Metal–Organic Frameworks for Heterogeneous Basic

Chemical Reviews 117, 8129-8176 DOI: 10.1021/acs.chemrev.7b00091

Citation Report

CITATION	

#	Article	IF	CITATIONS
1	Highly Effective Carbon Fixation via Catalytic Conversion of CO ₂ by an Acylamide-Containing Metal–Organic Framework. Chemistry of Materials, 2017, 29, 9256-9261.	3.2	116
2	Highly shape- and regio-selective peroxy–trifluoromethylation of styrene by metal–organic framework Cu ₃ (BTC) ₂ . Catalysis Science and Technology, 2017, 7, 5872-5881.	2.1	17
3	A cluster-based mesoporous Ti-MOF with sodalite supercages. Chemical Communications, 2017, 53, 11670-11673.	2.2	74
4	Structure―and Temperatureâ€Dependent Luminescence Properties of Threefold Interpenetrated Networks: Coordination Polymers Based on Dinuclear Gridlike Silver(I) Units. European Journal of Inorganic Chemistry, 2017, 2017, 5127-5133.	1.0	13
5	A porous copper–organic framework with intersecting channels and gas adsorption properties. Dalton Transactions, 2017, 46, 13952-13956.	1.6	11
6	New lanthanide(<scp>iii</scp>) coordination polymers: synthesis, structural features, and catalytic activity in CO ₂ fixation. Dalton Transactions, 2017, 46, 16426-16431.	1.6	28
7	Two-fold interpenetrating btc based cobaltous coordination polymer: A promising catalyst for solvent free oxidation of 1-hexene. Journal of Solid State Chemistry, 2017, 256, 38-44.	1.4	7
8	TiO ₂ -Containing Carbon Derived from a Metal–Organic Framework Composite: A Highly Active Catalyst for Oxidative Desulfurization. ACS Applied Materials & Interfaces, 2017, 9, 31192-31202.	4.0	110
9	A mechanistic study of the Knoevenagel condensation reaction: new insights into the influence of acid and base properties of mixed metal oxide catalysts on the catalytic activity. Physical Chemistry Chemical Physics, 2017, 19, 26630-26644.	1.3	34
10	Catalysis and CO ₂ Capture by Palladiumâ€Incorporated Covalent Organic Frameworks. ChemPlusChem, 2017, 82, 1253-1265.	1.3	46
11	Polycatenation tuned microporosity of two metal–tris(4′-carboxybiphenyl)amine frameworks with multilayer structures. Dalton Transactions, 2017, 46, 13352-13355.	1.6	9
12	Design and synthesis of coordination polymers with chelated units and their application in nanomaterials science. RSC Advances, 2017, 7, 42242-42288.	1.7	74
13	In situ synthesis of ultrathin metal–organic framework nanosheets: a new method for 2D metal-based nanoporous carbon electrocatalysts. Journal of Materials Chemistry A, 2017, 5, 18610-18617.	5.2	162
14	Evaluation of basic sites of ZIFs metal organic frameworks in the Knoevenagel condensation reaction. Applied Catalysis A: General, 2017, 548, 47-51.	2.2	47
15	A highly stable polyoxometalate-based metal–organic framework with an ABW zeolite-like structure. Chemical Communications, 2017, 53, 10054-10057.	2.2	66
16	Selective carbon dioxide sorption and heterogeneous catalysis by a new 3D Zn-MOF with nitrogen-rich 1D channels. Scientific Reports, 2017, 7, 17185.	1.6	22
17	MOF derived mesoporous K-ZrO ₂ with enhanced basic catalytic performance for Knoevenagel condensations. RSC Advances, 2017, 7, 55920-55926.	1.7	13
18	Superparamagnetic nanoparticles as a recyclable catalyst: a new access to phenol esters <i>via</i> cross dehydrogenative coupling reactions. RSC Advances, 2017, 7, 55756-55766.	1.7	5

	CITATION	Report	
#	Article	IF	CITATIONS
19	Systematic Engineering of Single Substitution in Zirconium Metal–Organic Frameworks toward High-Performance Catalysis. Journal of the American Chemical Society, 2017, 139, 18590-18597.	6.6	102
20	Enhancing Higher Hydrocarbons Capture for Natural Gas Upgrading by Tuning van der Waals Interactions in <i>fcu</i> -Type Zr-MOFs. Industrial & Engineering Chemistry Research, 2017, 56, 14633-14641.	1.8	49
21	Efficient Capture and Effective Sensing of Cr ₂ O ₇ ^{2–} from Water Using a Zirconium Metal–Organic Framework. Inorganic Chemistry, 2017, 56, 14178-14188.	1.9	189
22	Inclusion of 2,4â€Ðihydroxybenzaldehyde and 2,4â€Ðihydroxybenzaldoxime in Cadmium Coordination Polymer and Conversion of Guest Aldehyde to Oxime. ChemistrySelect, 2017, 2, 11482-11486.	0.7	2
23	Nanoparticle/Metal–Organic Framework Composites for Catalytic Applications: Current Status and Perspective. Molecules, 2017, 22, 2103.	1.7	117
24	Activated Carbon-Supported Tetrapropylammonium Perruthenate Catalysts for Acetylene Hydrochlorination. Catalysts, 2017, 7, 311.	1.6	16
25	A Multifunctional Nanocage-based MOF with Tri- and Tetranuclear Zinc Cluster Secondary Building Units. Scientific Reports, 2018, 8, 3117.	1.6	16
26	Selective carbon dioxide sorption by a new breathing three-dimensional Zn-MOF with Lewis basic nitrogen-rich channels. Dalton Transactions, 2018, 47, 4820-4826.	1.6	29
27	A Chromium Hydroxide/MILâ€101(Cr) MOF Composite Catalyst and Its Use for the Selective Isomerization of Glucose to Fructose. Angewandte Chemie - International Edition, 2018, 57, 4926-4930.	7.2	73
28	Acidity Considerations in the Self-Assembly of POM/Ag/trz-Based Compounds with Efficient Electrochemical Activities in LIBs. Crystal Growth and Design, 2018, 18, 2289-2296.	1.4	18
29	A Chromium Hydroxide/MILâ€101(Cr) MOF Composite Catalyst and Its Use for the Selective Isomerization of Glucose to Fructose. Angewandte Chemie, 2018, 130, 5020-5024.	1.6	30
30	A uranyl phosphonate framework with a temperature-induced order–disorder transition and temperature-correlated photoluminescence. CrystEngComm, 2018, 20, 3153-3157.	1.3	14
31	Strong Lewis Base Ga ₄ B ₂ O ₉ : Ga–O Connectivity Enhanced Basicity and Its Applications in the Strecker Reaction and Catalytic Conversion of <i>n</i> -Propanol. ACS Applied Materials & Interfaces, 2018, 10, 15895-15904.	4.0	9
32	Functional group effects on a metal-organic framework catalyst for CO2 cycloaddition. Journal of Industrial and Engineering Chemistry, 2018, 64, 478-483.	2.9	62
33	Three-Dimensional Co(II)/Cd(II) Metal–Organic Frameworks: Luminescent Cd-MOF for Detection and Adsorption of 2,4,6-Trinitrophenol in the Aqueous Phase. Crystal Growth and Design, 2018, 18, 3062-3072.	1.4	106
34	A Chemical Role for Trichloromethane: Room-Temperature Removal of Coordinated Solvents from Open Metal Sites in the Copper-Based Metal–Organic Frameworks. Inorganic Chemistry, 2018, 57, 5225-5231.	1.9	33
35	Polyoxometalate-Based Metal–Organic Frameworks as Visible-Light-Induced Photocatalysts. Inorganic Chemistry, 2018, 57, 5030-5037.	1.9	130
36	Supported ionic liquid phase (SILP) facilitated gas-phase enzyme catalysis – CALB catalyzed transesterification of vinyl propionate. Catalysis Science and Technology, 2018, 8, 2460-2466.	2.1	24

#	Article	IF	CITATIONS
37	Luminescent metal–organic frameworks as chemical sensors: common pitfalls and proposed best practices. Inorganic Chemistry Frontiers, 2018, 5, 1493-1511.	3.0	129
38	Homochiral metal–organic frameworks as heterogeneous catalysts. Inorganic Chemistry Frontiers, 2018, 5, 1512-1523.	3.0	44
39	Direct Fabrication of Strong Basic Sites on Ordered Nanoporous Materials: Exploring the Possibility of Metal–Organic Frameworks. Chemistry of Materials, 2018, 30, 1686-1694.	3.2	30
40	Synthesis of highly porous inorganic adsorbents derived from metal-organic frameworks and their application in efficient elimination of mercury(II). Journal of Colloid and Interface Science, 2018, 517, 61-71.	5.0	51
41	Dual Ligand Strategy for Constructing a Series of d ¹⁰ Coordination Polymers: Syntheses, Structures, Photoluminescence, and Sensing Properties. Crystal Growth and Design, 2018, 18, 1882-1890.	1.4	33
42	Functionalization of Metal–Organic Frameworks for Photoactive Materials. Advanced Materials, 2018, 30, e1705634.	11.1	133
43	Auxiliary-directed etherification of sp ² C–H bonds under heterogeneous metal–organic framework catalysis: synthesis of ethenzamide. RSC Advances, 2018, 8, 2829-2836.	1.7	8
44	Coâ€immobilization of Laccase and TEMPO in the Compartments of Mesoporous Silica for a Green and Oneâ€Pot Cascade Synthesis of Coumarins by Knoevenagel Condensation. ChemCatChem, 2018, 10, 1542-1546.	1.8	23
45	Presence versus Proximity: The Role of Pendant Amines in the Catalytic Hydrolysis of a Nerve Agent Simulant. Angewandte Chemie - International Edition, 2018, 57, 1949-1953.	7.2	121
46	Presence versus Proximity: The Role of Pendant Amines in the Catalytic Hydrolysis of a Nerve Agent Simulant. Angewandte Chemie, 2018, 130, 1967-1971.	1.6	24
47	Roomâ€Temperature Electrochemical Conversion of Metal–Organic Frameworks into Porous Amorphous Metal Sulfides with Tailored Composition and Hydrogen Evolution Activity. Advanced Functional Materials, 2018, 28, 1707244.	7.8	112
48	Efficient Solventâ€Free Carbon Dioxide Fixation Reactions with Epoxides Under Mild Conditions by Mixedâ€Ligand Zinc(II) Metal–Organic Frameworks. ChemCatChem, 2018, 10, 2401-2408.	1.8	60
49	A Comparative Investigation of Proton Conductivities for Two Metalâ^'Organic Frameworks under Water and Aqua-Ammonia Vapors. Inorganic Chemistry, 2018, 57, 1474-1482.	1.9	69
50	Structure and properties of dynamic metal–organic frameworks: a brief accounts of crystalline-to-crystalline and crystalline-to-amorphous transformations. CrystEngComm, 2018, 20, 1322-1345.	1.3	54
51	Syntheses, crystal structures and knoevenagel condensation reactions of three coordination polymers assembled with Lewis basic ligand. Polyhedron, 2018, 144, 6-10.	1.0	7
52	Transmission Electron Microscopy Reveals Deposition of Metal Oxide Coatings onto Metal–Organic Frameworks. Journal of the American Chemical Society, 2018, 140, 1348-1357.	6.6	51
53	Solvent Impedes CO ₂ Cycloaddition on Metal–Organic Frameworks. Chemistry - an Asian Journal, 2018, 13, 386-389.	1.7	16
54	Bifunctional Pyridiniumâ€Based Ionicâ€Liquidâ€Immobilized Diindium Tris(diphenic acid) Bis(1,10â€phenanthroline) for CO ₂ Fixation. ChemSusChem, 2018, 11, 924-932.	3.6	32

