Generative Adversarial Networks for Noise Reduction is

IEEE Transactions on Medical Imaging 36, 2536-2545

DOI: 10.1109/tmi.2017.2708987

Citation Report

#	Article	IF	CITATIONS
1	Neural Network Convolution (NNC) for Converting Ultra-Low-Dose to "Virtual―High-Dose CT Images. Lecture Notes in Computer Science, 2017, , 334-343.	1.0	8
2	Iterative Low-Dose CT Reconstruction With Priors Trained by Artificial Neural Network. IEEE Transactions on Medical Imaging, 2017, 36, 2479-2486.	5.4	175
3	LEARN: Learned Experts' Assessment-Based Reconstruction Network for Sparse-Data CT. IEEE Transactions on Medical Imaging, 2018, 37, 1333-1347.	5.4	269
4	Denoising Low-Dose CT Images Using Multiframe Blind Source Separation and Block Matching Filter. IEEE Transactions on Radiation and Plasma Medical Sciences, 2018, 2, 279-287.	2.7	29
5	Convolutional Neural Network Based Metal Artifact Reduction in X-Ray Computed Tomography. IEEE Transactions on Medical Imaging, 2018, 37, 1370-1381.	5.4	300
6	Deep Convolutional Framelet Denosing for Low-Dose CT via Wavelet Residual Network. IEEE Transactions on Medical Imaging, 2018, 37, 1358-1369.	5.4	216
7	Low-dose CT restoration via stacked sparse denoising autoencoders. Neurocomputing, 2018, 284, 80-89.	3.5	61
8	3-D Convolutional Encoder-Decoder Network for Low-Dose CT via Transfer Learning From a 2-D Trained Network. IEEE Transactions on Medical Imaging, 2018, 37, 1522-1534.	5.4	303
9	Low-Dose CT Image Denoising Using a Generative Adversarial Network With Wasserstein Distance and Perceptual Loss. IEEE Transactions on Medical Imaging, 2018, 37, 1348-1357.	5.4	983
10	Deep Residual Learning for Accelerated MRI Using Magnitude and Phase Networks. IEEE Transactions on Biomedical Engineering, 2018, 65, 1985-1995.	2.5	212
11	Sharpness-Aware Low-Dose CT Denoising Using Conditional Generative Adversarial Network. Journal of Digital Imaging, 2018, 31, 655-669.	1.6	179
12	3D conditional generative adversarial networks for high-quality PET image estimation at low dose. Neurolmage, 2018, 174, 550-562.	2.1	298
13	Tire Defects Classification with Multi-Contrast Convolutional Neural Networks. International Journal of Pattern Recognition and Artificial Intelligence, 2018, 32, 1850011.	0.7	38
14	Generative Adversarial Networks with Dense Connection for Optical Coherence Tomography Images Denoising. , $2018, \ldots$		6
15	Automated Pancreas Segmentation Using Recurrent Adversarial Learning. , 2018, , .		5
16	Exploration and Exploitation of New Knowledge Emergence to Improve the Collective Intelligent Decision-Making Level of Web-of-Cells With Cyber-Physical-Social Systems Based on Complex Network Modeling. IEEE Access, 2018, 6, 74204-74239.	2.6	16
17	A Survey of Generative Adversarial Networks. , 2018, , .		6
18	Ultrasound Speckle Reduction Using Generative Adversial Networks. , 2018, , .		17

#	Article	IF	Citations
19	Sparse-View CT Reconstruction via Generative Adversarial Networks. , 2018, , .		9
20	Research Status and Prospect for CT Imaging. , 2018, , .		1
21	Initial Investigation of Using a Generative Adversarial Network for Denoising in Dual Gating Myocardial Perfusion SPECT. , $2018, , .$		6
22	Semantic Deep Image Inpainting. , 2018, , .		0
23	Flooded Area Segmentation from UAV Images Based on Generative Adversarial Networks. , 2018, , .		4
24	Metal artifact reduction on cervical CT images by deep residual learning. BioMedical Engineering OnLine, 2018, 17, 175.	1.3	71
25	Generative models: an upcoming innovation in musculoskeletal radiology? A preliminary test in spine imaging. European Radiology Experimental, 2018, 2, 29.	1.7	35
26	Generalization of Deep Neural Networks for Chest Pathology Classification in X-Rays Using Generative Adversarial Networks. , 2018, , .		109
27	Iterative quality enhancement via residual-artifact learning networks for low-dose CT. Physics in Medicine and Biology, 2018, 63, 215004.	1.6	31
29	A Mathematical Framework for Deep Learning in Elastic Source Imaging. SIAM Journal on Applied Mathematics, 2018, 78, 2791-2818.	0.8	9
30	Generalizing Deep Models for Ultrasound Image Segmentation. Lecture Notes in Computer Science, 2018, , 497-505.	1.0	16
31	Adversarial Sparse-View CBCT Artifact Reduction. Lecture Notes in Computer Science, 2018, , 154-162.	1.0	12
32	Framing U-Net via Deep Convolutional Framelets: Application to Sparse-View CT. IEEE Transactions on Medical Imaging, 2018, 37, 1418-1429.	5.4	388
33	Computed tomography super-resolution using deep convolutional neural network. Physics in Medicine and Biology, 2018, 63, 145011.	1.6	155
34	Current Applications and Future Impact of Machine Learning in Radiology. Radiology, 2018, 288, 318-328.	3.6	541
35	Ultrasound Image Enhancement Using Structure Oriented Adversarial Network. IEEE Signal Processing Letters, 2018, 25, 1349-1353.	2.1	42
36	Speckle noise filtering in SAR images using fuzzy logic and particle swarm optimization. Journal of Computational Methods in Sciences and Engineering, 2018, 18, 859-873.	0.1	9
37	Digital radiography image denoising using a generative adversarial network. Journal of X-Ray Science and Technology, 2018, 26, 523-534.	0.7	22

#	ARTICLE	IF	CITATIONS
38	Synthesizing retinal and neuronal images with generative adversarial nets. Medical Image Analysis, 2018, 49, 14-26.	7.0	141
39	Structurally-Sensitive Multi-Scale Deep Neural Network for Low-Dose CT Denoising. IEEE Access, 2018, 6, 41839-41855.	2.6	169
40	Semi-supervised learning with generative adversarial networks for chest X-ray classification with ability of data domain adaptation. , $2018, , .$		92
41	Unsupervised Reverse Domain Adaptation for Synthetic Medical Images via Adversarial Training. IEEE Transactions on Medical Imaging, 2018, 37, 2572-2581.	5.4	164
42	Deep Generative Adversarial Neural Networks for Compressive Sensing MRI. IEEE Transactions on Medical Imaging, 2019, 38, 167-179.	5.4	373
43	Convolutional Neural Network-Based Robust Denoising of Low-Dose Computed Tomography Perfusion Maps. IEEE Transactions on Radiation and Plasma Medical Sciences, 2019, 3, 137-152.	2.7	42
44	Unsupervised Learning for Cell-Level Visual Representation in Histopathology Images With Generative Adversarial Networks. IEEE Journal of Biomedical and Health Informatics, 2019, 23, 1316-1328.	3.9	75
45	Efficient B-Mode Ultrasound Image Reconstruction From Sub-Sampled RF Data Using Deep Learning. IEEE Transactions on Medical Imaging, 2019, 38, 325-336.	5.4	94
46	Optimizing a Parameterized Plug-and-Play ADMM for Iterative Low-Dose CT Reconstruction. IEEE Transactions on Medical Imaging, 2019, 38, 371-382.	5.4	101
47	Learning from adversarial medical images for X-ray breast mass segmentation. Computer Methods and Programs in Biomedicine, 2019, 180, 105012.	2.6	29
48	Artificial intelligence in cardiovascular imaging: state of the art and implications for the imaging cardiologist. Netherlands Heart Journal, 2019, 27, 403-413.	0.3	61
49	Masseter Muscle Segmentation from Cone-Beam CT Images using Generative Adversarial Network. , 2019, , .		5
50	Applications of Deep Learning to Neuro-Imaging Techniques. Frontiers in Neurology, 2019, 10, 869.	1.1	97
51	State-of-the-Art Deep Learning in Cardiovascular Image Analysis. JACC: Cardiovascular Imaging, 2019, 12, 1549-1565.	2.3	238
52	A three-dimensional cross-directional bilateral filter for edge-preserving noise reduction of low-dose computed tomography images. Computers in Biology and Medicine, 2019, 111, 103353.	3.9	31
53	A performance comparison of convolutional neural networkâ€based image denoising methods: The effect of loss functions on lowâ€dose CT images. Medical Physics, 2019, 46, 3906-3923.	1.6	54
54	Gradient regularized convolutional neural networks for low-dose CT image enhancement. Physics in Medicine and Biology, 2019, 64, 165017.	1.6	13
55	Efficient skin lesion segmentation using separable-Unet with stochastic weight averaging. Computer Methods and Programs in Biomedicine, 2019, 178, 289-301.	2.6	107

#	Article	IF	CITATIONS
56	PnP-AdaNet: Plug-and-Play Adversarial Domain Adaptation Network at Unpaired Cross-Modality Cardiac Segmentation. IEEE Access, 2019, 7, 99065-99076.	2.6	124
57	Generalization of Deep Neural Networks for Imbalanced Fault Classification of Machinery Using Generative Adversarial Networks. IEEE Access, 2019, 7, 111168-111180.	2.6	56
58	Artificial Intelligence in medical imaging practice: looking to the future. Journal of Medical Radiation Sciences, 2019, 66, 292-295.	0.8	50
59	Data-Driven Adversarial Learning for Sinogram-Based Iterative Low-Dose CT Image Reconstruction. , 2019, , .		2
60	Semi-Supervised Learning for Low-Dose CT Image Restoration with Hierarchical Deep Generative Adversarial Network (HD-GAN)., 2019, 2019, 2683-2686.		6
61	Using Virtual Digital Breast Tomosynthesis for De-Noising of Low-Dose Projection Images. , 2019, , .		7
62	Generative Adversarial Networks for Lupus Diagnostics. , 2019, , .		1
63	Generative adversarial network in medical imaging: A review. Medical Image Analysis, 2019, 58, 101552.	7.0	958
64	Strengths, Weaknesses, Opportunities, and Threats Analysis of Artificial Intelligence and Machine Learning Applications in Radiology. Journal of the American College of Radiology, 2019, 16, 1239-1247.	0.9	102
66	Development of a denoising convolutional neural network-based algorithm for metal artifact reduction in digital tomosynthesis for arthroplasty: A phantom study. PLoS ONE, 2019, 14, e0222406.	1.1	5
67	The Role of Generative Adversarial Networks in Radiation Reduction and Artifact Correction in Medical Imaging. Journal of the American College of Radiology, 2019, 16, 1273-1278.	0.9	10
68	Artifact correction in lowâ€dose dental <scp>CT</scp> imaging using Wasserstein generative adversarial networks. Medical Physics, 2019, 46, 1686-1696.	1.6	60
69	Artificial Intelligence in Medical Imaging. , 2019, , .		83
70	Improving the Quality of Synthetic FLAIR Images with Deep Learning Using a Conditional Generative Adversarial Network for Pixel-by-Pixel Image Translation. American Journal of Neuroradiology, 2019, 40, 224-230.	1.2	59
71	Cardiovascular Diseases. , 2019, , 167-185.		3
72	Deep Learning in Breast Cancer Screening. , 2019, , 187-215.		8
73	Limited-View Cone-Beam CT Reconstruction Based on an Adversarial Autoencoder Network With Joint Loss. IEEE Access, 2019, 7, 7104-7116.	2.6	11
74	WGAN-Based Synthetic Minority Over-Sampling Technique: Improving Semantic Fine-Grained Classification for Lung Nodules in CT Images. IEEE Access, 2019, 7, 18450-18463.	2.6	73

