Gas/vapour separation using ultra-microporous metalâ the structure/separation relationship

Chemical Society Reviews 46, 3402-3430

DOI: 10.1039/c7cs00153c

Citation Report

#	Article	IF	CITATIONS
1	Straightforward Loading of Imidazole Molecules into Metal–Organic Framework for High Proton Conduction. Journal of the American Chemical Society, 2017, 139, 15604-15607.	6.6	290
2	CO ₂ Capture Using the SIFSIX-2-Cu-i Metal–Organic Framework: A Computational Approach. Journal of Physical Chemistry C, 2017, 121, 27462-27472.	1.5	14
3	A microporous MOF with open metal sites and Lewis basic sites for selective CO ₂ capture. Dalton Transactions, 2017, 46, 14102-14106.	1.6	47
4	Facile and Mild Synthesis of Metal–Formate Frameworks for Methane Adsorptive Separation. Chemistry Letters, 2017, 46, 1766-1768.	0.7	2
5	Sorting of C ₄ Olefins with Interpenetrated Hybrid Ultramicroporous Materials by Combining Molecular Recognition and Sizeâ€Sieving. Angewandte Chemie, 2017, 129, 16500-16505.	1.6	41
6	Sorting of C ₄ Olefins with Interpenetrated Hybrid Ultramicroporous Materials by Combining Molecular Recognition and Sizeâ€Sieving. Angewandte Chemie - International Edition, 2017, 56, 16282-16287.	7.2	146
7	The MOF ⁺ Technique: A Significant Synergic Effect Enables High Performance Chromate Removal. Angewandte Chemie - International Edition, 2017, 56, 16376-16379.	7.2	102
8	Zinc(II) and Copper(II) Hybrid Frameworks via Metal-Ion Metathesis with Enhanced Gas Uptake and Photoluminescence Properties. Inorganic Chemistry, 2017, 56, 14157-14163.	1.9	33
9	Metal–Organic Framework-Templated PdO-Co ₃ O ₄ Nanocubes Functionalized by SWCNTs: Improved NO ₂ Reaction Kinetics on Flexible Heating Film. ACS Applied Materials & Company (1978) and the company (4.0	55
10	Metal–Organic Frameworks with Internal Urea-Functionalized Dicarboxylate Linkers for SO ₂ and NH ₃ Adsorption. ACS Applied Materials & Interfaces, 2017, 9, 37419-37434.	4.0	130
11	Improving Water-Treatment Performance of Zirconium Metal-Organic Framework Membranes by Postsynthetic Defect Healing. ACS Applied Materials & Interfaces, 2017, 9, 37848-37855.	4.0	77
12	A Fine-Tuned MOF for Gas and Vapor Separation: A Multipurpose Adsorbent for Acid Gas Removal, Dehydration, and BTX Sieving. CheM, 2017, 3, 822-833.	5.8	83
13	Valuing Metal–Organic Frameworks for Postcombustion Carbon Capture: A Benchmark Study for Evaluating Physical Adsorbents. Advanced Materials, 2017, 29, 1702953.	11.1	88
14	N ₂ Capture Performances of the Hybrid Porous MIL-101(Cr): From Prediction toward Experimental Testing. Journal of Physical Chemistry C, 2017, 121, 22130-22138.	1.5	21
15	Two Analogous Polyhedron-Based MOFs with High Density of Lewis Basic Sites and Open Metal Sites: Significant CO ₂ Capture and Gas Selectivity Performance. ACS Applied Materials & Lamp; Interfaces, 2017, 9, 32820-32828.	4.0	57
16	A thiophene-containing covalent triazine-based framework with ultramicropore for CO2 capture. Journal of Energy Chemistry, 2017, 26, 902-908.	7.1	32
17	Porous crystalline materials: closing remarks. Faraday Discussions, 2017, 201, 395-404.	1.6	11
18	A family of ssa-type copper-based MOFs constructed from unsymmetrical diisophthalates: synthesis, characterization and selective gas adsorption. Materials Chemistry Frontiers, 2017, 1, 2283-2291.	3.2	34

#	ARTICLE	IF	CITATIONS
19	An Ideal Molecular Sieve for Acetylene Removal from Ethylene with Record Selectivity and Productivity. Advanced Materials, 2017, 29, 1704210.	11.1	310
20	Gas Adsorption and Separation by the Al-Based Metal–Organic Framework MIL-160. Journal of Physical Chemistry C, 2017, 121, 26822-26832.	1.5	51
21	The MOF ⁺ Technique: A Significant Synergic Effect Enables High Performance Chromate Removal. Angewandte Chemie, 2017, 129, 16594-16597.	1.6	12
22	Revisiting the Aluminum Trimesate-Based MOF (MIL-96): From Structure Determination to the Processing of Mixed Matrix Membranes for CO ₂ Capture. Chemistry of Materials, 2017, 29, 10326-10338.	3.2	78
23	Enabling Widespread Use of Microporous Materials for Challenging Organic Solvent Separations. Chemistry of Materials, 2017, 29, 9863-9876.	3.2	50
24	Adsorption of 1-Propanol in the Channel-Like InOF-1 Metalâ€"Organic Framework and Its Influence on the CO ₂ Capture Performances. Journal of Physical Chemistry C, 2018, 122, 5566-5577.	1.5	16
25	A novel polyhedron-based metal–organic framework with high performance for gas uptake and light hydrocarbon separation. Dalton Transactions, 2018, 47, 5005-5010.	1.6	17
26	Porous Zr6L3 Metallocage with Synergetic Binding Centers for CO2. ACS Applied Materials & Samp; Interfaces, 2018, 10, 8685-8691.	4.0	38
27	Recent Developments in 2D Nanomaterials for Chemiresistive-Type Gas Sensors. Electronic Materials Letters, 2018, 14, 221-260.	1.0	197
28	A facile modular approach to the 2D oriented assembly MOF electrode for non-enzymatic sweat biosensors. Nanoscale, 2018, 10, 6629-6638.	2.8	73
29	Combined Experimental and Computational Study on Catalytic Cyclocoupling of Epoxides and CO2 Using Porphyrin-Based Cu(II) Metal-Organic Frameworks with 2D Coordination Networks. Bulletin of the Chemical Society of Japan, 2018, 91, 383-390.	2.0	5
30	Benchmark Study of Hydrogen Storage in Metal–Organic Frameworks under Temperature and Pressure Swing Conditions. ACS Energy Letters, 2018, 3, 748-754.	8.8	147
31	Site-Directed Synthesis of Cobalt Oxide Clusters in a Metal–Organic Framework. ACS Applied Materials & Directed Synthesis of Cobalt Oxide Clusters in a Metal–Organic Framework. ACS Applied Materials & Directed Synthesis of Cobalt Oxide Clusters in a Metal–Organic Framework. ACS Applied Materials & Directed Synthesis of Cobalt Oxide Clusters in a Metal–Organic Framework. ACS Applied Materials & Directed Synthesis of Cobalt Oxide Clusters in a Metal–Organic Framework. ACS Applied Materials & Directed Synthesis of Cobalt Oxide Clusters in a Metal–Organic Framework. ACS Applied Materials & Directed Synthesis of Cobalt Oxide Clusters in a Metal–Organic Framework. ACS Applied Materials & Directed Synthesis of Cobalt Oxide Clusters in a Metal–Organic Framework. ACS Applied Materials & Directed Synthesis of Cobalt Oxide Clusters in a Metal–Organic Framework. ACS Applied Materials & Directed Synthesis of Cobalt Oxide Clusters in a Metal— Organic Framework. ACS Applied Materials & Directed Synthesis of Cobalt Oxide Clusters in a Metal†"Organic Framework" Oxide Clusters in a Metal†"Organic Framework" Oxide Clusters in a Metal†"Organic Framework" Oxide Clusters in a Metalâ © "Oxide Cluster" Oxide Cluster © "Oxide Cluster" Oxide Cluster © "Oxide C	4.0	44
32	Controlling Pore Shape and Size of Interpenetrated Anion-Pillared Ultramicroporous Materials Enables Molecular Sieving of CO ₂ Combined with Ultrahigh Uptake Capacity. ACS Applied Materials & Diterials & Diterial	4.0	78
33	Controlled flexibility of porous coordination polymers by shifting the position of the $\hat{a} \in \text{``CH} \setminus \text{Sub} \setminus \text{Sub} \setminus \text{group around coordination sites and their highly efficient gas separation.}$ Inorganic Chemistry Frontiers, 2018, 5, 1780-1786.	3.0	23
34	Three isoreticular MOFs derived from nitrogen-functionalized diisophthalate ligands: exploring the positional effect of nitrogen functional sites on the structural stabilities and selective C ₂ H ₂ /CH ₄ adsorption properties. Inorganic Chemistry Frontiers. 2018. 5, 1423-1431.	3.0	28
35	Preferential Adsorption of CO ₂ in an Ultramicroporous MOF with Cavities Lined by Basic Groups and Open-Metal Sites. Inorganic Chemistry, 2018, 57, 5267-5272.	1.9	57
36	A size-matched POM@MOF composite catalyst for highly efficient and recyclable ultra-deep oxidative fuel desulfurization. Inorganic Chemistry Frontiers, 2018, 5, 1563-1569.	3.0	88

3

#	Article	IF	CITATIONS
37	Efficient separation of C ₂ H ₂ from C ₂ H ₂ mixtures in an acidâ€"base resistant metalâ€"organic framework. Chemical Communications, 2018, 54, 4846-4849.	2.2	62
38	A Chemical Role for Trichloromethane: Room-Temperature Removal of Coordinated Solvents from Open Metal Sites in the Copper-Based Metal–Organic Frameworks. Inorganic Chemistry, 2018, 57, 5225-5231.	1.9	33
39	Made in Water: A Stable Microporous Cu(I)-carboxylate Framework (CityU-7) for CO ₂ , Water, and Iodine Uptake. Inorganic Chemistry, 2018, 57, 4807-4811.	1.9	18
40	Bottom-Up Fabrication of Ultrathin 2D Zr Metal–Organic Framework Nanosheets through a Facile Continuous Microdroplet Flow Reaction. Chemistry of Materials, 2018, 30, 3048-3059.	3.2	85
41	An alkaline-resistant Ag(<scp>i</scp>)-anchored pyrazolate-based metal–organic framework for chemical fixation of CO ₂ . Chemical Communications, 2018, 54, 4469-4472.	2.2	48
42	Ultrathin reduced graphene oxide/MOF nanofiltration membrane with improved purification performance at low pressure. Chemosphere, 2018, 204, 378-389.	4.2	94
43	Fabrication of ultrathin MIL-96(Al) films and study of CO2 adsorption/desorption processes using quartz crystal microbalance. Journal of Colloid and Interface Science, 2018, 519, 88-96.	5.0	30
44	Two novel magnesium-based metal–organic frameworks: Structure tuning from 2D to 3D by introducing the auxiliary ligand of acetate. Inorganica Chimica Acta, 2018, 477, 59-65.	1.2	2
45	Influence of synthetic conditions on the formation of thermally and hydrolytically stable Sc-based metal–organic frameworks. Polyhedron, 2018, 144, 219-224.	1.0	17
46	Mixed matrix formulations with MOF molecular sieving for key energy-intensive separations. Nature Materials, 2018, 17, 283-289.	13.3	449
47	Neutral ligand TIPA-based two 2D metal–organic frameworks: ultrahigh selectivity of C ₂ H ₂ /CH ₄ and efficient sensing and sorption of Cr(<scp>vi</scp>). Dalton Transactions, 2018, 47, 3725-3732.	1.6	99
48	Rational construction of an <i>ssa</i> -type of MOF through pre-organizing the ligand's conformation and its exceptional gas adsorption properties. Dalton Transactions, 2018, 47, 2444-2452.	1.6	31
49	Titanium-based metal–organic frameworks for photocatalytic applications. Coordination Chemistry Reviews, 2018, 359, 80-101.	9.5	246
50	Effect of Defects on the Mechanical Deformation Mechanisms of Metal–Organic Framework-5: A Molecular Dynamics Investigation. Journal of Physical Chemistry C, 2018, 122, 4300-4306.	1.5	13
51	Iridium(III)-Based Metal–Organic Frameworks as Multiresponsive Luminescent Sensors for Fe ³⁺ , Cr ₂ O ₇ ^{2–} , and ATP ^{2–} in Aqueous Media. Inorganic Chemistry, 2018, 57, 1079-1089.	1.9	104
52	Liquid-free single-crystal to single-crystal transformations in coordination polymers. Inorganic Chemistry Frontiers, 2018, 5, 279-300.	3.0	49
53	A multi-dye@MOF composite boosts highly efficient photodegradation of an ultra-stubborn dye reactive blue 21 under visible-light irradiation. Journal of Materials Chemistry A, 2018, 6, 2148-2156.	5.2	40
54	Diffusion Control in the in Situ Synthesis of Iconic Metal–Organic Frameworks within an Ionic Polymer Matrix. ACS Applied Materials & Samp; Interfaces, 2018, 10, 3793-3800.	4.0	30

#	Article	IF	CITATIONS
55	A metal–organic framework based on a custom-designed diisophthalate ligand exhibiting excellent hydrostability and highly selective adsorption of C ₂ H ₂ and CO ₂ over CH ₄ . Dalton Transactions, 2018, 47, 7213-7221.	1.6	26
56	Efficient adsorption separation of xylene isomers using a facilely fabricated cyclodextrinâ€based metal–organic framework. Journal of Chemical Technology and Biotechnology, 2018, 93, 2898-2905.	1.6	25
57	Enhanced gas separation performance of 6FDA-DAM based mixed matrix membranes by incorporating MOF UiO-66 and its derivatives. Journal of Membrane Science, 2018, 558, 64-77.	4.1	126
58	Potential of metal–organic frameworks for adsorptive separation of industrially and environmentally relevant liquid mixtures. Coordination Chemistry Reviews, 2018, 367, 82-126.	9.5	105
59	Metal coordination and metal activation abilities of commonly unreactive chloromethanes toward metal–organic frameworks. Chemical Communications, 2018, 54, 6458-6471.	2.2	42
60	A water stable microporous metal–organic framework based on rod SBUs: synthesis, structure and adsorption properties. CrystEngComm, 2018, 20, 2169-2174.	1.3	8
61	Designing bipyridine-functionalized zirconium metal–organic frameworks as a platform for clean energy and other emerging applications. Coordination Chemistry Reviews, 2018, 364, 33-50.	9.5	105
62	Beyond Crystal Engineering: Significant Enhancement of C ₂ H ₂ /CO _{>2} Separation by Constructing Composite Material. Inorganic Chemistry, 2018, 57, 3679-3682.	1.9	35
63	Applications of metal–organic frameworks for green energy and environment: New advances in adsorptive gas separation, storage and removal. Green Energy and Environment, 2018, 3, 191-228.	4.7	158
64	A Flexible Fluorescent SCC-MOF for Switchable Molecule Identification and Temperature Display. Chemistry of Materials, 2018, 30, 2160-2167.	3.2	138
65	Highly Adsorptive Separation of Ethane/Ethylene by An Ethane-Selective MOF MIL-142A. Industrial & Engineering Chemistry Research, 2018, 57, 4063-4069.	1.8	88
66	Fine-tuning of nano-traps in a stable metal–organic framework for highly efficient removal of propyne from propylene. Journal of Materials Chemistry A, 2018, 6, 6931-6937.	5.2	74
67	Porous metal–organic frameworks for fuel storage. Coordination Chemistry Reviews, 2018, 373, 167-198.	9.5	211
68	Urea-based flexible dicarboxylate linkers for three-dimensional metal-organic frameworks. Inorganica Chimica Acta, 2018, 475, 35-46.	1.2	8
69	Heteropoly acid-loaded ionic liquid@metal-organic frameworks: Effective and reusable adsorbents for the desulfurization of a liquid model fuel. Chemical Engineering Journal, 2018, 334, 2215-2221.	6.6	92
70	Adsorptive removal of aromatic hydrocarbons from water over metal azolate framework-6-derived carbons. Journal of Hazardous Materials, 2018, 344, 1069-1077.	6.5	62
71	A pair of polymorphous metal–organic frameworks based on an angular diisophthalate linker: synthesis, characterization and gas adsorption properties. Dalton Transactions, 2018, 47, 716-725.	1.6	23
72	A highly stable indium based metal organic framework for efficient arsenic removal from water. Dalton Transactions, 2018, 47, 799-806.	1.6	69

#	Article	IF	CITATIONS
73	Two New Nickel, Cobalt Coordination Polymers Based on Flexible 1,3-bis((1H-imidazolyl)-methyl)benzene Ligand: Syntheses, Structures and Magnetic Properties. Journal of Inorganic and Organometallic Polymers and Materials, 2018, 28, 820-828.	1.9	3
74	Stabilizing a Vanadium Oxide Catalyst by Supporting on a Metal–Organic Framework. ChemCatChem, 2018, 10, 1772-1777.	1.8	21
75			

#	Article	IF	CITATIONS
91	Polyaniline-Encapsulated Metal–Organic Framework MIL-101: Adsorbent with Record-High Adsorption Capacity for the Removal of Both Basic Quinoline and Neutral Indole from Liquid Fuel. ACS Applied Materials & Diterfaces, 2018, 10, 35639-35646.	4.0	50
92	Pd@Zn-MOF-74: Restricting a Guest Molecule by the Open-Metal Site in a Metal–Organic Framework for Selective Semihydrogenation. Inorganic Chemistry, 2018, 57, 12444-12447.	1.9	26
93	Covalent Organic Frameworks: Promising Materials as Heterogeneous Catalysts for C-C Bond Formations. Catalysts, 2018, 8, 404.	1.6	38
94	Nitrogen-Doped Microporous Carbons Derived from Pyridine Ligand-Based Metal–Organic Complexes as High-Performance SO ₂ Adsorption Sorbents. ACS Applied Materials & Interfaces, 2018, 10, 37407-37416.	4.0	31
95	Enzyme Encapsulation in Mesoporous Metal–Organic Frameworks for Selective Biodegradation of Harmful Dye Molecules. Angewandte Chemie, 2018, 130, 16373-16378.	1.6	28
96	Enzyme Encapsulation in Mesoporous Metal–Organic Frameworks for Selective Biodegradation of Harmful Dye Molecules. Angewandte Chemie - International Edition, 2018, 57, 16141-16146.	7.2	128
97	Surface Morphology and Electrical Properties of Cu ₃ BTC ₂ Thin Films Before and After Reaction with TCNQ. ACS Applied Materials & Earny; Interfaces, 2018, 10, 39400-39410.	4.0	30
98	Molecular sieving of ethylene from ethane using a rigid metal–organic framework. Nature Materials, 2018, 17, 1128-1133.	13.3	532
99	On the Efficient Separation of Gas Mixtures with the Mixed-Linker Zeolitic-Imidazolate Framework-7-8. ACS Applied Materials & Eamp; Interfaces, 2018, 10, 39631-39644.	4.0	32
100	Tailorâ€Made Microporous Metal–Organic Frameworks for the Full Separation of Propane from Propylene Through Selective Size Exclusion. Advanced Materials, 2018, 30, e1805088.	11.1	241
101	Releasing Metal-Coordination Capacity of Cucurbit[6]uril Macrocycle in Pseudorotaxane Ligands for the Construction of Interwoven Uranyl–Rotaxane Coordination Polymers. Inorganic Chemistry, 2018, 57, 13513-13523.	1.9	29
102	TiO ₂ Nanoparticles Anchored onto the Metal–Organic Framework NH ₂ -MIL-88B(Fe) as an Adsorptive Photocatalyst with Enhanced Fenton-like Degradation of Organic Pollutants under Visible Light Irradiation. ACS Sustainable Chemistry and Engineering, 2018, 6, 16186-16197.	3.2	133
103	Polyaniline-loaded metal-organic framework MIL-101(Cr): Promising adsorbent for CO2 capture with increased capacity and selectivity by polyaniline introduction. Journal of CO2 Utilization, 2018, 28, 319-325.	3.3	47
104	Bringing Porous Organic and Carbonâ€Based Materials toward Thinâ€Film Applications. Advanced Functional Materials, 2018, 28, 1801545.	7.8	53
105	Direct Evidence: Enhanced C ₂ H ₆ and C ₂ H ₄ Adsorption and Separation Performances by Introducing Open Nitrogen-Donor Sites in a MOF. Inorganic Chemistry, 2018, 57, 12417-12423.	1.9	34
106	Combining Linker Design and Linker-Exchange Strategies for the Synthesis of a Stable Large-Pore Zr-Based Metal–Organic Framework. ACS Applied Materials & Interfaces, 2018, 10, 35462-35468.	4.0	20
107	Achieving Superprotonic Conduction with a 2D Fluorinated Metal–Organic Framework. Journal of the American Chemical Society, 2018, 140, 13156-13160.	6.6	103
108	Enabling Fluorinated MOFâ€Based Membranes for Simultaneous Removal of H ₂ S and CO ₂ from Natural Gas. Angewandte Chemie - International Edition, 2018, 57, 14811-14816.	7.2	176

#	Article	IF	CITATIONS
109	Enabling Fluorinated MOFâ€Based Membranes for Simultaneous Removal of H ₂ S and CO ₂ from Natural Gas. Angewandte Chemie, 2018, 130, 15027-15032.	1.6	17
110	Probing mesoporous Zr-MOF as drug delivery system for carboxylate functionalized molecules. Polyhedron, 2018, 156, 131-137.	1.0	29
111	Fabrication of Tris(bipyridine)ruthenium(II)-Functionalized Metal–Organic Framework Thin Films by Electrochemically Assisted Self-Assembly Technique for Electrochemiluminescent Immunoassay. Analytical Chemistry, 2018, 90, 11622-11628.	3.2	77
112	Merohedral icosahedral M48 (M = Coll, Nill) cage clusters supported by thiacalix[4]arene. Chemical Science, 2018, 9, 8535-8541.	3.7	60
113	Boosting Ethane/Ethylene Separation within Isoreticular Ultramicroporous Metal–Organic Frameworks. Journal of the American Chemical Society, 2018, 140, 12940-12946.	6.6	309
114	Incorporating the Thiazolo[5,4-d]thiazole Unit into a Coordination Polymer with Interdigitated Structure. Crystals, 2018, 8, 30.	1.0	19
115	Nanometer-scaled iridium particles gas-phase-loaded into the pores of the metal–organic framework MIL-101. Polyhedron, 2018, 155, 441-446.	1.0	7
116	Ultrathin two-dimensional metal-organic framework nanosheets for functional electronic devices. Coordination Chemistry Reviews, 2018, 377, 44-63.	9.5	182
117	Tunable Metal–Organic Frameworks for Heat Transformation Applications. Nanomaterials, 2018, 8, 661.	1.9	32
118	The use of metal–organic frameworks for CO purification. Journal of Materials Chemistry A, 2018, 6, 10570-10594.	5.2	60
119	Stabilizing volatile azido in a 3D nitrogen-rich energetic metal–organic framework with excellent energetic performance. Journal of Solid State Chemistry, 2018, 265, 42-49.	1.4	18
120	Hexafluorogermanate (GeFSIX) Anion-Functionalized Hybrid Ultramicroporous Materials for Efficiently Trapping Acetylene from Ethylene. Industrial & Engineering Chemistry Research, 2018, 57, 7266-7274.	1.8	70
121	A nanosized metal–organic framework with small pores for kinetic xenon separation. Journal of Materials Chemistry A, 2018, 6, 11797-11803.	5.2	30
122	Paraffinic metal–organic polyhedrons: solution-processable porous modules exhibiting three-dimensional molecular order. Chemical Communications, 2018, 54, 7290-7293.	2.2	19
123	Peptide metal–organic frameworks under pressure: flexible linkers for cooperative compression. Dalton Transactions, 2018, 47, 10654-10659.	1.6	45
124	Topology meets MOF chemistry for pore-aperture fine tuning: ftw -MOF platform for energy-efficient separations <i>via</i> adsorption kinetics or molecular sieving. Chemical Communications, 2018, 54, 6404-6407.	2.2	65
125	Lower Activation Energy for Catalytic Reactions through Host–Guest Cooperation within Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2018, 57, 10107-10111.	7.2	166
126	Lower Activation Energy for Catalytic Reactions through Host–Guest Cooperation within Metal–Organic Frameworks. Angewandte Chemie, 2018, 130, 10264-10268.	1.6	33

