ₃ N ₅ derived from thiadiazole for efficient photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2023, 11, 12837-12845.	5.2	24
629	Graphitic carbon nitride-based nanocomposites. , 2023, , 59-76.		1
630	Afterglow Electrochemiluminescence from Nitrogen-Deficient Graphitic Carbon Nitride. Analytical Chemistry, 2023, 95, 2917-2924.	3.2	10
631	g-C3N4-based sensors. , 2023, , 225-248.		1
632	Potassium and Sulfur Dual Sites on Highly Crystalline Carbon Nitride for Photocatalytic Biorefinery and CO ₂ Reduction. ACS Catalysis, 2023, 13, 2106-2117.	5.5	36
633	A perspective on two pathways of photocatalytic water splitting and their practical application systems. Physical Chemistry Chemical Physics, 2023, 25, 6586-6601.	1.3	14
634	Development of functionalized CoOx-NiFe LDH bi-layers to improve the photoelectrochemical water oxidation property of n-Si photoanode. Journal of Alloys and Compounds, 2023, 942, 168948.	2.8	4
635	Structure and Optical Properties of Polymeric Carbon Nitrides from Atomistic Simulations. Chemistry of Materials, 2023, 35, 1547-1559.	3.2	9

#	Article	IF	CITATIONS
636	FeNC Oxygen Reduction Electrocatalyst with High Utilization Penta oordinated Sites. Advanced Materials, 2023, 35, .	11.1	22
637	Novel V-BiOIO3/g-C3N4/WC Schottky heterojunction with optimizing optical absorption and charge transfer for abatement of tetracycline antibiotics. Journal of Photochemistry and Photobiology A: Chemistry, 2023, 440, 114645.	2.0	2
638	Mechanistic insights into efficient photocatalytic H2O2 production of 2D/2D g-C3N4/In2S3 photocatalyst by tracking charge flow direction. Chemical Engineering Journal, 2023, 462, 142038.	6.6	19
639	Three coordinate nitrogen (N3c) vacancies from in-situ hydrogen bond breaking over polymeric carbon nitride for efficient photocatalysis. Journal of Environmental Chemical Engineering, 2023, 11, 109495.	3.3	3
640	Biochar-derived flower-like Co-Mo2C spheres/g-C3N4 photocatalyst: Engineering morphology configuration and electronic structure tuning. Separation and Purification Technology, 2023, 316, 123808.	3.9	5
641	Conjugated Microporous Polymer Hybrid Microparticles for Enhanced Applicability in Silicaâ€Boosted Diclofenac Adsorption. Small Structures, 2023, 4, .	6.9	3
642	The Directional Crystallization Process of Poly (triazine imide) Single Crystals in Molten Salts. Angewandte Chemie, 2023, 135, .	1.6	2
643	Boosting Charge Transfer Efficiency by Nanofragment MXene for Efficient Photoelectrochemical Water Splitting of NiFe(OH) <i>_x</i> Co-Catalyzed Hematite. ACS Applied Materials & Interfaces, 2023, 15, 9341-9349.	4.0	9
644	The Directional Crystallization Process of Poly (triazine imide) Single Crystals in Molten Salts. Angewandte Chemie - International Edition, 2023, 62, .	7.2	23
645	Synthesis of N-deficient g-C3N4/epoxy composite coating for enhanced photocatalytic corrosion resistance and water purification. Journal of Materials Science, 2023, 58, 4223-4239.	1.7	16
646	Recent development and photocatalytic mechanism in nanocomposites. , 2023, , 257-271.		0
647	Mechanism of CO ₂ photoreduction by selenium-doped carbon nitride with cobalt clusters as cocatalysts. Physical Chemistry Chemical Physics, 2023, 25, 8705-8713.	1.3	1
649	Saltâ€Melt Synthesis of Poly Heptazine Imides with Enhanced Optical Absorption for Photocatalytic Hydrogen Production. ChemSusChem, 2023, 16, .	3.6	22
650	Insights into the Photoelectrocatalytic Behavior of gCN-Based Anode Materials Supported on Ni Foams. Nanomaterials, 2023, 13, 1035.	1.9	6