#	Article	IF	Citations
75	Computationally efficient deep neural network for computed tomography image reconstruction. Medical Physics, 2019, 46, 4763-4776.	1.6	47
76	Generative Adversarial Networks (GANs) for Retinal Fundus Image Synthesis. Lecture Notes in Computer Science, 2019, , 289-302.	1.0	12
77	Competitive performance of a modularized deep neural network compared to commercial algorithms for low-dose CT image reconstruction. Nature Machine Intelligence, 2019, 1, 269-276.	8.3	256
78	Scatter correction of cone-beam CT using a deep residual convolution neural network (DRCNN). Physics in Medicine and Biology, 2019, 64, 145003.	1.6	37
79	Domain Progressive 3D Residual Convolution Network to Improve Low-Dose CT Imaging. IEEE Transactions on Medical Imaging, 2019, 38, 2903-2913.	5.4	147
81	Projectionâ€domain scatter correction for cone beam computed tomography using a residual convolutional neural network. Medical Physics, 2019, 46, 3142-3155.	1.6	55
82	Preliminary results of DSA denoising based on a weighted low-rank approach using an advanced neurovascular replication system. International Journal of Computer Assisted Radiology and Surgery, 2019, 14, 1117-1126.	1.7	4
83	Image reconstruction in cardiovascular CT: Part 2 – Iterative reconstruction; potential and pitfalls. Journal of Cardiovascular Computed Tomography, 2019, 13, 3-10.	0.7	10
84	ADMM-based deep reconstruction for limited-angle CT. Physics in Medicine and Biology, 2019, 64, 115011.	1.6	28
85	Longitudinal Prediction of Infant Diffusion MRI Data via Graph Convolutional Adversarial Networks. IEEE Transactions on Medical Imaging, 2019, 38, 2717-2725.	5.4	19
86	Adversarial de-noising of electrocardiogram. Neurocomputing, 2019, 349, 212-224.	3. 5	34
87	Deep Learning in the Biomedical Applications: Recent and Future Status. Applied Sciences (Switzerland), 2019, 9, 1526.	1.3	120
88	Image domain dual material decomposition for dualâ€energy <scp>CT</scp> using butterfly network. Medical Physics, 2019, 46, 2037-2051.	1.6	49
89	A study of wavelet-based denoising and a new shrinkage function for low-dose CT scans. Biomedical Physics and Engineering Express, 2019, 5, 035018.	0.6	8
90	Learning to Reconstruct Computed Tomography Images Directly From Sinogram Data Under A Variety of Data Acquisition Conditions. IEEE Transactions on Medical Imaging, 2019, 38, 2469-2481.	5 . 4	109
91	Deep iterative reconstruction estimation (DIRE): approximate iterative reconstruction estimation for low dose CT imaging. Physics in Medicine and Biology, 2019, 64, 135007.	1.6	33
92	Machine Learning in the Evaluation of Myocardial Ischemia Through Nuclear Cardiology. Current Cardiovascular Imaging Reports, 2019, 12, 1.	0.4	17
93	An analytical approach for the simulation of realistic low-dose fluoroscopic images. International Journal of Computer Assisted Radiology and Surgery, 2019, 14, 601-610.	1.7	6

#	Article	IF	Citations
94	Automatic multiorgan segmentation in thorax <scp>CT</scp> images using Uâ€netâ€ <scp>GAN</scp> . Medical Physics, 2019, 46, 2157-2168.	1.6	200
95	Robust Denoising of Low-Dose CT Images using Convolutional Neural Networks. , 2019, , .		1
96	Deep Learning Accelerated Light Source Experiments. , 2019, , .		14
97	Deep Convolutional Neural Network for Noise Reduction in Low-Dose CT., 2019, , .		0
98	Cross Modality Guided Liver Image Enhancement of CT Using MRI. , 2019, , .		4
99	A novel convolutional neural network for predicting full dose from low dose PET scans. , 2019, , .		1
100	Low-Dose CT Image Denoising Using Cycle-Consistent Adversarial Networks. , 2019, , .		13
101	Research Progress in Image Denoising Algorithms Based on Deep Learning. Journal of Physics: Conference Series, 2019, 1345, 042055.	0.3	3
102	Low-dose CT Denoising Using Edge Detection Layer and Perceptual Loss., 2019, 2019, 6247-6250.		10
103	SDCA: a novel stack deep convolutional autoencoder – an application on retinal image denoising. IET Image Processing, 2019, 13, 2778-2789.	1.4	12
104	Performance Evaluation of a Generative Adversarial Network for Deblurring Mobile-phone Cervical Images., 2019, 2019, 4487-4490.		3
105	Projection data smoothing through noise-level weighted total variation regularization for low-dose computed tomography. Journal of X-Ray Science and Technology, 2019, 27, 537-557.	0.7	6
106	A Size-Controlled AFGAN Model for Ship Acoustic Fault Expansion. Applied Sciences (Switzerland), 2019, 9, 2292.	1.3	1
107	Application of Artificial Intelligence–based Image Optimization for Computed Tomography Angiography of the Aorta With Low Tube Voltage and Reduced Contrast Medium Volume. Journal of Thoracic Imaging, 2019, 34, 393-399.	0.8	13
108	Unpaired Low-Dose CT Denoising Network Based on Cycle-Consistent Generative Adversarial Network with Prior Image Information. Computational and Mathematical Methods in Medicine, 2019, 2019, 1-11.	0.7	40
109	Deep Encoder-Decoder Adversarial Reconstruction (DEAR) Network for 3D CT from Few-View Data. Bioengineering, 2019, 6, 111.	1.6	21
110	Iterative PET Image Reconstruction Using Convolutional Neural Network Representation. IEEE Transactions on Medical Imaging, 2019, 38, 675-685.	5.4	188
111	Comparing Unet training with three different datasets to correct CBCT images for prostate radiotherapy dose calculations. Physics in Medicine and Biology, 2019, 64, 035011.	1.6	56

#	Article	IF	CITATIONS
112	PET Image Denoising Using a Deep Neural Network Through Fine Tuning. IEEE Transactions on Radiation and Plasma Medical Sciences, 2019, 3, 153-161.	2.7	148
113	Robust navigation support in lowest dose image setting. International Journal of Computer Assisted Radiology and Surgery, 2019, 14, 291-300.	1.7	2
114	Full-Dose PET Image Estimation from Low-Dose PET Image Using Deep Learning: a Pilot Study. Journal of Digital Imaging, 2019, 32, 773-778.	1.6	113
115	Cycleâ€consistent adversarial denoising network for multiphase coronary CT angiography. Medical Physics, 2019, 46, 550-562.	1.6	157
116	Synthesizing Chest X-Ray Pathology for Training Deep Convolutional Neural Networks. IEEE Transactions on Medical Imaging, 2019, 38, 1197-1206.	5.4	79
117	Application of improved least-square generative adversarial networks for rail crack detection by AE technique. Neurocomputing, 2019, 332, 236-248.	3.5	36
118	Realâ€time scatter estimation for medical CT using the deep scatter estimation: Method and robustness analysis with respect to different anatomies, dose levels, tube voltages, and data truncation. Medical Physics, 2019, 46, 238-249.	1.6	65
119	The evolution of image reconstruction for CT—from filtered back projection to artificial intelligence. European Radiology, 2019, 29, 2185-2195.	2.3	335
120	ADMM-CSNet: A Deep Learning Approach for Image Compressive Sensing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42, 521-538.	9.7	439
121	Image denoising with conditional generative adversarial networks (CGAN) in low dose chest images. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, 954, 161914.	0.7	22
122	Image Reconstruction: From Sparsity to Data-Adaptive Methods and Machine Learning. Proceedings of the IEEE, 2020, 108, 86-109.	16.4	187
123	Deep Learning for Low-Dose CT Denoising Using Perceptual Loss and Edge Detection Layer. Journal of Digital Imaging, 2020, 33, 504-515.	1.6	74
124	Two stage residual CNN for texture denoising and structure enhancement on low dose CT image. Computer Methods and Programs in Biomedicine, 2020, 184, 105115.	2.6	29
125	Machine Learning in PET: From Photon Detection to Quantitative Image Reconstruction. Proceedings of the IEEE, 2020, 108, 51-68.	16.4	72
126	Global Guarantees for Enforcing Deep Generative Priors by Empirical Risk. IEEE Transactions on Information Theory, 2020, 66, 401-418.	1.5	24
127	CT Super-Resolution GAN Constrained by the Identical, Residual, and Cycle Learning Ensemble (GAN-CIRCLE). IEEE Transactions on Medical Imaging, 2020, 39, 188-203.	5.4	289
128	WBP-Tensor in the FBP Algorithm: Its Properties and Application in Low-Dose CT Reconstruction. IEEE Transactions on Medical Imaging, 2020, 39, 764-776.	5.4	14
129	Temporally downsampled cerebral CT perfusion image restoration using deep residual learning. International Journal of Computer Assisted Radiology and Surgery, 2020, 15, 193-201.	1.7	10

#	Article	IF	CITATIONS
130	Image synthesis in contrast MRI based on super resolution reconstruction with multi-refinement cycle-consistent generative adversarial networks. Journal of Intelligent Manufacturing, 2020, 31, 1215-1228.	4.4	6
131	Machine learning for image reconstruction. , 2020, , 25-64.		20
132	Deep learning: Generative adversarial networks and adversarial methods., 2020,, 547-574.		6
133	Quadratic Autoencoder (Q-AE) for Low-Dose CT Denoising. IEEE Transactions on Medical Imaging, 2020, 39, 2035-2050.	5.4	72
134	Impact of Deep Learning-based Optimization Algorithm on Image Quality of Low-dose Coronary CT Angiography with Noise Reduction: A Prospective Study. Academic Radiology, 2020, 27, 1241-1248.	1.3	26
135	Possibility of Deep Learning in Medical Imaging Focusing Improvement of Computed Tomography Image Quality. Journal of Computer Assisted Tomography, 2020, 44, 161-167.	0.5	33
137	Deep Learning Reconstruction at CT: Phantom Study of the Image Characteristics. Academic Radiology, 2020, 27, 82-87.	1.3	154
138	Wireless Capsule Endoscopy: A New Tool for Cancer Screening in the Colon With Deep-Learning-Based Polyp Recognition. Proceedings of the IEEE, 2020, 108, 178-197.	16.4	53
139	Using deep learning techniques in medical imaging: a systematic review of applications on CT and PET. Artificial Intelligence Review, 2020, 53, 4093-4160.	9.7	90
140	GPU acceleration of liver enhancement for tumor segmentation. Computer Methods and Programs in Biomedicine, 2020, 184, 105285.	2.6	12
141	Recent and Upcoming Technological Developments in Computed Tomography. Investigative Radiology, 2020, 55, 8-19.	3.5	173
142	Multi-Layer Basis Pursuit for Compressed Sensing MR Image Reconstruction. IEEE Access, 2020, 8, 186222-186232.	2.6	13
143	A Model-Based Unsupervised Deep Learning Method for Low-Dose CT Reconstruction. IEEE Access, 2020, 8, 159260-159273.	2.6	6
144	Artificial Intelligence Applications for Workflow, Process Optimization and Predictive Analytics. Neuroimaging Clinics of North America, 2020, 30, e1-e15.	0.5	30
145	The use of artificial intelligence in computed tomography image reconstruction - A literature review. Journal of Medical Imaging and Radiation Sciences, 2020, 51, 671-677.	0.2	20
146	A 3D attention residual encoder–decoder least-square GAN for low-count PET denoising. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, 983, 164638.	0.7	15
147	Machine Learning and Deep Neural Networks. Journal of Thoracic Imaging, 2020, 35, S17-S20.	0.8	22
148	Single Low-Dose CT Image Denoising Using a Generative Adversarial Network With Modified U-Net Generator and Multi-Level Discriminator. IEEE Access, 2020, 8, 133470-133487.	2.6	21

#	Article	IF	Citations
149	Multi-Cycle-Consistent Adversarial Networks for CT Image Denoising. , 2020, , .		1
150	Synthetic data augmentation for surface defect detection and classification using deep learning. Journal of Intelligent Manufacturing, 2022, 33, 1007-1020.	4.4	84
151	Noise reduction using novel loss functions to compute tissue mineral density and trabecular bone volume fraction on low resolution QCT. Computerized Medical Imaging and Graphics, 2020, 86, 101816.	3.5	4
152	A deep convolutional neural network for simultaneous denoising and deblurring in computed tomography. Journal of Instrumentation, 2020, 15, P12001-P12001.	0.5	5
153	GANs for medical image analysis. Artificial Intelligence in Medicine, 2020, 109, 101938.	3.8	211
154	DRGAN: a deep residual generative adversarial network for PET image reconstruction. IET Image Processing, 2020, 14, 1690-1700.	1.4	7
155	Performing Group Difference Testing on Graph Structured Data From GANs: Analysis and Applications in Neuroimaging. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44, 877-889.	9.7	2
156	Improving the Reliability of Pharmacokinetic Parameters at Dynamic Contrast-enhanced MRI in Astrocytomas: A Deep Learning Approach. Radiology, 2020, 297, 178-188.	3.6	15
157	Unsupervised Training of Denoisers for Low-Dose CT Reconstruction Without Full-Dose Ground Truth. IEEE Journal on Selected Topics in Signal Processing, 2020, 14, 1112-1125.	7.3	22
158	Simulation Study of Low-Dose Sparse-Sampling CT with Deep Learning-Based Reconstruction: Usefulness for Evaluation of Ovarian Cancer Metastasis. Applied Sciences (Switzerland), 2020, 10, 4446.	1.3	14
159	Deep learning methods for solving linear inverse problems: Research directions and paradigms. Signal Processing, 2020, 177, 107729.	2.1	40
160	Potential of generative adversarial net algorithms in image and video processing applications– a survey. Multimedia Tools and Applications, 2020, 79, 27407-27437.	2.6	7
161	Generating Hyperspectral Skin Cancer Imagery using Generative Adversarial Neural Network. , 2020, 2020, 1600-1603.		6
162	Multimodal Image-to-Image Translation for Generation of Gastritis Images. , 2020, , .		2
163	Study of low-dose PET image recovery using supervised learning with CycleGAN. PLoS ONE, 2020, 15, e0238455.	1.1	35
164	CaGAN: A Cycle-Consistent Generative Adversarial Network With Attention for Low-Dose CT Imaging. IEEE Transactions on Computational Imaging, 2020, 6, 1203-1218.	2.6	48
165	Simultaneous superâ€resolution and contrast synthesis of routine clinical magnetic resonance images of the knee for improving automatic segmentation of joint cartilage: data from the Osteoarthritis Initiative. Medical Physics, 2020, 47, 4939-4948.	1.6	6
166	Artificial intelligence in cardiac radiology. Radiologia Medica, 2020, 125, 1186-1199.	4.7	54