#	Article	IF	CITATIONS
127	Peculiar Molecular Shape and Size Dependence of the Dynamics of Fluids Confined in a Small-Pore Metal–Organic Framework. Journal of Physical Chemistry Letters, 2018, 9, 3014-3020.	2.1	8
128	Robust Ultramicroporous Metal–Organic Frameworks with Benchmark Affinity for Acetylene. Angewandte Chemie, 2018, 130, 11137-11141.	1.6	85
129	Metal–Organic Frameworks for Separation. Advanced Materials, 2018, 30, e1705189.	11.1	835
130	Flexible porous molecular materials responsive to CO ₂ , CH ₄ and Xe stimuli. Journal of Materials Chemistry A, 2018, 6, 14231-14239.	5.2	87
131	Robust Ultramicroporous Metal–Organic Frameworks with Benchmark Affinity for Acetylene. Angewandte Chemie - International Edition, 2018, 57, 10971-10975.	7.2	365
132	Towards white-light emission by Tb3+/Eu3+ substitution in a Ca2+ framework. Polyhedron, 2018, 153, 24-30.	1.0	9
133	Solvent-induced framework-interpenetration isomers of Cu MOFs for efficient light hydrocarbon separation. Inorganic Chemistry Frontiers, 2018, 5, 2408-2412.	3.0	27
134	Microwave-assisted dry-gel conversion-a new sustainable route for the rapid synthesis of metal–organic frameworks with solvent re-use. Dalton Transactions, 2018, 47, 9850-9860.	1.6	43
135	Upgrading gasoline to high octane numbers using a zeolite-like metal–organic framework molecular sieve with ⟨b⟩ana⟨/b⟩-topology. Chemical Communications, 2018, 54, 9414-9417.	2.2	23
136	Two anthracene-based metal–organic frameworks for highly effective photodegradation and luminescent detection in water. Journal of Materials Chemistry A, 2018, 6, 17177-17185.	5.2	95
137	Beyond pristine metal-organic frameworks: Preparation and application of nanostructured, nanosized, and analogous MOFs. Coordination Chemistry Reviews, 2018, 376, 20-45.	9.5	121
138	A New Heterometallic Cu ^{II} â€La ^{III} Metalâ€organic Framework: Crystal Structure, Adsorption of Light Hydrocarbons and Antiâ€gastric Cancer Activity. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2018, 644, 1618-1622.	0.6	3
139	A thermostable anion-pillared metal-organic framework for C2H2/C2H4 and C2H2/CO2 separations. Chemical Engineering Journal, 2018, 352, 803-810.	6.6	85
140	Construction of metal–organic frameworks (MOFs) and highly luminescent Eu(<scp>iii</scp>)-MOF for the detection of inorganic ions and antibiotics in aqueous medium. CrystEngComm, 2018, 20, 4962-4972.	1.3	90
141	An Ultramicroporous Nickel-Based Metal–Organic Framework for Adsorption Separation of CO ₂ over N ₂ or CH ₄ . Energy & amp; Fuels, 2018, 32, 8676-8682.	2.5	23
142	Expandable porous organic frameworks with built-in amino and hydroxyl functions for CO ₂ and CH ₄ capture. Chemical Communications, 2018, 54, 9321-9324.	2.2	26
143	Green applications of metal–organic frameworks. CrystEngComm, 2018, 20, 5899-5912.	1.3	54
144	Carbonization of covalent triazine-based frameworks <i>via</i> ionic liquid induction. Journal of Materials Chemistry A, 2018, 6, 15564-15568.	5.2	13

#	ARTICLE	IF	Citations
145	Eine Calixarenâ€basierte Metallâ€organische Gerüstverbindung für den hoch selektiven NO ₂ â€Nachweis. Angewandte Chemie, 2018, 130, 13143-13147.	1.6	9
146	A 3D Stable Metal–Organic Framework for Highly Efficient Adsorption and Removal of Drug Contaminants from Water. Polymers, 2018, 10, 209.	2.0	48
147	A zeolite-like MOF based on a heterotritopic linker of imidazolyl, carboxyl and pyridine with a long-sought uks net on Schwarz's <i>D</i> -surface. Chemical Communications, 2018, 54, 8769-8772.	2.2	9
148	A difunctional metal–organic framework with Lewis basic sites demonstrating turn-off sensing of Cu ²⁺ and sensitization of Ln ³⁺ . Journal of Materials Chemistry C, 2018, 6, 7874-7879.	2.7	24
149	Functionalizing a Metal–Organic Framework by a Photoassisted Multicomponent Postsynthetic Modification Approach Showing Highly Effective Hg(II) Removal. Inorganic Chemistry, 2018, 57, 8722-8725.	1.9	43
150	A Multifunctional Lanthanide Carbonate Cluster Based Metal–Organic Framework Exhibits High Proton Transport and Magnetic Entropy Change. Inorganic Chemistry, 2018, 57, 9020-9027.	1.9	47
151	A Microporous Heterovalent Copper–Organic Framework Based on [Cu ₂ 1] _{<i>n</i>b>1 ₄ Secondary Building Units: High Performance for CO₂ Adsorption and Separation and Iodine Sorption and Release. Crystal Growth and Design, 2018, 18, 5449-5455.}	1.4	29
152	Metal–organic framework-based nanofiber filters for effective indoor air quality control. Journal of Materials Chemistry A, 2018, 6, 15807-15814.	5.2	169
153	A Calixareneâ€Based Metal–Organic Framework for Highly Selective NO ₂ Detection. Angewandte Chemie - International Edition, 2018, 57, 12961-12965.	7.2	78
154	Conversion of Copper Carbonate into a Metal–Organic Framework. Chemistry of Materials, 2018, 30, 5630-5638.	3.2	30
155	Introduction of Molecular Building Blocks to Improve the Stability of Metal–Organic Frameworks for Efficient Mercury Removal. Inorganic Chemistry, 2018, 57, 6118-6123.	1.9	44
156	Metal-Organic Nanosheets Step into the Spotlight. CheM, 2018, 4, 933-934.	5.8	2
157	Assembly of Zeolite-like Metal–Organic Framework: An Indium-ZMOF Possessing GIS Topology and High CO ₂ Capture. Inorganic Chemistry, 2018, 57, 10679-10684.	1.9	22
158	Design and synthesis of two energetic coordination polymers based on copper ion and $1H,1\hat{a}\in^2H-[5,5\hat{a}\in^2-\text{bitetrazole}]-1,1\hat{a}\in^2-\text{diol}$: A comparative study of the structure-property relationships. Journal of Solid State Chemistry, 2018, 268, 55-61.	1.4	16
159	Mesoporous Hexanuclear Copper Cluster-Based Metal–Organic Framework with Highly Selective Adsorption of Gas and Organic Dye Molecules. ACS Applied Materials & Interfaces, 2018, 10, 31233-31239.	4.0	50
160	Hexamethylcucurbit[3,3]uril-Based Porous Supramolecular Assemblies and Their Adsorption Properties. ACS Omega, 2018, 3, 9827-9833.	1.6	5
161	A fluorine-functionalized microporous In-MOF with high physicochemical stability for light hydrocarbon storage and separation. Inorganic Chemistry Frontiers, 2018, 5, 2445-2449.	3.0	59
162	Highly reversible sorption of H2S and CO2 by an environmentally friendly Mg-based MOF. Journal of Materials Chemistry A, 2018, 6, 16900-16909.	5.2	81

#	ARTICLE	IF	CITATIONS
163	Three isoreticular ssa-type MOFs derived from bent diisophthalate ligands: exploring the substituent effect on structural stabilities and selective C ₂ H ₂ /CH ₄ and CO ₂ /CH ₄ adsorption properties. Dalton Transactions, 2018, 47, 12702-12710.	1.6	22
164	A Flexible Metal–Organic Framework with 4-Connected Zr ₆ Nodes. Journal of the American Chemical Society, 2018, 140, 11179-11183.	6.6	158
165	Ultrasound assisted reverse micelle efficient synthesis of new Ta-MOF@ Fe3O4 core/shell nanostructures as a novel candidate for lipase immobilization. Materials Science and Engineering C, 2018, 93, 768-775.	3.8	45
166	Recent Development and Application of Conductive MOFs. Israel Journal of Chemistry, 2018, 58, 1010-1018.	1.0	50
167	Chemical Reactions at Isolated Single-Sites Inside Metal–Organic Frameworks. Catalysis Letters, 2018, 148, 2201-2222.	1.4	33
168	A conjugated microporous polymer based visual sensing platform for aminoglycoside antibiotics in water. Chemical Communications, 2018, 54, 7495-7498.	2.2	51
169	Heterometallic In(III)–Pd(II) Porous Metal–Organic Framework with Square-Octahedron Topology Displaying High CO ₂ Uptake and Selectivity toward CH ₄ and N ₂ . Inorganic Chemistry, 2018, 57, 7244-7251.	1.9	37
170	Chemical Engineering of Photoactivity in Heterometallic Titanium–Organic Frameworks by Metal Doping. Angewandte Chemie - International Edition, 2018, 57, 8453-8457.	7.2	72
171	MOF-derived porous Fe ₂ O ₃ with controllable shapes and improved catalytic activities in H ₂ S selective oxidation. CrystEngComm, 2018, 20, 3449-3454.	1.3	51
172	Chemical Engineering of Photoactivity in Heterometallic Titanium–Organic Frameworks by Metal Doping. Angewandte Chemie, 2018, 130, 8589-8593.	1.6	9
173	Coordination polymers and metal-organic frameworks built up with poly(tetrazolate) ligands. Coordination Chemistry Reviews, 2018, 372, 1-30.	9 . 5	74
174	A 2D metal–thiacalix[4]arene porous coordination polymer with 1D channels: gas absorption/separation and frequency response. Dalton Transactions, 2018, 47, 9008-9013.	1.6	21
175	Multifunctional Lanthanideâ€Based Metal–Organic Frameworks with a Polyheterotopic Ligand: Doped with Ytterbium(III) for Luminescence Enhancement and Selective Dye Adsorption. Chemistry - an Asian Journal, 2018, 13, 2126-2134.	1.7	17
176	Synthesis, crystal structure and adsorption property of a microporous Cd(II) metal–organic framework based on 1H-imidazo[4,5-f][1,10]phenanthroline. Polyhedron, 2018, 152, 17-21.	1.0	1
177	Enriching the Reticular Chemistry Repertoire: Merged Nets Approach for the Rational Design of Intricate Mixed-Linker Metal–Organic Framework Platforms. Journal of the American Chemical Society, 2018, 140, 8858-8867.	6.6	129
178	Secondaryâ€Component Incorporated Hollow MOFs and Derivatives for Catalytic and Energyâ€Related Applications. Advanced Materials, 2019, 31, e1800743.	11.1	129
179	Computationally Assisted Assessment of the Metalâ€Organic Framework/Polymer Compatibility in Composites Integrating a Rigid Polymer. Advanced Theory and Simulations, 2019, 2, 1900116.	1.3	5
180	Signal-Off Electrogenerated Chemiluminescence Biosensing Platform Based on the Quenching Effect between Ferrocene and Ru(bpy) ₃ ²⁺ -Functionalized Metal–Organic Frameworks for the Detection of Methylated RNA. Analytical Chemistry, 2019, 91, 11840-11847.	3.2	57

#	Article	IF	CITATIONS
181	Assembling Metal–Organic Frameworks into the Fractal Scale for Sweat Sensing. ACS Applied Materials & Samp; Interfaces, 2019, 11, 32310-32319.	4.0	33
182	Acetylene Storage and Separation Using Metal–Organic Frameworks with Open Metal Sites. ACS Applied Materials & Description (1998) Ap	4.0	43
183	Doubly interpenetrated indium-tricarboxylate frameworks mediated by small molecules with enhanced porosity. CrystEngComm, 2019, 21, 5045-5049.	1.3	5
184	Tailoring the pore size and shape of the one-dimensional channels in iron-based MOFs for enhancing the methane storage capacity. Inorganic Chemistry Frontiers, 2019, 6, 2441-2447.	3.0	18
185	Interplay of Lewis and BrÃ,nsted Acid Sites in Zr-Based Metal–Organic Frameworks for Efficient Esterification of Biomass-Derived Levulinic Acid. ACS Applied Materials & Samp; Interfaces, 2019, 11, 32090-32096.	4.0	44
186	Mechanical Control of the Kinetic Propylene/Propane Separation by Zeolitic Imidazolate Frameworkâ€8. Angewandte Chemie, 2019, 131, 13872-13876.	1.6	17
187	Cycloaddition of CO ₂ with an Epoxide-Bearing Oxindole Scaffold by a Metal–Organic Framework-Based Heterogeneous Catalyst under Ambient Conditions. Inorganic Chemistry, 2019, 58, 10084-10096.	1.9	65
188	Ultramicroporous Metal–Organic Framework with Polar Groups for Efficiently Recovering Propylene from Polypropylene Off-Gas. Industrial & Engineering Chemistry Research, 2019, 58, 14333-14339.	1.8	6
189	Tuning the C2/C1 Hydrocarbon Separation Performance in a BioMOF by Surface Functionalization. European Journal of Inorganic Chemistry, 2019, 2019, 4205-4210.	1.0	21
190	Metal-organic frameworks for the capture of volatile organic compounds and toxic chemicals. , 2019, , 141-178.		12
191	Mechanical Control of the Kinetic Propylene/Propane Separation by Zeolitic Imidazolate Frameworkâ€8. Angewandte Chemie - International Edition, 2019, 58, 13734-13738.	7.2	39
192	Effect of arrangement of functional groups on stability and gas adsorption properties in two regioisomeric copper bent diisophthalate frameworks. CrystEngComm, 2019, 21, 4820-4827.	1.3	22
193	Gas transport regulation in a MO/MOF interface for enhanced selective gas detection. Journal of Materials Chemistry A, 2019, 7, 18397-18403.	5.2	44
194	Onâ€Chip Tailorability of Capacitive Gas Sensors Integrated with Metal–Organic Framework Films. Angewandte Chemie, 2019, 131, 14227-14232.	1.6	24
195	Design strategies and applications of charged metal organic frameworks. Coordination Chemistry Reviews, 2019, 398, 113007.	9.5	72
196	Control of the nucleation and growth processes of metal–organic frameworks using a metal ion-doped polymer substrate for the construction of continuous films. CrystEngComm, 2019, 21, 4851-4854.	1.3	2
197	Defective hierarchical porous copper-based metal-organic frameworks synthesised via facile acid etching strategy. Scientific Reports, 2019, 9, 10887.	1.6	37
198	A robust cage-based framework for the highly selective purification of natural gas. Chemical Communications, 2019, 55, 10257-10260.	2.2	19

#	Article	IF	CITATIONS
199	Synthesis, Structural Features, and Catalytic Activity of an Iron(II) 3D Coordination Polymer Driven by an Ether-Bridged Pyridine-Dicarboxylate. Crystals, 2019, 9, 369.	1.0	3
200	Metal-organic framework-derived materials for electrochemical energy applications. EnergyChem, 2019, 1, 100001.	10.1	438
201	Single-File Diffusion of Neo-Pentane Confined in the MIL-47(V) Metal–Organic Framework. Journal of Physical Chemistry C, 2019, 123, 17360-17367.	1.5	12
202	Onâ€Chip Tailorability of Capacitive Gas Sensors Integrated with Metal–Organic Framework Films. Angewandte Chemie - International Edition, 2019, 58, 14089-14094.	7.2	86
203	Designing an "Off–On―Fluorescence Sensor Based on Cluster-Based Ca ^{II} -Metal–Organic Frameworks for Detection of <scp>I</scp> -Cysteine in Biological Fluids. Langmuir, 2019, 35, 9885-9895.	1.6	32
204	Porous metal-organic frameworks for gas storage and separation: Status and challenges. EnergyChem, 2019, 1, 100006.	10.1	434
205	Efficient Separation of <i>nâ€</i> Butene and <i>iso</i> â€Butene by Flexible Ultramicroporous Metalâ€Organic Frameworks with Pocketâ€like Cavities. Chemistry - an Asian Journal, 2019, 14, 3572-3576.	1.7	25
206	Structural, Electronic, and Spectral Properties of Metal Dimethylglyoximato [M(DMG) ₂ ; M = Ni ²⁺ , Cu ²⁺] Complexes: A Comparative Theoretical Study. Journal of Physical Chemistry A, 2019, 123, 9166-9174.	1.1	8
207	A heterometallic metal–organic framework based on multi-nuclear clusters exhibiting high stability and selective gas adsorption. Dalton Transactions, 2019, 48, 278-284.	1.6	23
208	Membranes with Intrinsic Micro-Porosity: Structure, Solubility, and Applications. Membranes, 2019, 9, 3.	1.4	26
209	Post Synthetic Defect Engineering of UiO-66 Metal–Organic Framework with An Iridium(III)-HEDTA Complex and Application in Water Oxidation Catalysis. Inorganics, 2019, 7, 123.	1,2	9
210	Barely porous organic cages for hydrogen isotope separation. Science, 2019, 366, 613-620.	6.0	210
211	Current Status of Microporous Metal–Organic Frameworks for Hydrocarbon Separations. Topics in Current Chemistry, 2019, 377, 33.	3.0	31
212	Coreâ€Shell Functionalized Zirconiumâ€Pemetrexed Coordination Nanoparticles as Carriers with a High Drug Content. Advanced Therapeutics, 2019, 2, 1900120.	1.6	12
213	A novel conditional anonymity scheme for vehicular communication networks. International Journal of Communication Systems, 2019, , e4130.	1.6	2
214	Reversing C ₂ H ₂ –CO ₂ adsorption selectivity in an ultramicroporous metal–organic framework platform. Chemical Communications, 2019, 55, 11354-11357.	2.2	46
215	Detection of Purine Metabolite Uric Acid with Picolinic-Acid-Functionalized Metal–Organic Frameworks. ACS Applied Materials & Samp; Interfaces, 2019, 11, 34196-34202.	4.0	60
216	Hybrid MOFs-graphene composites: Correlation between thermal transport and kinetics of hydrogen adsorption. International Journal of Heat and Mass Transfer, 2019, 143, 118539.	2.5	10

#	Article	IF	Citations
217	Superhigh CO ₂ -Permeable Mixed Matrix Membranes Composed of a Polymer of Intrinsic Microporosity (PIM-1) and Surface-Modified Silica Nanoparticles. ACS Applied Polymer Materials, 2019, 1, 2516-2524.	2.0	27
218	Nitrogen self-doped porous carbon material derived from metal-organic framework for high-performance super-capacitors. Journal of Energy Storage, 2019, 25, 100904.	3.9	20
219	Photoluminescent metal–organic frameworks and their application for sensing biomolecules. Journal of Materials Chemistry A, 2019, 7, 22744-22767.	5. 2	224
220	"Induced-Fit Suction―effect: a booster for biofuel storage and separation. Journal of Materials Chemistry A, 2019, 7, 22353-22358.	5. 2	4
221	Size control over metal–organic framework porous nanocrystals. Chemical Science, 2019, 10, 9396-9408.	3.7	152
222	Kinetic stability of metal–organic frameworks for corrosive and coordinating gas capture. Nature Reviews Materials, 2019, 4, 708-725.	23.3	214
223	Assembly of Two Isostructural Metal-organic Frameworks Based on Hetero-N,O Donor Ligand for Detecting Nitro Explosives. Chemical Research in Chinese Universities, 2019, 35, 762-766.	1.3	3
224	Design of robust rod-packing [In(OH)(BDC)] frameworks and their high CO2/C2-hydrocarbons over CH4 separation performance. Journal of Solid State Chemistry, 2019, 279, 120936.	1.4	8
225	Two unique copper cluster-based metal–organic frameworks with high performance for CO ₂ adsorption and separation. Inorganic Chemistry Frontiers, 2019, 6, 556-561.	3.0	23
226	A ligand conformation preorganization approach to construct a copper–hexacarboxylate framework with a novel topology for selective gas adsorption. Inorganic Chemistry Frontiers, 2019, 6, 263-270.	3.0	47
227	Unveiling reactive metal sites in a Pd pincer MOF: insights into Lewis acid and pore selective catalysis. Dalton Transactions, 2019, 48, 9588-9595.	1.6	20
228	Robust synthesis routes and porosity of the Al-based metal–organic frameworks Al-fumarate, CAU-10-H and MIL-160. Dalton Transactions, 2019, 48, 2967-2976.	1.6	70
229	Record high cationic dye separation performance for water sanitation using a neutral coordination framework. Journal of Materials Chemistry A, 2019, 7, 4751-4758.	5.2	44
230	Fabrication of Desired Metal–Organic Frameworks via Postsynthetic Exchange and Sequential Linker Installation. Crystal Growth and Design, 2019, 19, 1454-1470.	1.4	57
231	Water Contaminant Elimination Based on Metal–Organic Frameworks and Perspective on Their Industrial Applications. ACS Sustainable Chemistry and Engineering, 2019, 7, 4548-4563.	3.2	165
232	Multifunctional porous hydrogen-bonded organic framework materials. Chemical Society Reviews, 2019, 48, 1362-1389.	18.7	751
233	Synthesis of Cuâ€doped MOFâ€235 for the Degradation of Methylene Blue under Visible Light Irradiation. Bulletin of the Korean Chemical Society, 2019, 40, 112-117.	1.0	27
234	Anion-directed structures and luminescences of two Cu(I) coordination polymers based on bipyrazole. Inorganic Chemistry Communication, 2019, 101, 121-124.	1.8	6