#	Article	IF	CITATIONS
55	A Nanocrystalline POM@MOFs Catalyst for the Degradation of Phenol: Effective Cooperative Catalysis by Metal Nodes and POM Guests. Chemistry - A European Journal, 2018, 24, 3045-3051.	1.7	78
56	Nitrogen-doped porous carbon from ionic liquid@Al-metal-organic framework: A prominent adsorbent for purification of both aqueous and non-aqueous solutions. Chemical Engineering Journal, 2018, 338, 107-116.	6.6	67
57	Diffusion Control in the in Situ Synthesis of Iconic Metal–Organic Frameworks within an Ionic Polymer Matrix. ACS Applied Materials & Interfaces, 2018, 10, 3793-3800.	4.0	30
58	Silver Clusters as Robust Nodes and ï€â€" <i>A</i> ctivation Sites for the Construction of Heterogeneous Catalysts for the Cycloaddition of Propargylamines. ACS Catalysis, 2018, 8, 1384-1391.	5.5	85
59	Tailor-Made Pyrazolide-Based Metal–Organic Frameworks for Selective Catalysis. Journal of the American Chemical Society, 2018, 140, 6383-6390.	6.6	124
60	Calcium oxide-modified mesoporous silica loaded onto ferriferrous oxide core: Magnetically responsive mesoporous solid strong base. Journal of Colloid and Interface Science, 2018, 526, 366-373.	5.0	17
61	Compartmentalization of Incompatible Polymers within Metal–Organic Frameworks towards Homogenization of Heterogeneous Hybrid Catalysts for Tandem Reactions. Chemistry - A European Journal, 2018, 24, 9903-9909.	1.7	16
62	Metal coordination and metal activation abilities of commonly unreactive chloromethanes toward metal–organic frameworks. Chemical Communications, 2018, 54, 6458-6471.	2.2	42
63	Four 3D coordination polymers based on layers with single <i>syn</i> – <i>anti</i> carboxylate bridges: synthesis, structures, and magnetic properties. RSC Advances, 2018, 8, 14101-14108.	1.7	13
64	Cu3(BTC)2 metal-organic framework catalyzed N-arylation of benzimidazoles and imidazoles with phenylboronic acid. Journal of Industrial and Engineering Chemistry, 2018, 65, 120-126.	2.9	20
65	Postsynthetic modification of single Pd sites into uncoordinated polypyridine groups of a MOF as the highly efficient catalyst for Heck and Suzuki reactions. New Journal of Chemistry, 2018, 42, 9317-9323.	1.4	30
66	An efficient and sustainable catalytic reduction of carbon–carbon multiple bonds, aldehydes, and ketones using a Cu nanoparticle decorated metal organic framework. New Journal of Chemistry, 2018, 42, 9557-9567.	1.4	30
67	Single-atom silver-manganese nanocatalysts based on atom-economy design for reaction temperature-controlled selective hydrogenation of bioresources-derivable diethyl oxalate to ethyl glycolate and acetaldehyde diethyl acetal. Applied Catalysis B: Environmental, 2018, 232, 348-354.	10.8	21
68	Fabrication of Metal–Organic Frameworks inside Silica Nanopores with Significantly Enhanced Hydrostability and Catalytic Activity. ACS Applied Materials & Interfaces, 2018, 10, 12051-12059.	4.0	57
69	MOF-derived nanohybrids for electrocatalysis and energy storage: current status and perspectives. Chemical Communications, 2018, 54, 5268-5288.	2.2	237
70	Aqueous phase sensing of bismuth ion using fluorescent metal-organic framework. Sensors and Actuators B: Chemical, 2018, 266, 323-328.	4.0	34
71	Two luminescent transition-metal–organic frameworks with a predesigned ligand as highly sensitive and selective iron(<scp>iii</scp>) sensors. New Journal of Chemistry, 2018, 42, 6839-6847.	1.4	34
72	Emerging Two-Dimensional Nanomaterials for Electrocatalysis. Chemical Reviews, 2018, 118, 6337-6408.	23.0	1,552

#	Article	IF	CITATIONS
73	Rapid and Large-Scale Synthesis of IRMOF-3 by Electrochemistry Method with Enhanced Fluorescence Detection Performance for TNP. Inorganic Chemistry, 2018, 57, 3818-3824.	1.9	56
74	Sensing and capture of toxic and hazardous gases and vapors by metal–organic frameworks. Chemical Society Reviews, 2018, 47, 4729-4756.	18.7	530
75	Polymorphism of a porous hydrogen bond-assisted ionic organic framework. CrystEngComm, 2018, 20, 1779-1782.	1.3	4
76	Adsorptive removal of anti-inflammatory drugs from water using graphene oxide/metal-organic framework composites. Chemical Engineering Journal, 2018, 335, 74-81.	6.6	127
77	A readily available urea based MOF that act as a highly active heterogeneous catalyst for Friedel-Crafts reaction of indoles and nitrostryenes. Catalysis Communications, 2018, 104, 123-127.	1.6	43
78	Metal organic frameworks as catalysts in solvent-free or ionic liquid assisted conditions. Green Chemistry, 2018, 20, 86-107.	4.6	107
79	Synthetic strategies for chiral metal-organic frameworks. Chinese Chemical Letters, 2018, 29, 819-822.	4.8	73
80	Metal–Organic Frameworks as Platforms for Catalytic Applications. Advanced Materials, 2018, 30, e1703663.	11.1	1,210
81	Heteropoly acid-loaded ionic liquid@metal-organic frameworks: Effective and reusable adsorbents for the desulfurization of a liquid model fuel. Chemical Engineering Journal, 2018, 334, 2215-2221.	6.6	92
82	Adsorptive removal of aromatic hydrocarbons from water over metal azolate framework-6-derived carbons. Journal of Hazardous Materials, 2018, 344, 1069-1077.	6.5	62
83	Metal–organic framework composites as electrocatalysts for electrochemical sensing applications. Coordination Chemistry Reviews, 2018, 357, 105-129.	9.5	262
84	One Novel 3D Supramolecular Network Based on Dicobalt-Carboxylate Secondary Building Units with Polycarboxylate Ligands 1, 2, 3, 4-Butanetetracarboxylic Acid. Journal of Cluster Science, 2018, 29, 121-127.	1.7	3
85	One-pot synthesis of acidic and basic bifunctional catalysts to promote the conversion of ethanol to 1-butanol. Microporous and Mesoporous Materials, 2018, 261, 44-50.	2.2	25
86	Two New Nickel, Cobalt Coordination Polymers Based on Flexible 1,3-bis((1H-imidazolyl)-methyl)benzene Ligand: Syntheses, Structures and Magnetic Properties. Journal of Inorganic and Organometallic Polymers and Materials, 2018, 28, 820-828.	1.9	3
87	Screening Commercial Semiconductors for Visible Light Driven Asymmetric Catalysis. Particle and Particle Systems Characterization, 2018, 35, 1700280.	1.2	11
88	Defect engineering of highly stable lanthanide metal–organic frameworks by particle modulation for coating catalysis. Journal of Materials Chemistry A, 2018, 6, 342-348.	5.2	39
89	Heterobimetallic metal–organic framework nanocages as highly efficient catalysts for CO ₂ conversion under mild conditions. Journal of Materials Chemistry A, 2018, 6, 2964-2973.	5.2	73
90	Carboxylic-acid-functionalized UiO-66-NH2: A promising adsorbent for both aqueous- and non-aqueous-phase adsorptions. Chemical Engineering Journal, 2018, 331, 124-131.	6.6	164

#	Article	IF	CITATIONS
91	Mesoporous Metal–Organic Frameworks: Synthetic Strategies and Emerging Applications. Small, 2018, 14, e1801454.	5.2	133
92	Two cyclotriveratrylene metal–organic frameworks as effective catalysts for Knoevenagel condensation and CO ₂ cycloaddition with epoxides. Dalton Transactions, 2018, 47, 16197-16204.	1.6	13
93	Copper based coordination polymers based on metalloligands: utilization as heterogeneous oxidation catalysts. Dalton Transactions, 2018, 47, 16985-16994.	1.6	15
94	Tunability of fluorescent metal–organic frameworks through dynamic spacer installation with multivariate fluorophores. Chemical Communications, 2018, 54, 13666-13669.	2.2	22
95	An ambient-temperature aqueous synthesis of zirconium-based metal–organic frameworks. Green Chemistry, 2018, 20, 5292-5298.	4.6	54
96	Water-stable fluorinated metal–organic frameworks (F-MOFs) with hydrophobic properties as efficient and highly active heterogeneous catalysts in aqueous solution. Green Chemistry, 2018, 20, 5336-5345.	4.6	64
97	Three Component Controls in Pillared Metal-Organic Frameworks for Catalytic Carbon Dioxide Fixation. Catalysts, 2018, 8, 565.	1.6	5
98	Synthesis of Carbonate Esters by Carboxymethylation Using NaAlO ₂ as a Highly Active Heterogeneous Catalyst. Organic Process Research and Development, 2018, 22, 1846-1851.	1.3	17
99	Nanoporous Aluminosilicate-Catalyzed Telescoped Acetalization-Direct Aldol Reactions of Acetals with 1,3-Dicarbonyl Compounds. ACS Omega, 2018, 3, 15482-15491.	1.6	11
100	Recyclable and Reusable Heteroleptic Nickel Catalyst Immobilized on Metal–Organic Framework for Suzuki–Miyaura Coupling. ACS Applied Materials & Interfaces, 2018, 10, 41431-41438.	4.0	45
101	Scandium-organic frameworks: progress and prospects. Russian Chemical Reviews, 2018, 87, 1139-1167.	2.5	46
102	A Convenient and Versatile Amino Acidâ€Boosted Biomimetic Strategy for Nondestructive Encapsulation of Biomacromolecules within Metalâ [~] Organic Framework. Angewandte Chemie, 2018, 131, 1477.	1.6	21
103	Paddlewheel SBU based Zn MOFs: Syntheses, Structural Diversity, and CO2 Adsorption Properties. Polymers, 2018, 10, 1398.	2.0	6
104	Proton Conductivity of Composite Polyelectrolyte Membranes with Metalâ€Organic Frameworks for Fuel Cell Applications. Advanced Materials Interfaces, 2019, 6, 1801146.	1.9	130
105	Metal–Organic Framework MIL-101(Cr) as an Efficient Heterogeneous Catalyst for Clean Synthesis of Benzoazoles. ACS Omega, 2018, 3, 17135-17144.	1.6	60
106	Synthesis of Metallomacrocycle and Coordination Polymers with Pyridineâ€Based Amidocarboxylate Ligands and Their Catalytic Activities towards the Henry and Knoevenagel Reactions. ChemistryOpen, 2018, 7, 865-877.	0.9	20
107	Facile Mechanosynthesis of the Archetypal Zn-Based Metal–Organic Frameworks. Inorganic Chemistry, 2018, 57, 13437-13442.	1.9	36
108	Preparation of Novel Aromaticâ€Aliphatic Poly(ketone ester)s through Condensation of Biomassâ€Derived Monomers. ChemCatChem, 2018, 10, 5377-5381.	1.8	7