#	ARTICLE	IF	CITATIONS
167	The Future of Computed Tomography. Investigative Radiology, 2020, 55, 545-555.	3.5	46
168	SAINT: Spatially Aware Interpolation NeTwork for Medical Slice Synthesis. , 2020, , .		29
169	A residual dense network assisted sparse view reconstruction for breast computed tomography. Scientific Reports, 2020, 10, 21111.	1.6	13
170	Deep Efficient End-to-End Reconstruction (DEER) Network for Few-View Breast CT Image Reconstruction. IEEE Access, 2020, 8, 196633-196646.	2.6	26
171	Deep Subspace Clustering with Block Diagonal Constraint. Applied Sciences (Switzerland), 2020, 10, 8942.	1.3	0
172	Deep learning for tomographic image reconstruction. Nature Machine Intelligence, 2020, 2, 737-748.	8.3	233
173	Cyclodextrin-Based Contrast Agents for Medical Imaging. Molecules, 2020, 25, 5576.	1.7	5
174	Magician's Corner: 5. Generative Adversarial Networks. Radiology: Artificial Intelligence, 2020, 2, e190215.	3.0	3
175	Evaluation of Impact of Factors Affecting CT Radiation Dose for Optimizing Patient Dose Levels. Diagnostics, 2020, 10, 787.	1.3	8
176	Low-dose CT Image Restoration using generative adversarial networks. Informatics in Medicine Unlocked, 2020, 21, 100468.	1.9	5
177	Generative adversarial network based regularized image reconstruction for PET. Physics in Medicine and Biology, 2020, 65, 125016.	1.6	27
178	Beyond the Artificial Intelligence Hype. Journal of Thoracic Imaging, 2020, 35, S3-S10.	0.8	17
179	StatNet: Statistical Image Restoration for Low-Dose CT using Deep Learning. IEEE Journal on Selected Topics in Signal Processing, 2020, 14, 1137-1150.	7.3	26
180	A dual-domain deep learning-based reconstruction method for fully 3D sparse data helical CT. Physics in Medicine and Biology, 2020, 65, 245030.	1.6	28
181	CGAN-based Synthetic Medical Image Augmentation between Retinal Fundus Images and Vessel Segmented Images. , 2020, , .		8
182	Zero-Shot Medical Image Artifact Reduction. , 2020, , .		10
183	Artificial intelligence from A to Z: From neural network to legal framework. European Journal of Radiology, 2020, 129, 109083.	1.2	35
184	Artificial Intelligence and COVID-19: Deep Learning Approaches for Diagnosis and Treatment. IEEE Access, 2020, 8, 109581-109595.	2.6	386

#	ARTICLE	IF	CITATIONS
185	What scans we will read: imaging instrumentation trends in clinical oncology. Cancer Imaging, 2020, 20, 38.	1.2	35
186	Regularized Three-Dimensional Generative Adversarial Nets for Unsupervised Metal Artifact Reduction in Head and Neck CT Images. IEEE Access, 2020, 8, 109453-109465.	2.6	29
187	Analysis of Deep Neural Network Architectures and Similarity Metrics for Low-Dose CT Reconstruction. , 2020, , .		2
188	RecDNN: deep neural network for image reconstruction from limited view projection data. Soft Computing, 2020, 24, 17205-17220.	2.1	12
189	Intelligent Assessment of Percutaneous Coronary Intervention Based on GAN and LSTM Models. IEEE Access, 2020, 8, 90640-90651.	2.6	5
190	Noise and spatial resolution properties of a commercially available deep learningâ€based CT reconstruction algorithm. Medical Physics, 2020, 47, 3961-3971.	1.6	113
191	Updates in Vascular Computed Tomography. Radiologic Clinics of North America, 2020, 58, 671-691.	0.9	11
192	DRAN: Deep recurrent adversarial network for automated pancreassegmentation. IET Image Processing, 2020, 14, 1091-1100.	1.4	10
193	Advancing machine learning for MR image reconstruction with an open competition: Overview of the 2019 fastMRI challenge. Magnetic Resonance in Medicine, 2020, 84, 3054-3070.	1.9	154
194	Adaptive and Compressive Beamforming Using Deep Learning for Medical Ultrasound. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2020, 67, 1558-1572.	1.7	79
195	Improving Diagnostic Accuracy in Low-Dose SPECT Myocardial Perfusion Imaging With Convolutional Denoising Networks. IEEE Transactions on Medical Imaging, 2020, 39, 2893-2903.	5 . 4	59
196	Deep Learning for Cardiac Image Segmentation: A Review. Frontiers in Cardiovascular Medicine, 2020, 7, 25.	1.1	467
197	Adversarial Confidence Learning for Medical Image Segmentation and Synthesis. International Journal of Computer Vision, 2020, 128, 2494-2513.	10.9	29
198	Low-dose CT with deep learning regularization via proximal forward–backward splitting. Physics in Medicine and Biology, 2020, 65, 125009.	1.6	28
199	Using a Generative Adversarial Network for CT Normalization and Its Impact on Radiomic Features. , 2020, , .		5
200	DeGAN: Mixed noise removal via generative adversarial networks. Applied Soft Computing Journal, 2020, 95, 106478.	4.1	24
201	Supervised learning with cyclegan for low-dose FDG PET image denoising. Medical Image Analysis, 2020, 65, 101770.	7.0	97
202	Data augment method for machine fault diagnosis using conditional generative adversarial networks. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2020, 234, 2719-2727.	1.1	23

#	Article	IF	CITATIONS
203	scIGANs: single-cell RNA-seq imputation using generative adversarial networks. Nucleic Acids Research, 2020, 48, e85-e85.	6.5	93
204	Low Dose CT Perfusion With K-Space Weighted Image Average (KWIA). IEEE Transactions on Medical Imaging, 2020, 39, 3879-3890.	5. 4	5
205	Feasibility of new fat suppression for breast MRI using pix2pix. Japanese Journal of Radiology, 2020, 38, 1075-1081.	1.0	20
206	Hi-Net: Hybrid-Fusion Network for Multi-Modal MR Image Synthesis. IEEE Transactions on Medical Imaging, 2020, 39, 2772-2781.	5 . 4	177
207	Preparing Medical Imaging Data for Machine Learning. Radiology, 2020, 295, 4-15.	3.6	473
208	MRI Cross-Modality Image-to-Image Translation. Scientific Reports, 2020, 10, 3753.	1.6	37
209	Creating Artificial Images for Radiology Applications Using Generative Adversarial Networks (GANs) – A Systematic Review. Academic Radiology, 2020, 27, 1175-1185.	1.3	92
210	Deep learning in fracture detection: a narrative review. Monthly Notices of the Royal Astronomical Society: Letters, 2020, 91, 215-220.	1.2	81
211	High-Frequency Sensitive Generative Adversarial Network for Low-Dose CT Image Denoising. IEEE Access, 2020, 8, 930-943.	2.6	21
212	SACNN: Self-Attention Convolutional Neural Network for Low-Dose CT Denoising With Self-Supervised Perceptual Loss Network. IEEE Transactions on Medical Imaging, 2020, 39, 2289-2301.	5.4	170
213	Development and application of artificial intelligence in cardiac imaging. British Journal of Radiology, 2020, 93, 20190812.	1.0	35
214	DAGAN: A Domain-Aware Method for Image-to-Image Translations. Complexity, 2020, 2020, 1-15.	0.9	0
215	Synergizing medical imaging and radiotherapy with deep learning. Machine Learning: Science and Technology, 2020, 1, 021001.	2.4	24
216	Deep Learning for Ultrasound Localization Microscopy. IEEE Transactions on Medical Imaging, 2020, 39, 3064-3078.	5.4	72
217	Reconstruction for Diverging-Wave Imaging Using Deep Convolutional Neural Networks. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2020, 67, 2481-2492.	1.7	17
218	Low-Dose CT Image Denoising Using a Generative Adversarial Network With a Hybrid Loss Function for Noise Learning. IEEE Access, 2020, 8, 67519-67529.	2.6	43
219	GAN-Based Key Secret-Sharing Scheme in Blockchain. IEEE Transactions on Cybernetics, 2021, 51, 393-404.	6.2	31
220	Hybrid-Collaborative Noise2Noise Denoiser for Low-Dose CT Images. IEEE Transactions on Radiation and Plasma Medical Sciences, 2021, 5, 235-244.	2.7	23

#	Article	IF	CITATIONS
221	Boosting attention fusion generative adversarial network for image denoising. Neural Computing and Applications, 2021, 33, 4833-4847.	3.2	7
222	Deep learning for biomedical image reconstruction: a survey. Artificial Intelligence Review, 2021, 54, 215-251.	9.7	51
223	Hybrid-Domain Neural Network Processing for Sparse-View CT Reconstruction. IEEE Transactions on Radiation and Plasma Medical Sciences, 2021, 5, 88-98.	2.7	51
224	Investigation of Low-Dose CT Image Denoising Using Unpaired Deep Learning Methods. IEEE Transactions on Radiation and Plasma Medical Sciences, 2021, 5, 224-234.	2.7	42
225	Considering anatomical prior information for low-dose CT image enhancement using attribute-augmented Wasserstein generative adversarial networks. Neurocomputing, 2021, 428, 104-115.	3.5	22
226	A review on medical imaging synthesis using deep learning and its clinical applications. Journal of Applied Clinical Medical Physics, 2021, 22, 11-36.	0.8	139
227	Improving statistical power of glaucoma clinical trials using an ensemble of cyclical generative adversarial networks. Medical Image Analysis, 2021, 68, 101906.	7.0	11
228	Low-dose computed tomography reconstruction regularized by structural group sparsity joined with gradient prior. Signal Processing, 2021, 182, 107945.	2.1	6
229	CT super-resolution using multiple dense residual blockÂbased GAN. Signal, Image and Video Processing, 2021, 15, 725-733.	1.7	18
230	Potentials and caveats of AI in hybrid imaging. Methods, 2021, 188, 4-19.	1.9	12
231	Unsupervised Denoising of Optical Coherence Tomography Images With Nonlocal-Generative Adversarial Network. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-12.	2.4	18
232	A novel stacked sparse denoising autoencoder for mammography restoration to visual interpretation of breast lesion. Evolutionary Intelligence, 2021, 14, 133-149.	2.3	4
233	ProEGAN-MS: A Progressive Growing Generative Adversarial Networks for Electrocardiogram Generation. IEEE Access, 2021, 9, 52089-52100.	2.6	15
234	Computed tomography and artificial intelligence. , 2021, , 211-239.		3
235	Multimodal reconstruction of retinal images over unpaired datasets using cyclical generative adversarial networks., 2021,, 347-376.		0
236	Analysis of false data detection rate in generative adversarial networks using recurrent neural network., 2021,, 289-312.		12
237	Cycle-Consistent Generative Adversarial Network: Effect on Radiation Dose Reduction and Image Quality Improvement in Ultralow-Dose CT for Evaluation of Pulmonary Tuberculosis. Korean Journal of Radiology, 2021, 22, 983.	1.5	9
238	CLEAR: Comprehensive Learning Enabled Adversarial Reconstruction for Subtle Structure Enhanced Low-Dose CT Imaging. IEEE Transactions on Medical Imaging, 2021, 40, 3089-3101.	5.4	52