#	Article	IF	CITATIONS
235	Our journey of developing multifunctional metal-organic frameworks. Coordination Chemistry Reviews, 2019, 384, 21-36.	9.5	126
236	A multifunctional anionic 3D Cd(II)-MOF derived from 2D layers catenation: Organic dyes adsorption, cycloaddition of CO2 with epoxides and luminescence. Inorganic Chemistry Communication, 2019, 101, 184-187.	1.8	18
237	Post-synthetic diamine-functionalization of MOF-74 type frameworks for effective carbon dioxide separation. Dalton Transactions, 2019, 48, 2263-2270.	1.6	50
238	MOFs containing a linear bis-pyridyl-tris-amide and angular carboxylates: exploration of proton conductivity, water vapor and dye sorptions. Inorganic Chemistry Frontiers, 2019, 6, 184-191.	3.0	41
239	A Metal–Organic Framework Based Methane Nanoâ€trap for the Capture of Coalâ€Mine Methane. Angewandte Chemie, 2019, 131, 10244-10247.	1.6	28
240	Phytic acid-encapsulated MIL-101(Cr): Remarkable adsorbent for the removal of both neutral indole and basic quinoline from model liquid fuel. Chemical Engineering Journal, 2019, 375, 121948.	6.6	18
241	Underlying mechanism of CO ₂ adsorption onto conjugated azacyclo-copolymers: N-doped adsorbents capture CO ₂ chiefly through acid–base interaction?. Journal of Materials Chemistry A, 2019, 7, 17842-17853.	5.2	63
242	A Polyhedron-Based Heterometallic MOF Constructed by HSAB Theory and SBB Strategy: Synthesis, Structure, and Adsorption Properties. Crystal Growth and Design, 2019, 19, 4571-4578.	1.4	26
243	Computational prediction of promising pyrazine and bipyridine analogues of a fluorinated MOF platform, MFN-Ni-L (M = SI/AL; N = SIX/FIVE; L = pyr/bipyr), for CO2 capture under pre-humidified conditions. Physical Chemistry Chemical Physics, 2019, 21, 16127-16136.	1.3	13
244	Novel solvent-triggered transformation of Cu-based metal-organic gels to highly monodisperse metal-organic frameworks with controllable shapes. Chemical Engineering Journal, 2019, 374, 1231-1240.	6.6	24
245	The surface chemistry of metal–organic frameworks and their applications. Dalton Transactions, 2019, 48, 9037-9042.	1.6	58
246	A new iron-based metal–organic framework with enhancing catalysis activity for benzene hydroxylation. RSC Advances, 2019, 9, 16784-16789.	1.7	21
247	Self-assembly of two robust 3D supramolecular organic frameworks from a geometrically non-planar molecule for high gas selectivity performance. Chemical Science, 2019, 10, 6565-6571.	3.7	25
248	Metal–Organic Frameworks as Fuels for Advanced Applications: Evaluating and Modifying the Combustion Energy of Popular MOFs. Chemistry of Materials, 2019, 31, 4882-4888.	3.2	21
249	Efficient Separation of <i>cis</i> â€and <i>trans</i> â€1,2â€Dichloroethene Isomers by Adaptive Biphen[3]arene Crystals. Angewandte Chemie, 2019, 131, 10387-10390.	1.6	38
250	Amino Acid Imprinted UiO-66s for Highly Recognized Adsorption of Small Angiotensin-Converting-Enzyme-Inhibitory Peptides. ACS Applied Materials & Samp; Interfaces, 2019, 11, 23039-23049.	4.0	30
251	Synergistically Directed Assembly of Aromatic Stacks Based Metalâ€Organic Frameworks by Donorâ€Acceptor and Coordination Interactions. Chinese Journal of Chemistry, 2019, 37, 871-877.	2.6	28
252	A multifunctional Zr(<scp>iv</scp>)-based metal–organic framework for highly efficient elimination of Cr(<scp>vi</scp>) from the aqueous phase. Journal of Materials Chemistry A, 2019, 7, 16833-16841.	5 . 2	80

#	Article	IF	CITATIONS
253	The art of two-dimensional soft nanomaterials. Science China Chemistry, 2019, 62, 1145-1193.	4.2	52
254	A Metal–Organic Framework Based Methane Nanoâ€trap for the Capture of Coalâ€Mine Methane. Angewandte Chemie - International Edition, 2019, 58, 10138-10141.	7.2	181
255	Jumping Crystal of a Hydrogenâ€Bonded Organic Framework Induced by the Collective Molecular Motion of a Twisted Ï€ System. Angewandte Chemie, 2019, 131, 10453-10460.	1.6	25
256	Stable fluorinated 3D isoreticular nanotubular triazole MOFs: synthesis, characterization and CO2 separation. Journal of Porous Materials, 2019, 26, 1573-1579.	1.3	2
257	Jumping Crystal of a Hydrogenâ€Bonded Organic Framework Induced by the Collective Molecular Motion of a Twisted Ï€ System. Angewandte Chemie - International Edition, 2019, 58, 10345-10352.	7.2	106
258	Efficient Separation of <i>cis</i> ―and <i>trans</i> â€1,2â€Dichloroethene Isomers by Adaptive Biphen[3]arene Crystals. Angewandte Chemie - International Edition, 2019, 58, 10281-10284.	7.2	115
259	Metal–Organic Gels Based on a Bisamide Tetracarboxyl Ligand for Carbon Dioxide, Sulfur Dioxide, and Selective Dye Uptake. ACS Applied Materials & Selective Dye Uptake.	4.0	32
260	Robust Microporous Metal–Organic Frameworks for Highly Efficient and Simultaneous Removal of Propyne and Propadiene from Propylene. Angewandte Chemie, 2019, 131, 10315-10320.	1.6	16
261	Solid-Solution Mixed-Linker Synthesis of Isoreticular Al-Based MOFs for an Easy Hydrophilicity Tuning in Water-Sorption Heat Transformations. Chemistry of Materials, 2019, 31, 4051-4062.	3.2	47
262	Metal–Organic Framework Nanoparticle-Assisted Cryopreservation of Red Blood Cells. Journal of the American Chemical Society, 2019, 141, 7789-7796.	6.6	82
263	Structural Engineering of Lowâ€Dimensional Metal–Organic Frameworks: Synthesis, Properties, and Applications. Advanced Science, 2019, 6, 1802373.	5.6	214
264	Metalâ^'organic framework with dual-functionalized sites for efficient C2H2/CO2 separation. Inorganic Chemistry Communication, 2019, 105, 4-8.	1.8	7
265	Tuning 1-hexene/n-hexane adsorption on MOF-74 via constructing Co-Mg bimetallic frameworks. Microporous and Mesoporous Materials, 2019, 284, 151-160.	2.2	51
266	Robust Microporous Metal–Organic Frameworks for Highly Efficient and Simultaneous Removal of Propyne and Propadiene from Propylene. Angewandte Chemie - International Edition, 2019, 58, 10209-10214.	7.2	69
267	Two novel metal–organic frameworks based on pyridyl-imidazole-carboxyl multifunctional ligand: selective CO ₂ capture and multiresponsive luminescence sensor. Dalton Transactions, 2019, 48, 10892-10900.	1.6	70
268	Pore environment engineering in metal–organic frameworks for efficient ethane/ethylene separation. Journal of Materials Chemistry A, 2019, 7, 13585-13590.	5.2	91
269	Molecular-Level Insight into CO ₂ Adsorption on the Zirconium-Based Metal–Organic Framework, UiO-66: A Combined Spectroscopic and Computational Approach. Journal of Physical Chemistry C, 2019, 123, 13731-13738.	1.5	34
270	A robust <i>etb</i> i>-type metal–organic framework showing polarity-exclusive adsorption of acetone over methanol for their azeotropic mixture. Chemical Communications, 2019, 55, 6495-6498.	2.2	23

#	Article	IF	Citations
271	A rare (3,12)-connected zirconium metal–organic framework with efficient iodine adsorption capacity and pH sensing. Journal of Materials Chemistry A, 2019, 7, 13173-13179.	5.2	68
272	Multivariable Sieving and Hierarchical Recognition for Organic Toxics in Nonhomogeneous Channel of MOFs. CheM, 2019, 5, 1337-1350.	5.8	59
273	Structural tuning of zinc–porphyrin frameworks <i>via</i> auxiliary nitrogen-containing ligands towards selective adsorption of cationic dyes. Chemical Communications, 2019, 55, 6527-6530.	2.2	23
274	Two copper-based MOFs constructed from a linear diisophthalate linker: supramolecular isomerism and gas adsorption properties. CrystEngComm, 2019, 21, 3192-3198.	1.3	11
275	Metal–Organic Frameworks with Metal–Catecholates for O ₂ /N ₂ Separation. Journal of Physical Chemistry C, 2019, 123, 12935-12946.	1.5	33
276	Direct growth of flake-like metal-organic framework on textile carbon cloth as high-performance supercapacitor electrode. Journal of Power Sources, 2019, 428, 124-130.	4.0	70
277	Alternatives to Cryogenic Distillation: Advanced Porous Materials in Adsorptive Light Olefin/Paraffin Separations. Small, 2019, 15, e1900058.	5.2	187
278	Effect of Counterions on the Formation and Structures of Ce(III) and Er(III) Chloranilate Frameworks. Crystal Growth and Design, 2019, 19, 3338-3347.	1.4	20
279	Bottom-up synthesis of 2D Co-based metal–organic framework nanosheets by an ammonia-assisted strategy for tuning the crystal morphology. CrystEngComm, 2019, 21, 3199-3208.	1.3	30
280	Selectively Trapping Ethane from Ethylene on Metal–Organic Framework MIL-53(Al)-FA. Industrial & Engineering Chemistry Research, 2019, 58, 8290-8295.	1.8	39
281	Fluorinated MOF platform for selective removal and sensing of SO2 from flue gas and air. Nature Communications, 2019, 10, 1328.	5.8	292
282	An indium–organic framework for the efficient storage of light hydrocarbons and selective removal of organic dyes. Dalton Transactions, 2019, 48, 5527-5533.	1.6	34
283	A Tailor-Made Interpenetrated MOF with Exceptional Carbon-Capture Performance from Flue Gas. CheM, 2019, 5, 950-963.	5.8	118
284	Metal-Organic Frameworks for Nanoarchitectures: Nanoparticle, Composite, Core-Shell, Hierarchical, and Hollow Structures. , 2019, , 151-194.		1
285	Structural Basis of CO2 Adsorption in a Flexible Metal-Organic Framework Material. Nanomaterials, 2019, 9, 354.	1.9	10
286	Bio-related applications of porous organic frameworks (POFs). Journal of Materials Chemistry B, 2019, 7, 2398-2420.	2.9	34
287	Superstructure of a Metal–Organic Framework Derived from Microdroplet Flow Reaction: An Intermediate State of Crystallization by Particle Attachment. ACS Nano, 2019, 13, 2901-2912.	7.3	47
288	Coordinative Binding of Polymers to Metal–Organic Framework Nanoparticles for Control of Interactions at the Biointerface. ACS Nano, 2019, 13, 3884-3895.	7.3	73

#	Article	IF	CITATIONS
289	Versatile Solvothermal Synthetic Method and Structural Characterization of Lithium Coordination Networks. Journal of Inorganic and Organometallic Polymers and Materials, 2019, 29, 1447-1456.	1.9	2
290	Highly tunable sulfur hexafluoride separation by interpenetration control in metal organic frameworks. Microporous and Mesoporous Materials, 2019, 281, 44-49.	2.2	18
291	Selective Aerobic Oxidation of a Metal–Organic Framework Boosts Thermodynamic and Kinetic Propylene/Propane Selectivity. Angewandte Chemie, 2019, 131, 7774-7778.	1.6	36
292	Selective Aerobic Oxidation of a Metal–Organic Framework Boosts Thermodynamic and Kinetic Propylene/Propane Selectivity. Angewandte Chemie - International Edition, 2019, 58, 7692-7696.	7.2	111
293	Water-Stable Europium 1,3,6,8-Tetrakis(4-carboxylphenyl)pyrene Framework for Efficient C ₂ H ₂ /CO ₂ Separation. Inorganic Chemistry, 2019, 58, 5089-5095.	1.9	71
294	<i>Ab initio</i> screening of cation-exchanged zeolites for biofuel purification. Molecular Systems Design and Engineering, 2019, 4, 882-892.	1.7	34
295	Sulfur Chemistry for Stable and Electroactive Metalâ€Organic Frameworks: The Crosslinking Story. Chemistry - A European Journal, 2019, 25, 8654-8662.	1.7	13
296	Scalable, room temperature, and water-based synthesis of functionalized zirconium-based metal–organic frameworks for toxic chemical removal. CrystEngComm, 2019, 21, 2409-2415.	1.3	67
297	A Microporous Metalâ€Organic Framework Supramolecularly Assembled from a Cu ^{II} Dodecaborate Cluster Complex for Selective Gas Separation. Angewandte Chemie - International Edition, 2019, 58, 8145-8150.	7.2	165
298	Amphipathic Pentiptycene-Based Water-Resistant Cu-MOF for Efficient Oil/Water Separation. Inorganic Chemistry, 2019, 58, 5384-5387.	1.9	23
299	Synthesis, structures and physicochemical properties of two two-dimensional coordination polymers based on 3,5-di(1H-benzimidazol-1-yl)pyridine. Transition Metal Chemistry, 2019, 44, 407-413.	0.7	2
300	A Microporous Metalâ€Organic Framework Supramolecularly Assembled from a Cu ^{II} Dodecaborate Cluster Complex for Selective Gas Separation. Angewandte Chemie, 2019, 131, 8229-8234.	1.6	45
301	Metal–Organic Framework Photocatalyst Incorporating Bis(4′-(4-carboxyphenyl)-terpyridine)ruthenium(II) for Visible-Light-Driven Carbon Dioxide Reduction. Journal of the American Chemical Society, 2019, 141, 7115-7121.	6.6	125
302	Transition from a 1D Coordination Polymer to a Mixed-Linker Layered MOF. Inorganic Chemistry, 2019, 58, 5031-5041.	1.9	13
303	Janus triple tripods build up a microporous manifold for HgCl ₂ and I ₂ uptake. Chemical Communications, 2019, 55, 5091-5094.	2.2	9
304	Modification of hydrophilic amine-functionalized metal-organic frameworks to hydrophobic for dye adsorption. Journal of Solid State Chemistry, 2019, 275, 23-29.	1.4	51
305	Computational screening of zeolites for C3H7Cl/C3H5Cl separation and a conformation based separation mechanism. Chemical Engineering Science, 2019, 203, 212-219.	1.9	4
306	Selfâ€Assembly of Spherical Organic Molecules to Form Hollow Vesicular Structures in Water for Encapsulation of an Anticancer Drug and Its Release. Chemistry - an Asian Journal, 2019, 14, 1992-1999.	1.7	2

#	Article	IF	CITATIONS
307	Studies on catalytic activity of MIL-53(Al) and structure analogue DUT-5(Al) using bdc- and bpdc-ligands functionalized with l-proline in a solid-solution mixed-linker approach. Molecular Catalysis, 2019, 467, 70-77.	1.0	18
308	N-Doped Porous Carbon Derived by Direct Carbonization of Metal–Organic Complexes Crystal Materials for SO ₂ Adsorption. Crystal Growth and Design, 2019, 19, 1973-1984.	1.4	27
309	Reticular chemistry in the rational synthesis of functional zirconium cluster-based MOFs. Coordination Chemistry Reviews, 2019, 386, 32-49.	9.5	326
310	Two 3D Cobalt(II) Metal–Organic Frameworks with Micropores for Selective Dye Adsorption. Inorganic Chemistry, 2019, 58, 3130-3136.	1.9	69
311	Conformationâ€Controlled Molecular Sieving Effects for Membraneâ€Based Propylene/Propane Separation. Advanced Materials, 2019, 31, e1807513.	11.1	117
312	Effective Separation of Enantiomers Based on Novel Chiral Hierarchical Porous Metalâ€Organic Gels. Macromolecular Rapid Communications, 2019, 40, e1800862.	2.0	9
313	Acidity and Cd ²⁺ fluorescent sensing and selective CO ₂ adsorption by a water-stable Eu-MOF. Dalton Transactions, 2019, 48, 4489-4494.	1.6	51
314	Progress and challenges of graphene oxide/metal-organic composites. Coordination Chemistry Reviews, 2019, 387, 262-272.	9.5	99
315	Pore Size Reduction in Zirconium Metal–Organic Frameworks for Ethylene/Ethane Separation. ACS Sustainable Chemistry and Engineering, 2019, 7, 7118-7126.	3.2	39
316	Microporous Metal–Organic Framework with Dual Functionalities for Efficient Separation of Acetylene from Light Hydrocarbon Mixtures. ACS Sustainable Chemistry and Engineering, 2019, 7, 4897-4902.	3.2	65
317	Integration of Metal Nanoparticles into Metal–Organic Frameworks for Composite Catalysts: Design and Synthetic Strategy. Small, 2019, 15, e1804849.	5.2	67
318	Porous liquids based on porous cages, metal organic frameworks and metal organic polyhedra. Coordination Chemistry Reviews, 2019, 386, 85-95.	9.5	74
319	Imidazole-containing Cd Metal-Organic Framework with Selective Adsorption Properties. E3S Web of Conferences, 2019, 118, 01044.	0.2	0
320	Thermodynamic Modeling of the Selective Adsorption of Carbon Dioxide over Methane in the Mechanically Constrained Breathing MILâ€53(Cr). Advanced Theory and Simulations, 2019, 2, 1900124.	1.3	3
321	Crystal structure of poly-[(ι¼2-(carboxylatomethyl)((3-nitrophenyl)sulfonyl)amido-κ3N:O:O′)(ι¼2-4,4′-bipyridine-κ2N:N′) ni C18H14NiN4O6S. Zeitschrift Fur Kristallographie - New Crystal Structures, 2019, 234, 549-550.	ckæl(II)],	1
322	Tailoring the structures and gas adsorption properties of copper–bent diisophthalate frameworks by a substituent-driven ligand conformation regulation strategy. CrystEngComm, 2019, 21, 6733-6743.	1.3	21
323	Rational construction and remarkable gas adsorption properties of a HKUST-1-like <i>tbo</i> -type MOF based on a tetraisophthalate linker. Dalton Transactions, 2019, 48, 16793-16799.	1.6	25
324	Revealing an unusual temperature-dependent CO ₂ adsorption trend and selective CO ₂ uptake over water vapors in a polyamine-appended metal–organic framework. Materials Chemistry Frontiers, 2019, 3, 2759-2767.	3.2	19

#	ARTICLE	IF	CITATIONS
325	Integrating multiple adsorption sites and tortuous diffusion paths into a metal–organic framework for C ₃ H ₄ /C ₃ H ₆ separation. Journal of Materials Chemistry A, 2019, 7, 25254-25257.	5.2	26
326	A temperature-responsive smart molecular gate in a metal–organic framework for task-specific gas separation. Journal of Materials Chemistry A, 2019, 7, 26574-26579.	5.2	32
327	Pillar iodination in functional boron cage hybrid supramolecular frameworks for high performance separation of light hydrocarbons. Journal of Materials Chemistry A, 2019, 7, 27560-27566.	5.2	71
328	Capture of nitrogen dioxide and conversion to nitric acid in a porous metal–organic framework. Nature Chemistry, 2019, 11, 1085-1090.	6.6	116
329	Effect of Functional Groups of Metal–Organic Frameworks, Coated on Cotton, on Removal of Particulate Matters via Selective Interactions. ACS Applied Materials & Distriction (1997), 11, 47649-47657.	4.0	33
330	Design and bio-applications of biological metal-organic frameworks. Korean Journal of Chemical Engineering, 2019, 36, 1949-1964.	1.2	36
331	Enriching the Reticular Chemistry Repertoire with Minimal Edge-Transitive Related Nets: Access to Highly Coordinated Metal–Organic Frameworks Based on Double Six-Membered Rings as Net-Coded Building Units. Journal of the American Chemical Society, 2019, 141, 20480-20489.	6.6	42
332	A water-stable zinc(<scp>ii</scp>)–organic framework as a multiresponsive luminescent sensor for toxic heavy metal cations, oxyanions and organochlorine pesticides in aqueous solution. Dalton Transactions, 2019, 48, 16776-16785.	1.6	71
333	A novel fluorescence phenomenon caused by amine induced ion-exchange between Cd2+ and Fe3+ ions. RSC Advances, 2019, 9, 39854-39857.	1.7	0
334	Nanoarchitectonicâ€Based Material Platforms for Environmental and Bioprocessing Applications. Chemical Record, 2019, 19, 1891-1912.	2.9	17
335	Ultrathin MOF nanosheet assembled highly oriented microporous membrane as an interlayer for lithium-sulfur batteries. Energy Storage Materials, 2019, 21, 14-21.	9.5	182
336	Iron-catalyzed one-pot sequential transformations: Synthesis of quinazolinones via oxidative Csp3H bond activation using a new metal-organic framework as catalyst. Journal of Catalysis, 2019, 370, 11-20.	3.1	42
337	Complex Phase Behaviour and Structural Transformations of Metalâ€Organic Frameworks with Mixed Rigid and Flexible Bridging Ligands. Chemistry - A European Journal, 2019, 25, 1353-1362.	1.7	2
338	UIOâ€66â€NH ₂ â€Derived Mesoporous Carbon Catalyst Coâ€Doped with Fe/N/S as Highly Efficient Cathode Catalyst for PEMFCs. Small, 2019, 15, e1803520.	5. 2	73
339	Cloud-Point Extraction Combined with Thermal Degradation for Nanoplastic Analysis Using Pyrolysis Gas Chromatography–Mass Spectrometry. Analytical Chemistry, 2019, 91, 1785-1790.	3.2	138
340	Covalent Construction of Sustainable Hybrid UiO-66-NH ₂ @Tb-CP Material for Selective Removal of Dyes and Detection of Metal Ions. ACS Sustainable Chemistry and Engineering, 2019, 7, 3203-3212.	3.2	93
341	Improving isosteric heat of CO2 adsorption by introducing nitro moieties into jungle-gym-type porous coordination polymers. Journal of Solid State Chemistry, 2019, 270, 11-18.	1.4	5
342	Metal–organic frameworks: Structures and functional applications. Materials Today, 2019, 27, 43-68.	8.3	627

#	Article	IF	CITATIONS
343	Biased adsorption of ethane over ethylene on low-cost hyper-crosslinked polymers. Journal of Solid State Chemistry, 2019, 271, 199-205.	1.4	15
344	Ultrahigh benzene adsorption capacity of graphene-MOF composite fabricated via MOF crystallization in 3D mesoporous graphene. Microporous and Mesoporous Materials, 2019, 279, 387-394.	2.2	52
345	Selective adsorption and removal of drug contaminants by using an extremely stable Cu(II)-based 3D metal-organic framework. Chemosphere, 2019, 215, 524-531.	4.2	104
346	Two Stable Zn-Cluster-Based Metal–Organic Frameworks with Breathing Behavior: Synthesis, Structure, and Adsorption Properties. Inorganic Chemistry, 2019, 58, 391-396.	1.9	26
347	Crystal Engineering of Metal–Organic Framework Thin Films for Gas Separations. ACS Sustainable Chemistry and Engineering, 2019, 7, 49-69.	3.2	52
348	Low-Cost and High-Performance Microporous Metal–Organic Framework for Separation of Acetylene from Carbon Dioxide. ACS Sustainable Chemistry and Engineering, 2019, 7, 1667-1672.	3.2	47
349	Synthetic Strategies and Structural Arrangements of Isoreticular Mixedâ€Component Metal–Organic Frameworks. Chemistry - A European Journal, 2019, 25, 1866-1882.	1.7	58
350	Iron species supported on a mesoporous zirconium metal-organic framework for visible light driven synthesis of quinazolin-4(3H)-ones through one-pot three-step tandem reaction. Journal of Colloid and Interface Science, 2019, 535, 214-226.	5.0	53
351	Synthesis, structure, computational modeling, and biological activity of two novel bimesitylene derivatives. Research on Chemical Intermediates, 2019, 45, 453-469.	1.3	5
352	Exploration of porous metal–organic frameworks for gas separation and purification. Coordination Chemistry Reviews, 2019, 378, 87-103.	9.5	538
353	Metallosalen-based crystalline porous materials: Synthesis and property. Coordination Chemistry Reviews, 2019, 378, 483-499.	9.5	82
354	Metal–Organic Framework Materials for the Separation and Purification of Light Hydrocarbons. Advanced Materials, 2020, 32, e1806445.	11.1	408
355	Reversed ethane/ethylene adsorption in a metal–organic framework via introduction of oxygen. Chinese Journal of Chemical Engineering, 2020, 28, 593-597.	1.7	19
356	Metal-organic framework MIL-101 loaded with polymethacrylamide with or without further reduction: Effective and selective CO2 adsorption with amino or amide functionality. Chemical Engineering Journal, 2020, 380, 122496.	6.6	68
357	Synthesis of novel magnetic CoFe ₂ O ₄ -embedded MIL-101 with tetramethylammonium hydroxide for extraction of toxic flame retardants in environmental water samples. International Journal of Environmental Analytical Chemistry, 2020, 100, 1506-1523.	1.8	1
358	Synthesis, structure, sorption and luminescence propesrties of one dual functional Zn(â¡) metal–organic framework. Journal of Molecular Structure, 2020, 1204, 127427.	1.8	7
359	Polyvinylamine-loaded metal–organic framework MIL-101 for effective and selective CO2 adsorption under atmospheric or lower pressure. Chemical Engineering Journal, 2020, 389, 123429.	6.6	50
360	Modified staging classification of gallbladder carcinoma on the basis of the 8th edition of the American Joint Commission on Cancer (AJCC) staging system. European Journal of Surgical Oncology, 2020, 46, 527-533.	0.5	7