#	Article	IF	CITATIONS
109	Visualization of Anisotropic and Stepwise Piezofluorochromism in an MOF Single Crystal. CheM, 2018, 4, 2658-2669.	5.8	65
110	Polyaniline-Encapsulated Metal–Organic Framework MIL-101: Adsorbent with Record-High Adsorption Capacity for the Removal of Both Basic Quinoline and Neutral Indole from Liquid Fuel. ACS Applied Materials & Interfaces, 2018, 10, 35639-35646.	4.0	50
111	Novel "Turn-On―Fluorescent Probe for Highly Selectively Sensing Fluoride in Aqueous Solution Based on Tb ³⁺ -Functionalized Metal–Organic Frameworks. ACS Omega, 2018, 3, 12513-12519.	1.6	49
112	Predicting a new class of metal-organic frameworks as efficient catalyst for bi-functional oxygen evolution/reduction reactions. Journal of Catalysis, 2018, 367, 206-211.	3.1	61
113	Hybrid Catalyst of a Metal–Organic Framework, Metal Nanoparticles, and Oxide That Enables Strong Steric Constraint and Metal–Support Interaction for the Highly Effective and Selective Hydrogenation of Cinnamaldehyde. Inorganic Chemistry, 2018, 57, 12461-12465.	1.9	17
114	Post-synthetic modification of zirconium metal–organic frameworks by catalyst-free aza-Michael additions. Dalton Transactions, 2018, 47, 14491-14496.	1.6	17
115	Bottom-Up Assembly of a Highly Efficient Metal–Organic Framework for Cooperative Catalysis. Inorganic Chemistry, 2018, 57, 13912-13919.	1.9	22
116	Constrained-volume assembly of organometal confined in polymer to fabricate multi-heteroatom doped carbon for oxygen reduction reaction. Science China Materials, 2018, 61, 1305-1313.	3.5	9
117	How Useful Are Common Simulants of Chemical Warfare Agents at Predicting Adsorption Behavior?. Journal of Physical Chemistry C, 2018, 122, 26061-26069.	1.5	58
118	Multifunctional Behavior of Sulfonate-Based Hydrolytically Stable Microporous Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2018, 10, 39049-39055.	4.0	18
119	Design, Synthesis and Emerging Applications of Metal-organic Frameworks. Current Organic Chemistry, 2018, 22, 1771-1772.	0.9	4
120	Rational Design of Pore Size and Functionality in a Series of Isoreticular Zwitterionic Metal–Organic Frameworks. Chemistry of Materials, 2018, 30, 8332-8342.	3.2	28
121	High-mobility band-like charge transport in a semiconducting two-dimensional metal–organic framework. Nature Materials, 2018, 17, 1027-1032.	13.3	341
122	Heterogeneous Amorphous Cu–MOFâ€74 Catalyst for Câ€N Coupling Reaction. ChemistrySelect, 2018, 3, 10694-10700.	0.7	17
123	Lewis basicity generated by localised charge imbalance in noble metal nanoparticle-embedded defective metal–organic frameworks. Nature Communications, 2018, 9, 4326.	5.8	46
124	Electroactive Metalorganic Frameworks. Israel Journal of Chemistry, 2018, 58, 1089-1101.	1.0	25
125	Novel cadmium(II) frameworks with mixed carboxylate and imidazole-containing ligands for selective detection of antibiotics. Polyhedron, 2018, 154, 350-356.	1.0	37
126	Pillar-layered MOFs: functionality, interpenetration, flexibility and applications. Journal of Materials Chemistry A, 2018, 6, 19288-19329.	5.2	152

#	Article	IF	CITATIONS
127	Metal–organic framework nanoparticles for arsenic trioxide drug delivery. Journal of Materials Chemistry B, 2018, 6, 6481-6489.	2.9	30
128	Multicomponent metal–organic framework membranes for advanced functional composites. Chemical Science, 2018, 9, 8842-8849.	3.7	54
129	Metal–Organic Frameworks-Based Catalysts for Biomass Processing. Catalysts, 2018, 8, 368.	1.6	40
130	Reversible Dehydrogenation and Hydrogenation of Nâ€Heterocycles Catalyzed by Bimetallic Nanoparticles Encapsulated in MILâ€100(Fe). ChemCatChem, 2018, 10, 4966-4972.	1.8	31
131	A 2D water-stable metal–organic framework for fluorescent detection of nitroaromatics. Polyhedron, 2018, 155, 457-463.	1.0	28
132	Copper-catalyzed one-pot domino reactions <i>via</i> C–H bond activation: synthesis of 3-aroylquinolines from 2-aminobenzylalcohols and propiophenones under metal–organic framework catalysis. RSC Advances, 2018, 8, 31455-31464.	1.7	12
133	Functionalised heterogeneous catalysts for sustainable biomass valorisation. Chemical Society Reviews, 2018, 47, 8349-8402.	18.7	493
134	Temperature-induced construction of two novel metal-organic frameworks with Pb-O-Pb inorganic skeletons and fluorescent properties. Inorganic Chemistry Communication, 2018, 97, 25-29.	1.8	4
135	NMOF self-templating synthesis of hollow porous metal oxides for enhanced lithium-ion battery anodes. New Journal of Chemistry, 2018, 42, 17902-17908.	1.4	5
136	Cobalt-based nanoparticles prepared from MOF–carbon templates as efficient hydrogenation catalysts. Chemical Science, 2018, 9, 8553-8560.	3.7	87
137	From fundamentals to applications: a toolbox for robust and multifunctional MOF materials. Chemical Society Reviews, 2018, 47, 8611-8638.	18.7	994
138	A Bifunctional Anionic Metal–Organic Framework: Reversible Photochromism and Selective Adsorption of Methylene Blue. Crystal Growth and Design, 2018, 18, 5738-5744.	1.4	68
139	Cu (II) and Cd (II) anchored functionalized mesoporous SBA-15 as novel, highly efficient and recoverable heterogeneous catalysts for green oxidative coupling of thiols and C S cross-coupling reaction of aryl halides. Polyhedron, 2018, 156, 35-47.	1.0	33
140	A practical green approach to diversified spirochromene/spiropyran scaffolds <i>via</i> a glucose–water synergy driven organocatalytic system. New Journal of Chemistry, 2018, 42, 17279-17290.	1.4	19
141	High Catalytic Activity of C ₆₀ Pd _{<i>n</i>} Encapsulated in Metal–Organic Framework UiOâ€67, for Tandem Hydrogenation Reaction. Chemistry - A European Journal, 2018, 24, 19141-19145.	1.7	14
142	Knoevenagel Condensation of Aldehydes and Ketones with Alkyl Nitriles Catalyzed by Strongly Basic Anion Exchange Resins under Continuousâ€Flow Conditions. Asian Journal of Organic Chemistry, 2018, 7, 2061-2064.	1.3	29
143	A novel metal–organic framework based on hexanuclear Co(<scp>ii</scp>) clusters as an anode material for lithium-ion batteries. CrystEngComm, 2018, 20, 5576-5582.	1.3	13
144	Chiral and amine groups functionalized polyoxometalate-based metal-organic frameworks for synergic catalysis in aldol and Knoevenagel condensations. Molecular Catalysis, 2018, 458, 83-88.	1.0	25

#	Article	IF	CITATIONS
145	Efficient heterogeneous catalysis by dual ligand Zn(<scp>ii</scp>)/Cd(<scp>ii</scp>) MOFs for the Knoevenagel condensation reaction: adaptable synthetic routes, characterization, crystal structures and luminescence studies. Inorganic Chemistry Frontiers, 2018, 5, 2630-2640.	3.0	59
146	Triangular and linear Co3 cluster based metal-organic frameworks: Structures and magnetic properties. Journal of Solid State Chemistry, 2018, 265, 123-128.	1.4	7
147	Spontaneous resolution of non-centrosymmetric coordination polymers of zinc(II) with achiral imidazole-biphenyl-carboxylate ligands. Inorganica Chimica Acta, 2018, 482, 275-283.	1.2	11
148	Cerium Metal–Organic Framework for Photocatalysis. Journal of the American Chemical Society, 2018, 140, 7904-7912.	6.6	313
149	A <i>usf</i> Zinc(II) Metal–Organic Framework as a Highly Selective Luminescence Probe for Acetylacetone Detection and Its Postsynthetic Cation Exchange. Crystal Growth and Design, 2018, 18, 3997-4003.	1.4	75
150	Recent progress in the syntheses of mesoporous metal–organic framework materials. Coordination Chemistry Reviews, 2018, 369, 76-90.	9.5	137
151	Amine-functionalized Zn(<scp>ii</scp>) MOF as an efficient multifunctional catalyst for CO ₂ utilization and sulfoxidation reaction. Dalton Transactions, 2018, 47, 8041-8051.	1.6	64
152	Catalytic performance of Co 1,3,5-benzenetricarboxylate in the conversion of CO2 to cyclic carbonates. Reaction Kinetics, Mechanisms and Catalysis, 2018, 125, 633-645.	0.8	9
153	Co@Pd core-shell nanoparticles embedded in nitrogen-doped porous carbon as dual functional electrocatalysts for both oxygen reduction and hydrogen evolution reactions. Journal of Colloid and Interface Science, 2018, 528, 18-26.	5.0	48
154	Green and rapid mechanosynthesis of high-porosity NU- and UiO-type metal–organic frameworks. Chemical Communications, 2018, 54, 6999-7002.	2.2	63
155	Integration of plasmonic effect into spindle-shaped MIL-88A(Fe): Steering charge flow for enhanced visible-light photocatalytic degradation of ibuprofen. Chemical Engineering Journal, 2018, 349, 603-612.	6.6	169
156	Ultrasound-assisted synthesized and catalytic studies of two nano-structured metal–organic frameworks with long N-donor ligand as a pillar. Polyhedron, 2018, 151, 58-65.	1.0	6
157	Synthesis, structure and effective peroxidase-like activity of a stable polyoxometalate-pillared metal–organic framework with multinuclear cycles. Polyhedron, 2018, 151, 206-212.	1.0	16
158	Reusable N-Heterocyclic Carbene Complex Catalysts and Beyond: A Perspective on Recycling Strategies. Chemical Reviews, 2018, 118, 9843-9929.	23.0	169
159	A 3D Cu(I)-organic framework constructed from discrete Cu 2 I 2 moiety and infinite [CuI] n chain. Inorganic Chemistry Communication, 2018, 92, 106-109.	1.8	1
160	Solvent-Dependent Formation of Three New Bi-Metal–Organic Frameworks Using a Tetracarboxylic Acid. Crystal Growth and Design, 2018, 18, 4060-4067.	1.4	39
161	Insight Studies on Metal-Organic Framework Nanofibrous Membrane Adsorption and Activation for Heavy Metal Ions Removal from Aqueous Solution. ACS Applied Materials & Interfaces, 2018, 10, 18619-18629.	4.0	347
162	Metal-Organic Frameworks as Sorbents for Purification of Vegetable Oils. Russian Journal of Applied Chemistry, 2018, 91, 524-528.	0.1	1