#	Article	IF	Citations
239	Application of Artificial Intelligence to Cardiovascular Computed Tomography. Korean Journal of Radiology, 2021, 22, 1597.	1.5	7
241	Generative adversarial network for cardiovascular imaging. , 2021, , 95-121.		3
242	AdalN-Based Tunable CycleGAN for Efficient Unsupervised Low-Dose CT Denoising. IEEE Transactions on Computational Imaging, 2021, 7, 73-85.	2.6	44
243	CT-Scan Denoising Using a Charbonnier Loss Generative Adversarial Network. IEEE Access, 2021, 9, 84093-84109.	2.6	15
245	DaNet: dose-aware network embedded with dose-level estimation for low-dose CT imaging. Physics in Medicine and Biology, 2021, 66, 015005.	1.6	13
246	Deep Convolutional Neural Network With Adversarial Training for Denoising Digital Breast Tomosynthesis Images. IEEE Transactions on Medical Imaging, 2021, 40, 1805-1816.	5.4	19
247	Data Extrapolation From Learned Prior Images for Truncation Correction in Computed Tomography. IEEE Transactions on Medical Imaging, 2021, 40, 3042-3053.	5.4	15
248	Artifact and Detail Attention Generative Adversarial Networks for Low-Dose CT Denoising. IEEE Transactions on Medical Imaging, 2021, 40, 3901-3918.	5.4	28
250	MAGIC: Manifold and Graph Integrative Convolutional Network for Low-Dose CT Reconstruction. IEEE Transactions on Medical Imaging, 2021, 40, 3459-3472.	5.4	53
251	CT Reconstruction With PDF: Parameter-Dependent Framework for Data From Multiple Geometries and Dose Levels. IEEE Transactions on Medical Imaging, 2021, 40, 3065-3076.	5.4	34
252	GAN-Based Synthetic FDG PET Images from T1 Brain MRI Can Serve to Improve Performance of Deep Unsupervised Anomaly Detection Models. Lecture Notes in Computer Science, 2021, , 142-152.	1.0	2
253	Evaluation and comparison of performance of low-dose 128-slice CT scanner with different mAs values: A phantom study. Journal of Carcinogenesis, 2021, 20, 13.	2.5	2
254	Deformed2Self: Self-supervised Denoising for Dynamic Medical Imaging. Lecture Notes in Computer Science, 2021, , 25-35.	1.0	14
255	Citizen Science in the Digital World of Apps. , 2021, , 461-474.		13
256	SPECIAL: Single-Shot Projection Error Correction Integrated Adversarial Learning for Limited-Angle CT. IEEE Transactions on Computational Imaging, 2021, 7, 734-746.	2.6	23
257	Noise-Generating-Mechanism-Driven Unsupervised Learning for Low-Dose CT Sinogram Recovery. IEEE Transactions on Radiation and Plasma Medical Sciences, 2022, 6, 404-414.	2.7	5
258	Bridging the Gap Between Paired and Unpaired Medical Image Translation. Lecture Notes in Computer Science, 2021, , 35-44.	1.0	5
259	Session Based Recommendations Using Recurrent Neural Networks - Long Short-Term Memory. Lecture Notes in Computer Science, 2021, , 53-65.	1.0	4

#	Article	IF	CITATIONS
260	CD-Net: Comprehensive Domain Network With Spectral Complementary for DECT Sparse-View Reconstruction. IEEE Transactions on Computational Imaging, 2021, 7, 436-447.	2.6	25
261	Detail- Revealing Deep Low-Dose CT Reconstruction. , 2021, , .		0
262	Learning to Reconstruct CT Images From the VVBP-Tensor. IEEE Transactions on Medical Imaging, 2021, 40, 3030-3041.	5.4	8
263	Contrast agent dose reduction in computed tomography with deep learning using a conditional generative adversarial network. European Radiology, 2021, 31, 6087-6095.	2.3	24
264	DSP-PIGAN: A Precision-Consistency Machine Learning Algorithm for Solving Partial Differential Equations. , 2021, , .		2
265	Random search as a neural network optimization strategy for Convolutional-Neural-Network (CNN)-based noise reduction in CT. , 2021, 11596, .		10
266	LCPR-Net: low-count PET image reconstruction using the domain transform and cycle-consistent generative adversarial networks. Quantitative Imaging in Medicine and Surgery, 2021, 11, 749-762.	1.1	14
267	Deep learning trained algorithm maintains the quality of half-dose contrast-enhanced liver computed tomography images: Comparison with hybrid iterative reconstruction. European Journal of Radiology, 2021, 135, 109487.	1.2	13
268	A novel generative adversarial block truncation coding schemes for high rated image compression on E-learning resource environment. Materials Today: Proceedings, 2021, , .	0.9	0
269	The Optimal Tetralogy of Fallot Repair Using Generative Adversarial Networks. Frontiers in Physiology, 2021, 12, 613330.	1.3	7
270	Restoration of amyloid PET images obtained with short-time data using a generative adversarial networks framework. Scientific Reports, 2021, 11, 4825.	1.6	9
271	Efficient radiation dose reduction in whole-brain CT perfusion imaging using a 3D GAN: performance and clinical feasibility. Physics in Medicine and Biology, 2021, 66, 075008.	1.6	9
272	Conditional generative adversarial networks to generate pseudo low monoenergetic CT image from a single-tube voltage CT scanner. Physica Medica, 2021, 83, 46-51.	0.4	5
273	Al applications to medical images: From machine learning to deep learning. Physica Medica, 2021, 83, 9-24.	0.4	253
274	Investigation of a Novel Deep Learning-Based Computed Tomography Perfusion Mapping Framework for Functional Lung Avoidance Radiotherapy. Frontiers in Oncology, 2021, 11, 644703.	1.3	10
275	Artificial intelligence in cardiovascular CT: Current status and future implications. Journal of Cardiovascular Computed Tomography, 2021, 15, 462-469.	0.7	20
276	Network detection of malicious domain name based on adversary model. Journal of Intelligent and Fuzzy Systems, 2021, , 1-9.	0.8	0
277	Herniated Lumbar Disc Generation and Classification Using Cycle Generative Adversarial Networks on Axial View MRI. Electronics (Switzerland), 2021, 10, 982.	1.8	1

#	Article	IF	CITATIONS
278	Mass Image Synthesis in Mammogram with Contextual Information Based on GANs. Computer Methods and Programs in Biomedicine, 2021, 202, 106019.	2.6	31
279	Position paper of the EACVI and EANM on artificial intelligence applications in multimodality cardiovascular imaging using SPECT/CT, PET/CT, and cardiac CT. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 1399-1413.	3.3	45
280	Ct Reconstruction With Pdf: Parameter-Dependent Framework For Multiple Scanning Geometries And Dose Levels. , 2021, , .		3
281	Incorporation of residual attention modules into two neural networks for lowâ€dose CT denoising. Medical Physics, 2021, 48, 2973-2990.	1.6	17
282	An ECG Denoising Method Based on the Generative Adversarial Residual Network. Computational and Mathematical Methods in Medicine, 2021, 2021, 1-23.	0.7	13
283	Ct Image Denoising With Encoder-Decoder Based Graph Convolutional Networks. , 2021, , .		5
284	A Multi-Pronged Evaluation For Image Normalization Techniques. , 2021, , .		1
285	The current and future roles of artificial intelligence in pediatric radiology. Pediatric Radiology, 2022, 52, 2065-2073.	1.1	9
286	Real time high accuracy phase contrast imaging with parallel acquisition speckle tracking*. Chinese Physics B, 2021, 30, 064201.	0.7	0
287	Generation of Synthetic Chest X-ray Images and Detection of COVID-19: A Deep Learning Based Approach. Diagnostics, 2021, 11, 895.	1.3	39
288	Half-scan artifact correction using generative adversarial network for dental CT. Computers in Biology and Medicine, 2021, 132, 104313.	3.9	11
289	A review on Deep Learning approaches for low-dose Computed Tomography restoration. Complex & Intelligent Systems, 2023, 9, 2713-2745.	4.0	34
290	Image-domain material decomposition for single-energy CT images using cascaded network. , 2021, , .		2
291	Clinical applications of artificial intelligence in cardiology on the verge of the decade. Cardiology Journal, 2021, 28, 460-472.	0.5	4
292	A material decomposition method for dualâ€energy CT via dual interactive Wasserstein generative adversarial networks. Medical Physics, 2021, 48, 2891-2905.	1.6	15
293	Self-Supervised Dynamic CT Perfusion Image Denoising With Deep Neural Networks. IEEE Transactions on Radiation and Plasma Medical Sciences, 2021, 5, 350-361.	2.7	32
294	Training and validation of a deep learning architecture for the automatic analysis of coronary angiography. EuroIntervention, 2021, 17, 32-40.	1.4	33
295	Generative Adversarial Networks: A Primer for Radiologists. Radiographics, 2021, 41, 840-857.	1.4	28

#	Article	IF	CITATIONS
296	Narrative review of generative adversarial networks in medical and molecular imaging. Annals of Translational Medicine, 2021, 9, 821-821.	0.7	19
297	A machine learning algorithm for retrieving the geometrical characteristic parameters of soot fractal aggregates from polarized light signal. Optik, 2021, 236, 166473.	1.4	4
298	Comparison of image quality and lesion diagnosis in abdominopelvic unenhanced CT between reduced-dose CT using deep learning post-processing and standard-dose CT using iterative reconstruction: A prospective study. European Journal of Radiology, 2021, 139, 109735.	1.2	10
299	Geometrical-Based Generative Adversarial Network to Enhance Digital Rock Image Quality. Physical Review Applied, 2021, 15, .	1.5	11
300	Synthesizing High-b-Value Diffusion-weighted Imaging of the Prostate Using Generative Adversarial Networks. Radiology: Artificial Intelligence, 2021, 3, e200237.	3.0	6
301	A Bias-Reducing Loss Function for CT Image Denoising. , 2021, , .		8
302	Self-Absorption Correction in X-Ray Fluorescence- Computed Tomography With Deep Convolutional Neural Network. IEEE Transactions on Nuclear Science, 2021, 68, 1194-1206.	1.2	3
303	Pix2pix Conditional Generative Adversarial Networks for Scheimpflug Camera Color-Coded Corneal Tomography Image Generation. Translational Vision Science and Technology, 2021, 10, 21.	1.1	26
304	Fully automatic electrocardiogram classification system based on generative adversarial network with auxiliary classifier. Expert Systems With Applications, 2021, 174, 114809.	4.4	20
305	Generation of synthetic PET images of synaptic density and amyloid from ¹⁸ Fâ€FDG images using deep learning. Medical Physics, 2021, 48, 5115-5129.	1.6	12
306	Heart disease detection using deep learning methods from imbalanced ECG samples. Biomedical Signal Processing and Control, 2021, 68, 102820.	3.5	48
307	Generative adversarial networks in ophthalmology: what are these and how can they be used?. Current Opinion in Ophthalmology, 2021, 32, 459-467.	1.3	11
308	Weakly-supervised progressive denoising with unpaired CT images. Medical Image Analysis, 2021, 71, 102065.	7.0	15
309	A geometry-guided deep learning technique for CBCT reconstruction. Physics in Medicine and Biology, 2021, 66, 15LT01.	1.6	6
310	Dual-path deep learning reconstruction framework for propagation-based X-ray phase–contrast computed tomography with sparse-view projections. Optics Letters, 2021, 46, 3552.	1.7	3
311	Quantitative evaluation of deep convolutional neural network-based image denoising for low-dose computed tomography. Visual Computing for Industry, Biomedicine, and Art, 2021, 4, 21.	2.2	11
312	Images in Space and Time. ACM Computing Surveys, 2022, 54, 1-38.	16.1	7
313	Multi-Cycle-Consistent Adversarial Networks for Edge Denoising of Computed Tomography Images. ACM Journal on Emerging Technologies in Computing Systems, 2021, 17, 1-16.	1.8	0

