Diagnostics, Control and Performance Parameters for the Petawatt Class Laser

IEEE Journal of Quantum Electronics 53, 1-21 DOI: 10.1109/jqe.2017.2708601

Citation Report

#	Article	IF	CITATIONS
1	Laser-assisted capillary discharge for enhanced guiding of tightly focused laser pulses at low densities. Proceedings of SPIE, 2017, , .	0.8	0
2	085  PW laser operation at 33  Hz and high-contrast ultrahigh-intensity λ = 400 beamline. Optics Letters, 2017, 42, 3828.	nm s 3.3	econd-harmo
3	A viable laser driver for a user plasma accelerator. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 909, 58-66.	1.6	20
4	Single-shot cross-correlator for pulse-contrast characterization of high peak-power lasers. High Power Laser Science and Engineering, 2018, 6, .	4.6	11
5	Beam quality preservation studies in a laser-plasma accelerator with external injection for EuPRAXIA. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 909, 90-94.	1.6	6
6	All-optical structuring of laser-driven proton beam profiles. Nature Communications, 2018, 9, 5292.	12.8	16
7	Electron-seeded ALP production and ALP decay in an oscillating electromagnetic field. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2018, 782, 737-743.	4.1	10
8	Spatiotemporal coherent noise in frequency-domain optical parametric amplification. Optics Express, 2018, 26, 10953.	3.4	2
9	Temporal feedback control of high-intensity laser pulses to optimize ultrafast heating of atomic clusters. Applied Physics Letters, 2018, 112, .	3.3	19
10	High-Power Ultrashort Pulse Lasers to Pump Plasma-Based Soft X-Ray Lasers. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25, 1-15.	2.9	5
11	Absolute calibration of GafChromic film for very high flux laser driven ion beams. Review of Scientific Instruments, 2019, 90, 053301.	1.3	17
12	Femtosecond Laser Pulses Amplification in Crystals. Crystals, 2019, 9, 347.	2.2	2
13	Ion acceleration in laser generated megatesla magnetic vortex. Physics of Plasmas, 2019, 26, .	1.9	32
14	Petawatt and exawatt class lasers worldwide. High Power Laser Science and Engineering, 2019, 7, .	4.6	574
15	Conceptual Design of a Laser Driver for a Plasma Accelerator User Facility. Instruments, 2019, 3, 40.	1.8	6
16	Spatio-temporal structure of a petawatt femtosecond laser beam. JPhys Photonics, 2019, 1, 035001.	4.6	39
17	Building an Optical Free-Electron Laser in the Traveling-Wave Thomson-Scattering Geometry. Frontiers in Physics, 2019, 6, .	2.1	11
18	Performance demonstration of the PE <scp>n</scp> ELOPE main amplifier HEPAÂI using broadband nanosecond pulses. High Power Laser Science and Engineering, 2019, 7, .	4.6	13

#	Article	IF	CITATIONS
19	Petawatt Laser Guiding and Electron Beam Acceleration to 8ÂGeV in a Laser-Heated Capillary Discharge Waveguide. Physical Review Letters, 2019, 122, 084801.	7.8	557
20	Tailored laser pulse chirp to maintain optimum radiation pressure acceleration of ions. Physics of Plasmas, 2019, 26, 023103.	1.9	4
21	Laser and electron deflection from transverse asymmetries in laser-plasma accelerators. Physical Review E, 2019, 100, 063208.	2.1	10
22	Lasers for Novel Accelerators. Journal of Physics: Conference Series, 2019, 1350, 012157.	0.4	3
23	High-energy hybrid femtosecond laser system demonstrating 2 × 10 PW capability. High Power Laser Science and Engineering, 2020, 8, .	4.6	108
24	Laser-driven x-ray and proton micro-source and application to simultaneous single-shot bi-modal radiographic imaging. Nature Communications, 2020, 11, 6174.	12.8	10
25	Laser-heated capillary discharge plasma waveguides for electron acceleration to 8 GeV. Physics of Plasmas, 2020, 27, 053102.	1.9	21
26	A compact, high resolution energy, and emittance diagnostic for electron beams using active plasma lenses. Applied Physics Letters, 2020, 116, .	3.3	6
27	Comparative study on coherent noise in optical parametric and quasi-parametric chirped-pulse amplification. Optics Communications, 2020, 464, 125461.	2.1	2
28	Radiation beaming in the quantum regime. Physical Review A, 2020, 101, .	2.5	17
29	Characterizing extreme laser intensities by ponderomotive acceleration of protons from rarified gas. New Journal of Physics, 2020, 22, 023003.	2.9	14
30	Radial density profile and stability of capillary discharge plasma waveguides of lengths up to 40 cm. High Power Laser Science and Engineering, 2021, 9, .	4.6	8
31	Automation of Target Delivery and Diagnostic Systems for High Repetition Rate Laser-Plasma Acceleration. Applied Sciences (Switzerland), 2021, 11, 1680.	2.5	15
32	Proton beam quality enhancement by spectral phase control of a PW-class laser system. Scientific Reports, 2021, 11, 7338.	3.3	40
33	Realization of laser intensity over 10 ²³ W/cm ² . Optica, 2021, 8, 630.	9.3	240
34	Single-shot complete spatiotemporal measurement of terawatt laser pulses. Journal of Optics (United) Tj ETQq1	1 0.78431 2.2	.4 rgBT /Ove
35	Cryogenically formed discharge waveguide. Physical Review Accelerators and Beams, 2021, 24, .	1.6	2
36	Performance improvement of a 200TW/1Hz Ti:sapphire laser for laser wakefield electron accelerator. Optics and Laser Technology, 2020, 131, 106453.	4.6	16