#	Article	IF	CITATIONS
361	A thermal stable pincer-MOF with high selective and sensitive nitro explosive TNP, metal ion Fe3+ and pH sensing in aqueous solution. Dyes and Pigments, 2020, 173, 107993.	2.0	94
362	Encapsulation of a Porous Organic Cage into the Pores of a Metal–Organic Framework for Enhanced CO ₂ Separation. Angewandte Chemie - International Edition, 2020, 59, 6068-6073.	7.2	50
363	Engineering microporous ethane-trapping metal–organic frameworks for boosting ethane/ethylene separation. Journal of Materials Chemistry A, 2020, 8, 3613-3620.	5.2	120
364	Three stable dinuclear [M ₂ (OH) _{0.5} (NO ₃) _{0.5} (RCOO) ₂ (RN) ₄ (M = Cu, Ni) based metalâ€"organic frameworks with high CO ₂ adsorption and selective separation for O ₂ /N ₂ and C ₃ H ₈ /CH ₄ .	0>] 3.0	4
365	Two new inorganic–organic hybrid zinc phosphites and their derived ZnO/ZnS heterostructure for efficient photocatalytic hydrogen production. RSC Advances, 2020, 10, 812-817.	1.7	7
366	Encapsulation of a Porous Organic Cage into the Pores of a Metal–Organic Framework for Enhanced CO ₂ Separation. Angewandte Chemie, 2020, 132, 6124-6129.	1.6	15
367	Rational design of a high-efficiency, multivariate metal–organic framework phosphor for white LED bulbs. Chemical Science, 2020, 11, 1814-1824.	3.7	43
368	Combined experimental and computational studies on preferential CO ₂ adsorption over a zinc-based porous framework solid. New Journal of Chemistry, 2020, 44, 1806-1816.	1.4	4
369	Adsorption and separation of propane/propylene on various ZIF-8 polymorphs: Insights from GCMC simulations and the ideal adsorbed solution theory (IAST). Chemical Engineering Journal, 2020, 386, 123945.	6.6	39
370	Experimental Evidence for the Incorporation of Two Metals at Equivalent Lattice Positions in Mixedâ€Metal Metal–Organic Frameworks. Chemistry - A European Journal, 2020, 26, 5667-5675.	1.7	9
371	Microporous Metal-Organic Framework Materials for Gas Separation. CheM, 2020, 6, 337-363.	5.8	528
372	Template effect of innocent and coordinating anions on the formation of interpenetrated 2D and 3D networks: methyl orange and iodine sorption studies. CrystEngComm, 2020, 22, 751-766.	1.3	11
373	Accurate tuning of rare earth metal–organic frameworks with unprecedented topology for white-light emission. Journal of Materials Chemistry C, 2020, 8, 1374-1379.	2.7	26
374	Methyl functionalized Zr-Fum MOF with enhanced Xenon adsorption and separation. Separation and Purification Technology, 2020, 239, 116514.	3.9	34
375	Polycatenated Molecular Cage-Based Propane Trap for Propylene Purification with Recorded Selectivity. ACS Applied Materials & Selectivity. ACS Applied Material	4.0	50
376	A Hydrolytically Stable Vanadium(IV) Metal–Organic Framework with Photocatalytic Bacteriostatic Activity for Autonomous Indoor Humidity Control. Angewandte Chemie, 2020, 132, 3933-3937.	1.6	10
377	Toward New 2D Zirconium-Based Metal–Organic Frameworks: Synthesis, Structures, and Electronic Properties. Chemistry of Materials, 2020, 32, 97-104.	3.2	37
378	A Hydrolytically Stable Vanadium(IV) Metal–Organic Framework with Photocatalytic Bacteriostatic Activity for Autonomous Indoor Humidity Control. Angewandte Chemie - International Edition, 2020, 59, 3905-3909.	7.2	63

#	Article	IF	Citations
379	Controllable Synthesis of Porphyrinâ€Based 2D Lanthanide Metal–Organic Frameworks with Thickness― and Metalâ€Nodeâ€Dependent Photocatalytic Performance. Angewandte Chemie, 2020, 132, 3326-3332.	1.6	31
380	Controllable Synthesis of Porphyrinâ€Based 2D Lanthanide Metal–Organic Frameworks with Thickness― and Metalâ€Nodeâ€Dependent Photocatalytic Performance. Angewandte Chemie - International Edition, 2020, 59, 3300-3306.	7.2	148
381	Mixed matrix membranes comprising a polymer of intrinsic microporosity loaded with surface-modified non-porous pearl-necklace nanoparticles. Journal of Membrane Science, 2020, 597, 117627.	4.1	18
382	Novel Antibacterial Azelaic Acid BioMOFs. Crystal Growth and Design, 2020, 20, 370-382.	1.4	37
383	Metal–Organic Framework Based on Heptanuclear Cu–O Clusters and Its Application as a Recyclable Photocatalyst for Stepwise Selective Catalysis. Inorganic Chemistry, 2020, 59, 254-263.	1.9	13
384	Constructing 2D MOFs from 2D LDHs: a highly efficient and durable electrocatalyst for water oxidation. Journal of Materials Chemistry A, 2020, 8, 190-195.	5.2	93
385	Boosting Ethylene/Ethane Separation within Copper(I)â€Chelated Metal–Organic Frameworks through Tailorâ€Made Aperture and Specific Ï€â€Complexation. Advanced Science, 2020, 7, 1901918.	5.6	86
386	Understanding the hierarchical assemblies and oil/water separation applications of metal-organic frameworks. Journal of Molecular Liquids, 2020, 318, 114273.	2.3	26
387	Lanthanide contraction effect and white-emitting luminescence in a series of metal–organic frameworks based on 2,5-pyrazinedicarboxylic acid. RSC Advances, 2020, 10, 38252-38259.	1.7	6
388	A critical review on recent developments in MOF adsorbents for the elimination of toxic heavy metals from aqueous solutions. Environmental Science and Pollution Research, 2020, 27, 44771-44796.	2.7	83
389	Structural diversity, gas adsorption and magnetic properties of three coordination polymers based on a rigid multicarboxylate ligand. CrystEngComm, 2020, 22, 7046-7053.	1.3	6
390	Metal–Organic Frameworks and Water: â€~From Old Enemies to Friends'?. Trends in Chemistry, 2020, 2, 990-1003.	4.4	35
391	Bismuth-based metal–organic framework prepared by pulsed laser ablation method in liquid. Journal of Theoretical and Applied Physics, 2020, 14, 1-8.	1.4	5
392	Structure, photoluminescence, and magnetic properties of a Mn(ii)-based metal–organic framework. New Journal of Chemistry, 2020, 44, 18694-18702.	1.4	1
393	New force field for GCMC simulations of D ₂ /H ₂ quantum sieving in pure silica zeolites. Physical Chemistry Chemical Physics, 2020, 22, 24561-24571.	1.3	9
394	Doubly Interpenetrated Metal–Organic Framework of pcu Topology for Selective Separation of Propylene from Propane. ACS Applied Materials & Diterfaces, 2020, 12, 48712-48717.	4.0	23
395	Optimizing supramolecular interactions in metal–organic frameworks for C ₂ separation. Dalton Transactions, 2020, 49, 15548-15559.	1.6	14
396	pH stable cationic luminescence Metalâ^'Organic framework material with nitrate guests as high selective sensor for detecting 2, 4, 6-trinitrophenol. Journal of Solid State Chemistry, 2020, 290, 121583.	1.4	4

#	Article	IF	CITATIONS
397	Unprecedented High Temperature CO ₂ Selectivity and Effective Chemical Fixation by a Copper-Based Undulated Metal–Organic Framework. ACS Applied Materials & Diterfaces, 2020, 12, 37137-37146.	4.0	46
398	Efficient Trapping of Trace Acetylene from Ethylene in an Ultramicroporous Metal–Organic Framework: Synergistic Effect of Highâ€Density Open Metal and Electronegative Sites. Angewandte Chemie - International Edition, 2020, 59, 18927-18932.	7.2	121
399	Unravelling the water adsorption in a robust iron carboxylate metal–organic framework. Chemical Communications, 2020, 56, 9628-9631.	2.2	12
400	Ultrathin Lowâ€Crystallinity MOF Membranes Fabricated by Interface Layer Polarization Induction. Advanced Materials, 2020, 32, e2002165.	11.1	85
401	Selective Adsorption of C ₆ , C ₈ , and C ₁₀ Linear α-Olefins from Binary Liquid-Phase Olefin/Paraffin Mixtures Using Zeolite Adsorbents: Experiment and Simulations. Langmuir, 2020, 36, 8597-8609.	1.6	17
402	Two-dimensional Metal-organic Frameworks and Derivatives for Electrocatalysis. Chemical Research in Chinese Universities, 2020, 36, 662-679.	1.3	27
403	Structural tuning of Zn(<scp>ii</scp>)-MOFs based on pyrazole functionalized carboxylic acid ligands for organic dye adsorption. CrystEngComm, 2020, 22, 5941-5945.	1.3	13
404	Removal of nitrogen-containing compounds from microalgae derived biofuel by adsorption over functionalized metal organic frameworks. Fuel, 2020, 280, 118622.	3.4	31
405	Introducing a Cantellation Strategy for the Design of Mesoporous Zeolite-like Metal–Organic Frameworks: Zr-sod-ZMOFs as a Case Study. Journal of the American Chemical Society, 2020, 142, 20547-20553.	6.6	31
406	Pore Size Reduction by Methyl Function in Aluminum-Based Metal–Organic Frameworks for Xenon/Krypton Separation. Crystal Growth and Design, 2020, 20, 8039-8046.	1.4	21
407	Prediction of water stability of metal–organic frameworks using machine learning. Nature Machine Intelligence, 2020, 2, 704-710.	8.3	89
408	Templated Solvent-Free Powder Synthesis and MOF-CVD Films of the Ultramicroporous Metal–Organic Framework α-Magnesium Formate. Chemistry of Materials, 2020, 32, 10469-10475.	3.2	16
409	Research Progress of Porous Liquids. ChemistrySelect, 2020, 5, 13664-13672.	0.7	17
410	Isoreticular Microporous Metal–Organic Frameworks for Carbon Dioxide Capture. Inorganic Chemistry, 2020, 59, 17143-17148.	1.9	33
411	Fineâ€Tuning Pore Dimension in Hybrid Ultramicroporous Materials Boosting Simultaneous Trapping of Trace Alkynes from Alkenes. Small, 2020, 16, e2005360.	5.2	28
412	Recent Progress in Heavy Metal Ion Decontamination Based on Metal–Organic Frameworks. Nanomaterials, 2020, 10, 1481.	1.9	37
413	Fine-Tuning and Selective-Binding within an Anion-Functionalized Ultramicroporous Metal–Organic Framework for Efficient Olefin/Paraffin Separation. ACS Applied Materials & Samp; Interfaces, 2020, 12, 40229-40235.	4.0	44
414	Effective removal of particulate matter from air by using zeolite-coated filters. Journal of Materials Chemistry A, 2020, 8, 17960-17968.	5. 2	10

#	Article	IF	CITATIONS
415	Zeolites: An Emerging Material for Gas Storage and Separation Applications. , 0, , .		4
416	Proton-Conductive Coordination Polymers Based on Diphenylsulfone-3,3′-disulfo-4,4′-dicarboxylate with Well-Defined Hydrogen Bonding Networks. Inorganic Chemistry, 2020, 59, 12314-12321.	1.9	12
417	Removal of particulate matter with metal–organic framework-incorporated materials. Coordination Chemistry Reviews, 2020, 422, 213477.	9.5	66
418	Postmodified Dual Functional UiO Sensor for Selective Detection of Ozone and Tandemly Derived Sensing of Al ³⁺ . Analytical Chemistry, 2020, 92, 11600-11606.	3.2	22
419	On-Chip Template-Directed Conversion of Metal Hydroxides to Metal–Organic Framework Films with Enhanced Adhesion. ACS Applied Materials & Samp; Interfaces, 2020, 12, 36715-36722.	4.0	11
420	A Series of Mesoporous Metalâ€Organic Frameworks with Tunable Windows Sizes and Exceptionally High Ethane over Ethylene Adsorption Selectivity. Angewandte Chemie - International Edition, 2020, 59, 20561-20567.	7.2	90
421	Insights into the Structure–Activity Relationships in Metal–Organic Framework-Supported Nickel Catalysts for Ethylene Hydrogenation. ACS Catalysis, 2020, 10, 8995-9005.	5 . 5	40
422	A Series of Mesoporous Metalâ€Organic Frameworks with Tunable Windows Sizes and Exceptionally High Ethane over Ethylene Adsorption Selectivity. Angewandte Chemie, 2020, 132, 20742-20748.	1.6	21
423	Recent advances, opportunities, and challenges in high-throughput computational screening of MOFs for gas separations. Coordination Chemistry Reviews, 2020, 422, 213470.	9.5	124
424	Robust Ultramicroporous Metal–Organic Framework with Rich Hydroxyl-Decorated Channel Walls for Highly Selective Noble Gas Separation. Journal of Chemical & Decorated Channel Walls 4018-4023.	1.0	16
425	Metal oxides nanowires chemical/gas sensors: recent advances. Materials Today Advances, 2020, 7, 100099.	2.5	46
426	MOF based flexible, low-cost chemiresistive device as a respiration sensor for sleep apnea diagnosis. Journal of Materials Chemistry B, 2020, 8, 10182-10189.	2.9	33
427	Metal–organic frameworks for C ₂ H ₂ /CO ₂ separation. Dalton Transactions, 2020, 49, 16598-16607.	1.6	59
428	Metalâ€Organic Frameworks as Sorption Materials for Heat Transformation Processes. European Journal of Inorganic Chemistry, 2020, 2020, 4502-4515.	1.0	18
429	Efficient separation of xylene isomers by a guest-responsive metal–organic framework with rotational anionic sites. Nature Communications, 2020, 11, 5456.	5.8	68
430	Influence of Thermal and Mechanical Stimuli on the Behavior of Al-CAU-13 Metal–Organic Framework. Nanomaterials, 2020, 10, 1698.	1.9	3
431	Efficient C ₂ H <i>_n</i> Hydrocarbons and VOC Adsorption and Separation in an MOF with Lewis Basic and Acidic Decorated Active Sites. ACS Applied Materials & Decorated Active Sites. ACS Applied Materials	4.0	64
432	Increase of network hydrophilicity from sql to lvt supramolecular isomers of Cu-MOFs with the bifunctional 4-(3,5-dimethyl-1 <i>H</i> -pyrazol-4-yl)benzoate linker. Dalton Transactions, 2020, 49, 12854-12864.	1.6	7

#	Article	IF	CITATIONS
433	Efficient Trapping of Trace Acetylene from Ethylene in an Ultramicroporous Metal–Organic Framework: Synergistic Effect of Highâ€Đensity Open Metal and Electronegative Sites. Angewandte Chemie, 2020, 132, 19089-19094.	1.6	43
434	Synthesis, structure and photocatalytic properties of coordination polymers based on pyrazole carboxylic acid ligands. CrystEngComm, 2020, 22, 6847-6855.	1.3	20
435	Rational design and synthesis of ultramicroporous metal-organic frameworks for gas separation. Coordination Chemistry Reviews, 2020, 423, 213485.	9.5	127
436	Construction of Zn(II) Linear Trinuclear Secondary Building Units from A Coordination Polymer Based on α-Acetamidocinnamic Acid and 4-Phenylpyridine. Molecules, 2020, 25, 3615.	1.7	9
437	Tuning the Atrazine Binding Sites in an Indium-Based Flexible Metal–Organic Framework. ACS Applied Materials & Company: Interfaces, 2020, 12, 44762-44768.	4.0	11
438	Multifaceted Study of the Interactions between CPO-27-Ni and Polyurethane and Their Impact on Nitric Oxide Release Performance. ACS Applied Materials & Interfaces, 2020, 12, 58263-58276.	4.0	23
439	SURMOF Devices Based on Heteroepitaxial Architectures with Whiteâ€Light Emission and Luminescent Thermalâ€Dependent Performance. Advanced Materials Interfaces, 2020, 7, 2000929.	1.9	15
440	Pore engineering of metal–organic frameworks for ethylene purification. Dalton Transactions, 2020, 49, 17093-17105.	1.6	7
441	Polymeric Membranes with Selective Solutionâ€Diffusion for Intercepting Volatile Organic Compounds during Solarâ€Driven Water Remediation. Advanced Materials, 2020, 32, e2004401.	11.1	142
442	Recent Progress in 2D Metalâ€Organic Frameworks for Optical Applications. Advanced Optical Materials, 2020, 8, 2000110.	3.6	85
443	Two d 10 metal–organic frameworks based on a novel semiâ€rigid aromatic biscarboxylate ligand: Syntheses, structures and luminescent properties. Applied Organometallic Chemistry, 2020, 34, e5654.	1.7	9
444	Reorientable fluorinated aryl rings in triangular channel Fe-MOFs: an investigation on CO ₂ –matrix interactions. Journal of Materials Chemistry A, 2020, 8, 11406-11413.	5.2	21
445	Effect of Larger Pore Size on the Sorption Properties of Isoreticular Metal–Organic Frameworks with High Number of Open Metal Sites. Chemistry - A European Journal, 2020, 26, 13523-13531.	1.7	8
446	Microscopic and Mesoscopic Dual Postsynthetic Modifications of Metal–Organic Frameworks. Angewandte Chemie, 2020, 132, 13897-13903.	1.6	3
447	Probing the limits of linker substitution in aluminum MOFs through water vapor sorption studies: mixed-MOFs instead of mixed-linker CAU-23 and MIL-160 materials. Dalton Transactions, 2020, 49, 7373-7383.	1.6	22
448	A Chemically Stable Hofmannâ€Type Metalâ^'Organic Framework with Sandwichâ€Like Binding Sites for Benchmark Acetylene Capture. Advanced Materials, 2020, 32, e1908275.	11.1	236
449	Polyaniline-derived carbons: Remarkable adsorbents to remove atrazine and diuron herbicides from water. Journal of Hazardous Materials, 2020, 396, 122624.	6.5	15
450	Three mixed ligand coordination polymers: Syntheses, characterization and detailed study of the structural transformations. Polyhedron, 2020, 183, 114534.	1.0	44

#	Article	IF	CITATIONS
451	Mechano-assisted synthesis of an ultramicroporous metal–organic framework for trace CO ₂ capture. Chemical Communications, 2020, 56, 7726-7729.	2.2	49
452	Highly Improved Performance of Cotton Air Filters in Particulate Matter Removal by the Incorporation of Metal–Organic Frameworks with Functional Groups Capable of Large Charge Separation. ACS Applied Materials & Interfaces, 2020, 12, 28885-28893.	4.0	48
453	The introduction of functional side groups and the application of the mixed-linker concept in divalent MIL-53(Ni) materials. Dalton Transactions, 2020, 49, 9148-9154.	1.6	0
454	Engineering the pore environment of metal–organic framework membranes <i>via</i> modification of the secondary building unit for improved gas separation. Journal of Materials Chemistry A, 2020, 8, 13132-13141.	5 . 2	32
455	Molecularly Imprinted Porous Aromatic Frameworks for Molecular Recognition. ACS Central Science, 2020, 6, 1082-1094.	5.3	46
456	Recent advances in the shaping of metal–organic frameworks. Inorganic Chemistry Frontiers, 2020, 7, 2840-2866.	3.0	88
457	The Effect of Sterically Active Ligand Substituents on Gas Adsorption within a Family of 3D Zn-Based Coordination Polymers. Inorganic Chemistry, 2020, 59, 8871-8881.	1.9	7
458	Synthesis of Ionic Ultramicroporous Polymers for Selective Separation of Acetylene from Ethylene. Advanced Materials, 2020, 32, e1907601.	11.1	54
459	Anion Substitution in Porous Aromatic Frameworks: Boosting Molecular Permeability and Selectivity for Membrane Acetylene Separation. Advanced Materials, 2020, 32, e1907449.	11.1	34
460	Optimization of the Pore Structures of MOFs for Record High Hydrogen Volumetric Working Capacity. Advanced Materials, 2020, 32, e1907995.	11.1	118
461	Solvent-dependent supramolecular self-assembly of boron cage pillared metal–organic frameworks for selective gas separation. CrystEngComm, 2020, 22, 2649-2655.	1.3	35
462	Ultrafast Luminescent Light-Up Guest Detection Based on the Lock of the Host Molecular Vibration. Journal of the American Chemical Society, 2020, 142, 6690-6697.	6.6	185
463	Solvent triggering structural changes for two terbium-based metal–organic frameworks and their photoluminescence sensing. Chemical Communications, 2020, 56, 4320-4323.	2.2	28
464	Supramolecular assemblies based on Fe ₈ L ₁₂ cubic metal–organic cages: synergistic adsorption and spin-crossover properties. Dalton Transactions, 2020, 49, 4220-4224.	1.6	9
465	Direct Functionalization of the Open Metal Sites in Rare Earth-Based Metal–Organic Frameworks Used for the Efficient Separation of Ethylene. Industrial & Engineering Chemistry Research, 2020, 59, 6123-6129.	1.8	17
466	Three coordination polymers with regulated coordination interactions as fluorescent sensors for monitoring purine metabolite uric acid. Dalton Transactions, 2020, 49, 4343-4351.	1.6	14
467	Secondary building units of MOFs. , 2020, , 11-44.		7
468	Photocatalytic proton reduction by a computationally identified, molecular hydrogen-bonded framework. Journal of Materials Chemistry A, 2020, 8, 7158-7170.	5.2	45