#	Article	IF	CITATIONS
314	Radiation Dose Reduction in CT Torsion Measurement of the Lower Limb: Introduction of a New Ultra-Low Dose Protocol. Diagnostics, 2021, 11, 1209.	1.3	5
315	Weakly supervised pneumonia localization in chest xâ€rays using generative adversarial networks. Medical Physics, 2021, 48, 7154-7171.	1.6	O
316	Deep neural network for beam hardening artifacts removal in image reconstruction. Applied Intelligence, 2022, 52, 6037-6056.	3.3	5
317	Low-dose CT denoising using a Progressive Wasserstein generative adversarial network. Computers in Biology and Medicine, 2021, 135, 104625.	3.9	10
318	A novel complex-valued convolutional neural network for medical image denoising. Biomedical Signal Processing and Control, 2021, 69, 102859.	3.5	32
319	Low-Dose CT Image Denoising with Improving WGAN and Hybrid Loss Function. Computational and Mathematical Methods in Medicine, 2021, 2021, 1-14.	0.7	12
320	Correlation analysis of epicardial adipose tissue volume quantified by computed tomography images and coronary heart disease under optimized reconstruction algorithm. Pakistan Journal of Medical Sciences, 2021, 37, 1677-1681.	0.3	1
321	Noise2Context: Contextâ€assisted learning 3D thinâ€layer for lowâ€dose CT. Medical Physics, 2021, 48, 5794-5803.	1.6	12
322	Metal artifact reduction in 2D CT images with self-supervised cross-domain learning. Physics in Medicine and Biology, 2021, 66, 175003.	1.6	16
323	Deep Learning-Based Computed Tomography Perfusion Mapping (DL-CTPM) for Pulmonary CT-to-Perfusion Translation. International Journal of Radiation Oncology Biology Physics, 2021, 110, 1508-1518.	0.4	16
324	The integration of artificial intelligence in medical imaging practice: Perspectives of African radiographers. Radiography, 2021, 27, 861-866.	1.1	28
325	Making Radiomics More Reproducible across Scanner and Imaging Protocol Variations: A Review of Harmonization Methods. Journal of Personalized Medicine, 2021, 11, 842.	1.1	72
326	A Survey of Soft Computing Approaches in Biomedical Imaging. Journal of Healthcare Engineering, 2021, 2021, 1-15.	1.1	9
327	InfoGAN-MSF: a data augmentation approach for correlative bridge monitoring factors. Measurement Science and Technology, 2021, 32, 114008.	1.4	7
328	S-CCCapsule: Pneumonia detection in chest X-ray images using skip-connected convolutions and capsule neural network. Journal of Intelligent and Fuzzy Systems, 2021, 41, 757-781.	0.8	1
329	Paired-unpaired Unsupervised Attention Guided GAN with transfer learning for bidirectional brain MR-CT synthesis. Computers in Biology and Medicine, 2021, 136, 104763.	3.9	24
330	Realistic Lung Nodule Synthesis With Multi-Target Co-Guided Adversarial Mechanism. IEEE Transactions on Medical Imaging, 2021, 40, 2343-2353.	5.4	14
331	Defect detection in CT scans of cast aluminum parts: A machine vision perspective. Neurocomputing, 2021, 453, 85-96.	3.5	27

#	Article	IF	CITATIONS
332	Advances in deep learning for computed tomography denoising. World Journal of Clinical Cases, 2021, 9, 7614-7619.	0.3	4
333	When medical images meet generative adversarial network: recent development and research opportunities. Discover Artificial Intelligence, $2021,1,1$.	2.1	24
334	Noise Reduction for SD-OCT Using a Structure-Preserving Domain Transfer Approach. IEEE Journal of Biomedical and Health Informatics, 2021, 25, 3460-3472.	3.9	4
335	InNetGAN: Inception Network-Based Generative Adversarial Network for Denoising Low-Dose Computed Tomography. Journal of Healthcare Engineering, 2021, 2021, 1-20.	1.1	5
336	Computer auxiliary diagnosis technique of detecting cholangiocarcinoma based on medical imaging: A review. Computer Methods and Programs in Biomedicine, 2021, 208, 106265.	2.6	10
337	Learning a Deep CNN Denoising Approach Using Anatomical Prior Information Implemented With Attention Mechanism for Low-Dose CT Imaging on Clinical Patient Data From Multiple Anatomical Sites. IEEE Journal of Biomedical and Health Informatics, 2021, 25, 3416-3427.	3.9	23
338	Head Movement During Cerebral CT Perfusion Imaging of Acute Ischaemic Stroke: Characterisation and Correlation with Patient Baseline Features. European Journal of Radiology, 2021, 144, 109979.	1.2	2
339	Denoising proton therapy Monte Carlo dose distributions in multiple tumor sites: A comparative neural networks architecture study. Physica Medica, 2021, 89, 93-103.	0.4	7
340	Optimization of mask size for median-modified Wiener filter according to matrix size of computed tomography images. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 1010, 165508.	0.7	7
341	Accurate and robust sparseâ€view angle CT image reconstruction using deep learning and prior image constrained compressed sensing (DLâ€PICCS). Medical Physics, 2021, 48, 5765-5781.	1.6	15
342	Artifact removal in photoacoustic tomography with an unsupervised method. Biomedical Optics Express, 2021, 12, 6284.	1.5	10
343	Calculation of Apparent Diffusion Coefficients in Prostate Cancer Using Deep Learning Algorithms: A Pilot Study. Frontiers in Oncology, 2021, 11, 697721.	1.3	3
344	Artificial intelligence in medical imaging: implications for patient radiation safety. British Journal of Radiology, 2021, 94, 20210406.	1.0	8
345	Artificial Intelligence–based Computed Tomography Processing Framework for Surgical Telementoring of Congenital Heart Disease. ACM Journal on Emerging Technologies in Computing Systems, 2021, 17, 1-24.	1.8	6
346	Adversarial Neural Network Classifiers for COVID-19 Diagnosis in Ultrasound Images. Computers, Materials and Continua, 2022, 70, 1683-1697.	1.5	5
347	Artificial Intelligence in Radiation Therapy. IEEE Transactions on Radiation and Plasma Medical Sciences, 2022, 6, 158-181.	2.7	4
348	Deep Learning With Adaptive Hyper-Parameters for Low-Dose CT Image Reconstruction. IEEE Transactions on Computational Imaging, 2021, 7, 648-660.	2.6	15
349	Medical Image Generation Using Generative Adversarial Networks: A Review. Studies in Computational Intelligence, 2021, , 77-96.	0.7	59

#	Article	IF	CITATIONS
350	Relevance of Machine Learning to Cardiovascular Imaging. Advances in Medical Technologies and Clinical Practice Book Series, 2021, , 78-99.	0.3	0
352	Bearing Anomaly Detection Based on Generative Adversarial Network. Lecture Notes in Mechanical Engineering, 2021, , 207-215.	0.3	0
353	Recent Advancements in Medical Imaging: A Machine Learning Approach. Studies in Big Data, 2021, , 189-212.	0.8	1
354	Unified Supervised-Unsupervised (SUPER) Learning for X-Ray CT Image Reconstruction. IEEE Transactions on Medical Imaging, 2021, 40, 2986-3001.	5.4	7
355	Denoising the Optical Fiber Seismic Data by Using Convolutional Adversarial Network Based on Loss Balance. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59, 10544-10554.	2.7	51
356	Session Based Recommendations Using Char-Level Recurrent Neural Networks. Communications in Computer and Information Science, 2021, , 30-41.	0.4	1
357	Complex Conditional Generative Adversarial Nets for Multiple Objectives Detection in Aerial Images. Lecture Notes in Computer Science, 2018, , 671-683.	1.0	4
358	Deriving Lung Perfusion Directly from CT Image Using Deep Convolutional Neural Network: A Preliminary Study. Lecture Notes in Computer Science, 2019, , 102-109.	1.0	5
359	Medical Image Data Upscaling with Generative Adversarial Networks. Lecture Notes in Computer Science, 2020, , 739-749.	1.0	5
360	Frequency-Selective Learning for CT to MR Synthesis. Lecture Notes in Computer Science, 2020, , 101-109.	1.0	1
361	JBFnet - Low Dose CT Denoising by Trainable Joint Bilateral Filtering. Lecture Notes in Computer Science, 2020, , 506-515.	1.0	12
362	Graded Image Generation Using Stratified CycleGAN. Lecture Notes in Computer Science, 2020, 12262, 760-769.	1.0	3
363	Adversarial Training and Dilated Convolutions for Brain MRI Segmentation. Lecture Notes in Computer Science, 2017, , 56-64.	1.0	78
364	Simulation of Realistic Low Dose Fluoroscopic Images from their High Dose Counterparts. Informatik Aktuell, 2018, , 80-85.	0.4	4
366	Deep learning-based noise reduction algorithm using patch group technique in cadmium zinc telluride fusion imaging system: A Monte Carlo simulation study. Optik, 2020, 207, 164472.	1.4	3
367	Skin lesion segmentation via generative adversarial networks with dual discriminators. Medical Image Analysis, 2020, 64, 101716.	7.0	156
368	Application and Translation of Artificial Intelligence to Cardiovascular Imaging in Nuclear Medicine and Noncontrast CT. Seminars in Nuclear Medicine, 2020, 50, 357-366.	2.5	23
369	Deep Learning CT Image Reconstruction in Clinical Practice. RoFo Fortschritte Auf Dem Gebiet Der Rontgenstrahlen Und Der Bildgebenden Verfahren, 2021, 193, 252-261.	0.7	42

#	Article	IF	CITATIONS
370	Half2Half: deep neural network based CT image denoising without independent reference data. Physics in Medicine and Biology, 2020, 65, 215020.	1.6	32
371	Noise reduction with cross-tracer and cross-protocol deep transfer learning for low-dose PET. Physics in Medicine and Biology, 2020, 65, 185006.	1.6	26
372	Image denoising by transfer learning of generative adversarial network for dental CT. Biomedical Physics and Engineering Express, 2020, 6, 055024.	0.6	12
374	Comparison of partial least square regression, support vector machine, and deep-learning techniques for estimating soil salinity from hyperspectral data. Journal of Applied Remote Sensing, 2018, 12, 1.	0.6	26
375	Robust multimaterial decomposition of spectral CT using convolutional neural networks. Optical Engineering, 2019, 58, 1.	0.5	23
376	Compressive sensing ghost imaging object detection using generative adversarial networks. Optical Engineering, 2019, 58, 1.	0.5	10
377	SHIFT: speedy histopathological-to-immunofluorescent translation of whole slide images using conditional generative adversarial networks. , $2018,10581,$		25
378	Real-time image reconstruction for low-dose CT using deep convolutional generative adversarial networks (GANs). , 2018, , .		10
379	Chest x-ray generation and data augmentation for cardiovascular abnormality classification., 2018,,.		50
380	A deep learning-enabled iterative reconstruction of ultra-low-dose CT: use of synthetic sinogram-based noise simulation technique. , $2018, , .$		5
381	DVS image noise removal using K-SVD method. , 2018, , .		7
382	Comparison of deep learning approaches to low dose CT using low intensity and sparse view data. , 2019, , .		11
383	Combined low-dose simulation and deep learning for CT denoising: application in ultra-low-dose chest CT. , 2019, , .		15
384	Dual network architecture for few-view CT - trained on ImageNet data and transferred for medical imaging. , 2019, , .		9
385	Generative adversarial networks based regularized image reconstruction for PET., 2019,,.		7
386	Learned primal-dual reconstruction for dual energy computed tomography with reduced dose. , 2019, , .		4
387	Low-dose CT via deep CNN with skip connection and network-in-network. , 2019, , .		25
388	Deep learning based high-resolution reconstruction of trabecular bone microstructures from low-resolution CT scans using GAN-CIRCLE., 2020, 11317, .		26

#	Article	IF	CITATIONS
389	Deep learning based noise reduction method for automatic 3D segmentation of the anterior of lamina cribrosa in optical coherence tomography volumetric scans. Biomedical Optics Express, 2019, 10, 5832.	1.5	26
390	Deep learning improves contrast in low-fluence photoacoustic imaging. Biomedical Optics Express, 2020, 11, 3360.	1.5	61
391	TomoGAN: low-dose synchrotron x-ray tomography with generative adversarial networks: discussion. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2020, 37, 422.	0.8	79
392	Improved digital chest tomosynthesis image quality by use of a projection-based dual-energy virtual monochromatic convolutional neural network with super resolution. PLoS ONE, 2020, 15, e0244745.	1.1	6
393	Unsupervised Medical Image Translation Using Cycle-MedGAN., 2019,,.		57
394	Cross-Model Transformer Method for Medical Image Synthesis. Complexity, 2021, 2021, 1-7.	0.9	5
395	Computed Tomography Image Feature under Intelligent Algorithms in Diagnosing the Effect of Humanized Nursing on Neuroendocrine Hormones in Patients with Primary Liver Cancer. Journal of Healthcare Engineering, 2021 , 2021 , $1-11$.	1.1	1
396	Generative adversarial networks improve interior computed tomography angiography reconstruction. Biomedical Physics and Engineering Express, 2021, 7, 065041.	0.6	5
397	Feasibility evaluation of PET scan-time reduction for diagnosing amyloid- \hat{l}^2 levels in Alzheimer's disease patients using a deep-learning-based denoising algorithm. Computers in Biology and Medicine, 2021, 138, 104919.	3.9	8
398	Clinical Artificial Intelligence Applications. Radiologic Clinics of North America, 2021, 59, 1013-1026.	0.9	5
399	An Adjustable Dynamic Self-Adapting OSEM Approach to Low-Dose X-Ray CT Image Reconstruction. Lecture Notes in Computer Science, 2018, , 385-396.	1.0	1
400	Optimizing Breast Mass Segmentation Algorithms with Generative Adversarial Nets. Communications in Computer and Information Science, 2019, , 608-620.	0.4	1
401	Measuring CT Reconstruction Quality with Deep Convolutional Neural Networks. Lecture Notes in Computer Science, 2019, , 113-124.	1.0	6
402	Generative Low-Dose CT Image Denoising. Advances in Computer Vision and Pattern Recognition, 2019, , 277-297.	0.9	2
403	Enhanced Medical Image De-noising Using Auto Encoders and MLP. Communications in Computer and Information Science, 2019, , 3-15.	0.4	1
404	CNN and back-projection: limited angle ultrasound tomography for speed of sound estimation. , 2019, , .		3
405	A novel transfer learning framework for low-dose CT. , 2019, , .		8
406	Motion Deblur of QR Code Based on Generative Adversative Network. , 2019, , .		4