#	Article	IF	CITATIONS
163	Towards white-light emission by Tb3+/Eu3+ substitution in a Ca2+ framework. Polyhedron, 2018, 153, 24-30.	1.0	9
164	Nitrogen enriched polytriazine as a metal-free heterogeneous catalyst for the Knoevenagel reaction under mild conditions. New Journal of Chemistry, 2018, 42, 12924-12928.	1.4	20
165	Efficient and Reusable Pb(II) Metal–Organic Framework for Knoevenagel Condensation. Catalysis Letters, 2018, 148, 2263-2273.	1.4	25
166	4′-(2H-tetrazol-5-yl)-[1,1′-biphenyl]-4-carboxylic acid: Synthetic approaches, single crystal X-ray structures and antimicrobial activity of intermediates. Journal of Molecular Structure, 2018, 1173, 63-71.	1.8	5
167	Two anthracene-based metal–organic frameworks for highly effective photodegradation and luminescent detection in water. Journal of Materials Chemistry A, 2018, 6, 17177-17185.	5.2	95
168	Beyond pristine metal-organic frameworks: Preparation and application of nanostructured, nanosized, and analogous MOFs. Coordination Chemistry Reviews, 2018, 376, 20-45.	9.5	121
169	Structural Diversity and Catalytic Properties in a Family of Ag(I)-Benzotriazole Based Coordination Compounds. Crystal Growth and Design, 2018, 18, 5638-5651.	1.4	23
170	MOF derived carbon based nanocomposite materials as efficient electrocatalysts for oxygen reduction and oxygen and hydrogen evolution reactions. RSC Advances, 2018, 8, 26728-26754.	1.7	75
171	Two metal–organic frameworks based on pyridyl–tricarboxylate ligands as size-selective catalysts for solvent-free cyanosilylation reaction. CrystEngComm, 2018, 20, 6070-6076.	1.3	9
172	Influence of nanoscale structuralisation on the catalytic performance of ZIF-8: a cautionary surface catalysis study. CrystEngComm, 2018, 20, 4926-4934.	1.3	38
173	Construction of metal–organic frameworks (MOFs) and highly luminescent Eu(<scp>iii</scp>)-MOF for the detection of inorganic ions and antibiotics in aqueous medium. CrystEngComm, 2018, 20, 4962-4972.	1.3	90
174	Green applications of metal–organic frameworks. CrystEngComm, 2018, 20, 5899-5912.	1.3	54
175	Generating and optimizing the catalytic activity in UiO-66 for aerobic oxidation of alkenes by post-synthetic exchange Ti atoms combined with ligand substitution. Journal of Catalysis, 2018, 365, 450-463.	3.1	29
176	A 12-Fold ThSi2 Interpenetrated Network Utilizing a Glycine-Based Pseudopeptidic Ligand. Crystals, 2018, 8, 47.	1.0	5
177	Metal(II) Coordination Polymers Derived from Mixed 4-Imidazole Ligands and Carboxylates: Syntheses, Topological Structures, and Properties. Polymers, 2018, 10, 622.	2.0	11
178	A difunctional metal–organic framework with Lewis basic sites demonstrating turn-off sensing of Cu ²⁺ and sensitization of Ln ³⁺ . Journal of Materials Chemistry C, 2018, 6, 7874-7879.	2.7	24
179	Atomic Layer Deposition of Ruthenium Nanoparticles on Electrospun Carbon Nanofibers: A Highly Efficient Nanocatalyst for the Hydrolytic Dehydrogenation of Methylamine Borane. ACS Applied Materials & Interfaces, 2018, 10, 26162-26169.	4.0	41
180	Conductive two-dimensional metal–organic frameworks as multifunctional materials. Chemical Communications, 2018, 54, 7873-7891.	2.2	373

#	Article	IF	CITATIONS
181	Co/Cu-MFF derived mesoporous ternary metal oxide microcubes for enhancing the catalytic activity of the CO oxidation reaction. RSC Advances, 2018, 8, 24805-24811.	1.7	7
182	Catalysis and photocatalysis by metal organic frameworks. Chemical Society Reviews, 2018, 47, 8134-8172.	18.7	1,119
183	Suspension Processing of Microporous Metal-Organic Frameworks: A Scalable Route to High-Quality Adsorbents. IScience, 2018, 5, 30-37.	1.9	18
184	Biomineralized Metal–Organic Framework Nanoparticles Enable Intracellular Delivery and Endo-Lysosomal Release of Native Active Proteins. Journal of the American Chemical Society, 2018, 140, 9912-9920.	6.6	348
185	Ag-Based Coordination Polymers Based on Metalloligands and Their Catalytic Performance in Multicomponent A ³ -Coupling Reactions. Crystal Growth and Design, 2018, 18, 5501-5511.	1.4	25
186	Facilitating Laboratory Research Experience Using Reticular Chemistry. Journal of Chemical Education, 2018, 95, 1512-1519.	1.1	38
187	Interior Decoration of Stable Metal–Organic Frameworks. Langmuir, 2018, 34, 13795-13807.	1.6	34
188	A New Metal–Organic Framework with Pentanuclear Zinc Clusters as Secondary Building Units. Journal of Cluster Science, 2018, 29, 625-632.	1.7	3
189	A two-dimensional Cd ^{II} coordination polymer based on naphthalenediimide: synthesis, crystal structure and photochromic properties. Acta Crystallographica Section C, Structural Chemistry, 2018, 74, 94-99.	0.2	5
190	Fe3O4@MIL-100(Fe)-UCNPs heterojunction photosensitizer: Rational design and application in near infrared light mediated hypoxic tumor therapy. Chemical Engineering Journal, 2018, 354, 1141-1152.	6.6	69
191	Pore surface engineering of metal–organic frameworks for heterogeneous catalysis. Coordination Chemistry Reviews, 2018, 376, 248-276.	9.5	174
192	Design and synthesis of two energetic coordination polymers based on copper ion and 1H,1′H-[5,5′-bitetrazole]-1,1′-diol: A comparative study of the structure-property relationships. Journal of Solid State Chemistry, 2018, 268, 55-61.	1.4	16
193	Enhancing Proton Conductivity of a 3D Metal–Organic Framework by Attaching Guest NH ₃ Molecules. Inorganic Chemistry, 2018, 57, 11560-11568.	1.9	60
194	Lanthanide Functionalized Metal–Organic Coordination Polymer: Toward Novel Turn-On Fluorescent Sensing of Amyloid β-Peptide. Analytical Chemistry, 2018, 90, 12449-12455.	3.2	62
195	Selective Sensing of Peroxynitrite by Hf-Based UiO-66-B(OH) ₂ Metal–Organic Framework: Applicability to Cell Imaging. Inorganic Chemistry, 2018, 57, 10128-10136.	1.9	31
196	Enhancing the Lithium Storage Capacities of Coordination Compounds for Advanced Lithium-Ion Battery Anodes via a Coordination Chemistry Approach. Inorganic Chemistry, 2018, 57, 10640-10648.	1.9	20
197	Photocatalytic Hydrogen Generation from a Visible-Light-Responsive Metal–Organic Framework System: Stability versus Activity of Molybdenum Sulfide Cocatalysts. ACS Applied Materials & Interfaces, 2018, 10, 30035-30039.	4.0	71
198	Two-Dimensional Band Structure in Honeycomb Metal–Organic Frameworks. Nano Letters, 2018, 18, 5596-5602.	4.5	66

ARTICLE IF CITATIONS Lanthanide(<scp>iii</scp>) coordination polymers for luminescence detection of Fe(<scp>iii</scp>) 199 1.4 12 and picric acid. New Journal of Chemistry, 2018, 42, 15306-15310. Chemical Reactions at Isolated Single-Sites Inside Metal–Organic Frameworks. Catalysis Letters, 2018, 1.4 148, 2201-2222. Highly Efficient Catalytic Esterification in an â^'SO₃H-Functionalized Cr(III)-MOF. Industrial 201 1.8 45 & Engineering Chemistry Research, 2018, 57, 8388-8395. A CaMnAl-hydrotalcite solid basic catalyst toward the aldol condensation reaction with a comparable level to liquid alkali catalysts. Green Chemistry, 2018, 20, 3071-3080. Air and moisture stable covalently-bonded tin(<scp>ii</scp>) coordination polymers. Dalton 203 1.6 20 Transactions, 2018, 47, 8013-8022. Fabrication of zinc-based coordination polymer nanocubes and post-modification through copper decoration. Nano Research, 2018, 11, 5890-5901. 204 5.8 Postâ€Synthetic Mannich Chemistry on Metalâ€Organic Frameworks: Systemâ€Specific Reactivity and 205 1.7 11 Functionalityâ€Triggered Dissolution. Chemistry - A European Journal, 2018, 24, 11094-11102. Electrochemical determination of 2,4,6-trinitrophenol using a hybrid film composed of a copper-based 206 2.5 60 metal organic framework and electroreduced graphene oxide. Mikrochimica Acta, 2018, 185, 315. Coordination polymers and metal-organic frameworks built up with poly(tetrazolate) ligands. 207 9.5 74 Coordination Chémistry Reviews, 2018, 372, 1-30. Structural Characterization of Pristine and Defective [Zr₁₂(μ_{3}-O)₈(μ<sub>-OH)₈-OH)₈6< 208 Double-Node Metal–Organic Framework and Predicted Applications for Single-Site Catalytic Hydrolysis of Sarin. Chemistry of Materials. 2018. 30. 4432-4439. Morphology-dependent electrochemical sensing performance of metal (Ni, Co, Zn)-organic 209 2.6 45 frameworks. Analytica Chimica Acta, 2018, 1031, 60-66. Hf-based metal–organic frameworks as acid–base catalysts for the transformation of biomass-derived 4.6 59 furanic compounds into chemicals. Green Chemistry, 2018, 20, 3081-3091. Interface-Assisted Synthesis of 2D Materials: Trend and Challenges. Chemical Reviews, 2018, 118, 211 23.0 505 6189-6235. Degradation paths of manganese-based MOF materials in a model oxidative environment: a 1.3 computational study. Physical Chemistry Chemical Physics, 2018, 20, 20785-20795. Coordination driven self-assembly of [2 + 2 + 2] molecular squares: synthesis, crystal structures, 213 1.6 11 catalytic and luminescence properties. Dalton Transactions, 2018, 47, 9742-9754. Recent Advances of MOFs and MOFâ€Derived Materials in Thermally Driven Organic Transformations. 214 Chemistry - A European Journal, 2019, 25, 2161-2178. Synthesis of cobalt-modified MSN as a model enzyme: Evaluation of the peroxidatic performance. 215 2.216 Microporous and Mesoporous Materials, 2019, 274, 43-53. Fabrication of Magnetic Pd/MOF Hollow Nanospheres with Double-Shell Structure: Toward Highly Efficient and Recyclable Nanocatalysts for Hydrogenation Reaction. ACS Applied Materials & amp; 74 Interfaces, 2019, 11, 32251-32260.