#	Article	IF	CITATIONS
469	PCN-222 metal–organic framework: a selective and highly efficient sorbent for the extraction of aspartame from gum, juice, and diet soft drink before its spectrophotometric determination. BMC Chemistry, 2020, 14, 19.	1.6	7
470	Squeezing the box: isoreticular contraction of pyrene-based linker in a Zr-based metal–organic framework for Xe/Kr separation. Dalton Transactions, 2020, 49, 6553-6556.	1.6	11
471	Reversible Switching between Nonporous and Porous Phases of a New SIFSIX Coordination Network Induced by a Flexible Linker Ligand. Journal of the American Chemical Society, 2020, 142, 6896-6901.	6.6	51
472	Synthesis, crystal structure, and optical properties of fluorinated poly(pyrazole) ligands and <i>in silico </i> assessment of their affinity for volatile organic compounds. New Journal of Chemistry, 2020, 44, 6443-6455.	1.4	7
473	Supramolecular Metal–Organic Framework for CO ₂ /CH ₄ and CO ₂ /N ₂ Separation. Industrial & Description of the Supration of the Suprat	1.8	42
474	Hydrothermal Synthesis of Sub-20 nm Amine-Functionalized MIL-101(Cr) Nanoparticles with High Surface Area and Enhanced CO ₂ Uptake. Industrial & Engineering Chemistry Research, 2020, 59, 7888-7900.	1.8	35
475	Low-Temperature Rapid Synthesis and Performance of the MIL-100(Fe) Monolithic Adsorbent for Dehumidification. Industrial & Engineering Chemistry Research, 2020, 59, 7291-7298.	1.8	7
476	Methanol Oxidation Catalyzed by Copper Nanoclusters Incorporated in Vacuum-Deposited HKUST-1 Thin Films. ACS Catalysis, 2020, 10, 4997-5007.	5.5	25
477	Selective adsorption and separation of C ₂ hydrocarbons in a "flexible-robust― metal–organic framework based on a guest-dependent gate-opening effect. Chemical Communications, 2020, 56, 5520-5523.	2.2	35
478	A new honeycomb metalâ€"carboxylate-tetrazolate framework with multiple functions for CO ₂ conversion and selective capture of C ₂ H ₂ , CO ₂ and benzene. Inorganic Chemistry Frontiers, 2020, 7, 1957-1964.	3.0	39
479	Post-synthetic modification of porous materials: superprotonic conductivities and membrane applications in fuel cells. Journal of Materials Chemistry A, 2020, 8, 7474-7494.	5.2	122
480	Tailoring the separation properties of flexible metal-organic frameworks using mechanical pressure. Nature Communications, 2020, 11, 1216.	5.8	88
481	Dynamic Coordination Chemistry of Fluorinated Zrâ€MOFs: Synthetic Control and Reassembly/Disassembly Beyond de Novo Synthesis to Tune the Structure and Property. Chemistry - A European Journal, 2020, 26, 8254-8261.	1.7	16
482	Recent advances of 3D graphene-based adsorbents for sample preparation of water pollutants: A review. Chemical Engineering Journal, 2020, 393, 124691.	6.6	103
483	Remarkable adsorption performance of MOF-199 derived porous carbons for benzene vapor. Environmental Research, 2020, 184, 109323.	3.7	42
484	Combined Adsorption and Reaction in the Ternary Mixture N ₂ , N ₂ O ₄ , NO ₂ on MIL-127 Examined by Computer Simulations. ACS Omega, 2020, 5, 13023-13033.	1.6	6
485	Removal of Particulate Matters with Isostructural Zr-Based Metal–Organic Frameworks Coated on Cotton: Effect of Porosity of Coated MOFs on Removal. ACS Applied Materials & Diterfaces, 2020, 12, 34423-34431.	4.0	26
486	Rational Design of Microporous MOFs with Anionic Boron Cluster Functionality and Cooperative Dihydrogen Binding Sites for Highly Selective Capture of Acetylene. Angewandte Chemie, 2020, 132, 17817-17822.	1.6	28

#	Article	IF	CITATIONS
487	Energy-efficient separation alternatives: metal–organic frameworks and membranes for hydrocarbon separation. Chemical Society Reviews, 2020, 49, 5359-5406.	18.7	370
488	Synergistic dual-Li+ sites for CO2 separation in metal-organic framework composites. Chemical Engineering Journal, 2020, 402, 126201.	6.6	17
489	Rational Design of Microporous MOFs with Anionic Boron Cluster Functionality and Cooperative Dihydrogen Binding Sites for Highly Selective Capture of Acetylene. Angewandte Chemie - International Edition, 2020, 59, 17664-17669.	7.2	110
490	Encapsulation of [bmim ⁺][Tf ₂ N ^{â^'}] in different ZIF-8 metal analogues and evaluation of their CO ₂ selectivity over CH ₄ and N ₂ using molecular simulation. Molecular Systems Design and Engineering, 2020, 5, 1230-1238.	1.7	9
491	Investigating greenhouse gas adsorption in MOFs SIFSIX-2-Cu, SIFSIX-2-Cu-i, and SIFSIX-3-Cu through computational studies. Journal of Molecular Modeling, 2020, 26, 188.	0.8	7
492	A multifunctional pseudo-polyrotaxane coordination polymer based on the trinuclear cluster [Co3(COOâ^')4(OHâ^')2]: Synthesis, structure and properties. Polyhedron, 2020, 186, 114611.	1.0	2
493	Topology Meets Reticular Chemistry for Chemical Separations: MOFs as a Case Study. CheM, 2020, 6, 1613-1633.	5.8	62
494	Primary Adsorption Sites of Light Alkanes in Multivariate UiO-66 at Room Temperature as Revealed by Solid-State NMR. Journal of Physical Chemistry C, 2020, 124, 3738-3746.	1.5	12
495	Tailoring Pore Aperture and Structural Defects in Zirconium-Based Metal–Organic Frameworks for Krypton/Xenon Separation. Chemistry of Materials, 2020, 32, 3776-3782.	3.2	89
496	Porous Aromatic Frameworks (PAFs). Chemical Reviews, 2020, 120, 8934-8986.	23.0	389
497	Dynamism of Supramolecular DNA/RNA Nanoarchitectonics: From Interlocked Structures to Molecular Machines. Bulletin of the Chemical Society of Japan, 2020, 93, 581-603.	2.0	75
498	The Chemistry of Porous Organic Molecular Materials. Advanced Functional Materials, 2020, 30, 1909842.	7.8	224
499	The Chemistry of Reticular Framework Nanoparticles: MOF, ZIF, and COF Materials. Advanced Functional Materials, 2020, 30, 1909062.	7.8	174
500	Structure of imidazolidyl Co(II) coordination polymer and catalytic properties of thermal conversion products. Inorganica Chimica Acta, 2020, 506, 119540.	1.2	2
501	Fluorinated Biphenyldicarboxylate-Based Metal–Organic Framework Exhibiting Efficient Propyne/Propylene Separation. Inorganic Chemistry, 2020, 59, 4030-4036.	1.9	28
502	Luminescent MOF crystals embedded in PMMA/PDMS transparent films as effective NO ₂ gas sensors. Molecular Systems Design and Engineering, 2020, 5, 1048-1056.	1.7	34
503	Non-Isothermal Kinetics of Kr Adsorption by Nanoporous Î ³ -Mg(BH ₄) ₂ from in Situ Synchrotron Powder Diffraction. ACS Applied Materials & amp; Interfaces, 2020, 12, 7710-7716.	4.0	4
504	Small-Pore Gallates MOFs for Environmental Applications: Sorption Behaviors and Structural Elucidation of Their High Affinity for CO ₂ . Journal of Physical Chemistry C, 2020, 124, 3188-3195.	1.5	13

#	Article	IF	CITATIONS
505	Zirconium-Based Metal–Organic Frameworks for the Catalytic Hydrolysis of Organophosphorus Nerve Agents. ACS Applied Materials & Interfaces, 2020, 12, 14702-14720.	4.0	175
506	Pore-Space-Partition-Enabled Exceptional Ethane Uptake and Ethane-Selective Ethane–Ethylene Separation. Journal of the American Chemical Society, 2020, 142, 2222-2227.	6.6	199
507	Robust Metal–Triazolate Frameworks for CO ₂ Capture from Flue Gas. Journal of the American Chemical Society, 2020, 142, 2750-2754.	6.6	159
508	Hydrophobic Metal–Organic Frameworks: Assessment, Construction, and Diverse Applications. Advanced Science, 2020, 7, 1901758.	5.6	136
509	Rational Stepwise Construction of Different Heterometallic–Organic Frameworks (HMOFs) for Highly Efficient CO ₂ Conversion. Chemistry - A European Journal, 2020, 26, 5400-5406.	1.7	18
510	Anion-regulated selective growth ultrafine copper templates in carbon nanosheets network toward highly efficient gas capture. Journal of Colloid and Interface Science, 2020, 564, 296-302.	5.0	17
511	Adsorption and growth of water clusters on UiO-66 based nanoadsorbents: A systematic and comparative study on dehydration of natural gas. Separation and Purification Technology, 2020, 239, 116512.	3.9	24
512	Organic Counteranion Co-assembly Strategy for the Formation of \hat{I}^3 -Cyclodextrin-Containing Hybrid Frameworks. Journal of the American Chemical Society, 2020, 142, 2042-2050.	6.6	26
513	3-(4-Methylthiophenyl)acetylacetone – ups and downs of flexibility in the synthesis of mixed metal–organic frameworks. Ditopic bridging of hard and soft cations and site-specific desolvation. CrystEngComm, 2020, 22, 1041-1049.	1.3	9
514	Advances in Metalâ€Organic Frameworks for Acetylene Storage. European Journal of Inorganic Chemistry, 2020, 2020, 2303-2311.	1.0	16
515	Production of MOF Adsorbent Spheres and Comparison of Their Performance with Zeolite 13X in a Moving-Bed TSA Process for Postcombustion CO ₂ Capture. Industrial & Engineering Chemistry Research, 2020, 59, 7198-7211.	1.8	25
516	Highly efficient separation of linear and branched C4 isomers with a tailorâ€made metal–organic framework. AICHE Journal, 2020, 66, e16236.	1.8	34
517	New one-, two-, and three-dimensional metal-organic frameworks based on magnesium(II): synthesis and structure. Russian Chemical Bulletin, 2020, 69, 360-368.	0.4	13
518	Electrically Conductive Metal–Organic Frameworks. Chemical Reviews, 2020, 120, 8536-8580.	23.0	989
519	Highly Selective Separation of C ₃ H ₈ and C ₂ H ₂ from CH ₄ within Two Water-Stable Zn ₅ Cluster-Based Metal–Organic Frameworks. ACS Applied Materials & Diterfaces, 2020, 12, 18642-18649.	4.0	49
520	Controlling the morphology of metal–organic frameworks and porous carbon materials: metal oxides as primary architecture-directing agents. Chemical Society Reviews, 2020, 49, 3348-3422.	18.7	190
521	Microscopic and Mesoscopic Dual Postsynthetic Modifications of Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2020, 59, 13793-13799.	7.2	23
522	Adsorptive removal of bulky dye molecules from water with mesoporous polyaniline-derived carbon. Beilstein Journal of Nanotechnology, 2020, 11, 597-605.	1.5	10

#	Article	IF	Citations
523	Direct Crystallographic Observation of CO ₂ Captured in Zig Zag Channels of a Copper(I) Metal–Organic Framework. Inorganic Chemistry, 2020, 59, 6376-6381.	1.9	5
524	An aluminaâ€coated <scp>UiO</scp> â€66 nanocrystalline solid superacid with high acid density as a catalyst for ethyl levulinate synthesis. Journal of Chemical Technology and Biotechnology, 2020, 95, 2930-2942.	1.6	13
525	Keggin-POM@rht-MOF-1 composite as heterogeneous catalysts towards ultra-deep oxidative fuel desulfurization. Fuel, 2020, 274, 117834.	3.4	36
526	Eight new coordination polymers containing rigid 4-(4-carboxy-phenyl)-pyridine-2-carboxylic acid: Synthesis, structural diversity, fluorescence and magnetic properties. Inorganica Chimica Acta, 2020, 507, 119600.	1.2	4
527	Reticular Chemistry 3.2: Typical Minimal Edge-Transitive ⟨i⟩Derived⟨/i⟩ and ⟨i⟩Related⟨/i⟩ Nets for the Design and Synthesis of Metal–Organic Frameworks. Chemical Reviews, 2020, 120, 8039-8065.	23.0	149
528	Defining New Limits in Gas Separations Using Modified ZIF Systems. ACS Applied Materials & Company (Interfaces, 2020, 12, 20536-20547.	4.0	22
529	Tuning the morphology of segmented block copolymers with Zr-MOF nanoparticles for durable and efficient hydrocarbon separation membranes. Journal of Materials Chemistry A, 2020, 8, 9382-9391.	5.2	16
530	An Unusual Luminescent Mo/S/Cu Cluster-Based Metal–Organic Framework for Efficient Detection of TNP. Journal of Cluster Science, 2021, 32, 279-285.	1.7	2
531	Separation of hexane isomers by introducing "triangular-like and quadrilateral-like channels―in a bcu-type metal-organic framework. Nano Research, 2021, 14, 526-531.	5.8	14
532	Efficient hexane isomers separation in isoreticular bipyrazolate metal-organic frameworks: The role of pore functionalization. Nano Research, 2021, 14, 532-540.	5.8	8
533	Reticular exploration of uranium-based metalâ€"organic frameworks with hexacarboxylate building units. Nano Research, 2021, 14, 376-380.	5.8	25
534	Cdâ€Based Metal–Organic Framework for Selective Turnâ€On Fluorescent DMSO Residual Sensing. Chemistry - A European Journal, 2021, 27, 3753-3760.	1.7	12
535	Exploring the performance limits of MOF/polymer MMMs for O2/N2 separation using computational screening. Journal of Membrane Science, 2021, 618, 118555.	4.1	41
536	A remarkable adsorbent for removal of nitrogenous compounds from fuel: A metal–organic framework functionalized both on metal and ligand. Chemical Engineering Journal, 2021, 404, 126491.	6.6	29
537	PAA@ZIF-8 incorporated nanofibrous membrane for high-efficiency PM2.5 capture. Chemical Engineering Journal, 2021, 405, 126584.	6.6	50
538	Modification of the pore environment in UiO-type metal-organic framework toward boosting the separation of propane/propylene. Chemical Engineering Journal, 2021, 403, 126428.	6.6	31
539	Postâ€ S ynthetic Modification of Metal–Organic Frameworks Toward Applications. Advanced Functional Materials, 2021, 31, 2006291.	7.8	266
540	ẽ´ç¦»å功能化超微å³MOFé«~æ•^选择性æ•获低æμ"度 CO2. Science China Materials, 2021	, 6 4, 5691-6	59 ⊉ 8

#	Article	IF	CITATIONS
541	Kinetic separation of C4 olefins using Y-fum-fcu-MOF with ultra-fine-tuned aperture size. Chemical Engineering Journal, 2021, 413, 127388.	6.6	24
542	The state of the field: from inception to commercialization of metal–organic frameworks. Faraday Discussions, 2021, 225, 9-69.	1.6	70
543	Recent Progress on Carbon Nitride and Its Hybrid Photocatalysts for CO ₂ Reduction. Solar Rrl, 2021, 5, 2000478.	3.1	34
544	A turn-on luminescence probe based on amino-functionalized metal-organic frameworks for the selective detections of Cu2+, Pb2+ and pyrophosphate. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 247, 119073.	2.0	39
545	BNâ€Doped Metal–Organic Frameworks: Tailoring 2D and 3D Porous Architectures through Molecular Editing of Borazines. Chemistry - A European Journal, 2021, 27, 4124-4133.	1.7	8
546	Electrochemically-assisted deposition of toluidine blue-functionalized metal-organic framework films for electrochemical immunosensing of Indole-3-acetic acid. Journal of Electroanalytical Chemistry, 2021, 880, 114855.	1.9	19
547	A new model for gas adsorption isotherm at high pressures. International Journal of Hydrogen Energy, 2021, 46, 6613-6622.	3.8	6
548	Bi(<scp>iii</scp>) MOFs: syntheses, structures and applications. Inorganic Chemistry Frontiers, 2021, 8, 572-589.	3.0	32
549	Kinetic Barriers and Microscopic Mechanisms of Noble Gas Adsorption by Nanoporous γâ€Mg(BH ₄) ₂ Obtained by Means of Subâ€Second Xâ€Ray Diffraction. Angewandte Chemie - International Edition, 2021, 60, 5250-5256.	7.2	5
550	Study on thermodynamics, dynamics and reverse shape separation selectivity of mesoporous UiO-66 for nHEP/MCH. Microporous and Mesoporous Materials, 2021, 314, 110819.	2.2	3
551	Scalable crystalline porous membranes: current state and perspectives. Chemical Society Reviews, 2021, 50, 1913-1944.	18.7	47
552	Investigation of the MOF adsorbents and the gas adsorptive separation mechanisms. Journal of Environmental Chemical Engineering, 2021, 9, 104790.	3.3	46
553	Templateâ€Mediated Control over Polymorphism in the Vaporâ€Assisted Formation of Zeolitic Imidazolate Framework Powders and Films. Angewandte Chemie - International Edition, 2021, 60, 7553-7558.	7.2	20
554	PKU-2: An intrinsically microporous aluminoborate with the potential in selective gas separation of CO2/CH4 and C2H2/C2H4. Microporous and Mesoporous Materials, 2021, 312, 110782.	2.2	1
555	Fluorinated metal organic frameworks, MFFIVE-Ni-L (M = Fe/Al, L = pyr), with coordinatively unsaturated metal site for $CO < sub > 2 < /sub > separation from flue gas in the presence of humidity by computational methods. Dalton Transactions, 2021, 50, 466-471.$	1.6	13
556	Understanding how pore surface fluorination influences light hydrocarbon separation in metal–organic frameworks. Chemical Engineering Journal, 2021, 407, 127183.	6.6	39
557	Tunable Metal–Organic Frameworks Based on 8â€Connected Metal Trimers for High Ethane Uptake. Small, 2021, 17, e2003167.	5.2	19
558	Methods and Diversity in the Synthesis of Metal-Organic Frameworks. , 2021, , 976-1020.		1

#	Article	IF	CITATIONS
559	Color tunable luminescent cellulose acetate nanofibers functionalized by Cul-based complexes. Cellulose, 2021, 28, 1421-1430.	2.4	2
560	Titanium-based metal-organic frameworks for photocatalytic applications. , 2021, , 37-63.		2
561	A window-space-directed assembly strategy for the construction of supertetrahedron-based zeolitic mesoporous metal–organic frameworks with ultramicroporous apertures for selective gas adsorption. Chemical Science, 2021, 12, 5767-5773.	3.7	15
562	Kinetic Barriers and Microscopic Mechanisms of Noble Gas Adsorption by Nanoporous γâ€Mg(BH 4) 2 Obtained by Means of Subâ€Second Xâ€Ray Diffraction. Angewandte Chemie, 2021, 133, 5310-5316.	1.6	0
563	Mixed-Matrix Membranes. , 2021, , 87-113.		1
564	Continuous singlet oxygen generation for persistent chemiluminescence in Cu-MOFs-based catalytic system. Talanta, 2021, 221, 121498.	2.9	22
565	Ultrafine tuning of the pore size in zeolite A for efficient propyne removal from propylene. Chinese Journal of Chemical Engineering, 2021, 37, 217-221.	1.7	5
566	Multiple Functions of Gas Separation and Vapor Adsorption in a New MOF with Open Tubular Channels. ACS Applied Materials & Samp; Interfaces, 2021, 13, 4102-4109.	4.0	67
567	Fine-tuning the pore structure of metal–organic frameworks by linker substitution for enhanced hydrogen storage and gas separation. CrystEngComm, 2021, 23, 3026-3032.	1.3	15
568	ZEUS (ZIF-based electrochemical ultrasensitive screening) device for isopentane analytics with focus on lung cancer diagnosis. RSC Advances, 2021, 11, 20519-20528.	1.7	13
569	Adsorptive Purification of Water Contaminated with Hazardous Organics by Using Functionalized Metal-Organic Frameworks., 2021,, 269-290.		0
570	Supramolecular Cu(ii)–dipyridyl frameworks featuring weakly coordinating dodecaborate dianions for selective gas separation. CrystEngComm, 2021, 23, 282-291.	1.3	16
571	Incorporation of homogeneous organometallic catalysts into metal–organic frameworks for advanced heterogenization: a review. Catalysis Science and Technology, 2021, 11, 5734-5771.	2.1	35
572	MOF-74 type variants for CO ₂ capture. Materials Chemistry Frontiers, 2021, 5, 5172-5185.	3.2	63
573	Separation of alkane and alkene mixtures by metal–organic frameworks. Journal of Materials Chemistry A, 2021, 9, 20874-20896.	5.2	54
574	Aggregation-induced emission enhancement of gold nanoclusters in metal–organic frameworks for highly sensitive fluorescent detection of bilirubin. Analyst, The, 2021, 146, 904-910.	1.7	37
575	Recent advances of hierarchically porous bifunctional oxygen electrocatalysts derived from metal–organic frameworks for Zn–air batteries. Materials Chemistry Frontiers, 2021, 5, 2649-2667.	3.2	29
576	H2S Stability of Metal–Organic Frameworks: A Computational Assessment. ACS Applied Materials & lnterfaces, 2021, 13, 4813-4822.	4.0	6

#	Article	IF	CITATIONS
577	Synergy of Dual Functional Sites for Conversion of CO $<$ sub $>$ 2 $<$ /sub $>$ in a Cycloaddition Reaction under Solvent-Free Conditions by a Zn(II)-Based Coordination Network with a Ladder Motif. Crystal Growth and Design, 2021, 21, 1833-1842.	1.4	33
578	Growth of robust metal–organic framework films by spontaneous oxidation of a metal substrate for NO ₂ sensing. Materials Chemistry Frontiers, 2021, 5, 6476-6484.	3.2	13
579	Metal–organic frameworks of linear trinuclear cluster secondary building units: structures and applications. Dalton Transactions, 2021, 50, 12692-12707.	1.6	12
580	Oriented growth of semiconducting TCNQ@Cu ₃ (BTC) ₂ MOF on Cu(OH) ₂ : crystallographic orientation and pattern formation toward semiconducting thin-film devices. Journal of Materials Chemistry A, 2021, 9, 19613-19618.	5.2	15
581	Spiers Memorial Lecture: Coordination networks that switch between nonporous and porous structures: an emerging class of soft porous crystals. Faraday Discussions, 2021, 231, 9-50.	1.6	34
582	Efficient CO ₂ /CO separation in a stable microporous hydrogen-bonded organic framework. Chemical Communications, 2021, 57, 10051-10054.	2.2	20
583	A metal-porphyrinic framework film as an efficient optical limiting layer in an electro-optical switchable device. Chemical Communications, 2021, 57, 10166-10169.	2.2	8
584	Alkyl decorated metal–organic frameworks for selective trapping of ethane from ethylene above ambient pressures. Dalton Transactions, 2021, 50, 10423-10435.	1.6	15
585	Engineering metal–organic frameworks for adsorption-based gas separations: from process to atomic scale. Molecular Systems Design and Engineering, 2021, 6, 841-875.	1.7	36
586	Recent advances in simulating gas permeation through MOF membranes. Materials Advances, 2021, 2, 5300-5317.	2.6	22
587	The construction of a novel luminescent lanthanide framework for the selective sensing of Cu ²⁺ and 4-nitrophenol in water. Dalton Transactions, 2021, 50, 1874-1886.	1.6	36
588	Modifying a partial corn- <i>sql</i> layer-based (3,3,3,3,4,4)-c topological MOF by substitution of OH ^{â°'} with Cl ^{â°'} and its highly selective adsorption of C2 hydrocarbons over CH ₄ . Dalton Transactions, 2021, 50, 4840-4847.	1.6	7
589	Integration of Material and Process Design for Kinetic Adsorption Separation. Industrial & Samp; Engineering Chemistry Research, 2021, 60, 2536-2546.	1.8	6
590	Templateâ€Mediated Control over Polymorphism in the Vaporâ€Assisted Formation of Zeolitic Imidazolate Framework Powders and Films. Angewandte Chemie, 2021, 133, 7631-7636.	1.6	2
591	Synthesis of Co 3 O 4 /Carbon Heteroaerogels with Ultrahigh Capacitance via Polyethyleneimine Intercalation of Co 2 BIM 4 Nanosheets. Chemistry - A European Journal, 2021, 27, 4876-4882.	1.7	3
592	A MOFâ€based Ultraâ€Strong Acetylene Nanoâ€trap for Highly Efficient C ₂ H ₂ /CO ₂ Separation. Angewandte Chemie, 2021, 133, 5343-5348.	1.6	49
593	Tuning the hexane isomer separation performances of Zeolitic Imidazole Framework-8 using mechanical pressure. Journal of Chemical Physics, 2021, 154, 084702.	1.2	9
594	An Unprecedented Pillarâ€Cage Fluorinated Hybrid Porous Framework with Highly Efficient Acetylene Storage and Separation. Angewandte Chemie, 2021, 133, 7625-7630.	1.6	26