#	Article	IF	CITATIONS
407	Medical CT Image Super-Resolution via Cyclic Feature Concentration Network. Lecture Notes in Computer Science, 2020, , 3-13.	1.0	2
408	Synthesizing Cell Protein data for Human Protein Cell Profiling Using Dual Deep Generative Modeling. , 2020, , .		1
409	Artificial Intelligence for Monte Carlo Simulation in Medical Physics. Frontiers in Physics, 2021, 9, .	1.0	11
410	Chest Computed Tomography Images in Neonatal Bronchial Pneumonia under the Adaptive Statistical Iterative Reconstruction Algorithm. Journal of Healthcare Engineering, 2021, 2021, 1-11.	1.1	0
411	Development and multicenter validation of chest X-ray radiography interpretations based on natural language processing. Communications Medicine, 2021, 1, .	1.9	9
412	Robust learning-based x-ray image denoising—potential pitfalls, their analysis and solutions. Biomedical Physics and Engineering Express, 2022, 8, 035013.	0.6	1
414	Dilated Residual Convolutional Neural Networks for Low-Dose CT Image Denoising. , 2020, , .		4
415	EDCNN: Edge enhancement-based Densely Connected Network with Compound Loss for Low-Dose CT Denoising. , 2020, , .		35
416	Iterative PET image reconstruction using cascaded data consistency generative adversarial network. IET Image Processing, 2020, 14, 3989-3999.	1.4	3
417	Image translation for medical image generation: Ischemic stroke lesion segmentation. Biomedical Signal Processing and Control, 2022, 72, 103283.	3.5	13
420	Constructing a tissue-specific texture prior by machine learning from previous full-dose scan for Bayesian reconstruction of current ultralow-dose CT images. Journal of Medical Imaging, 2020, 7, 1.	0.8	4
421	Generative Adversarial Networks in Digital Pathology and Histopathological Image Processing: A Review. Journal of Pathology Informatics, 2021, 12, 43.	0.8	36
422	Artificial Intelligence in Cardiovascular Imaging. Methodist DeBakey Cardiovascular Journal, 2021, 16, 138.	0.5	22
425	Unpaired PET/CT image synthesis of liver region using CycleGAN. , 2020, , .		2
427	A Review on Generative Adversarial Networks used for Image Reconstruction in Medical imaging. , 2021, , .		0
428	Direct pixel to pixel principal strain mapping from tagging MRI using end to end deep convolutional neural network (DeepStrain). Scientific Reports, 2021, 11, 23021.	1.6	1
429	Image quality in liver CT: low-dose deep learning vs standard-dose model-based iterative reconstructions. European Radiology, 2022, 32, 2865-2874.	2.3	26
430	A Prediction of Disease Using Machine Learning Approach. EAI/Springer Innovations in Communication and Computing, 2022, , 207-215.	0.9	0

#	Article	IF	CITATIONS
431	Human Detection via Image Denoising for 5G-Enabled Intelligent Applications. Wireless Communications and Mobile Computing, 2021, 2021, 1-14.	0.8	0
432	DENOISING SWEPT SOURCE OPTICAL COHERENCE TOMOGRAPHY VOLUMETRIC SCANS USING A DEEP LEARNING MODEL. Retina, 2022, 42, 450-455.	1.0	1
433	DU-GAN: Generative Adversarial Networks With Dual-Domain U-Net-Based Discriminators for Low-Dose CT Denoising. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-12.	2.4	42
434	Reconstruction of threeâ€dimensional tomographic patient models for radiation dose modulation in CT from two scout views using deep learning. Medical Physics, 2022, 49, 901-916.	1.6	6
435	Vessel-GAN: Angiographic reconstructions from myocardial CT perfusion with explainable generative adversarial networks. Future Generation Computer Systems, 2022, 130, 128-139.	4.9	14
436	Supervised and Unsupervised Deep Learning Methods for Low-Dose CT Image Denoising. , 2020, , .		0
437	MirGAN: Medical Image Reconstruction using Generative Adversarial Networks. , 2020, , .		2
438	Unsupervised Hybrid Deep Generative Models for Photovoltaic Synthetic Data Generation., 2021,,.		1
439	Predicting Fruit Fly Behaviour using TOLC device and DeepLabCut., 2021,,.		0
440	The Gated Recurrent Conditional Generative Adversarial Network (GRC-GAN): application to denoising of low-dose CT images. , 2021, , .		4
441	Attention-Based Multi-Scale Generative Adversarial Network for synthesizing contrast-enhanced MRI. , 2021, 2021, 3650-3653.		0
442	A novel simulationâ€driven reconstruction approach for xâ€ray computed tomography. Medical Physics, 2022, 49, 2245-2258.	1.6	1
444	Artificial intelligence for nuclear medicine in oncology. Annals of Nuclear Medicine, 2022, 36, 123-132.	1.2	12
445	Highâ€fidelity fast volumetric brain MRI using synergistic waveâ€controlled aliasing in parallel imaging and a hybrid denoising generative adversarial network (HDnGAN). Medical Physics, 2022, 49, 1000-1014.	1.6	9
446	Performance enhancement of a scanning electron microscope using a deep convolutional neural network. Measurement Science and Technology, 2022, 33, 065403.	1.4	0
447	A review on Al in PET imaging. Annals of Nuclear Medicine, 2022, 36, 133-143.	1.2	29
448	Denoising of pediatric low dose abdominal CT using deep learning based algorithm. PLoS ONE, 2022, 17, e0260369.	1.1	4
449	Artificial Intelligence in Diagnostic Radiology: Where Do We Stand, Challenges, and Opportunities. Journal of Computer Assisted Tomography, 2022, 46, 78-90.	0.5	14

#	Article	IF	CITATIONS
450	Radiomics in Cardiovascular Disease Imaging: from Pixels to the Heart of the Problem. Current Cardiovascular Imaging Reports, 2022, 15, 11-21.	0.4	12
451	A two-stage deep generative adversarial quality enhancement network for real-world 3D CT images. Expert Systems With Applications, 2022, 193, 116440.	4.4	6
452	Iterative Reconstruction for Low-Dose CT Using Deep Gradient Priors of Generative Model. IEEE Transactions on Radiation and Plasma Medical Sciences, 2022, 6, 741-754.	2.7	3
453	Deep Cascade Residual Networks (DCRNs): Optimizing an Encoder–Decoder Convolutional Neural Network for Low-Dose CT Imaging. IEEE Transactions on Radiation and Plasma Medical Sciences, 2022, 6, 829-840.	2.7	17
454	Solving Inverse Problems With Deep Neural Networks – Robustness Included?. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45, 1119-1134.	9.7	33
455	DeepUCT: Complex cascaded deep learning network for improved ultrasound tomography. Physics in Medicine and Biology, 2022, 67, 065008.	1.6	12
456	Posterior temperature optimized Bayesian models for inverse problems in medical imaging. Medical Image Analysis, 2022, 78, 102382.	7.0	4
457	Synthetic Time of Flight Magnetic Resonance Angiography Generation Model Based on <scp>Cycleâ€Consistent</scp> Generative Adversarial Network Using <scp>PETRAâ€MRA</scp> in the Patients With Treated Intracranial Aneurysm. Journal of Magnetic Resonance Imaging, 2022, 56, 1513-1528.	1.9	5
458	Unpaired-Paired Learning for Shading Correction in Cone-Beam Computed Tomography. IEEE Access, 2022, 10, 26140-26148.	2.6	1
459	Research Highlight: Use of Generative Images Created with Artificial Intelligence for Brain Tumor Imaging. Korean Journal of Radiology, 2022, 23, 500.	1.5	5
460	Novel Computer Tomography Image Enhancement Deep Neural Networks for Asphalt Mixtures. SSRN Electronic Journal, 0, , .	0.4	0
461	Artificial intelligence in imaging of coronary artery disease: current applications and future perspective. Chinese Journal of Academic Radiology, 2022, 5, 10-19.	0.4	0
462	Towards Accurate Skin Lesion Classification across All Skin Categories Using a PCNN Fusion-Based Data Augmentation Approach. Computers, 2022, 11, 44.	2.1	8
463	Cherenkov-excited luminescence scanned tomography reconstruction based on Unet. , 2022, , .		0
464	ADMM-SVNet: An ADMM-Based Sparse-View CT Reconstruction Network. Photonics, 2022, 9, 186.	0.9	2
465	Cycle-consistent learning-based hybrid iterative reconstruction for whole-body PET imaging. Physics in Medicine and Biology, 2022, 67, 085016.	1.6	3
466	Brain stroke lesion segmentation using consistent perception generative adversarial network. Neural Computing and Applications, 2022, 34, 8657-8669.	3.2	34
467	Training low dose CT denoising network without high quality reference data. Physics in Medicine and Biology, 2022, 67, 084002.	1.6	10

#	Article	IF	CITATIONS
468	Highâ€resolution knee plain radiography image synthesis using style generative adversarial network adaptive discriminator augmentation. Journal of Orthopaedic Research, 2023, 41, 84-93.	1.2	5
469	Noise suppression for DAS seismic data with attention-aided generative adversarial network. , 2022, , .		1
470	The Role of Generative Adversarial Network in Medical Image Analysis: An In-depth Survey. ACM Computing Surveys, 2023, 55, 1-36.	16.1	22
471	Digital Art Pattern Design Based on Visual Material Colouring Intelligent Programming System. Mathematical Problems in Engineering, 2022, 2022, 1-10.	0.6	3
472	Intelligent Medical IoT-Enabled Automated Microscopic Image Diagnosis of Acute Blood Cancers. Sensors, 2022, 22, 2348.	2.1	16
473	End-to-end deep learning for interior tomography with low-dose x-ray CT. Physics in Medicine and Biology, 2022, 67, 115001.	1.6	8
474	Hyperspectral Image Denoising via Adversarial Learning. Remote Sensing, 2022, 14, 1790.	1.8	13
475	3D residual convolutional neural network for low dose CT denoising. , 2022, , .		0
476	Progressive GANomaly: anomaly detection with progressively growing GANs., 2022,,.		1
477	Research on fault diagnosis of gas turbine rotor based on adversarial discriminative domain adaption transfer learning. Measurement: Journal of the International Measurement Confederation, 2022, 196, 11174.	2.5	24
478	Liver, kidney and spleen segmentation from CT scans and MRI with deep learning: A survey. Neurocomputing, 2022, 490, 30-53.	3.5	24
479	Transmission reconstruction algorithm by combining maximum-likelihood expectation maximization and a convolutional neural network for radioactive drum characterization. Applied Radiation and Isotopes, 2022, 184, 110172.	0.7	3
480	Improved heart disease detection from ECG signal using deep learning based ensemble model. Sustainable Computing: Informatics and Systems, 2022, 35, 100732.	1.6	7
481	Removal of Noise from ECG Signals using Residual Generative Adversarial Network., 2021,,.		4
482	Conditional Generative Adversarial Networks for low-dose CT image denoising aiming at preservation of critical image content., 2021, 2021, 2682-2687.		1
483	SimilarityGAN: Using Similarity to Loosen Structural Constraints in Generative Adversarial Models. , 2021, , .		0
484	CT Metal Artifact Correction Assisted by the Deep Learning-based Metal Segmentation on the Projection Domain. , 2021, , .		2
485	Implementing Machine Learning in Interventional Cardiology: The Benefits Are Worth the Trouble. Frontiers in Cardiovascular Medicine, 2021, 8, 711401.	1.1	12