#	Article	IF	CITATIONS
37	Emittance growth due to misalignment in multistage laser-plasma accelerators. Physical Review Accelerators and Beams, 2019, 22, .	1.6	11
38	Pulse front tilt steering in laser plasma accelerators. Physical Review Accelerators and Beams, 2019, 22, .	1.6	9
39	Acceleration of high charge ion beams with achromatic divergence by petawatt laser pulses. Physical Review Accelerators and Beams, 2020, 23, .	1.6	21
40	EuPRAXIA Conceptual Design Report. European Physical Journal: Special Topics, 2020, 229, 3675-4284.	2.6	64
41	Achieving the laser intensity of 55×10 ²² W/cm ² with a wavefront-corrected multi-PW laser. Optics Express, 2019, 27, 20412.	3.4	103
42	Optical steering of electron beam in laser plasma accelerators. Optics Express, 2020, 28, 11609.	3.4	12
43	Description of spatio-temporal couplings from heat-induced compressor grating deformation. Optics Express, 2020, 28, 8257.	3.4	24
44	A novel design of double chirped pulse amplification laser systems for fourth-order dispersion control. Optics Express, 2020, 28, 31743.	3.4	6
45	Improvement in the temporal contrast in the tens of ps range of the multi-PW Apollon laser front-end. Optics Letters, 2020, 45, 4599.	3.3	23
46	Demonstration of a kilowatt average power, 1 J, green laser. Optics Letters, 2020, 45, 6803.	3.3	16
47	Demonstration of a 2 ps, 5 TW peak power, long-wave infrared laser based on chirped-pulse amplification with mixed-isotope CO ₂ amplifiers. OSA Continuum, 2020, 3, 459.	1.8	37
48	Analysis of laser-proton acceleration experiments for development of empirical scaling laws. Physical Review E, 2021, 104, 045210.	2.1	12
49	Rapid retrieval of first-order spatiotemporal distortions for ultrashort laser pulses. Plasma Physics and Controlled Fusion, 2021, 63, 124005.	2.1	2
50	Monoenergetic High-Energy Ion Source via Femtosecond Laser Interacting with a Microtape. Physical Review X, 2021, 11, .	8.9	20
51	Générer des impulsions laser ultra-brèves de très haute intensité : la technique du CPA. , 2019, , 13-25.	0.1	0
52	Enhancement of pre-pulse and picosecond pedestal contrast of the petawatt J-KAREN-P laser. High Power Laser Science and Engineering, 2021, 9, .	4.6	13
53	Emittance preserving thin film plasma mirrors for GeV scale laser plasma accelerators. Physical Review Accelerators and Beams, 2021, 24, .	1.6	4
54	A new platform for ultra-high dose rate radiobiological research using the BELLA PW laser proton beamline. Scientific Reports, 2022, 12, 1484.	3.3	23