#	Article	IF	CITATIONS
217	Core–shell-type ZIF-8@ZIF-67@POM hybrids as efficient electrocatalysts for the oxygen evolution reaction. Inorganic Chemistry Frontiers, 2019, 6, 2514-2520.	3.0	113
218	Three-Dimensional Co(II)-Metal–Organic Frameworks with Varying Porosities and Open Metal Sites toward Multipurpose Heterogeneous Catalysis under Mild Conditions. Crystal Growth and Design, 2019, 19, 5343-5353.	1.4	41
219	Grafting Zirconium-Based Metal–Organic Framework UiO-66-NH ₂ Nanoparticles on Cellulose Fibers for the Removal of Cr(VI) Ions and Methyl Orange from Water. ACS Applied Nano Materials, 2019, 2, 5804-5808.	2.4	79
220	M <i>_x</i> O <i>_y</i> –ZrO ₂ (M = Zn, Co, Cu) Solid Solutions Derived from Schiff Base-Bridged UiO-66 Composites as High-Performance Catalysts for CO ₂ Hydrogenation. ACS Applied Materials & Interfaces, 2019, 11, 33263-33272.	4.0	68
221	Ultralow-Content Palladium Dispersed in Covalent Organic Framework for Highly Efficient and Selective Semihydrogenation of Alkynes. Inorganic Chemistry, 2019, 58, 10829-10836.	1.9	28
222	Structural Diversity in Luminescent MOFs Containing a Bent Electronâ€rich Dicarboxylate Linker and a Flexible Capping Ligand: Selective Detection of 4â€Nitroaniline in Water. Chemistry - an Asian Journal, 2019, 14, 3712-3720.	1.7	16
223	Beyond Density Functional Theory: The Multiconfigurational Approach To Model Heterogeneous Catalysis. ACS Catalysis, 2019, 9, 8481-8502.	5.5	75
224	A luminescent inorganic–organic hybrid, [Cd(C ₁₆ H ₁₀ N ₂ O ₈ S)(H ₂ O)], for the selective and recyclable detection of chromates and dichromates in aqueous solution. New Journal of Chemistry, 2019, 43, 13263-13270.	1.4	15
225	Microwave-assisted synthesis of a manganese metal–organic framework and its transformation to porous MnO/carbon nanocomposite utilized as a shuttle suppressing layer in lithium–sulfur batteries. Journal of Materials Science, 2019, 54, 14102-14122.	1.7	33
226	Adenine-Based Zn(II)/Cd(II) Metal–Organic Frameworks as Efficient Heterogeneous Catalysts for Facile CO ₂ Fixation into Cyclic Carbonates: A DFT-Supported Study of the Reaction Mechanism. Inorganic Chemistry, 2019, 58, 11389-11403.	1.9	92
227	Trends in Solid Adsorbent Materials Development for CO ₂ Capture. ACS Applied Materials & Interfaces, 2019, 11, 34533-34559.	4.0	215
228	Exploring the catalytic performance of a series of bimetallic MIL-100(Fe, Ni) MOFs. Journal of Materials Chemistry A, 2019, 7, 20285-20292.	5.2	69
229	Facile and Rapid Preparation of Ag@ZIF-8 for Carboxylation of Terminal Alkynes with CO ₂ in Mild Conditions. ACS Applied Materials & Interfaces, 2019, 11, 28858-28867.	4.0	68
230	Recent advances in POM-organic frameworks and POM-organic polyhedra. Coordination Chemistry Reviews, 2019, 397, 220-240.	9.5	172
231	Direct Imaging of Tunable Crystal Surface Structures of MOF MIL-101 Using High-Resolution Electron Microscopy. Journal of the American Chemical Society, 2019, 141, 12021-12028.	6.6	93
232	Acute oral toxicity and repeated dose 28-day oral toxicity studies of MIL-101 nanoparticles. Regulatory Toxicology and Pharmacology, 2019, 107, 104426.	1.3	23
233	Target-Architecture Engineering of a Novel Two-dimensional Metal–Organic Framework for High Catalytic Performance. Crystal Growth and Design, 2019, 19, 4239-4245.	1.4	14
234	In situ polymerization on nanoscale metal-organic frameworks for enhanced physiological stability and stimulus-responsive intracellular drug delivery. Biomaterials, 2019, 218, 119365.	5.7	80

#	Article	IF	CITATIONS
235	Fabrication of solid strong bases at decreased temperature by doping low-valence Cr3+ into supports. Applied Catalysis A: General, 2019, 584, 117153.	2.2	6
236	Four new transition metal coordination polymers based on mixed 4-imidazole and carboxylate–sulfonate ligands: Syntheses, structures, and properties. Journal of Solid State Chemistry, 2019, 277, 510-518.	1.4	13
237	Lanthanide–Organic Frameworks Constructed from 2,7-Naphthalenedisulfonate and 1 <i>H</i> -Imidazo[4,5- <i>f</i>][1,10]-phenanthroline: Synthesis, Structure, and Luminescence with Near-Visible Light Excitation and Magnetic Properties. Inorganic Chemistry, 2019, 58, 9855-9865.	1.9	46
238	A phthalimide-functionalized UiO-66 metal–organic framework for the fluorogenic detection of hydrazine in live cells. Dalton Transactions, 2019, 48, 12615-12621.	1.6	14
239	Zeolitic Imidazolate Frameworkâ€8 as pHâ€5ensitive Nanocarrier for "Arsenic Trioxide―Drug Delivery. Chemistry - A European Journal, 2019, 25, 13189-13196.	1.7	30
240	Predicted Efficient Visible-Light Driven Water Splitting and Carbon Dioxide Reduction Using Photoredox-Active UiO-NDI Metal Organic Framework. Journal of Physical Chemistry C, 2019, 123, 19778-19785.	1.5	20
241	Direct surface modification of semiconductor quantum dots with metal–organic frameworks. CrystEngComm, 2019, 21, 5568-5577.	1.3	21
242	Oxidative desulfurization and denitrogenation of fuels using metal-organic framework-based/-derived catalysts. Applied Catalysis B: Environmental, 2019, 259, 118021.	10.8	170
243	Aqueous-Phase Differentiation and Speciation of Fe ³⁺ and Fe ²⁺ Using Water-Stable Photoluminescent Lanthanide-Based Metal–Organic Framework. ACS Applied Nano Materials, 2019, 2, 5169-5178.	2.4	41
244	Metal-organic frameworks for catalysis: State of the art, challenges, and opportunities. EnergyChem, 2019, 1, 100005.	10.1	289
245	Photoelectrochemical determination of malathion by using CuO modified with a metal-organic framework of type Cu-BTC. Mikrochimica Acta, 2019, 186, 481.	2.5	25
246	l-Proline functionalized metal-organic framework PCN-261 as catalyst for aldol reaction. Inorganic Chemistry Communication, 2019, 107, 107448.	1.8	13
247	Single-File Diffusion of Neo-Pentane Confined in the MIL-47(V) Metal–Organic Framework. Journal of Physical Chemistry C, 2019, 123, 17360-17367.	1.5	12
248	A double basic Sr-amino containing MOF as a highly stable heterogeneous catalyst. Dalton Transactions, 2019, 48, 11556-11564.	1.6	16
249	Designing an "Off–On―Fluorescence Sensor Based on Cluster-Based Ca ^{II} -Metal–Organic Frameworks for Detection of <scp>I</scp> -Cysteine in Biological Fluids. Langmuir, 2019, 35, 9885-9895.	1.6	32
250	Heterometallic Metal–Organic Frameworks (MOFs): The Advent of Improving the Energy Landscape. ACS Energy Letters, 2019, 4, 1938-1946.	8.8	76
251	Synthesis and Applications of Isoreticular Metal–Organic Frameworks IRMOFs- <i>n</i> (<i>n</i> = 1, 3,) Tj ETC	Qq0 0 0 rg	BT_/Overlock

²⁵²Efficient Synthesis of Sulfonyl Diphenylsulfides Catalyzed via Cu–MOF of PCNâ€6'. ChemistrySelect,
2019, 4, 10972-10974.0.712