#	Article	IF	Citations
486	Review and Prospect: Artificial Intelligence in Advanced Medical Imaging. Frontiers in Radiology, 2021, $1, \dots$	1.2	37
487	"One-Shot―Reduction of Additive Artifacts in Medical Images. , 2021, , .		0
488	News Video Classification Model Based on ResNet-2 and Transfer Learning. Security and Communication Networks, 2021, 2021, 1-9.	1.0	2
489	Al-CHD. Communications of the ACM, 2021, 64, 66-74.	3.3	7
490	Medical image Denoising using Scaled Dual Convolutional Neural network (SD-CNN)., 2021,,.		1
491	Synthetic-to-real: instance segmentation of clinical cluster cells with unlabeled synthetic training. Bioinformatics, 2022, 38, i53-i59.	1.8	0
492	Hybrid System: PET/CT., 2022,,.		0
493	Artificial Intelligence (Enhanced Super-Resolution Generative Adversarial Network) for Calcium Deblooming in Coronary Computed Tomography Angiography: A Feasibility Study. Diagnostics, 2022, 12, 991.	1.3	16
494	Neuroimaging in the Era of Artificial Intelligence: Current Applications. , 2022, , .		5
495	Enhancement of Partially Coherent Diffractive Images Using Generative Adversarial Network. AI, 2022, 3, 274-284.	2.1	2
496	A selective kernel-based cycle-consistent generative adversarial network for unpaired low-dose CT denoising. Precision Clinical Medicine, 0, , .	1.3	7
497	A Hemolysis Image Detection Method Based on GAN-CNN-ELM. Computational and Mathematical Methods in Medicine, 2022, 2022, 1-12.	0.7	3
499	Research on an English translation method based on an improved transformer model. Journal of Intelligent Systems, 2022, 31, 532-540.	1.2	0
500	Artifact Reduction for Sparse-View CT Using Deep Learning With Band Patch. IEEE Transactions on Radiation and Plasma Medical Sciences, 2022, 6, 859-873.	2.7	11
505	Image Processing for Low-Dose CT via Novel Anisotropic Fourth-Order Diffusion Model. IEEE Access, 2022, 10, 50114-50124.	2.6	3
506	Low-Dose Computed Tomography Reconstruction without Learning Data: Performance Improvement by Exploiting Joint Correlation Between Adjacent Slices. , 2022, , .		0
507	Research on the Generation of Creative Animation Driven by Deep Learning Model. Scientific Programming, 2022, 2022, 1-11.	0.5	0
508	Unsupervised despeckling of optical coherence tomography images by combining cross-scale CNN with an intra-patch and inter-patch based transformer. Optics Express, 2022, 30, 18800.	1.7	5

#	Article	IF	CITATIONS
509	Precisely translating computed tomography diagnosis accuracy into therapeutic intervention by a carbon-iodine conjugated polymer. Nature Communications, 2022, 13, 2625.	5.8	9
510	Dual gating myocardial perfusion SPECT denoising using a conditional generative adversarial network. Medical Physics, 2022, 49, 5093-5106.	1.6	6
511	MRCON-Net: Multiscale reweighted convolutional coding neural network for low-dose CT imaging. Computer Methods and Programs in Biomedicine, 2022, 221, 106851.	2.6	6
512	Masked Joint Bilateral Filtering via Deep Image Prior for Digital X-Ray Image Denoising. IEEE Journal of Biomedical and Health Informatics, 2022, 26, 4008-4019.	3.9	5
513	Generative models for reproducible coronary calcium scoring. Journal of Medical Imaging, 2022, 9, .	0.8	3
514	WBC image classification and generative models based on convolutional neural network. BMC Medical Imaging, 2022, 22, .	1.4	20
515	Patch-based artifact reduction for three-dimensional volume projection data of sparse-view micro-computed tomography. Radiological Physics and Technology, 2022, 15, 206-223.	1.0	2
516	Optimal Compact Network for Micro-Expression Analysis System. Sensors, 2022, 22, 4011.	2.1	2
517	A novel robotic 6DOF pose measurement strategy for large-size casts based on stereo vision. Assembly Automation, 2022, 42, 458-473.	1.0	3
518	A study on automatic correction of English grammar errors based on deep learning. Journal of Intelligent Systems, 2022, 31, 672-680.	1.2	3
519	Medical image translation using an edge-guided generative adversarial network with global-to-local feature fusion. Journal of Biomedical Research, 2022, 36, 1 .	0.7	0
520	Artificial Intelligence in Coronary CT Angiography: Current Status and Future Prospects. Frontiers in Cardiovascular Medicine, 0, 9, .	1.1	9
521	Compression and Decompression of Internet Learning Images Based on GABTC. International Journal of Advanced Research in Science, Communication and Technology, 0, , 779-783.	0.0	0
522	Artifact-Assisted multi-level and multi-scale feature fusion attention network for low-dose CT denoising. Journal of X-Ray Science and Technology, 2022, 30, 875-889.	0.7	3
523	Generative adversarial networks for medical image synthesis., 2022,, 105-128.		3
524	Validation and evaluation metrics for medical and biomedical image synthesis., 2022,, 573-600.		2
525	Medical image denoising. , 2022, , 255-278.		1
526	Dance Art Scene Classification Based on Convolutional Neural Networks. Scientific Programming, 2022, 2022, 1-11.	0.5	1

#	Article	IF	CITATIONS
527	A minimum SNR criterion for computed tomography object detection in the projection domain. Medical Physics, 2022, 49, 4988-4998.	1.6	5
528	Multimodal image translation via deep learning inference model trained in video domain. BMC Medical Imaging, 2022, 22, .	1.4	0
529	Automated cardiovascular risk categorization through Al-driven coronary calcium quantification in cardiac PET acquired attenuation correction CT. Journal of Nuclear Cardiology, 2023, 30, 955-969.	1.4	2
530	Self-supervised inter- and intra-slice correlation learning for low-dose CT image restoration without ground truth. Expert Systems With Applications, 2022, 209, 118072.	4.4	6
531	Artificial Intelligence for Radiation Dose Optimization in Pediatric Radiology: A Systematic Review. Children, 2022, 9, 1044.	0.6	17
532	Reconstruction of tomographic gamma scanning transmission image from sparse projections based on convolutional neural networks. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2022, 1039, 167110.	0.7	3
533	Great debates in cardiac computed tomography: OPINION: $\hat{a} \in \infty$ Artificial intelligence and the future of cardiovascular CT $\hat{a} \in \infty$ Managing expectation and challenging hype $\hat{a} \in \infty$ Journal of Cardiovascular Computed Tomography, 2023, 17, 11-17.	0.7	6
534	Virtual contrast enhancement for CT scans of abdomen and pelvis. Computerized Medical Imaging and Graphics, 2022, 100, 102094.	3.5	1
535	A novel retinal image generation model with the preservation of structural similarity and high resolution. Biomedical Signal Processing and Control, 2022, 78, 104004.	3.5	2
536	Convolution Neural Network based Image Denoising: A Review. , 2022, , .		0
537	Proposed methodology for Early Detection of Lung Cancer with low-dose CT Scan using Machine Learning. , 2022, , .		1
538	How to increase and balance current DBT datasets via an Evolutionary GAN: preliminary results. , 2022, , .		0
539	Computational Medical Image Reconstruction Techniques: A Comprehensive Review. Archives of Computational Methods in Engineering, 2022, 29, 5635-5662.	6.0	1
540	Great debates in cardiac computed tomography: OPINION: "Artificial intelligence is key to the future of CCTA – The great hope― Journal of Cardiovascular Computed Tomography, 2023, 17, 18-21.	0.7	4
541	RAD-UNet: a Residual, Attention-Based, Dense UNet for CT Sparse Reconstruction. Journal of Digital Imaging, 2022, 35, 1748-1758.	1.6	3
542	A dataset-free deep learning method for low-dose CT image reconstruction. Inverse Problems, 0, , .	1.0	1
543	Deep Convolutional Generative Adversarial Networks to Enhance Artificial Intelligence in Healthcare: A Skin Cancer Application. Sensors, 2022, 22, 6145.	2.1	9
544	Low-Dose CT Image Denoising Based on Improved DD-Net and Local Filtered Mechanism. Computational Intelligence and Neuroscience, 2022, 2022, 1-18.	1.1	2

#	Article	IF	CITATIONS
545	A review on self-adaptation approaches and techniques in medical image denoising algorithms. Multimedia Tools and Applications, 2022, 81, 37591-37626.	2.6	7
546	Unpaired low-dose CT denoising via an improved cycle-consistent adversarial network with attention ensemble. Visual Computer, 2023, 39, 4423-4444.	2.5	2
547	A comprehensive survey on deep learning techniques in CT image quality improvement. Medical and Biological Engineering and Computing, 2022, 60, 2757-2770.	1.6	6
548	Dedicated convolutional neural network for noise reduction in ultra-high-resolution photon-counting detector computed tomography. Physics in Medicine and Biology, 2022, 67, 175014.	1.6	13
549	Finetuned Super-Resolution Generative Adversarial Network (Artificial Intelligence) Model for Calcium Deblooming in Coronary Computed Tomography Angiography. Journal of Personalized Medicine, 2022, 12, 1354.	1.1	10
550	Attention-based generative adversarial network in medical imaging: A narrative review. Computers in Biology and Medicine, 2022, 149, 105948.	3.9	18
551	Deep-Learning-Based Ultrasound Sound-Speed Tomography Reconstruction with Tikhonov Pseudo-Inverse Priori. Ultrasound in Medicine and Biology, 2022, 48, 2079-2094.	0.7	3
554	Novel Computer Tomography image enhancement deep neural networks for asphalt mixtures. Construction and Building Materials, 2022, 352, 129067.	3.2	5
555	DFSNE-Net: Deviant feature sensitive noise estimate network for low-dose CT denoising. Computers in Biology and Medicine, 2022, 149, 106061.	3.9	7
556	CT-Net: Cascaded T-shape network using spectral redundancy for dual-energy CT limited-angle reconstruction. Biomedical Signal Processing and Control, 2023, 79, 104072.	3.5	2
557	UGAN-2G:An Unsupervised Target Image Remodeling Enhancement Network. SSRN Electronic Journal, 0, ,	0.4	0
558	A Classification-Aware HSI Denoising Model With Neural Adversarial Network. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 1-5.	1.4	0
559	DDPTransformer: Dual-Domain With Parallel Transformer Network for Sparse View CT Image Reconstruction. IEEE Transactions on Computational Imaging, 2022, 8, 1101-1116.	2.6	8
560	Clinical applications of deep learning in neurology and its enhancements with future directions. , 2023, , 145-158.		0
561	Edge feature extraction-based dual CNN for LDCT denoising. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2022, 39, 1929.	0.8	2
562	Wavelet subband-specific learning for low-dose computed tomography denoising. PLoS ONE, 2022, 17, e0274308.	1.1	5
563	A comparative experimental analysis and deep evaluation practices on human bone fracture detection using xâ€ray images. Concurrency Computation Practice and Experience, 2022, 34, .	1.4	0
564	Artificial Intelligence in Spinal Imaging: Current Status and Future Directions. International Journal of Environmental Research and Public Health, 2022, 19, 11708.	1.2	9

#	Article	IF	CITATIONS
565	ERA-WGAT: Edge-enhanced residual autoencoder with a window-based graph attention convolutional network for low-dose CT denoising. Biomedical Optics Express, 2022, 13, 5775.	1.5	2
566	Generation of ¹⁸ F-FDG PET standard scan images from short scans using cycle-consistent generative adversarial network. Physics in Medicine and Biology, 2022, 67, 215005.	1.6	1
567	Image Recovery from Synthetic Noise Artifacts in CT Scans Using Modified U-Net. Sensors, 2022, 22, 7031.	2.1	5
568	Linearized Analysis of Noise and Resolution for DL-Based Image Generation. IEEE Transactions on Medical Imaging, 2023, 42, 647-660.	5.4	0
569	MultiGAN: Multi-domain Image Translation fromÂOCT toÂOCTA. Lecture Notes in Computer Science, 2022, , 336-347.	1.0	1
570	Usage of Auxiliary Systems and Artificial Intelligence in Home-Based Rehabilitation. Advances in Medical Technologies and Clinical Practice Book Series, 2022, , 163-196.	0.3	0
571	A Noise Preserving Sharpening Filter for CT Image Enhancement. , 2022, , .		0
572	Self-trained deep convolutional neural network for noise reduction in CT., 2022, , .		1
573	Virtual and real-world implementation of deep-learning-based image denoising model on projection domain in digital tomosynthesis and cone-beam computed tomography data. Biomedical Physics and Engineering Express, 2022, 8, 065021.	0.6	2
574	Brain PET and Cerebrovascular Disease. PET Clinics, 2023, 18, 115-122.	1.5	1
575	Segmentation-guided Denoising Network for Low-dose CT Imaging. Computer Methods and Programs in Biomedicine, 2022, 227, 107199.	2.6	7
576	SCRDN: Residual dense network with self-calibrated convolutions for low dose CT image denoising. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2023, 1045, 167625.	0.7	4
577	DenoiseNet: Deep Generator and Discriminator Learning Network With Self-Attention Applied to Ocean Data. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-12.	2.7	2
578	Systematic Review of Advanced Al Methods for Improving Healthcare Data Quality in Post COVID-19 Era. IEEE Reviews in Biomedical Engineering, 2023, 16, 53-69.	13.1	8
579	Low-Dose CT Denoising via Sinogram Inner-Structure Transformer. IEEE Transactions on Medical Imaging, 2023, 42, 910-921.	5.4	15
580	LEARN++: Recurrent Dual-Domain Reconstruction Network for Compressed Sensing CT. IEEE Transactions on Radiation and Plasma Medical Sciences, 2023, 7, 132-142.	2.7	13
581	PIE-ARNet: Prior Image Enhanced Artifact Removal Network for Limited-Angle DECT. IEEE Transactions on Instrumentation and Measurement, 2023, 72, 1-12.	2.4	4
582	Image denoising in the deep learning era. Artificial Intelligence Review, 2023, 56, 5929-5974.	9.7	11