#	ARTICLE	IF	Citations
595	An Unprecedented Pillarâ€Cage Fluorinated Hybrid Porous Framework with Highly Efficient Acetylene Storage and Separation. Angewandte Chemie - International Edition, 2021, 60, 7547-7552.	7.2	120
596	Multipoint Hydrogen Bondingâ€Based Molecular Recognition of Amino Acids and Peptide Derivatives in a Porous Metalâ€Macrocycle Framework: Residueâ€Specificity, Diastereoselectivity, and Conformational Control. Small, 2021, 17, e2005803.	5.2	14
597	A MOFâ€based Ultraâ€Strong Acetylene Nanoâ€trap for Highly Efficient C ₂ H ₂ /CO ₂ Separation. Angewandte Chemie - International Edition, 2021, 60, 5283-5288.	7.2	172
598	Oneâ€step Ethylene Purification from an Acetylene/Ethylene/Ethane Ternary Mixture by Cyclopentadiene Cobaltâ€Functionalized Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2021, 60, 11350-11358.	7.2	118
599	Metalâ€Organic Framework Materials for Light Hydrocarbon Separation. ChemPlusChem, 2021, 86, 387-395.	1.3	11
600	Electrostatically Driven Selective Adsorption of Carbon Dioxide over Acetylene in an Ultramicroporous Material. Angewandte Chemie - International Edition, 2021, 60, 9604-9609.	7.2	73
601	Efficient and Highly Selective CO ₂ Capture, Separation, and Chemical Conversion under Ambient Conditions by a Polar-Group-Appended Copper(II) Metal–Organic Framework. Inorganic Chemistry, 2021, 60, 5071-5080.	1.9	23
602	Highâ€Efficiency Separation of <i>n</i> i>a€Hexane by a Dynamic Metalâ€Organic Framework with Reduced Energy Consumption. Angewandte Chemie - International Edition, 2021, 60, 10593-10597.	7.2	42
603	Highâ€Efficiency Separation of <i>n</i> à€Hexane by a Dynamic Metalâ€Organic Framework with Reduced Energy Consumption. Angewandte Chemie, 2021, 133, 10687-10691.	1.6	10
604	Porous Co3O4 nanocrystals derived by metal-organic frameworks on reduced graphene oxide for efficient room-temperature NO2 sensing properties. Journal of Alloys and Compounds, 2021, 856, 158199.	2.8	30
605	pH responsive metformin loaded zeolitic imidazolate framework (ZIF-8) for the treatment of lung cancer. Materials Technology, 2022, 37, 926-934.	1.5	13
606	Fluorescent Detection of Carbon Disulfide by a Highly Emissive and Robust Isoreticular Series of Zr-Based Luminescent Metal Organic Frameworks (LMOFs). Chemistry, 2021, 3, 327-337.	0.9	11
607	Electrostatically Driven Selective Adsorption of Carbon Dioxide over Acetylene in an Ultramicroporous Material. Angewandte Chemie, 2021, 133, 9690-9695.	1.6	15
608	A Novel Hydrogen-Bonded Organic Framework with Highly Permanent Porosity for Boosting Ethane/Ethylene Separation. , 2021, 3, 497-503.		46
609	High-Energy Metal–Organic Frameworks with a Dicyanamide Linker for Hypergolic Fuels. Inorganic Chemistry, 2021, 60, 5100-5106.	1.9	21
610	Solvent-Free and Phase-Selective Synthesis of Aluminum Trimesate Metal–Organic Frameworks. Inorganic Chemistry, 2021, 60, 4623-4632.	1.9	16
611	Nanospace Engineering of Metal–Organic Frameworks through Dynamic Spacer Installation of Multifunctionalities for Efficient Separation of Ethane from Ethane/Ethylene Mixtures. Angewandte Chemie, 2021, 133, 9766-9771.	1.6	9
612	Oneâ€step Ethylene Purification from an Acetylene/Ethylene/Ethane Ternary Mixture by Cyclopentadiene Cobaltâ€Functionalized Metal–Organic Frameworks. Angewandte Chemie, 2021, 133, 11451-11459.	1.6	21

#	Article	IF	Citations
613	Nanospace Engineering of Metal–Organic Frameworks through Dynamic Spacer Installation of Multifunctionalities for Efficient Separation of Ethane from Ethane/Ethylene Mixtures. Angewandte Chemie - International Edition, 2021, 60, 9680-9685.	7.2	89
614	A Thermally and Chemically Stable Copper(II) Metal–Organic Framework with High Performance for Gas Adsorption and Separation. Inorganic Chemistry, 2021, 60, 6550-6558.	1.9	22
615	Heteroleptic LaIII Anilate/Dicarboxylate Based Neutral 3D-Coordination Polymers. Molecules, 2021, 26, 2486.	1.7	8
617	Four Novel Lanthanide(III) Metal–Organic Frameworks: Tunable Light Emission and Multiresponsive Luminescence Sensors for Vitamin B ₆ and Pesticides. Crystal Growth and Design, 2021, 21, 2889-2897.	1.4	30
618	From Macro- to Nanoscale: Finite Size Effects on Metal–Organic Framework Switchability. Trends in Chemistry, 2021, 3, 291-304.	4.4	41
619	Chemically Stable Hafnium-Based Metal–Organic Framework for Highly Efficient C ₂ H ₆ /C _{/C₄ Separation under Humid Conditions. ACS Applied Materials & Description of the Applied}	4.0	34
620	Sieving Effect for the Separation of C ₂ H ₂ /C ₂ H ₄ in an Ultrastable Ultramicroporous Zincâ€Organic Framework. Chemistry - an Asian Journal, 2021, 16, 1233-1236.	1.7	7
621	Ratiometric fluorescent sensing for phosphate based on Eu/Ce/UiO-66-(COOH)2 nanoprobe. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 252, 119493.	2.0	20
622	Boosting CO ₂ Electroreduction via the Synergistic Effect of Tuning Cationic Clusters and Visibleâ€Light Irradiation. Advanced Materials, 2021, 33, e2101886.	11.1	21
623	Supramolecular control of MOF pore properties for the tailored guest adsorption/separation applications. Coordination Chemistry Reviews, 2021, 434, 213709.	9.5	141
624	Theoretical design of Salen–metal-based materials for highly selective separation of C2H2/C2H4. Chemical Physics Letters, 2021, 771, 138523.	1.2	0
625	Polymer-supported ultra-thin ZIF-67 membrane through in situ interface self-repair. Journal of Membrane Science, 2021, 625, 119139.	4.1	45
626	Study on the Stability, Evolution of Physicochemical Properties, and Postsynthesis of Metal–Organic Frameworks in Bubbled Aqueous Ozone Solution. ACS Applied Materials & Enterfaces, 2021, 13, 26264-26277.	4.0	16
627	Controlled Synthesis of Large Single Crystals of Metalâ€Organic Framework CPOâ€27â€Ni Prepared by a Modulation Approach: ⟨i⟩ln situ⟨ i⟩ Singleâ€Crystal Xâ€ray Diffraction Studies. Chemistry - A European Journal, 2021, 27, 8537-8546.	1.7	8
628	Make it clean, make it safe: A review on virus elimination via adsorption. Chemical Engineering Journal, 2021, 412, 128682.	6.6	40
629	A Microporous Titanateâ€Based Metalâ€Organic Framework for Efficient Separation of Acetylene from Carbon Dioxide. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2021, 647, 1250-1253.	0.6	12
630	Recent Progresses in Metal–Organic Frameworks Based Core–shell Composites. Advanced Energy Materials, 2022, 12, 2100061.	10.2	43
631	Insights into the Enhancement of MOF/Polymer Adhesion in Mixed-Matrix Membranes <i>via</i> Polymer Functionalization. ACS Applied Materials & Samp; Interfaces, 2021, 13, 29041-29047.	4.0	32

#	ARTICLE	IF	CITATIONS
632	Hostâ€Guest Interaction in Ethylene and Ethane Separation on Zeolitic Imidazolate Frameworks as Revealed by Solidâ€State NMR Spectroscopy. Chemistry - A European Journal, 2021, 27, 11303-11308.	1.7	7
633	Optimal Pore Chemistry in an Ultramicroporous Metal–Organic Framework for Benchmark Inverse CO ₂ /C ₂ H ₂ Separation. Angewandte Chemie, 2021, 133, 17335-17341.	1.6	16
634	Penetrant competition and plasticization in membranes: How negatives can be positives in natural gas sweetening. Journal of Membrane Science, 2021, 627, 119201.	4.1	22
635	Octanuclear Cobalt(II) Cluster-Based Metal–Organic Framework with Caged Structure Exhibiting the Selective Adsorption of Ethane over Ethylene. Inorganic Chemistry, 2021, 60, 10596-10602.	1.9	11
636	The Impact of Ionic Liquid Loading in Three-Dimensional Carbon Nanotube Networks on the Separation of CO2/CH4 Fluid Mixtures: Insights from Molecular Simulations. Journal of Physical Chemistry C, 2021, 125, 13508-13522.	1.5	2
637	Synthesis and Structure of Zn(II) Complexes with Cyclobutane-1,1-Dicarboxylic Acid Anions and Calcium and Barium Cations. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2021, 47, 409-416.	0.3	8
638	Advances in Enzyme and Ionic Liquid Immobilization for Enhanced in MOFs for Biodiesel Production. Molecules, 2021, 26, 3512.	1.7	28
639	Review-Enzymatic and Non-Enzymatic Electrochemical Sensor for Lactate Detection in Human Biofluids. Journal of the Electrochemical Society, 2021, 168, 067502.	1.3	21
640	Optimal Pore Chemistry in an Ultramicroporous Metal–Organic Framework for Benchmark Inverse CO ₂ /C ₂ H ₂ Separation. Angewandte Chemie - International Edition, 2021, 60, 17198-17204.	7.2	93
641	Sensing and photocatalytic properties of two zinc(II) coordination polymers containing bis(benzimidazole) ligands. Polyhedron, 2021, 203, 115237.	1.0	4
642	High-Efficiency Organic Contaminants Remover Based on Modulated Self-Assembly of Cobalt Metal–Organic Frameworks. Crystal Growth and Design, 2021, 21, 4305-4317.	1.4	8
643	Impact of Pore Size and Defects on the Selective Adsorption of Acetylene in Alkyneâ€Functionalized Nickel(II)â€Pyrazolateâ€Based MOFs. Chemistry - A European Journal, 2021, 27, 11837-11844.	1.7	10
644	Facile modifications of HKUST-1 by V, Nb and Mn for low-temperature selective catalytic reduction of nitrogen oxides by NH3. Catalysis Today, 2022, 384-386, 25-32.	2,2	6
645	Metal-organic frameworks for C6–C8 hydrocarbon separations. EnergyChem, 2021, 3, 100057.	10.1	58
646	Epitaxially grown MOF membranes with photocatalytic bactericidal activity for biofouling mitigation in desalination. Journal of Membrane Science, 2021, 630, 119327.	4.1	20
647	Synthesis of High-Quality Mg-MOF-74 Thin Films <i>via</i> Vapor-Assisted Crystallization. ACS Applied Materials & Company (No. 1) (1) (1) (2) (1) (2) (1) (2) (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	4.0	23
648	Lanthanide complexes based on an anthraquinone derivative ligand and applications as photocatalysts for visible-light driving photooxidation reactions. Journal of Molecular Structure, 2021, 1236, 130289.	1.8	1
649	<scp>Solventâ€Controlled</scp> Construction of Molecular Chains and Bowls/Sieves from a Bent Dipyridyl Ligand ^{â€} . Chinese Journal of Chemistry, 2021, 39, 2523-2528.	2.6	2

#	Article	IF	CITATIONS
650	Anion-templated assembly of Co(II)-complexes based on the semirigid carboxylic acid ligand: synthesis, structure and magnetic property. Transition Metal Chemistry, 2021, 46, 547-553.	0.7	1
651	Zeolitic Vanadotungstates with Ultrahigh Porosities for Separation of Butane and Isobutane. Chemistry - A European Journal, 2021, 27, 13067-13071.	1.7	5
652	Efficient Capture of Trace Acetylene by an Ultramicroporous Metal–Organic Framework with Purine Binding Sites. Chemistry of Materials, 2021, 33, 5800-5808.	3.2	22
653	Metal–Organic Framework Based 1D Nanostructures and Their Superstructures: Synthesis, Microstructure, and Properties. Chemistry of Materials, 2021, 33, 5825-5849.	3.2	31
654	Xylene Recognition in Flexible Porous Coordination Polymer by Guest-Dependent Structural Transition. ACS Applied Materials & Samp; Interfaces, 2021, 13, 52144-52151.	4.0	10
655	EFFECT OF SUBSTITUENT IN MALONATE ANIONS ON THE STRUCTURE OF Zn(II) COORDINATION POLYMERS. Journal of Structural Chemistry, 2021, 62, 1209-1217.	0.3	5
656	Investigation of Mn Promotion on HKUSTâ€1 Metalâ€Organic Frameworks for Lowâ€Temperature Selective Catalytic Reduction of NO with NH ₃ . ChemCatChem, 2021, 13, 4029-4037.	1.8	6
657	Metal–organic frameworks containing uncoordinated nitrogen: Preparation, modification, and application in adsorption. Materials Today, 2021, 51, 566-585.	8.3	50
658	Kinetic Molecular Sieving of Cyclopentane/Neohexane Mixtures by the MFI Zeolite with Intersecting 10-Ring Channels. Industrial & Engineering Chemistry Research, 2021, 60, 13293-13300.	1.8	2
659	Formation of a N/O/F-Rich and Rooflike Cluster-Based Highly Stable Cu(I/II)-MOF for Promising Pipeline Natural Gas Upgrading by the Recovery of Individual C ₃ H ₈ and C ₂ H ₆ Gases. ACS Applied Materials & Amp; Interfaces, 2021, 13, 40713-40723.	4.0	15
660	Shaping of metal–organic frameworks through a calcium alginate method towards ethylene/ethane separation. Chinese Journal of Chemical Engineering, 2022, 42, 17-24.	1.7	2
661	Catalytic amplification based on hierarchical heterogeneity bimetal-organic nanostructures with peroxidase-like activity. Analytica Chimica Acta, 2021, 1173, 338713.	2.6	6
662	Structural Regulation and Light Hydrocarbon Adsorption/Separation of Three Zirconium–Organic Frameworks Based on Different V-Shaped Ligands. ACS Applied Materials & Interfaces, 2021, 13, 41680-41687.	4.0	25
663	Diamine Functionalization of a Metal–Organic Framework by Exploiting Solvent Polarity for Enhanced CO ₂ Adsorption. ACS Applied Materials & Interfaces, 2021, 13, 38358-38364.	4.0	8
664	Achieving High Performance Metal–Organic Framework Materials through Pore Engineering. Accounts of Chemical Research, 2021, 54, 3362-3376.	7.6	158
665	C2s/C1 hydrocarbon separation: The major step towards natural gas purification by metal-organic frameworks (MOFs). Coordination Chemistry Reviews, 2021, 442, 213998.	9.5	64
666	Interparticle Forces of a Native and Encapsulated Metal-Organic Framework and Their Effects on Colloidal Dispersion. ACS Applied Materials & Samp; Interfaces, 2021, 13, 45898-45906.	4.0	3
667	Dense Packing of Acetylene in a Stable and Lowâ€Cost Metalâ€"Organic Framework for Efficient C ₂ H ₂ /CO ₂ Separation. Angewandte Chemie - International Edition, 2021, 60, 25068-25074.	7.2	116

#	Article	IF	CITATIONS
668	Interpenetration Symmetry Control Within Ultramicroporous Robust Boron Cluster Hybrid MOFs for Benchmark Purification of Acetylene from Carbon Dioxide. Angewandte Chemie, 2021, 133, 23047.	1.6	19
669	Covalentâ€Organic Frameworks (COFs) as Proton Conductors. Advanced Energy Materials, 2021, 11, 2102300.	10.2	106
670	New Paradigms in Porous Framework Materials for Acetylene Storage and Separation. European Journal of Inorganic Chemistry, 2021, 2021, 4498-4507.	1.0	19
671	Dense Packing of Acetylene in a Stable and Lowâ€Cost Metal–Organic Framework for Efficient C2H2/CO2 Separation. Angewandte Chemie, 0, , .	1.6	14
672	Porous Organic Compounds – Small Pores on the Rise. European Journal of Organic Chemistry, 2021, 2021, 5844-5856.	1.2	20
673	Isoreticular chemistry within metal–organic frameworks for gas storage and separation. Coordination Chemistry Reviews, 2021, 443, 213968.	9.5	246
674	Versatility vs stability. Are the assets of metal–organic frameworks deployable in aqueous acidic and basic media?. Coordination Chemistry Reviews, 2021, 443, 214020.	9.5	33
675	High-Throughput Screening of Anion-Pillared Metal–Organic Frameworks for the Separation of Light Hydrocarbons. Journal of Physical Chemistry C, 2021, 125, 20076-20086.	1.5	17
676	Interpenetration Symmetry Control Within Ultramicroporous Robust Boron Cluster Hybrid MOFs for Benchmark Purification of Acetylene from Carbon Dioxide. Angewandte Chemie - International Edition, 2021, 60, 22865-22870.	7.2	103
677	Highly Selective Adsorption of Carbon Dioxide over Acetylene in an Ultramicroporous Metal–Organic Framework. Advanced Materials, 2021, 33, e2105880.	11.1	66
678	"Shake â€~n Bake―Route to Functionalized Zr-UiO-66 Metal–Organic Frameworks. Inorganic Chemistry, 2021, 60, 14294-14301.	1.9	20
679	An Ultramicroporous Metal-Organic Framework with Record High Selectivity for Inverse CO2/C2H2 Separation. Bulletin of the Chemical Society of Japan, 2021, 94, 2698-2701.	2.0	13
680	Syntheses, structures and Br2 uptake of Cu(I)-bipyrazole frameworks. Journal of Solid State Chemistry, 2021, 302, 122458.	1.4	3
681	Humidity sensors based on metal organic frameworks derived polyelectrolyte films. Journal of Colloid and Interface Science, 2021, 602, 646-653.	5.0	17
682	A novel rare-earth luminescent coordination polymer showing potential semiconductor characteristic constructed by anthracene-based dicarboxylic acid ligand (H2L). Journal of Molecular Structure, 2021, 1243, 130788.	1.8	5
683	All-in-one display device with multicolor states derived from NBU-3 MOF/monoalkylated viologen hybrid ionogel material. Dyes and Pigments, 2021, 195, 109730.	2.0	8
684	Geometry control of adsorption sites in sulfonate-pillared hybrid ultramicroporous materials for efficient C4 olefin separations. Chemical Engineering Journal, 2021, 425, 130580.	6.6	13
685	Inverse CO2/C2H2 separation in a pillared-layer framework featuring a chlorine-modified channel by quadrupole-moment sieving. Separation and Purification Technology, 2021, 279, 119608.	3.9	94

#	Article	IF	CITATIONS
686	Facile synthesis of binary two-dimensional lanthanide metal-organic framework nanosheets for ratiometric fluorescence detection of mercury ions. Journal of Hazardous Materials, 2022, 423, 126978.	6.5	50
687	A thermally stable isoquinoline based ultra-microporous metal-organic framework for CH4 separation from coal mine methane. Chemical Engineering Journal, 2022, 428, 131136.	6.6	27
688	Recent advances in the capture and abatement of toxic gases and vapors by metal–organic frameworks. Materials Chemistry Frontiers, 2021, 5, 5970-6013.	3.2	44
689	Flexibility and Switchable Porosity in Metal-Organic Frameworks: Phenomena, Characterization and Functions., 2021,, 328-375.		2
690	Involvement of various anions in tuning the structure of silver(<scp>i</scp>) coordination polymers based on a S-donor ligand: syntheses, crystal structure and uptake properties. CrystEngComm, 2021, 23, 7502-7516.	1.3	7
691	Interfacial growth of 2D MOF membranes <i>via</i> contra-diffusion for CO ₂ separation. Materials Chemistry Frontiers, 2021, 5, 5150-5157.	3.2	19
692	Metal–organic cages for molecular separations. Nature Reviews Chemistry, 2021, 5, 168-182.	13.8	227
693	Size-matched polyoxometalate encapsulated in UiO-66(Zr): an extraordinary catalyst with double active sites for the highly efficient ultra-deep oxidative desulfurization of fuel oil. New Journal of Chemistry, 2021, 45, 19432-19438.	1.4	3
694	Thermodynamic exploration of xenon/krypton separation based on a high-throughput screening. Faraday Discussions, 2021, 231, 201-223.	1.6	8
695	Controllable selfâ€assembly from homonuclear Mn (II)â€MOF to heteronuclear Mn (II)â€K(I)â€MOF by alkaliâ€regulation: A novel mode of structural and luminescent regulation for off–on sensing ascorbic acid. Applied Organometallic Chemistry, 2021, 35, e6160.	1.7	0
696	Fe Doped MIL-101/Graphene Nanohybrid for Photocatalytic Oxidation of Alcohols Under Visible-Light Irradiation. Catalysis Letters, 2021, 151, 2384-2395.	1.4	6
697	Ultramicropore Engineering by Dehydration to Enable Molecular Sieving of H 2 by Calcium Trimesate. Angewandte Chemie, 2020, 132, 16322-16328.	1.6	8
698	Ultramicropore Engineering by Dehydration to Enable Molecular Sieving of H ₂ by Calcium Trimesate. Angewandte Chemie - International Edition, 2020, 59, 16188-16194.	7.2	28
699	Synthesis, Structure, and Proton Conductivities of a Mg(<scp>II</scp>)â€based Coordination Polymer Composed of an Exotic Oxidized Ligand. Bulletin of the Korean Chemical Society, 2021, 42, 322-325.	1.0	12
700	Crystal engineering of porous coordination networks for C3 hydrocarbon separation. SmartMat, 2021, 2, 38-55.	6.4	44
701	Why Design Matters: From Decorated Metal Oxide Clusters to Functional Metal–Organic Frameworks. Topics in Current Chemistry, 2020, 378, 19.	3.0	11
702	Remarkable metal–organic framework composites for adsorptive removal of nitrogenous compounds from fuel. Chemical Engineering Journal, 2020, 398, 125590.	6.6	9
703	Tailoring the breathing behavior of functionalized MIL-53(Al,M)-NH2 materials by using the mixed-metal concept. Microporous and Mesoporous Materials, 2020, 308, 110329.	2.2	15