#	Article	IF	CITATIONS
253	White Light Emission Properties of Defect Engineered Metal–Organic Frameworks by Encapsulation of Eu ³⁺ and Tb ³⁺ . Crystal Growth and Design, 2019, 19, 6339-6350.	1.4	35
254	Facile in Situ Halogen Functionalization via Triple-Bond Hydrohalogenation: Enhancing Sorption Capacities through Halogenation to Halofumarate-Based Zr(IV)-Metal-Organic Frameworks. Chemistry of Materials, 2019, 31, 8629-8638.	3.2	28
255	Recent Advances in Preparation and Applications of Magnetic Framework Composites. Chemistry - an Asian Journal, 2019, 14, 3515-3530.	1.7	35
256	A Data-Centric Cognitive Gateway with Distributed MIMO for Future Smart Homes. IEEE Wireless Communications, 2019, 26, 40-46.	6.6	4
257	Cation-induced chirality in a bifunctional metal-organic framework for quantitative enantioselective recognition. Nature Communications, 2019, 10, 5117.	5.8	150
258	Zr-MOF with free carboxylic acid for storage and controlled release of caffeine. Journal of Molecular Liquids, 2019, 296, 112060.	2.3	24
259	Synthesis of Biodiesel from Soybean Oil with Methanol Catalyzed by Niâ€Doped CaOâ€MgO Catalysts. ChemistrySelect, 2019, 4, 11181-11188.	0.7	1
260	Elucidating J-Aggregation Effect in Boosting Singlet-Oxygen Evolution Using Zirconium–Porphyrin Frameworks: A Comprehensive Structural, Catalytic, and Spectroscopic Study. ACS Applied Materials & Interfaces, 2019, 11, 45118-45125.	4.0	29
261	Metal organic frameworks (MOFs): Current trends and challenges in control and management of air quality. Korean Journal of Chemical Engineering, 2019, 36, 1839-1853.	1.2	22
262	Dualâ€ionically Bound Singleâ€6ite Rhodium on Porous Ionic Polymer Rivals Commercial Methanol Carbonylation Catalysts. Advanced Materials, 2019, 31, e1904976.	11.1	26
263	A MOF-templated approach for designing ruthenium–cesium catalysts for hydrogen generation from ammonia. International Journal of Hydrogen Energy, 2019, 44, 30108-30118.	3.8	22
264	Highly Efficient Bifunctional Amide Functionalized Zn and Cd Metal Organic Frameworks for One-Pot Cascade Deacetalization–Knoevenagel Reactions. Frontiers in Chemistry, 2019, 7, 699.	1.8	18
265	Potential Utilization of Metal–Organic Frameworks in Heterogeneous Catalysis: A Case Study of Hydrogenâ€Bond Donating and Singleâ€5ite Catalysis. Chemistry - an Asian Journal, 2019, 14, 4087-4102.	1.7	25
266	Computational Studies of Photocatalysis with Metal–Organic Frameworks. Energy and Environmental Materials, 2019, 2, 251-263.	7.3	66
267	Function–Structure Relationship in Metal–Organic Frameworks for Mild, Green, and Fast Catalytic C–C Bond Formation. Inorganic Chemistry, 2019, 58, 14429-14439.	1.9	25
268	Encapsulation of Metal Nanoparticles within Metal–Organic Frameworks for the Reduction of Nitro Compounds. Molecules, 2019, 24, 3050.	1.7	17
269	Ligand geometry controlling Zn-MOF partial structures for their catalytic performance in Knoevenagel condensation. RSC Advances, 2019, 9, 25170-25176.	1.7	14
270	Lanthanide(III)-organic extended frameworks based on cubic [Ln4(μ3-OH)4] clusters: Syntheses, structures and application as fluorescent sensor. Inorganic Chemistry Communication, 2019, 108, 107536.	1.8	1

#	Article	IF	CITATIONS
271	Synthesis of 3D-Ordered Macro/Microporous Yolk–Shelled Nanoreactor with Spatially Separated Functionalities for Cascade Reaction. ACS Applied Materials & Interfaces, 2019, 11, 33978-33986.	4.0	33
272	Ultrathin 2D nickel zeolitic imidazolate framework nanosheets for electrocatalytic reduction of CO ₂ . Chemical Communications, 2019, 55, 11634-11637.	2.2	54
273	Encapsulating Pt Nanoparticles through Transforming Fe ₃ O ₄ into MIL-100(Fe) for Well-Defined Fe ₃ O ₄ @Pt@MIL-100(Fe) Core–Shell Heterostructures with Promoting Catalytic Activity. Inorganic Chemistry, 2019, 58, 12433-12440.	1.9	41
274	Synthesis and Reactivity of Zr MOFs Assembled from P ^N N ^N P-Ru Pincer Complexes. Organometallics, 2019, 38, 3419-3428.	1.1	14
275	Cycloaddition of CO ₂ with epoxides and esterification reactions using the porous redox catalyst Co-POM@MIL-101(Cr). New Journal of Chemistry, 2019, 43, 15585-15595.	1.4	18
276	A Reversible Phase Transition of 2D Coordination Layers by B–Hâ^™â^™â^™Cu(II) Interactions in a Coordination Polymer. Molecules, 2019, 24, 3204.	1.7	7
277	UiO-type metal–organic frameworks with NHC or metal–NHC functionalities for <i>N</i> -methylation using CO ₂ as the carbon source. Chemical Communications, 2019, 55, 11928-11931.	2.2	28
278	Metal–Organic Framework Encapsulating Hemoglobin as a High-Stable and Long-Circulating Oxygen Carriers to Treat Hemorrhagic Shock. ACS Applied Materials & Interfaces, 2019, 11, 35604-35612.	4.0	45
279	Soft Templating and Disorder in an Applied 1D Cobalt Coordination Polymer Electrocatalyst. Matter, 2019, 1, 1354-1369.	5.0	7
280	Straightforward synthesis of MTW-type magnesium silicalite for CO ₂ fixation with epoxides under mild conditions. Catalysis Science and Technology, 2019, 9, 5725-5735.	2.1	11
281	Enhanced adsorptive desulfurization by iso-structural amino bearing IRMOF-3 and IRMOF-3@Al ₂ O ₃ <i>versus</i> MOF-5 and MOF-5@Al ₂ O ₃ revealing the predominant role of hydrogen bonding. Dalton Transactions, 2019, 48, 14792-14800.	1.6	18
282	Ligand Excess "Inverse-Defected―Zr ₆ Tetrahedral Tetracarboxylate Framework and Its Thermal Transformation. Inorganic Chemistry, 2019, 58, 12786-12797.	1.9	3
283	Metal-organic frameworks as catalysts for sugar conversion into platform chemicals: State-of-the-art and prospects. Coordination Chemistry Reviews, 2019, 401, 213064.	9.5	45
284	Anisotropy of Elastic Properties of Metal–Organic Frameworks and the Breathing Phenomenon. Journal of Physical Chemistry C, 2019, 123, 24651-24658.	1.5	18
285	Luminescent metal-organic frameworks as potential sensory materials for various environmental toxic agents. Coordination Chemistry Reviews, 2019, 401, 213065.	9.5	173
286	Gas Sorption Properties of a New Three-Dimensional In-ABDC MOF With a Diamond Net. Frontiers in Materials, 2019, 6, .	1.2	4
287	Making Porous Materials Respond to Visible Light. ACS Energy Letters, 2019, 4, 2656-2667.	8.8	18
288	Pressure-regulated synthesis of Cu(TPA)·(DMF) in microdroplets for selective CO2 adsorption. Dalton Transactions, 2019, 48, 1006-1016	1.6	13

#	Article	IF	CITATIONS
289	A pillared-layer strategy to construct water-stable Zn–organic frameworks for iodine capture and luminescence sensing of Fe ³⁺ . Dalton Transactions, 2019, 48, 602-608.	1.6	29
290	Two-fold 2D + 2D → 2D interweaved rhombus (4,4) grid: synthesis, structure, and dye removal properties in darkness and in daylight. Dalton Transactions, 2019, 48, 1095-1107.	1.6	6
291	Two unique copper cluster-based metal–organic frameworks with high performance for CO ₂ adsorption and separation. Inorganic Chemistry Frontiers, 2019, 6, 556-561.	3.0	23
292	Zr-MOF-808@MCM-41 catalyzed phosgene-free synthesis of polyurethane precursors. Catalysis Science and Technology, 2019, 9, 146-156.	2.1	48
293	Cathodized copper porphyrin metal–organic framework nanosheets for selective formate and acetate production from CO ₂ electroreduction. Chemical Science, 2019, 10, 2199-2205.	3.7	191
294	A Zn based metal organic framework as a heterogeneous catalyst for C–C bond formation reactions. New Journal of Chemistry, 2019, 43, 3793-3800.	1.4	55
295	Tuning the Ionicity of Stable Metal–Organic Frameworks through Ionic Linker Installation. Journal of the American Chemical Society, 2019, 141, 3129-3136.	6.6	70
297	Metal–Organic Frameworks Based Nano/Micro/Millimeter‣ized Selfâ€Propelled Autonomous Machines. Advanced Materials, 2019, 31, e1806530.	11.1	59
298	Co(II)-based Metal–Organic Frameworks and Their Application in Gas Sorption and Solvatochromism. Crystal Growth and Design, 2019, 19, 1640-1648.	1.4	25
299	Lanthanide coordination polymer-based biosensor for citrate detection in urine. Analytical Methods, 2019, 11, 1405-1409.	1.3	13
300	A mesoporous NNN-pincer-based metal–organic framework scaffold for the preparation of noble-metal-free catalysts. Chemical Communications, 2019, 55, 2023-2026.	2.2	38
301	Facile in situ fabrication of Co nanoparticles embedded in 3D N-enriched mesoporous carbon foam electrocatalyst with enhanced activity and stability toward oxygen reduction reaction. Journal of Materials Science, 2019, 54, 5412-5423.	1.7	47
302	Guest-Induced Ultrasensitive Detection of Multiple Toxic Organics and Fe ³⁺ lons in a Strategically Designed and Regenerative Smart Fluorescent Metal–Organic Framework. ACS Applied Materials & Interfaces, 2019, 11, 9042-9053.	4.0	184
303	Microwave-Assisted Rapid Synthesis of Well-Shaped MOF-74 (Ni) for CO ₂ Efficient Capture. Inorganic Chemistry, 2019, 58, 2717-2728.	1.9	133
304	Co(<scp>ii</scp>)-cluster-based metal–organic frameworks as efficient heterogeneous catalysts for selective oxidation of arylalkanes. CrystEngComm, 2019, 21, 1666-1673.	1.3	12
305	Metal–Organic Frameworks for Helium Recovery from Natural Gas via N ₂ /He Separation: A Computational Screening. Journal of Physical Chemistry C, 2019, 123, 3469-3475.	1.5	15
306	Dispersed nano-MOFs <i>via</i> a stimuli-responsive biohybrid-system with enhanced photocatalytic performance. Materials Horizons, 2019, 6, 802-809.	6.4	25
307	Construction of a 3D porous Co(<scp>ii</scp>) metal–organic framework (MOF) with Lewis acidic metal sites exhibiting selective CO ₂ capture and conversion under mild conditions. New lournal of Chemistry, 2019, 43, 2163-2170	1.4	35