#	Article	IF	CITATIONS
583	Clinician's guide to trustworthy and responsible artificial intelligence in cardiovascular imaging. Frontiers in Cardiovascular Medicine, 0, 9, .	1.1	5
585	Unsupervised Domain Adaptation for Low-Dose Computed Tomography Denoising. IEEE Access, 2022, 10, 126580-126592.	2.6	2
586	X-ray CT image denoising with MINF: A modularized iterative network framework for data from multiple dose levels. Computers in Biology and Medicine, 2023, 152, 106419.	3.9	3
587	Motion artifact correction in fetal MRI based on a Generative Adversarial network method. Biomedical Signal Processing and Control, 2023, 81, 104484.	3.5	3
588	MM-Net: Multiframe and Multimask-Based Unsupervised Deep Denoising for Low-Dose Computed Tomography. IEEE Transactions on Radiation and Plasma Medical Sciences, 2023, 7, 296-306.	2.7	2
589	LanePainter: Lane Marks Enhancement via Generative Adversarial Network., 2022,,.		3
590	Efficient Cell Labelling for Gram Stain WSIs. , 2022, , .		0
591	Relevance of Machine Learning to Cardiovascular Imaging. , 2022, , 589-605.		0
592	Computed Tomography of the Spine. Clinical Neuroradiology, 2023, 33, 271-291.	1.0	4
593	Metal artifact reduction in kV CT images throughout two-step sequential deep convolutional neural networks by combining multi-modal imaging (MARTIAN). Scientific Reports, 2022, 12, .	1.6	1
594	Totalâ€body lowâ€dose CT image denoising using a prior knowledge transfer technique with a contrastive regularization mechanism. Medical Physics, 0, , .	1.6	0
595	SIT-SR 3D: Self-supervised slice interpolation via transfer learning for 3D volume super-resolution. Pattern Recognition Letters, 2023, 166, 97-104.	2.6	1
596	Role and progress of artificial intelligence in radiodiagnosing vascular calcification: a narrative review. Annals of Translational Medicine, 2023, 11, 131-131.	0.7	1
597	An application of deep dual convolutional neural network for enhanced medical image denoising. Medical and Biological Engineering and Computing, 2023, 61, 991-1004.	1.6	6
598	3D-MedTranCSGAN: 3D Medical Image Transformation using CSGAN. Computers in Biology and Medicine, 2023, 153, 106541.	3.9	2
599	Color Structured Light Stripe Edge Detection Method Based on Generative Adversarial Networks. Applied Sciences (Switzerland), 2023, 13, 198.	1.3	1
600	3D MRI Cardiac Segmentation Under Respiratory Motion Artifacts. Lecture Notes in Computer Science, 2022, , 457-465.	1.0	0
601	Reconstruction: unsupervised artifact reduction. , 2023, , 169-197.		0

#	Article	IF	Citations
602	An Evaluated PMCHWT Solution of EM Scattering for Mutimedium Targets With Variant Permittivities. IEEE Antennas and Wireless Propagation Letters, 2023, 22, 1296-1300.	2.4	1
603	Assessing the Ability of Generative Adversarial Networks to Learn Canonical Medical Image Statistics. IEEE Transactions on Medical Imaging, 2023, 42, 1799-1808.	5.4	8
604	Reconstruction: supervised artifact reduction., 2023,, 137-167.		0
605	Comparison of Chest Radiograph Captions Based on Natural Language Processing vs Completed by Radiologists. JAMA Network Open, 2023, 6, e2255113.	2.8	5
606	CyTran: A cycle-consistent transformer with multi-level consistency for non-contrast to contrast CT translation. Neurocomputing, 2023, 538, 126211.	3.5	7
607	From micro- to nano- and time-resolved x-ray computed tomography: Bio-based applications, synchrotron capabilities, and data-driven processing. Applied Physics Reviews, 2023, 10, .	5.5	3
608	Dynamic-Pix2Pix: Medical image segmentation by injecting noise to cGAN for modeling input and target domain joint distributions with limited training data. Biomedical Signal Processing and Control, 2023, 85, 104877.	3.5	2
609	Ultra-low Dose CT Image Denoising based on Conditional Denoising Diffusion Probabilistic model. , 2022, , .		1
610	United multi-task learning for abdominal contrast-enhanced CT synthesis through joint deformable registration. Computer Methods and Programs in Biomedicine, 2023, 231, 107391.	2.6	0
611	A generative adversarial network with "zero-shot―learning for positron image denoising. Scientific Reports, 2023, 13, .	1.6	2
612	Deep Learning Image Reconstruction for CT: Technical Principles and Clinical Prospects. Radiology, 2023, 306, .	3.6	41
613	Technological Advancements and Elucidation Gadgets for Healthcare Applications: An Exhaustive Methodological Review-Part-I (AI, Big Data, Block Chain, Open-Source Technologies, and Cloud) Tj ETQq1 1 0.78	343 1: 8rgB1	「 Œverlock [(
614	A serial attention moduleâ€based deep convolutional neural network for mixed Gaussianâ€impulse removal. IET Image Processing, 0, , .	1.4	3
615	Region-of-interest Attentive Heteromodal Variational Encoder-Decoder forÂSegmentation withÂMissing Modalities. Lecture Notes in Computer Science, 2023, , 132-148.	1.0	1
616	Unpaired lowâ€dose computed tomography image denoising using a progressive cyclical convolutional neural network. Medical Physics, 2024, 51, 1289-1312.	1.6	2
617	Computed Tomography of the Head. Clinical Neuroradiology, 2023, 33, 591-610.	1.0	3
618	Automated identification of myocardial perfusion defects in dynamic cardiac computed tomography using deep learning. Physica Medica, 2023, 107, 102555.	0.4	1
619	MDST: multi-domain sparse-view CT reconstruction based on convolution and swin transformer. Physics in Medicine and Biology, 2023, 68, 095019.	1.6	4

#	Article	IF	CITATIONS
620	Truncated total variation in fractional B-spline wavelet transform for micro-CT image denoising. Journal of X-Ray Science and Technology, 2023, , 1-18.	0.7	0
621	Understanding Difficulty-Based Sample Weighting withÂaÂUniversal Difficulty Measure. Lecture Notes in Computer Science, 2023, , 68-84.	1.0	O
622	COVID-19 disease identification network based on weakly supervised feature selection. Mathematical Biosciences and Engineering, 2023, 20, 9327-9348.	1.0	0
623	Low-dose imaging denoising with one pair of noisy images. Optics Express, 2023, 31, 14159.	1.7	1
624	Fan beam CT image synthesis from cone beam CT image using nested residual UNet based conditional generative adversarial network. Physical and Engineering Sciences in Medicine, 0, , .	1.3	0
625	Applications of Artificial Intelligence in the Radiology Roundtrip: Process Streamlining, Workflow Optimization, and Beyond. Seminars in Roentgenology, 2023, 58, 158-169.	0.2	9
626	Radiobiology and Radiation Protection. , 2023, , 3-18.		0
627	Multi-Scale Feature Fusion Network for Low-Dose CT Denoising. Journal of Digital Imaging, 2023, 36, 1808-1825.	1.6	2
628	Neural Network Performance Evaluation of Simulated and Genuine Head-and-Neck Computed Tomography Images to Reduce Metal Artifacts. Journal of Medical Signals and Sensors, 2022, 12, 269.	0.5	1
629	Low-Dose CT Image Reconstruction using Vector Quantized Convolutional Autoencoder with Perceptual Loss. Sadhana - Academy Proceedings in Engineering Sciences, 2023, 48, .	0.8	1
630	Automated Identification for High Voltage Isolation Switch via Generative Adversarial Network. Lecture Notes in Electrical Engineering, 2023, , 60-67.	0.3	0
631	Dose reduction and image enhancement in micro T using deep learning. Medical Physics, 2023, 50, 5643-5656.	1.6	4
632	Simultaneous spatial and temporal regularization in lowâ€dose dynamic contrastâ€enhanced CT cerebral perfusion studies. Journal of Applied Clinical Medical Physics, 2023, 24, .	0.8	0
633	Low Dose CT Image Denoising Using Efficient Transformer withÂSimpleGate Mechanism. Lecture Notes in Computer Science, 2023, , 556-566.	1.0	1
634	Twinned Residual Auto-Encoder (TRAE)—A new DL architecture for denoising super-resolution and task-aware feature learning from COVID-19 CT images. Expert Systems With Applications, 2023, 225, 120104.	4.4	1
635	A GAN-based method for 3D lung tumor reconstruction boosted by a knowledge transfer approach. Multimedia Tools and Applications, 2023, 82, 44359-44385.	2.6	2
636	Noise-resilient deep learning for integrated circuit tomography. Optics Express, 2023, 31, 15355.	1.7	1
637	Machine learning based prediction of melt pool morphology in a laser-based powder bed fusion additive manufacturing process. International Journal of Production Research, 2024, 62, 1803-1817.	4.9	2

#	ARTICLE	IF	Citations
638	Generative adversarial network with radiomic feature reproducibility analysis for computed tomography denoising. Computers in Biology and Medicine, 2023, 159, 106931.	3.9	2
639	Selfâ€supervised denoising of projection data for lowâ€dose coneâ€beam CT. Medical Physics, 2023, 50, 6319-6333.	1.6	2
644	Measurement and Quantification. , 2023, , 57-84.		0
672	Anomaly Detection in Medical Time Series with Generative Adversarial Networks: A Selective Review. Artificial Intelligence, 0, , .	2.0	1
673	Optimal Design of Color Laparoscopic Super-Resolution Image Quality Based on Generative Adversarial Networks., 2023,,.		0
674	The Significance of IoT and Deep Learning in Activity Recognition. Studies in Computational Intelligence, 2023, , 311-329.	0.7	2
677	Sparse-View Medical Tomosynthesis via Mixed Scale Dense Convolutional Framelet Networks. , 2023, , .		0
678	Quantitative Biomarkers Reproducibility Using Generative Adversarial Approaches in Reduced to Conventional Dose CT., 2023,,.		O
686	Solving Low-Dose CT Reconstruction viaÂGAN withÂLocal Coherence. Lecture Notes in Computer Science, 2023, , 524-534.	1.0	0
687	Topology-Preserving Computed Tomography Super-Resolution Based onÂDual-Stream Diffusion Model. Lecture Notes in Computer Science, 2023, , 260-270.	1.0	O
688	CTFlow: Mitigating Effects of Computed Tomography Acquisition and Reconstruction with Normalizing Flows. Lecture Notes in Computer Science, 2023, , 413-422.	1.0	0
692	The Deep Steerable Convolutional Framelet Network for Suppressing Directional Artifacts in X-ray Tomosynthesis., 2023,,.		O
694	Geometric Transformations-Based Medical Image Augmentation. , 2023, , 133-141.		0
704	BliMSR: Blind Degradation Modelling forÂGenerating High-Resolution Medical Images. Lecture Notes in Computer Science, 2024, , 64-78.	1.0	O
710	Advances in Cardiovascular MRI in Heart Failure. , 2023, , 591-597.		0
713	Denoising of Fundus Images Using Feed-Forward Convolutional Neural Networks. , 2023, , .		1
720	Deep learning for medical image reconstruction. , 2024, , 247-278.		0
722	A survey on bone fracture detection methods using image processing and artificial intelligence (AI) approaches. AIP Conference Proceedings, 2024, , .	0.3	O

#	ARTICLE	IF	CITATIONS
724	Manipulating Medical Image Translation with Manifold Disentanglement., 2023,,.		0
725	MoMSGAN: Mode Collapse based Degradation Agnostic Multi-Scale Super-Resolution of Medical Images. , 2023, , .		0
730	Speckle Suppression Based on Contextual ConvNeXt Network. Lecture Notes in Electrical Engineering, 2024, , 145-153.	0.3	0