#	Article	IF	CITATIONS
55	Survey of spatio-temporal couplings throughout high-power ultrashort lasers. Optics Express, 2022, 30, 3262.	3.4	22
56	Perspectives of measuring gravitational effects of laser light and particle beams. New Journal of Physics, 2022, 24, 053021.	2.9	5
57	Towards High-Repetition-Rate Fast Neutron Sources Using Novel Enabling Technologies. Instruments, 2021, 5, 38.	1.8	7
58	A novel focal spot positioning method for high peak power lasers. Applied Physics B: Lasers and Optics, 2022, 128, 1.	2.2	Ο
60	Investigation and suppression of pre-pulses onnanosecond time scale in SULF-1PW laser. Applied Optics, 0, , .	1.8	1
61	Numerical Study of Spatial Chirp Distortion in Quasi-parametric Chirped-pulse Amplification. High Power Laser Science and Engineering, 0, , 1-17.	4.6	Ο
62	Broadband Spectral Shaping of Regenerative Amplification with Extra-Cavity Waveplate for Cross Polarized Wave Generation. Applied Sciences (Switzerland), 2022, 12, 5521.	2.5	0
63	Improved cross polarized wave generation with an aperture. AIP Advances, 2022, 12, 055128.	1.3	Ο
64	Enhanced diagnostics of radiating relativistic singularities and BISER by nonlinear post-compression of optical probe pulse. Journal of Instrumentation, 2022, 17, P07035.	1.2	2
65	Laser–solid interaction studies enabled by the new capabilities of the iP2 BELLA PW beamline. Physics of Plasmas, 2022, 29, .	1.9	7
66	Temporal contrast improvement through cascaded second-order nonlinear processes in a thin BBO crystal. Optics Letters, 2022, 47, 4981.	3.3	0
67	Online charge measurement for petawatt laser-driven ion acceleration. Review of Scientific Instruments, 2022, 93, 103301.	1.3	4
68	Compressing High Energy Lasers through Optical Polymer Films. Photonics, 2022, 9, 715.	2.0	2
69	Further Development of the Shortâ€Pulse Petawatt Laser: Trends, Technologies, and Bottlenecks. Laser and Photonics Reviews, 2023, 17, .	8.7	15
70	Strong-field QED experiments using the BELLA PW laser dual beamlines. European Physical Journal D, 2022, 76, .	1.3	9
71	Ambient-temperature liquid jet targets for high-repetition-rate HED discovery science. Physics of Plasmas, 2022, 29, 123105.	1.9	3
72	Electron and ion acceleration from femtosecond laser-plasma peeler scheme. Plasma Physics and Controlled Fusion, 2023, 65, 034005.	2.1	1
73	Revisiting Experimental Signatures of the Ponderomotive Force. Photonics, 2023, 10, 226.	2.0	3

#	Article	IF	Citations
74	SWIR Wavefront Sensing and control for Satellite Communications. , 2022, , .		0
75	Versatile tape-drive target for high-repetition-rate laser-driven proton acceleration. High Power Laser Science and Engineering, 2023, 11, .	4.6	2
76	Frequency-doubled Q-switched 4 × 4 multicore fiber laser system. Optics Letters, 2023, 48, 2198.	3.3	1
77	Defect engineering of silicon with ion pulses from laser acceleration. Communications Materials, 2023, 4, .	6.9	2
78	Transformative Technology for FLASH Radiation Therapy. Applied Sciences (Switzerland), 2023, 13, 5021.	2.5	7
79	Data-driven science and machine learning methods in laser–plasma physics. High Power Laser Science and Engineering, 2023, 11, .	4.6	7
80	Control systems and data management for high-power laser facilities. High Power Laser Science and Engineering, 2023, 11, .	4.6	3
81	Transfer learning and multi-fidelity modeling of laser-driven particle acceleration. Physics of Plasmas, 2023, 30, .	1.9	1
82	Absolute calibration up to 20ÂMeV of an online readout CMOS system suitable to detect high-power lasers accelerated protons. Review of Scientific Instruments, 2023, 94, .	1.3	0
83	Laser Output Performance and Temporal Quality Enhancement at the J-KAREN-P Petawatt Laser Facility. Photonics, 2023, 10, 997.	2.0	4
84	High average power ultrafast laser technologies for driving future advanced accelerators. Journal of Instrumentation, 2023, 18, T08006.	1.2	1
85	Influence of wavefront distortion on the measurement of pulse signal-to-noise ratio. Optics Communications, 2024, 554, 130110.	2.1	0
86	The petawatt laser of ELI ALPS: reaching the 700 TW level at 10â€Hz repetition rate. Optics Express, 2023, 31, 44160.	3.4	0
87	Analysis of mid-spatial frequency wavefront distortions from a liquid cooled flash-lamp pumped Nd:phosphate laser amplifier. High Power Laser Science and Engineering, 0, , 1-6.	4.6	0
88	Polarization and CEP dependence of the transverse phase space in laser driven accelerators. Physical Review Research, 2024, 6, .	3.6	0
89	Shot-to-shot electron beam pointing instability in a nonlinear plasma bubble. Physical Review E, 2024, 109, .	2.1	0
90	Electron-beam-based Compton scattering x-ray source for probing high-energy-density physics. Physical Review Accelerators and Beams, 2024, 27, .	1.6	0