#	Article	IF	CITATIONS
308	Phytic acid-encapsulated MIL-101(Cr): Remarkable adsorbent for the removal of both neutral indole and basic quinoline from model liquid fuel. Chemical Engineering Journal, 2019, 375, 121948.	6.6	18
309	Catalytic conversion of CO2 and shale gas-derived substrates into saturated carbonates and derivatives: Catalyst design, performances and reaction mechanism. Journal of CO2 Utilization, 2019, 34, 115-148.	3.3	32
310	Co supported on N-doped carbon, derived from bimetallic azolate framework-6: a highly effective oxidative desulfurization catalyst. Journal of Materials Chemistry A, 2019, 7, 17823-17833.	5.2	55
311	Spectroelectrochemical studies of the redox active tris[4-(triazol-1-yl)phenyl]amine linker and redox state manipulation of Mn(<scp>ii</scp>)/Cu(<scp>ii</scp>) coordination frameworks. Dalton Transactions, 2019, 48, 10122-10128.	1.6	9
312	New porous Fe(III)-based ferrocene-containing diphosphinate. Phosphorus, Sulfur and Silicon and the Related Elements, 2019, 194, 1007-1009.	0.8	3
313	Catalytically Active Imine-based Covalent Organic Frameworks for Detoxification of Nerve Agent Simulants in Aqueous Media. Materials, 2019, 12, 1974.	1.3	20
314	Review of plasma-assisted reactions and potential applications for modification of metal—organic frameworks. Frontiers of Chemical Science and Engineering, 2019, 13, 444-457.	2.3	15
315	Synthetic Chemistry and Multifunctionality of an Amorphous Ni-MOF-74 Shell on a Ni/SiO ₂ Hollow Catalyst for Efficient Tandem Reactions. Chemistry of Materials, 2019, 31, 5320-5330.	3.2	66
316	Engineering Metal–Organic Frameworks for the Electrochemical Reduction of CO ₂ : A Minireview. Chemistry - an Asian Journal, 2019, 14, 3452-3461.	1.7	52
317	Strategies for Overcoming Defects of HKUSTâ€l and Its Relevant Applications. Advanced Materials Interfaces, 2019, 6, 1900423.	1.9	22
318	Controllable preparation of ZIF-67 derived catalyst for CO2 methanation. Molecular Catalysis, 2019, 474, 110421.	1.0	17
319	Synthesis and Functionalization of Porous Zr-Diaminostilbenedicarboxylate Metal–Organic Framework for Storage and Stable Delivery of Ibuprofen. ACS Omega, 2019, 4, 9860-9867.	1.6	28
320	The surface chemistry of metal–organic frameworks and their applications. Dalton Transactions, 2019, 48, 9037-9042.	1.6	58
321	An Exceptionally Stable Tb ^{III} -Based Metal–Organic Framework for Selectively and Sensitively Detecting Antibiotics in Aqueous Solution. Inorganic Chemistry, 2019, 58, 7746-7753.	1.9	105
322	A highly stable 3D metalâ^`organic framework for selectively luminescent sensing and knoevenagel condensation reaction. Journal of Solid State Chemistry, 2019, 277, 25-31.	1.4	12
323	Significant Decrease in Activation Temperature for the Generation of Strong Basicity: A Strategy of Endowing Supports with Reducibility. Inorganic Chemistry, 2019, 58, 8003-8011.	1.9	9
324	Stability of amine-functionalized CO ₂ adsorbents: a multifaceted puzzle. Chemical Society Reviews, 2019, 48, 3320-3405.	18.7	260
325	A novel multi-purpose Zn-MOF fluorescent sensor for 2,4-dinitrophenylhydrazine, picric acid, La3+ and Ca2+: Synthesis, structure, selectivity, sensitivity and recyclability. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 222, 117207.	2.0	22

#	Article	IF	CITATIONS
326	Metal–Organic Frameworks as Fuels for Advanced Applications: Evaluating and Modifying the Combustion Energy of Popular MOFs. Chemistry of Materials, 2019, 31, 4882-4888.	3.2	21
327	Oneâ€Pot Synthesis of Heterobimetallic Metal–Organic Frameworks (MOFs) for Multifunctional Catalysis. Chemistry - A European Journal, 2019, 25, 10490-10498.	1.7	99
328	Multilink F* Method for Combined Quantum Mechanical and Molecular Mechanical Calculations of Complex Systems. Journal of Chemical Theory and Computation, 2019, 15, 4208-4217.	2.3	14
329	A Phthalocyanineâ€Based Layered Twoâ€Dimensional Conjugated Metal–Organic Framework as a Highly Efficient Electrocatalyst for the Oxygen Reduction Reaction. Angewandte Chemie, 2019, 131, 10787-10792.	1.6	58
330	A Phthalocyanineâ€Based Layered Twoâ€Dimensional Conjugated Metal–Organic Framework as a Highly Efficient Electrocatalyst for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2019, 58, 10677-10682.	7.2	278
331	Recent advances in amide functionalized metal organic frameworks for heterogeneous catalytic applications. Coordination Chemistry Reviews, 2019, 395, 86-129.	9.5	80
332	Photofunctional MOF-based hybrid materials for the chemical sensing of biomarkers. Journal of Materials Chemistry C, 2019, 7, 8155-8175.	2.7	104
333	Preparation of Ag/UiO-66-NH2 and its application in photocatalytic reduction of Cr(VI) under visible light. Research on Chemical Intermediates, 2019, 45, 4801-4811.	1.3	32
334	Adsorptive removal of nitroimidazole antibiotics from water using porous carbons derived from melamine-loaded MAF-6. Journal of Hazardous Materials, 2019, 378, 120761.	6.5	32
335	Metal–Organic Framework Coating Enhances the Performance of Cu ₂ O in Photoelectrochemical CO ₂ Reduction. Journal of the American Chemical Society, 2019, 141, 10924-10929.	6.6	219
336	Water adsorption/desorption over metal-organic frameworks with ammonium group for possible application in adsorption heat transformation. Chemical Engineering Journal, 2019, 373, 1064-1071.	6.6	46
337	Ultrathin 2D Cu-porphyrin MOF nanosheets as a heterogeneous catalyst for styrene oxidation. Materials Chemistry Frontiers, 2019, 3, 1580-1585.	3.2	45
338	Integration of Interfacial and Alloy Effects to Modulate Catalytic Performance of Metal–Organic-Framework-Derived Cu–Pd Nanocrystals toward Hydrogenolysis of 5-Hydroxymethylfurfural. ACS Sustainable Chemistry and Engineering, 2019, 7, 10349-10362.	3.2	83
339	NaAlO2 supported on titanium dioxide as solid base catalyst for the carboxymethylation of allyl alcohol with DMC. Applied Catalysis A: General, 2019, 581, 31-36.	2.2	17
340	A novel 3D Ag-based metal–organic framework: Synthesis, structure and property. Inorganic Chemistry Communication, 2019, 105, 158-162.	1.8	2
341	Magnetic Catalyst KF/CaO–CoFe2O4 for the Preparation of Polycarbonate Diol (PCDL). Journal of Inorganic and Organometallic Polymers and Materials, 2019, 29, 2003-2011.	1.9	4
342	Cooperative catalysis at the metal–MOF interface: hydrodeoxygenation of vanillin over Pd nanoparticles covered with a UiO-66(Hf) MOF. Dalton Transactions, 2019, 48, 8573-8577.	1.6	44
343	Immobilization of cerium (IV) and erbium (III) in mesoporous MCMâ€41: Two novel and highly active heterogeneous catalysts for the synthesis of 5â€substituted tetrazoles, and chemo―and homoselective oxidation of sulfides. Applied Organometallic Chemistry, 2019, 33, e4854.	1.7	16

#	Article	IF	CITATIONS
344	A New Pathway to 2-Arylbenzoxazoles and 2-Arylbenzothiazoles Via One-Pot Oxidative Cyclization Reactions Under Iron-Organic Framework Catalysis. Catalysis Letters, 2019, 149, 2053-2063.	1.4	7
345	A bi-functional 3D PbII–organic framework for Knoevenagel condensation reaction and highly selective luminescent sensing of Cr2O72â^. Inorganic Chemistry Communication, 2019, 105, 86-92.	1.8	24
346	Cleaving DNA-model phosphodiester with Lewis acid–base catalytic sites in bifunctional Zr–MOFs. Dalton Transactions, 2019, 48, 8044-8048.	1.6	11
347	Iron-doped copper 1,4-benzenedicarboxylate as photo-Fenton catalyst for degradation of methylene blue. Toxicological and Environmental Chemistry, 2019, 101, 13-25.	0.6	15
348	Selective Metal–Phenolic Assembly from Complex Multicomponent Mixtures. ACS Applied Materials & Interfaces, 2019, 11, 17714-17721.	4.0	27
349	From molecular metal complex to metal-organic framework: The CO2 reduction photocatalysts with clear and tunable structure. Coordination Chemistry Reviews, 2019, 390, 86-126.	9.5	196
350	Photopolymerization of metal–organic polyhedra: an efficient approach to improve the hydrostability, dispersity, and processability. Chemical Communications, 2019, 55, 6177-6180.	2.2	52
351	Strategies for Improving the Performance and Application of MOFs Photocatalysts. ChemCatChem, 2019, 11, 2978-2993.	1.8	46
352	A highly catalytically active Hf(IV) metal-organic framework for Knoevenagel condensation. Microporous and Mesoporous Materials, 2019, 284, 459-467.	2.2	47
353	Rapid and Low-Cost Electrochemical Synthesis of UiO-66-NH ₂ with Enhanced Fluorescence Detection Performance. Inorganic Chemistry, 2019, 58, 6742-6747.	1.9	71
354	Insights into the water adsorption mechanism in the chemically stable zirconium-based MOF DUT-67 – a prospective material for adsorption-driven heat transformations. Journal of Materials Chemistry A, 2019, 7, 12681-12690.	5.2	51
355	Carbon capture and conversion using metal–organic frameworks and MOF-based materials. Chemical Society Reviews, 2019, 48, 2783-2828.	18.7	1,685
356	Hydrogenation of dioctyl phthalate over a Rh-supported Al modified mesocellular foam catalyst. New Journal of Chemistry, 2019, 43, 5623-5631.	1.4	14
357	Metal-Organic Frameworks for Nanoarchitectures: Nanoparticle, Composite, Core-Shell, Hierarchical, and Hollow Structures. , 2019, , 151-194.		1
358	Cage-structured M _x P _y @CNCs (M = Co and Zn) from MOF confined growth in carbon nanocages for superior lithium storage and hydrogen evolution performance. Journal of Materials Chemistry A, 2019, 7, 8443-8450.	5.2	46
359	Polyacrylonitrile/Fe(III) metal-organic framework fibrous nanocomposites designed for tissue engineering applications. Materials Chemistry and Physics, 2019, 229, 242-250.	2.0	37
360	Coordinative Binding of Polymers to Metal–Organic Framework Nanoparticles for Control of Interactions at the Biointerface. ACS Nano, 2019, 13, 3884-3895.	7.3	73
361	Functionalized mesoporous metal-organic framework PCN-100: An efficient carrier for vitamin E storage and delivery. Journal of Industrial and Engineering Chemistry, 2019, 74, 158-163.	2.9	18