#	Article	IF	CITATIONS
704	Permanent porosity and role of sulfonate groups in coordination networks constructed from a new polyfunctional phosphonato-sulfonate linker molecule. Dalton Transactions, 2020, 49, 2724-2733.	1.6	7
705	Bridging molecular dynamics and correlated wave-function methods for accurate finite-temperature properties. Physical Review Materials, 2019, 3, .	0.9	16
706	A novel three-dimensional tetranuclear Co ^{II} coordination polymer with water hexamers based on the V-shaped tetracarboxylate ligand 4-(2,4-dicarboxylatophenoxy)phthalate. Acta Crystallographica Section C, Structural Chemistry, 2020, 76, 863-868.	0.2	2
707	Biomedical applications of metal–organic framework (MOF)-based nano-enzymes. New Journal of Chemistry, 2021, 45, 20987-21000.	1.4	59
708	Coordination modulated on-off switching of flexibility in a metal–organic framework. Chemical Science, 2021, 12, 14893-14900.	3.7	7
709	Crystal Structure Transformation in Hydrogenâ€bonded Organic Frameworks via Ion Exchange. Chemistry - an Asian Journal, 2021, 16, 3978-3984.	1.7	10
710	Confined Ionic Liquid-Built Gas Transfer Pathways for Efficient Propylene/Propane Separation. ACS Applied Materials & Samp; Interfaces, 2021, 13, 49050-49057.	4.0	17
711	Preparation and enhanced properties of ZrMOF@CdTe nanoparticles with high-density quantum dots. Frontiers of Materials Science, 2020, 14, 155-162.	1.1	1
712	Regulating interface nucleus growth of CuTCPP membranes via polymer collaboration method. Separation and Purification Technology, 2022, 282, 120045.	3.9	4
713	Selective CO2 capture and multiresponsive luminescent sensor in aqueous solutions of cadmium metal-organic framework based on trigonal rigid ligand. Journal of Molecular Structure, 2022, 1250, 131797.	1.8	5
714	ZIF-8-derived ZnS–Ni3Fe–Ni co-loaded N-doped porous carbon for efficient hydrogen evolution reaction catalysis. Journal of Electroanalytical Chemistry, 2020, 879, 114804.	1.9	3
715	Efficient separation of xylene isomers by using a robust calcium-based metal–organic framework through a synergetic thermodynamically and kinetically controlled mechanism. Journal of Materials Chemistry A, 2021, 9, 26202-26207.	5.2	7
716	Metal-organic framework engineered corn-like SERS active Ag@Carbon with controllable spacing distance for tracking trace amount of organic compounds. Journal of Hazardous Materials, 2022, 424, 127686.	6.5	14
717	Efficient Separation of Propylene from Propane in an Ultramicroporous Cyanideâ€Based Compound with Open Metal Sites. Small Structures, 2022, 3, 2100125.	6.9	17
718	Biological Application of Porous Aromatic Frameworks: State of the Art and Opportunities. Journal of Physical Chemistry Letters, 2021, 12, 11050-11060.	2.1	4
719	Improving Ethane/Ethylene Separation Performance of Isoreticular Metal–Organic Frameworks <i>via</i> Substituent Engineering. ACS Applied Materials & Substitution & Substi	4.0	24
720	Two-dimensional coordination polymer formed due to the unusual coordination of C O group in bis-dioxolene manganese complex. Polyhedron, 2022, 212, 115582.	1.0	0
721	Efficient Helium Separation with Two-Dimensional Metal–Organic Framework Fe/Ni-PTC: A Theoretical Study. Membranes, 2021, 11, 927.	1.4	1

#	Article	IF	CITATIONS
722	Advanced Strategies in Metalâ€Organic Frameworks for CO ₂ Capture and Separation. Chemical Record, 2022, 22, .	2.9	42
723	Pore Distortion in a Metal–Organic Framework for Regulated Separation of Propane and Propylene. Journal of the American Chemical Society, 2021, 143, 19300-19305.	6.6	72
724	Methane separation and capture from nitrogen rich gases by selective adsorption in microporous Materials: A review. Separation and Purification Technology, 2022, 283, 120206.	3.9	25
725	Moisture-tolerant diamine-appended metal–organic framework composites for effective indoor CO2 capture through facile spray coating. Chemical Engineering Journal, 2022, 433, 133856.	6.6	16
726	Cu-Based Conductive MOF Grown in situ on Cu Foam as a Highly Selective and Stable Non-Enzymatic Glucose Sensor. Frontiers in Chemistry, 2021, 9, 786970.	1.8	24
727	A humidity sensor based on ionic liquid modified metal organic frameworks for low humidity detection. Sensors and Actuators B: Chemical, 2022, 355, 131136.	4.0	30
728	Understanding the CO ₂ /CH ₄ /N ₂ Separation Performance of Nanoporous Amorphous Nâ€Doped Carbon Combined Hybrid Monte Carlo with Machine Learning. Advanced Theory and Simulations, 2022, 5, 2100378.	1.3	3
729	Highly selective gas separation by two isostructural boron cluster pillared MOFs. Separation and Purification Technology, 2022, 283, 120220.	3.9	32
730	A confinement of N-heterocyclic molecules in a metal–organic framework for enhancing significant proton conductivity. RSC Advances, 2021, 12, 355-364.	1.7	2
731	Thin film composite membranes for postcombustion carbon capture: Polymers and beyond. Progress in Polymer Science, 2022, 126, 101504.	11.8	32
732	Shellâ€like Xenon Nanoâ€Traps within Angular Anionâ€Pillared Layered Porous Materials for Boosting Xe/Kr Separation. Angewandte Chemie, 2022, 134, .	1.6	3
733	Post-synthetic modification within MOFs: a valuable strategy for modulating their ferroelectric performance. CrystEngComm, 2022, 24, 724-737.	1.3	7
734	A viologen-derived host-guest MOF material: Photochromism, photoswitchable luminescence, and inkless and erasable printing. Journal of Solid State Chemistry, 2022, 306, 122812.	1.4	11
735	Mixed-Linker Metal-Organic frameworks for carbon and hydrocarbons capture under moist conditions. Chemical Engineering Journal, 2022, 433, 134447.	6.6	16
736	A systematic examination of the impacts of MOF flexibility on intracrystalline molecular diffusivities. Journal of Materials Chemistry A, 2022, 10, 4242-4253.	5.2	25
737	Review of the fabrication and application of porous materials from silicon-rich industrial solid waste. International Journal of Minerals, Metallurgy and Materials, 2022, 29, 424-438.	2.4	33
738	Metal–Organic Frameworks for NO <i>_x</i> Adsorption and Their Applications in Separation, Sensing, Catalysis, and Biology. Small, 2022, 18, e2105484.	5.2	29
739	Shellâ€like Xenon Nanoâ€Traps within Angular Anionâ€Pillared Layered Porous Materials for Boosting Xe/Kr Separation. Angewandte Chemie - International Edition, 2022, 61, .	7.2	34

#	Article	IF	Citations
740	Recent progress on porous MOFs for process-efficient hydrocarbon separation, luminescent sensing, and information encryption. Chemical Communications, 2022, 58, 747-770.	2.2	81
741	Syntheses, structures and magnetic properties of two Co ^{II} /Ni ^{II} isostructural coordination polymers based on an asymmetric semirigid tricarboxylate ligand. Acta Crystallographica Section C, Structural Chemistry, 2022, 78, 23-29.	0.2	2
742	Effective Separation of Hexane Isomers in the Zr-MIL-140B Metal–Organic Framework Assisted by Applying Mechanical Pressure. Journal of Physical Chemistry C, 2022, 126, 2905-2911.	1.5	7
743	Immobilization of Lewis Basic Sites into a Stable Ethane-Selective MOF Enabling One-Step Separation of Ethylene from a Ternary Mixture. Journal of the American Chemical Society, 2022, 144, 2614-2623.	6.6	127
744	Electrification of the chemical industryâ€"materials innovations for a lower carbon future. MRS Bulletin, 2021, 46, 1197-1204.	1.7	23
745	A caveat on the effect of modulators in the synthesis of the aluminum furandicarboxylate metalâ€organic framework MILâ€160. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 0, , .	0.6	2
746	Robust and Radiation-Resistant Hofmann-Type Metal–Organic Frameworks for Record Xenon/Krypton Separation. Journal of the American Chemical Society, 2022, 144, 3200-3209.	6.6	71
747	Atomic-Level Structure of Mesoporous Hexagonal Boron Nitride Determined by High-Resolution Solid-State Multinuclear Magnetic Resonance Spectroscopy and Density Functional Theory Calculations. Chemistry of Materials, 0, , .	3.2	5
748	Immobilization of Lewis Basic Nitrogen Sites into a Chemically Stable Metal–Organic Framework for Benchmark Waterâ€Sorptionâ€Driven Heat Allocations. Advanced Science, 2022, 9, e2105556.	5.6	17
749	Analytical methods applied for ozone gas detection: A review. TrAC - Trends in Analytical Chemistry, 2022, 149, 116552.	5.8	19
750	Efficient adsorption of Au(III) from acidic solution by a novel N, S-containing metal–organic framework. Separation and Purification Technology, 2022, 288, 120646.	3.9	22
751	Mechanism-Guided Design of Metal–Organic Framework Composites for Selective Photooxidation of a Mustard Gas Simulant under Solvent-Free Conditions. ACS Catalysis, 2022, 12, 363-371.	5.5	30
752	A Review on Anion-Pillared Metal Organic Framework (Apmof) and its Composites with the Balance of Adsorption Capacity and Separation Selectivity for Efficient Gas Separation. SSRN Electronic Journal, 0, , .	0.4	0
7 53	In-Situ Synthesis of Kaust-7 Membranes from Fluorinated Molecular Building Block for H2/Co2 Separation. SSRN Electronic Journal, 0, , .	0.4	0
754	Preferential adsorption sites for propane/propylene separation on ZIF-8 as revealed by solid-state NMR spectroscopy. Physical Chemistry Chemical Physics, 2022, 24, 6535-6543.	1.3	4
755	Metal organic framework/polyelectrolyte composites for water vapor sorption applications. Dalton Transactions, 2022, , .	1.6	2
756	Synthesis, Characterization, Ion-Exchange, and Catalytic Properties of Three Isostructural Copper(Ii) Coordination Polymers with a Flexible Bis(Triazole) Ligand. SSRN Electronic Journal, 0, , .	0.4	0
757	On the mineralization of nanocellulose to produce functional hybrid materials. Journal of Materials Chemistry A, 2022, 10, 9248-9276.	5.2	7

#	ARTICLE	IF	Citations
758	Assessing the Accuracy of Machine Learning Thermodynamic Perturbation Theory: Density Functional Theory and Beyond. Journal of Chemical Theory and Computation, 2022, 18, 1382-1394.	2.3	9
7 59	A New V-Based Metal–Organic Framework Synthesized from Pyrene-Based Linker. , 2022, , 11-17.		1
760	Uncoordinated Hexafluorosilicates in a Microporous Metal–Organic Framework Enabled C ₂ H ₂ /CO ₂ Separation. Inorganic Chemistry, 2022, 61, 4251-4256.	1.9	15
761	Comprehensive Pore Tuning in an Ultrastable Fluorinated Anion Crossâ€Linked Cageâ€Like MOF for Simultaneous Benchmark Propyne Recovery and Propylene Purification. Angewandte Chemie - International Edition, 2022, 61, .	7.2	58
762	Comprehensive Pore Tuning in an Ultrastable Fluorinated Anion Crossâ€Linked Cageâ€Like MOF for Simultaneous Benchmark Propyne Recovery and Propylene Purification. Angewandte Chemie, 0, , .	1.6	7
763	Perspectives in Adsorptive and Catalytic Mitigations of NO _{<i>x</i>} Using Metal–Organic Frameworks. Energy & Energy	2.5	13
764	Dinuclear Nickel–Oxygen Cluster-Based Metal–Organic Frameworks with Octahedral Cages for Efficient Xe/Kr Separation. Inorganic Chemistry, 2022, 61, 5737-5743.	1.9	11
765	Adsorptive molecular sieving of linear over branched alkanes using trianglamine host macrocycles for sustainable separation processes. Materials Today Chemistry, 2022, 24, 100840.	1.7	9
766	Radical PolyMOFs: A Role for Ligand Dispersity in Enabling Crystallinity. Chemistry of Materials, 2021, 33, 9508-9514.	3.2	8
767	A Cage-based Porous Metal-organic Framework for Efficient C2H2 Storage and Separation. Chemical Research in Chinese Universities, 2022, 38, 82-86.	1.3	2
768	Efficient Splitting of Trans-/Cis-Olefins Using an Anion-Pillared Ultramicroporous Metal–Organic Framework with Guest-Adaptive Pore Channels. Engineering, 2022, 11, 80-86.	3.2	13
769	Ethylene purification in a metal–organic framework over a wide temperature range via pore confinement. Green Energy and Environment, 2023, 8, 1703-1710.	4.7	6
770	Enhanced adsorption selectivity of 1-hexene $\!\!\!/$ n-hexane mixtures in Cu-BTC metal-organic framework by acid modification. Microporous and Mesoporous Materials, 2022, 337, 111909.	2.2	1
771	An experimental strategy for evaluating the energy performance of metal–organic framework-based carbon dioxide adsorbents. Chemical Engineering Journal, 2022, 442, 136210.	6.6	8
772	Multicriteria decision making in organic-metal frameworks for fuel storage. , 2022, , 609-630.		0
773	Two isostructural metal–organic frameworks with unique nickel clusters for C ₂ H ₄ H ₆ C ₂ H ₄ H ₆ Date of Materials Chemistry A, 2022, 10, 12497-12502.	5.2	12
774	Adsorption and Release of 1-Methylcyclopropene by Metal–Organic Frameworks for Fruit Preservation. , 2022, 4, 1053-1057.		8
775	In-situ synthesis of KAUST-7 membranes from fluorinated molecular building block for H2/CO2 separation. Journal of Membrane Science, 2022, 658, 120585.	4.1	6

#	Article	IF	CITATIONS
776	Growth of Feâ€BDC Metalâ€Organic Frameworks onto Functionalized Si (111) Surfaces. Chemistry - an Asian Journal, 2022, 17, .	1.7	5
777	High-Performance Selective CO ₂ Capture on a Stable and Flexible Metal–Organic Framework via Discriminatory Gate-Opening Effect. ACS Applied Materials & Samp; Interfaces, 2022, 14, 21089-21097.	4.0	14
778	Designing Multicomponent Metal–Organic Frameworks with Hierarchical Structure-Mimicking Distribution for High CO ₂ Capture Performance. Inorganic Chemistry, 2022, 61, 7663-7670.	1.9	7
779	Multi-step Phase Transformation from Metal–Organic Frameworks to Inorganic Compounds for High-Purity Th(IV) Generation. Inorganic Chemistry, 2022, , .	1.9	1
780	Oneâ€Step C ₂ H ₄ Purification from Ternary C ₂ H ₆ 6Mixtures by a Robust Metal–Organic Framework with Customized Pore Environment. Angewandte Chemie - International Edition, 2022, 61, .	7.2	57
781	Customized Synthesis: Solvent- and Acid-Assisted Topology Evolution in Zirconium-Tetracarboxylate Frameworks. Inorganic Chemistry, 2022, 61, 7980-7988.	1.9	13
782	A Porous Sulfonated 2D Zirconium Metal–Organic Framework as a Robust Platform for Proton Conduction. Chemistry - A European Journal, 2022, 28, .	1.7	8
783	Oneâ€Step C ₂ H ₄ Purification from Ternary C ₂ H ₆ /C ₂ H ₄ /C ₂ H ₄ /C ₂ H ₄ /C ₂ H ₄ /C ₂ /C ₂ /Sub>H ₂ /Sub>/Sub>H ₂ /Sub>/Sub>/Sub>/Sub>/Sub>/Sub>/Sub>/S	1.6	15
784	Ultrahigh Size Exclusion Selectivity for Carbon Dioxide from Nitrogen/Methane in an Ultramicroporous Metal–Organic Framework. Inorganic Chemistry, 2022, 61, 7970-7979.	1.9	8
785	Synthesis, characterization, ion-exchange, and catalytic properties of three isostructural copper(II) coordination polymers with a flexible bis(triazole) ligand. Journal of Solid State Chemistry, 2022, , 123201.	1.4	0
786	Coordination chemistry for innovative carbon-related materials. Coordination Chemistry Reviews, 2022, 466, 214577.	9.5	5
787	Two new ${\sf Ag(I)}\text{-}{\sf based}$ compounds: luminescence and enhancing acupuncture treatment activity on ovarian cancer. Chemical Papers, 0, , .	1.0	0
788	A Water-Resistant Hydrogen-Bonded Organic Framework for Ethane/Ethylene Separation in Humid Environments., 2022, 4, 1227-1232.		33
789	Development of Efficient Photocatalyst MIL-68(Ga)_NH2 Metal-Organic Framework for the Removal of Cr(VI) and Cr(VI)/RhB from Wastewater under Visible Light. Materials, 2022, 15, 3761.	1.3	3
790	Double-Accessible Open Metal Sites in Metal–Organic Frameworks with Suitable Pore Size for Efficient Xe/Kr Separation. Industrial & Engineering Chemistry Research, 2022, 61, 7361-7369.	1.8	12
791	Cooperative control of intralayer and interlayer space in MOFs enables selective capture of intermediate-sized molecules. Cell Reports Physical Science, 2022, 3, 100903.	2.8	2
792	An ultramicroporous metal–organic framework with dual functionalities for high sieving separation of CO2 from CH4 and N2. Chemical Engineering Journal, 2022, 446, 137101.	6.6	19
793	A Tifsix Pillared Mof ÂWith Unprecedented Zsd Topology for Efficient Separation of Acetylene from Quaternary Mixtures. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
794	Pore-Nanospace Engineering of Mixed-Ligand Metal–Organic Frameworks for High Adsorption of Hydrofluorocarbons and Hydrochlorofluorocarbons. Chemistry of Materials, 2022, 34, 5116-5124.	3.2	11
795	A Scandiumâ€based Microporous Metalâ€Organic Framework for Ethaneâ€6elective Separation. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 0, , .	0.6	1
796	Influence of the Surface Chemistry of Metal–Organic Polyhedra in Their Assembly into Ultrathin Films for Gas Separation. ACS Applied Materials & Emp; Interfaces, 2022, 14, 27495-27506.	4.0	6
797	CO Oxidation over HKUST-1 Catalysts: The Role of Defective Sites. Journal of Physical Chemistry C, 2022, 126, 9652-9664.	1.5	2
798	Minimal crystallographic descriptors of sorption properties in hypothetical MOFs and role in sequential learning optimization. Npj Computational Materials, 2022, 8, .	3. 5	12
799	Can Dlvo Theory Be Applied to Mof in Different Dielectric Solvents?. SSRN Electronic Journal, 0, , .	0.4	0
800	Data mining for predicting gas diffusivity in zeolitic-imidazolate frameworks (ZIFs). Journal of Materials Chemistry A, 2022, 10, 13697-13703.	5 . 2	11
801	Construction of two novel non-penetrating Co-MOFs derived from designed 2,4,6-tri(2,4-dicarboxyphenyl)pyridine: synthesis, structure and gas adsorption properties. CrystEngComm, 2022, 24, 5097-5104.	1.3	4
802	Stimuli-Responsive Naphthalenediimide Cd-MOFs Tuned by Different Aliphatic Dicarboxylic Acids with Extended Spacers. Inorganic Chemistry, 2022, 61, 10066-10078.	1.9	10
803	Fabrication of ternary UiO-66(Ce)/Ag/BiOBr heterojunction for enhanced photocatalytic degradation of ketoprofen via effective electron transfer process: Pathways, DFT calculation and mechanism. Chemosphere, 2022, 305, 135352.	4.2	10
804	Design Rules of Hydrogen-Bonded Organic Frameworks with High Chemical and Thermal Stabilities. Journal of the American Chemical Society, 2022, 144, 10663-10687.	6.6	174
805	Topologically Driven Pore/Surface Engineering in a Recyclable Microporous Metal–Organic Vessel Decorated with Hydrogen-Bond Acceptors for Solvent-Free Heterogeneous Catalysis. ACS Applied Materials & Decorated with Hydrogen-Bond Acceptors for Solvent-Free Heterogeneous Catalysis. ACS Applied Materials & Decorate National Processing Solvent Processing	4.0	16
806	Research progress in photo/electrocatalytic reduction of CO ₂ by functionalized metal–organic frameworks. Sustainable Energy and Fuels, 2022, 6, 3516-3526.	2.5	1
807	Acetylenedicarboxylate as a linker in the engineering of coordination polymers and metal–organic frameworks: challenges and potential. Chemical Communications, 2022, 58, 8900-8933.	2.2	10
808	A new boron cluster anion pillared metal organic framework with ligand inclusion and its selective acetylene capture properties. Inorganic Chemistry Frontiers, 2022, 9, 5140-5147.	3.0	13
809	A Review on the Application of Metal–Organic Frameworks (MOFs) in Pressure Swing Adsorption (PSA) Nitrogen Gas Generation. Industrial & Engineering Chemistry Research, 2022, 61, 9529-9543.	1.8	5
810	A TIFSIX pillared MOF with unprecedented zsd topology for efficient separation of acetylene from quaternary mixtures. Chemical Engineering Journal, 2022, 450, 138034.	6.6	23
811	Zr-Based Metal–Organic Framework Nanocrystals for Water Remediation. ACS Applied Nano Materials, 2022, 5, 10795-10808.	2.4	18