651	Ultrafast Charge Injection in Silver-Modified Graphitic Carbon Nitride. ACS Applied Materials & Interfaces, 2023, 15, 15478-15485.	4.0	0
652	Molecular assembly of carbon nitride-based composite membranes for photocatalytic sterilization and wound healing. Chemical Science, 2023, 14, 4319-4327.	3.7	2
653	Ordered porous nitrogen-vacancy carbon nitride for efficient visible-light hydrogen evolution. Journal of Colloid and Interface Science, 2023, 642, 53-60.	5.0	1
654	The effect of N-vacancy on the photocatalytic activity of graphitic carbon nitride in the oxidative Mannich reaction. Catalysis Science and Technology, 2023, 13, 2317-2329.	2.1	1

#	Article	IF	CITATIONS
655	Potassium Molten Salt-Mediated <i>In Situ</i> Structural Reconstruction of a Carbon Nitride Photocatalyst. ACS Applied Materials & Interfaces, 2023, 15, 18898-18906.	4.0	8
656	Polymeric carbon nitride-based photocathodes for visible light-driven selective reduction of oxygen to hydrogen peroxide. Applied Catalysis A: General, 2023, 660, 119173.	2.2	1
657	Carbon Vacancy-Modified Carbon Nitride Allotropic Composite for Solar Hydrogen Generation Coupled with Selective Oxidation of 5-Hydroxymethylfurfural. ACS Sustainable Chemistry and Engineering, 2023, 11, 6435-6444.	3.2	3
658	Metal-free hybrid nanocomposites of graphitic carbon nitride and char: Synthesis, characterisation and photocatalysis under visible irradiation. Journal of the Taiwan Institute of Chemical Engineers, 2024, 158, 104864.	2.7	2
659	Single-atom cobalt-incorporating carbon nitride for photocatalytic solar hydrogen conversion: An X-ray spectromicroscopy study. Journal of Electron Spectroscopy and Related Phenomena, 2023, 264, 147319.	0.8	1
660	Comparative life cycle assessment of graphitic carbon nitride synthesis routes. Journal of Industrial Ecology, 2023, 27, 1008-1020.	2.8	0
661	Photosynthesis of Hydrogen Peroxide Based on g‑C ₃ N ₄ : The Road of a Costâ€Effective Clean Fuel Production. Small, 2023, 19, .	5.2	16
662	Single-atom nanozymes as promising catalysts for biosensing and biomedical applications. Inorganic Chemistry Frontiers, 2023, 10, 4289-4312.	3.0	4
663	Realigning the melon chains in carbon nitride by rubidium ions to promote photo-reductive activities for hydrogen evolution and environmental remediation. Journal of Hazardous Materials, 2023, 453, 131435.	6.5	8
664	Preparation of carbon self-doped g-C3N4 for efficient degradation of bisphenol A under visible light irradiation. Environmental Science and Pollution Research, 2023, 30, 65328-65337.	2.7	2
668	Carbon nitrides and titanium dioxide-based photocatalysis outlook and challenges. , 2023, , 145-180.		2
701	Engineering graphitic carbon nitride for next-generation photodetectors: a mini review. RSC Advances, 2023, 13, 25968-25977.	1.7	1
707	Multifunctional carbon nitride nanoarchitectures for catalysis. Chemical Society Reviews, 2023, 52, 7602-7664.	18.7	9
720	Ultrafast charge transfer in metal-free H ₂ O ₂ photoproduction by anhydride modified g-C ₃ N ₄ . Chemical Communications, 0, , .	2.2	0
726	2D/2D composites based on graphitic carbon nitride and MXenes for photocatalytic reactions: a critical review. Carbon Letters, 2024, 34, 227-245.	3.3	1
737	Challenges and opportunities for the photo-(thermal) synthesis of ammonia. Green Chemistry, 2024, 26, 1041-1061.	4.6	1
758	Nanocomposites of Carbon as Electrocatalyst. Engineering Materials, 2024, , 219-236.	0.3	0