#	Article	IF	CITATIONS
812	Regulating C2H2/CO2 adsorption selectivity by electronic-state manipulation of iron in metal-organic frameworks. Cell Reports Physical Science, 2022, 3, 100977.	2.8	7
813	Progress and potential of metal-organic frameworks (MOFs) for gas storage and separation: A review. Journal of Environmental Chemical Engineering, 2022, 10, 108300.	3.3	86
814	A review on anion-pillared metal–organic frameworks (APMOFs) and their composites with the balance of adsorption capacity and separation selectivity for efficient gas separation. Coordination Chemistry Reviews, 2022, 470, 214714.	9.5	32
815	Mechanism for selective binding of aromatic compounds on oxygen-rich graphene nanosheets based on molecule size/polarity matching. Science Advances, 2022, 8, .	4.7	5
816	Flexible hydrogen-bonded organic framework to split ethane and ethylene. Matter, 2022, 5, 2516-2518.	5.0	11
817	Kineticâ€Sieving of Carbon Dioxide from Acetylene through a Novel Sulfonic Ultramicroporous Material. Angewandte Chemie - International Edition, 2022, 61, .	7.2	27
818	Modulator-directed assembly of hybrid composites based on metal-organic frameworks and upconversion nanoparticles. Nano Research, 2023, 16, 1482-1490.	5.8	4
819	Ultramicroporous material based parallel and extended paraffin nano-trap for benchmark olefin purification. Nature Communications, 2022, 13, .	5.8	37
820	Kineticâ \in Sieving of Carbon Dioxide from Acetylene through a Novel Sulfonic Ultramicroporous Material. Angewandte Chemie, 2022, 134, .	1.6	9
821	Efficient adsorption separation of xylene isomers on Cu-BTC@Fe3O4 by appropriate activation methods. Journal of Solid State Chemistry, 2022, 315, 123466.	1.4	2
822	Dual-ligand lanthanide metal–organic framework for ratiometric fluorescence detection of the anthrax biomarker dipicolinic acid. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 282, 121700.	2.0	14
823	Metal-organic frameworks composed of nitro groups: Preparation and applications in adsorption and catalysis. Chemical Engineering Journal, 2023, 451, 138538.	6.6	39
824	Oxidized thin aluminum films used as the polarized liquid-liquid interface support for norcocaine detection. Sensors and Actuators B: Chemical, 2022, 373, 132651.	4.0	2
825	Development and assessment of magnetic Fe2O3@MOF-74 composite sorbents for ethylene/ethane separation. Chemical Engineering Journal, 2023, 451, 139006.	6.6	12
826	Wood modification for the synthesis of MOF@wood composite materials with increased metal–organic framework (MOF) loading. Molecular Systems Design and Engineering, 2022, 7, 1682-1696.	1.7	4
827	Recent advances in the applications of porous organic cages. Chemical Communications, 2022, 58, 11333-11346.	2.2	32
828	Computational investigation of multifunctional MOFs for adsorption and membrane-based separation of CF ₄ /CH ₄ /H ₂ , CH ₄ /N ₂ , and N ₂ /H <sub>/H₂/H₂/H₂/H₂/H₂/H₂/H₂/H₂/H₂/H₂/H₂/H<sub>/H₂/H<sub>/H₂/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub>/H<sub< td=""><td>1.7</td><td>4</td></sub<></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub>	1.7	4
829	Increased CO ₂ Affinity and Adsorption Selectivity in MOF-801 Fluorinated Analogues. ACS Applied Materials & District Services (2022), 14, 40801-40811.	4.0	11

#	Article	IF	CITATIONS
830	Electrocatalytic Reduction of Carbon Dioxide to High-Value Multicarbon Products with Metal–Organic Frameworks and Their Derived Materials. , 2022, 4, 2058-2079.		35
831	Negative electrostatic potentials in a Hofmann-type metal-organic framework for efficient acetylene separation. Nature Communications, 2022, 13 , .	5.8	31
832	Th-MOF showing six-fold imide-sealed pockets for middle-size-separation of propane from natural gas. Nano Research, 2023, 16, 3287-3293.	5.8	13
833	Chemical Vapor Deposition of Edge-on Oriented 2D Conductive Metal–Organic Framework Thin Films. Journal of the American Chemical Society, 2022, 144, 16726-16731.	6.6	26
834	Efficient Splitting of Alkane Isomers by a Bismuthâ€Based Metalâ€Organic Framework with Auxetic Reentrant Pore Structures. Angewandte Chemie, 2022, 134, .	1.6	4
835	Can DLVO theory be applied to MOF in different dielectric solvents?. Microporous and Mesoporous Materials, 2022, 343, 112166.	2.2	1
836	Transmetalation: A Post-synthetic Modification Tool for Functional Metal–Organic Framework Materials. Lecture Notes in Mechanical Engineering, 2023, , 15-31.	0.3	0
837	Efficient Splitting of Alkane Isomers by a Bismuthâ€Based Metalâ€Organic Framework with Auxetic Reentrant Pore Structures. Angewandte Chemie - International Edition, 2022, 61, .	7.2	10
838	Structural Adjustments of Zn(II)â€Terpyridine Analogues by Pendent of Coligand: Solvothermal Syntheses, Crystal Structure, and Photophysical Behavior. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 0, , .	0.6	0
839	Design of Polymeric Ionic Liquids for the Separation of Structurally Similar Compounds. , 2021, , 1-9.		0
840	Dynamic weak coordination bonding of chlorocarbons enhances the catalytic performance of a metal–organic framework material. Journal of Materials Chemistry A, 2022, 10, 23499-23508.	5.2	17
841	Spatial disposition of square-planar mononuclear nodes in metal–organic frameworks for C ₂ H ₂ /CO ₂ separation. Chemical Science, 2022, 13, 12876-12882.	3.7	24
842	Cobalt phthalocyanine sensitized MOF on MOF: UiO-66@MIL-88B(Fe)/CoTAPc, photocatalytic activity in the degradation of acid black 210. CrystEngComm, 2022, 24, 8089-8098.	1.3	9
843	Recent Advances in Metal–Organic Frameworks for Applications in Magnetic Resonance Imaging. ACS Applied Materials & Description (1988). Applied Materials & Description (1988). Applied Materials & Description (1988). ACS	4.0	16
844	Machine Learning in the Development of Adsorbents for Clean Energy Application and Greenhouse Gas Capture. Advanced Science, 2022, 9, .	5.6	8
845	Anionâ€Coordinationâ€Driven Assembly: From Discrete Supramolecular Selfâ€Assemblies to Functional Soft Materials. ChemPlusChem, 2022, 87, .	1.3	5
846	Ligandâ€Functional Groups Induced Tuning MOFs' 2D into 1D Pore Channels for Pipeline Natural Gas Purification. Chemistry - A European Journal, 2023, 29, .	1.7	6
847	Fine Tuning the Pore Surface in Zirconium Metal–Organic Frameworks for Selective Ethane/Ethylene Separation. , 2023, 1, 334-340.		0

#	Article	IF	CITATIONS
848	Transforming an Insulating Metal–Organic Framework (MOF) into Semiconducting MOF/Gold Nanoparticle (AuNP) and MOF/Polymer/AuNP Composites to Gain Electrical Conductivity. ACS Applied Nano Materials, 2022, 5, 13912-13920.	2.4	16
849	Ligand Configuration-Directed Pillared Kagome-Layer MOFs: Synthesis, Structure, and Adsorption of Propane/Propylene Properties. Crystal Growth and Design, 2022, 22, 7419-7425.	1.4	2
850	What Is Left for Real-Life Lactate Monitoring? Current Advances in Electrochemical Lactate (Bio)Sensors for Agrifood and Biomedical Applications. Biosensors, 2022, 12, 919.	2.3	7
851	Dual poreâ€size sieving in a novel oxygenateâ€pillared microporous adsorbent for <scp>C6</scp> alkane isomers separation. AICHE Journal, 2023, 69, .	1.8	5
852	Water boosted CO2/C2H2 separation in L-arginine functionalized metalâ€"organic framework. Nano Research, 2023, 16, 6113-6119.	5.8	9
853	Efficient separation of propane and propylene by nanocrystals of a metal–organic framework-based splitter. Separation and Purification Technology, 2023, 305, 122541.	3.9	2
854	In Situ Ligand Synthesis Afforded Two New Metal-Organic Compounds: Luminescent and Photocatalytic Properties. Russian Journal of Inorganic Chemistry, 2022, 67, 2140-2147.	0.3	2
855	Discovering the impact of targeted defects in SP-MOF for CO2 capture from flue gas in presence of humidity through computational modelling. Journal of CO2 Utilization, 2022, 66, 102264.	3.3	3
856	Preparation and applications of metal–organic frameworks composed of sulfonic acid. Coordination Chemistry Reviews, 2023, 474, 214868.	9.5	25
857	Rational regulation of acetylene adsorption and separation for ultra-microporous copper-1,2,4-triazolate frameworks by halogen hydrogen bonds. Nanoscale, 2022, 14, 18200-18208.	2.8	6
858	Dense packing of xenon in an ultra-microporous metal–organic framework for benchmark xenon capture and separation. Chemical Engineering Journal, 2023, 453, 139849.	6.6	9
859	Enhancement of Propadiene/Propylene Separation Performance of Metal–Organic Frameworks by an Amine-Functionalized Strategy. Inorganic Chemistry, 2022, 61, 18752-18758.	1.9	3
860	Colorimetric Assay for Acetylcholinesterase Activity and Inhibitor Screening Based on Metal–Organic Framework Nanosheets. Analytical Chemistry, 2022, 94, 16345-16352.	3.2	16
861	Metal–organic framework-derived advanced oxygen electrocatalysts as air-cathodes for Zn–air batteries: recent trends and future perspectives. Materials Horizons, 2023, 10, 745-787.	6.4	24
862	Multiple stimulus responsive Co-AlE framework materials with reversible solvatochromic and thermochromic behaviors: molecular design, synthesis and characterization. Journal of Materials Chemistry C, 2022, 10, 17723-17733.	2.7	8
863	Ultramicroporous hydrogen-bond decorated robust metal–organic framework for high xenon capture performances. Journal of Materials Chemistry A, 2022, 10, 24824-24830.	5.2	6
864	Insights into the thermodynamic–kinetic synergistic separation of propyne/propylene in anion pillared cage MOFs with entropy–enthalpy balanced adsorption sites. Chemical Science, 2023, 14, 298-309.	3.7	15
865	Systematic evaluation of water adsorption in isoreticular UiO-type metal–organic frameworks. Journal of Materials Chemistry A, 2023, 11, 1246-1255.	5.2	17

#	Article	IF	Citations
866	Synthesis of UiO-66 series metal–organic framework composites and the adsorption effect on gallium. Chemical Engineering Journal, 2023, 455, 140881.	6.6	8
867	Nanoengineered ZIF fillers for mixed matrix membranes with enhanced CO2/CH4 selectivity. Separation and Purification Technology, 2023, 307, 122737.	3.9	7
868	A dispersion-corrected DFT method for zeolite-based CO2/N2 separation: Assessment and application. Journal of Environmental Chemical Engineering, 2023, 11, 109052.	3.3	2
869	N-Heterocyclic Carbene Silver Complex Modified Polyacrylonitrile Fiber/MIL-101(Cr) Composite as Efficient Chiral Catalyst for Three-Component Coupling Reaction. Nanomaterials, 2022, 12, 4175.	1.9	1
870	Multiscale Computational Approaches toward the Understanding of Materials. Advanced Theory and Simulations, 2023, 6, .	1.3	4
871	Reticular Chemistry with Art: A Case Study of Olympic Rings-Inspired Metal–Organic Frameworks. Journal of the American Chemical Society, 2022, 144, 22170-22177.	6.6	12
872	Unravelling Structural Dynamics, Supramolecular Behavior, and Chiroptical Properties of Enantiomerically Pure Macrocyclic Tertiary Ureas and Thioureas. Journal of Organic Chemistry, 0, , .	1.7	1
873	Computational Characterization of Zr-Oxide MOFs for Adsorption Applications. ACS Applied Materials & Lamp; Interfaces, 2022, 14, 56938-56947.	4.0	10
874	An Amine-Functionalized Ultramicroporous Metal–Organic Framework for Postcombustion CO ₂ Capture. ACS Applied Materials & Interfaces, 2022, 14, 56707-56714.	4.0	7
875	A Robust Molecular Porous Material for C ₂ H ₂ /CO ₂ Separation. Small, 2023, 19, .	5.2	6
876	Removal of heavy metals and dyes from its aqueous solution utilizing metal organic Frameworks (MOFs): Review. Materials Today: Proceedings, 2023, 77, 188-200.	0.9	6
877	Flexible and washable CDs@Eu-MOFs/PVDF multifunctional thin films as highly selective sensing for nitrobenzene and 4-Nitrophenol. Inorganic Chemistry Communication, 2023, 149, 110423.	1.8	4
878	Oneâ€step purification of ethylene from acetylene and carbon dioxide by ultramicroporous carbons. AICHE Journal, 2023, 69, .	1.8	9
879	Microporous metal–organic frameworks for the purification of propylene. Journal of Materials Chemistry A, 2023, 11, 12425-12433.	5.2	9
880	Stepwise Engineering the Pore Aperture of a Cageâ€like MOF for the Efficient Separation of Isomeric C4 Paraffins under Humid Conditions. Angewandte Chemie - International Edition, 2023, 62, .	7.2	13
881	Stepwise Engineering of a Cageâ€like MOF Pore Aperture for the Efficient Separation of Isomeric C4 paraffins under Humid Conditions. Angewandte Chemie, 0, , .	1.6	3
882	Deâ€Linkerâ€Enabled Exceptional Volumetric Acetylene Storage Capacity and Benchmark C <sub>2< sub>H<sub>4< sub>H<sub>2< sub> C<sub>2< sub>H<sub>4< sub>and C<sub>2< sub>H<sub>H<sub>H<sub>H<sub>2< sub>H<sub>H<sub>H<sub>H<sub>H<sub>H<sub>H<sub>H<sub>H<sub>H<sub>H<sub>H<sub>H<sub>H<sub>H<sub>H<sub>H<sub>H<sub>H<sub>H<sub>H<sub>H<sub>H<sub>H<sub>H<sub>H<sub>H<sub>H<sub>H<sub>H<sub>H<sub>H<sub h<sub="" h<sub<="" td=""><td>7.2</td><td>27</td></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub>	7.2	27
883	Deâ€Linkerâ€Enabled Exceptional Volumetric Acetylene Storage Capacity and Benchmark C _{2< sub>H_{2< sub> C_{4< sub>and C_{2< sub>H_{2< sub> Co_{2< sub>H_{2< sub>H_{2< sub>H_{2< sub>H_{2< sub>H_{2< sub> Co_{2< sub>Separations in Metalâ€"Organic Frameworks. Angewandte Chemie. 2023. 135}}}}}}}}}}}}	1.6	1

#	Article	IF	CITATIONS
884	Zwitterionic hydrogen-bonded organic framework (ZHOF): a metal-free water oxidation proton relay in alkaline and neutral media. Journal of Materials Chemistry A, 2023, 11, 1491-1502.	5.2	7
885	One-step ethylene separation from ternary C2 hydrocarbon mixture with a robust zirconium metal–organic framework. Chinese Journal of Chemical Engineering, 2023, 59, 9-15.	1.7	1
886	Development of Porous Crystalline Materials for Selective Binding of O ₂ from Air. Journal of Physical Chemistry C, 2023, 127, 776-787.	1.5	2
887	Benchmark single-step ethylene purification from ternary mixtures by a customized fluorinated anion-embedded MOF. Nature Communications, 2023, 14, .	5.8	71
888	Applications of Graphene in Five Senses, Nervous System, and Artificial Muscles. ACS Sensors, 2023, 8, 482-514.	4.0	24
889	Optimal Binding Affinity for Sieving Separation of Propylene from Propane in an Oxyfluoride Anion-Based Metal–Organic Framework. Journal of the American Chemical Society, 2023, 145, 2386-2394.	6.6	30
890	Newâ€Generation Anionâ€Pillared Metal–Organic Frameworks with Customized Cages for Highly Efficient CO ₂ Capture. Advanced Functional Materials, 2023, 33, .	7.8	29
891	Low-concentration CO ₂ capture using metal–organic frameworks – current status and future perspectives. Dalton Transactions, 2023, 52, 1841-1856.	1.6	11
892	Ultramicroporous iron-isonicotinate MOFs combining size-exclusion kinetics and thermodynamics for efficient CO ₂ /N ₂ gas separation. Journal of Materials Chemistry A, 2023, 11, 5320-5327.	5.2	4
893	Thermodynamicâ€kinetic synergistic separation of <scp>CH₄</scp> / <scp>N₂</scp> on a robust <scp>aluminumâ€based</scp> metalâ€organic framework. AICHE Journal, 2023, 69, .	1.8	5
894	Overcoming the Tradeâ€Off between C2H2 Sorption and Separation Performance by Regulating Metalâ€Alkyne Chemical Interaction in Metalâ€Organic Frameworks. Angewandte Chemie, 0, , .	1.6	1
895	Robust Six-Connected Self-Penetrating Net with Two-Fold Interpenetration for Trace SO ₂ Removal and UO ₂ ²⁺ Detection. Inorganic Chemistry, 0, , .	1.9	0
896	Metal organic framework enroutes to mechanically stable and high proton conductive polybenzimidazole membranes. Polymer, 2023, 274, 125904.	1.8	0
897	NH2-MIL-125(Ti)/amorphous TiO2 microspheres for enhanced visible light photocatalytic selective oxidation of amines. Materials Today Chemistry, 2023, 30, 101505.	1.7	1
898	Scalable Green Synthesis of Robust Ultraâ€Microporous Hofmann Clathrate Material with Record C ₃ H ₆ Storage Density for Efficient C ₃ H ₆ /C ₃ H ₈ Separation. Angewandte Chemie, 2023, 135, .	1.6	0
899	Scalable Green Synthesis of Robust Ultraâ€Microporous Hofmann Clathrate Material with Record C ₃ H ₆ Storage Density for Efficient C ₃ H ₆ /C _{/C₈ Separation. Angewandte Chemie - International Edition, 2023, 62.}	7.2	30
900	Dynamic structural and microstructural responses of a metal–organic framework type material to carbon dioxide under dual gas flow and supercritical conditions. Journal of Applied Crystallography, 2023, 56, 222-236.	1.9	2
901	Enhancement of the intrinsic fluorescence of ZIF-8 via post-synthetic cation exchange with Cd2+ and its incorporation into PDMS films for selective sulfide optical sensing. Materials Today Chemistry, 2023, 28, 101366.	1.7	1

#	Article	IF	Citations
902	Design of Polymeric Ionic Liquids for the Separation of Structurally Similar Compounds. , 2022, , 280-289.		0
903	Polarization-dependent plasmonic heating in epitaxially grown multilayered metal–organic framework thin films embedded with Ag nanoparticles. Nanoscale Advances, 2023, 5, 1795-1801.	2.2	5
904	Highly scalable acid-base resistant Cu-Prussian blue metal-organic framework for C2H2/C2H4, biogas, and flue gas separations. Chemical Engineering Journal, 2023, 460, 141795.	6.6	12
905	A Simple, Transition Metal Catalystâ€Free Method for the Design of Complex Organic Building Blocks Used to Construct Porous Metal–Organic Frameworks. Angewandte Chemie, 2023, 135, .	1.6	0
906	A zirconium-based microporous metal–organic framework for molecular sieving CO ₂ separation. CrystEngComm, 2023, 25, 1643-1647.	1.3	3
907	A Simple, Transition Metal Catalystâ€Free Method for the Design of Complex Organic Building Blocks Used to Construct Porous Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2023, 62, .	7.2	2
908	Largeâ€Area Fabrication of Ultrathin Metalâ€Organic Framework Membranes. Advanced Materials, 2023, 35,	11.1	23
909	The Adsorptive Separation of Ethylene from C ₂ Hydrocarbons by Metalâ€Organic Frameworks. Chemistry - A European Journal, 2023, 29, .	1.7	3
910	MIL-160(Al) as a Candidate for Biogas Upgrading and CO ₂ Capture by Adsorption Processes. Industrial & Description Processes and CO ₂ Capture by Adsorption Processes.	1.8	7
911	A signal "on–off-on―type electrochemiluminescence aptamer sensor for detection of sulfadimethoxine based on Ru@Zn-oxalate MOF composites. Mikrochimica Acta, 2023, 190, .	2.5	6
912	Metal-organic frameworks: Synthetic methods for industrial production. Nano Research, 2023, 16, 7906-7925.	5.8	14
913	Reticular Chemistry in Pore Engineering of a Y-Based Metal–Organic Framework for Xenon/Krypton Separation. ACS Applied Materials & Sepa	4.0	6
914	Anionâ€pillared microporous material incorporated mixedâ€matrix fiber adsorbents for removal of trace propyne from propylene. AICHE Journal, 2023, 69, .	1.8	3
915	Overcoming the Tradeâ€Off between C ₂ H ₂ Sorption and Separation Performance by Regulating Metalâ€Alkyne Chemical Interaction in Metalâ€Organic Frameworks. Angewandte Chemie - International Edition, 2023, 62, .	7.2	6
916	Preferential CO ₂ adsorption by an ultra-microporous zinc-aminotriazolato-acetate MOF. Chemical Communications, 2023, 59, 5559-5562.	2,2	3
917	Waterâ€Stable Metal Azolate Frameworks Showing Interesting Flexibilities for Highly Effective Bioethanol Dehydration. Angewandte Chemie - International Edition, 2023, 62, .	7.2	5
918	Two 3D Ln(III)-MOFs Based on Phosphineoxide Ligand: Synthesis, Structure Luminescent and Photocatalytic Properties. Journal of Fluorescence, 2023, 33, 2119-2129.	1.3	2
919	Waterâ€Stable Metal Azolate Frameworks Showing Interesting Flexibilities for Highly Effective Bioethanol Dehydration. Angewandte Chemie, 2023, 135, .	1.6	0

#	Article	IF	CITATIONS
920	MOF based CO2 capture: Adsorption and membrane separation. Inorganic Chemistry Communication, 2023, 152, 110722.	1.8	8
921	The Design of MOF-Based Nano-Trap for the Efficient Separation of Propane and Propylene. Chemical Communications, 0, , .	2.2	2
922	Expanding Linker Dimensionality in Metal–Organic Frameworks for subâ€Ã…ngstrom Pore Control for Separation Applications. Angewandte Chemie, 0, , .	1.6	0
923	Expanding Linker Dimensionality in Metalâ€organic Frameworks for subâ€Ãngstrom Pore Control for Separation Applications. Angewandte Chemie - International Edition, 2023, 62, .	7.2	10
924	Incorporating Microporous Zn ₃ and Zn ₂ Cd MOFs into Pebax/PVDF Mixed Matrix Membranes for Improved Carbon Dioxide Separation Performance. ACS Applied Energy Materials, 2023, 6, 9170-9178.	2.5	1
925	A separation MOF with O/N active sites in nonpolar pore for One-step C2H4 purification from C2H6 or C3H6 mixtures. Chemical Engineering Journal, 2023, 466, 143056.	6.6	9
934	Rational design of stable functional metal–organic frameworks. Materials Horizons, 2023, 10, 3257-3268.	6.4	13
936	Ultrathin electron and proton-conducting membranes for nanoscale integrated artificial photosystems. Sustainable Energy and Fuels, 0, , .	2.5	1
942	Impact of the Crystallinity of Covalent Organic Frameworks on Photocatalytic Hydrogen Evolution. Crystal Growth and Design, 2023, 23, 4701-4719.	1.4	7
953	Porous organic cages for gas separations. Materials Chemistry Frontiers, 2023, 7, 5247-5262.	3.2	5
957	Recent progress in metal–organic frameworks for the separation of gaseous hydrocarbons. Materials Chemistry Frontiers, 2023, 7, 5693-5730.	3.2	0
959	Metal–organic frameworks for hydrocarbon separation: design, progress, and challenges. Journal of Materials Chemistry A, 2023, 11, 20459-20469.	5.2	5
982	Pore engineering of metal–organic frameworks for boosting low-pressure CO ₂ capture. Journal of Materials Chemistry A, 2023, 11, 25784-25802.	5.2	0
987	Amorphous porous Fe-BTC prepared <i>via</i> the post-synthetic metal-ion metathesis of HKUST-1. Journal of Materials Chemistry A, 2023, 11, 24591-24597.	5.2	0
1006	Non-CO ₂ greenhouse gas separation using advanced porous materials. Chemical Society Reviews, 2024, 53, 2056-2098.	18.7	1
1016	Recent advances on metal–organic frameworks for deep purification of olefins. Journal of Materials Chemistry A, 2024, 12, 5563-5580.	5.2	2