#	Article	IF	CITATIONS
362	Engineered MOFs and Enzymes for the Synthesis of Active Pharmaceutical Ingredients. ChemCatChem, 2019, 11, 5671-5685.	1.8	27
363	Ultrasonic-Assisted Synthesis of a Zn(II) Coordination Polymer in Aqueous Media and Its High-Performance Luminescent Sensing for 2,4,6-Trinitrophenol. Crystal Growth and Design, 2019, 19, 2139-2148.	1.4	26
364	Construction of bifunctional 2-fold interpenetrated Zn(<scp>ii</scp>) MOFs exhibiting selective CO ₂ adsorption and aqueous-phase sensing of 2,4,6-trinitrophenol. Inorganic Chemistry Frontiers, 2019, 6, 1058-1067.	3.0	48
365	Highly selective and rapid detection of pentachlorophenol in aqueous solution with metalloporphyrinic MOFs. Microporous and Mesoporous Materials, 2019, 284, 36-42.	2.2	18
366	Synthesis and Structure of Three New Alkaline Earth Metal–Organic Frameworks with High Thermal Stability as Catalysts for Knoevenagel Condensation. Crystal Growth and Design, 2019, 19, 2679-2686.	1.4	27
367	Anomalous Dynamics of a Nanoconfined Gas in a Soft Metal–Organics Framework. Journal of Physical Chemistry Letters, 2019, 10, 1698-1708.	2.1	5
368	Basic Anion-Exchange Resin-Catalyzed Aldol Condensation of Aromatic Ketones with Aldehydes in Continuous Flow. Organic Process Research and Development, 2019, 23, 961-967.	1.3	16
369	A fourfold interpenetrating cadmium(II) metal–organic framework based on 2,4,6-tris(pyridin-4-yl)-1,3,5-triazine with reversible photochromic properties. Acta Crystallographica Section C, Structural Chemistry, 2019, 75, 372-377.	0.2	4
370	Wellâ€Defined Cu ₂ O/Cu ₃ (BTC) ₂ Sponge Architecture as Efficient Phenolics Scavenger: Synchronous Etching and Reduction of MOFs in confinedâ€pH NH ₃ â <h<sub>2O. Small, 2019, 15, e1805478.</h<sub>	5.2	19
371	Postfunctionalized Metalloligand-Based Catenated Coordination Polymers: Syntheses, Structures, and Effect of Labile Sites on Catalysis. Crystal Growth and Design, 2019, 19, 2723-2735.	1.4	7
372	Structural Control of Metal–Organic Framework Bearing N-Heterocyclic Imidazolium Cation and Generation of Highly Stable Porous Structure. Inorganic Chemistry, 2019, 58, 6619-6627.	1.9	13
373	Design and development of novel Coâ€MOF nanostructures as an excellent catalyst for alcohol oxidation and Henry reaction, with a potential antibacterial activity. Applied Organometallic Chemistry, 2019, 33, e4820.	1.7	16
374	Hierarchical Porous and Zincâ€lonâ€Crosslinked PIMâ€1 Nanocomposite as a CO ₂ Cycloaddition Catalyst with High Efficiency. ChemSusChem, 2019, 12, 2231-2239.	3.6	20
375	An anionic Cd-based coordination polymer exhibiting ion-exchange behavior for photoluminescence and selective dye adsorption. Journal of Luminescence, 2019, 210, 70-74.	1.5	24
376	Effects of Alkali Metal (Li, Na, and K) Incorporation in NH2–MIL125(Ti) on the Performance of CO2 Adsorption. Materials, 2019, 12, 844.	1.3	18
377	A zinc(II) coordination polymer material with Lewis basic pyridyl sites: Structure, photoluminescence, and heterogeneous catalysis. Journal of Solid State Chemistry, 2019, 274, 81-85.	1.4	43
378	Mixedâ€Metal MOFs: Unique Opportunities in Metal–Organic Framework (MOF) Functionality and Design. Angewandte Chemie, 2019, 131, 15330-15347.	1.6	124
379	Mixedâ€Metal MOFs: Unique Opportunities in Metal–Organic Framework (MOF) Functionality and Design. Angewandte Chemie - International Edition, 2019, 58, 15188-15205.	7.2	493

#	Article	IF	CITATIONS
380	Tunable titanium metal–organic frameworks with infinite 1D Ti–O rods for efficient visible-light-driven photocatalytic H ₂ evolution. Journal of Materials Chemistry A, 2019, 7, 11928-11933.	5.2	192
381	Mesoporous metal-organic framework PCN-222(Fe): Promising adsorbent for removal of big anionic and cationic dyes from water. Chemical Engineering Journal, 2019, 371, 252-259.	6.6	109
382	Reverse Hierarchy of Alkane Adsorption in Metal–Organic Frameworks (MOFs) Revealed by Immersion Calorimetry. Journal of Physical Chemistry C, 2019, 123, 11699-11706.	1.5	12
383	Plasmonic hot charge carriers activated Ni centres of metal–organic frameworks for the oxygen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 10601-10609.	5.2	51
384	Four isostructural lanthanide(III) coordination compounds based on a new <i>N</i> -oxydic pyridyl naphthalenediimide ligand: synthesis and characterization. Acta Crystallographica Section C, Structural Chemistry, 2019, 75, 38-45.	0.2	2
385	Synthesis of New bis 1- and 5-Substituted 1H-Tetrazoles via Huisgen-Type 1,3-Dipolar Cycloadditions. Proceedings (mdpi), 2019, 9, 32.	0.2	4
386	A dual-responsive luminescent TbIII-organic framework with high water stability for selective sensing of Fe3+ and Cr2O72â^' in water systems. Inorganic Chemistry Communication, 2019, 104, 71-77.	1.8	9
387	Metal-organic framework with various functional groups: Remarkable adsorbent for removal of both neutral indole and basic quinoline from liquid fuel. Chemical Engineering Journal, 2019, 370, 1467-1473.	6.6	37
388	A metal–organic framework converted catalyst that boosts photo-electrochemical water splitting. Journal of Materials Chemistry A, 2019, 7, 11143-11149.	5.2	59
389	A quantitative transmetalation with a metal organic framework compound in a solid–liquid interface reaction: synthesis, structure, kinetics, spectroscopy and electrochemistry. CrystEngComm, 2019, 21, 2438-2446.	1.3	5
390	Advanced Catalysts Derived from Composition‣egregated Platinum–Nickel Nanostructures: New Opportunities and Challenges. Advanced Functional Materials, 2019, 29, 1808161.	7.8	38
391	Alkene hydrosilylation catalyzed by easily assembled Ni(<scp>ii</scp>)-carboxylate MOFs. Chemical Science, 2019, 10, 3791-3795.	3.7	26
392	Covalently hooked EOSIN-Y in a Zr(IV) framework as visible-light mediated, heterogeneous photocatalyst for efficient C H functionalization of tertiary amines. Journal of Catalysis, 2019, 371, 298-304.	3.1	42
393	A Mn(II)-porphyrin based metal-organic framework (MOF) for visible-light-assisted cycloaddition of carbon dioxide with epoxides. Microporous and Mesoporous Materials, 2019, 280, 372-378.	2.2	69
394	Cluster nuclearity control and modulated hydrothermal synthesis of functionalized Zr ₁₂ metal–organic frameworks. Dalton Transactions, 2019, 48, 7069-7073.	1.6	29
395	Controlled Assembly of Hierarchical Metal Catalysts with Enhanced Performances. CheM, 2019, 5, 805-837.	5.8	24
396	Tuning the Properties of Zr ₆ O ₈ Nodes in the Metal Organic Framework UiO-66 by Selection of Node-Bound Ligands and Linkers. Chemistry of Materials, 2019, 31, 1655-1663.	3.2	97
397	High-efficiency photocatalytic performance and mechanism of silver-based metal–organic framework. Journal of Materials Research, 2019, 34, 991-998.	1.2	12

#	Article	IF	CITATIONS
398	A novel metal-organic framework based on mixed ligands as a highly-selective luminescent sensor for Cr2O72â^' and nitroaromatic compounds. Inorganic Chemistry Communication, 2019, 102, 108-112.	1.8	10
399	Synthesis, structures and properties of six lanthanide complexes based on a 2-(2-carboxyphenyl)imidazo(4,5- <i>f</i>)-(1,10)phenanthroline ligand. RSC Advances, 2019, 9, 3102-3112.	1.7	24
400	Anchoring Co ^{II} lons into a Thiolâ€Laced Metal–Organic Framework for Efficient Visibleâ€Lightâ€Driven Conversion of CO ₂ into CO. ChemSusChem, 2019, 12, 2166-2170.	3.6	58
401	Co nanoparticles encapsulated in N-doped carbon nanofibers as bifunctional catalysts for rechargeable Zn-air battery. Applied Surface Science, 2019, 478, 560-566.	3.1	41
402	Vanadium Docked Covalent-Organic Frameworks: An Effective Heterogeneous Catalyst for Modified Mannich-Type Reaction. ACS Sustainable Chemistry and Engineering, 2019, 7, 4878-4888.	3.2	46
403	Cadmiumâ€Based Coordination Polymers from 1D to 3D: Synthesis, Structures, and Photoluminescent and Electrochemiluminescent Properties. ChemPlusChem, 2019, 84, 190-202.	1.3	28
404	Progress and challenges of graphene oxide/metal-organic composites. Coordination Chemistry Reviews, 2019, 387, 262-272.	9.5	99
405	Introducing Nonstructural Ligands to Zirconia-like Metal–Organic Framework Nodes To Tune the Activity of Node-Supported Nickel Catalysts for Ethylene Hydrogenation. ACS Catalysis, 2019, 9, 3198-3207.	5.5	68
406	Hierarchical porous hollow FeFe(CN) ₆ nanospheres wrapped with I-doped graphene as anode materials for lithium-ion batteries. Dalton Transactions, 2019, 48, 4058-4066.	1.6	13
407	Design and Construction of a Chiral Cd(II)-MOF from Achiral Precursors: Synthesis, Crystal Structure and Catalytic Activity toward C–C and C–N Bond Forming Reactions. Inorganic Chemistry, 2019, 58, 3219-3226.	1.9	41
408	Electrocatalysis of Cuâ^'MOF/Graphene Composite and its Sensing Application for Electrochemical Simultaneous Determination of Dopamine and Paracetamol. Electroanalysis, 2019, 31, 1002-1008.	1.5	72
409	OX-1 Metal–Organic Framework Nanosheets as Robust Hosts for Highly Active Catalytic Palladium Species. ACS Sustainable Chemistry and Engineering, 2019, 7, 5875-5885.	3.2	15
410	Syntheses, structures and properties of structural diversity of 3D coordination polymers based on bis(imidazole) and dicarboxylate. Polyhedron, 2019, 162, 303-310.	1.0	14
411	The crystal structure of poly[(1¼ ₃ -2,4,6-tris[4-(1 <i>H</i> -imidazol-1-yl)phenyl]-1,3,5-triazine- <i>k³N</i> : <i>Nâ - <i>N</i>, <i>N</i>-dimethylacetamide (1/2), C₃₈H₃₉N₁₃O₈Zn. Zeitschrift Fur Kristallographie -</i>	€²: <i> 0.1</i>	N′′< O
412	New Crystal Structures, 2019, 234, 1289-1292. Revisiting the water sorption isotherm of MOF using electrical measurements. Chemical Communications, 2019, 55, 13251-13254.	2.2	14
413	Cobalt Amide Imidate Imidazolate Frameworks as Highly Active Oxygen Evolution Model Materials. ACS Applied Energy Materials, 2019, 2, 8930-8938.	2.5	12
414	A stable pillared metal–organic framework constructed by H 4 TCPP ligand as luminescent sensor for selective detection of TNP and Fe 3+ ions. Applied Organometallic Chemistry, 2019, 33, e5243.	1.7	15
415	Metal–Organic-Framework-Supported and -Isolated Ceria Clusters with Mixed Oxidation States. ACS Applied Materials & Interfaces, 2019, 11, 47822-47829.	4.0	39

#	Article	IF	CITATIONS
416	Effect of Functional Groups of Metal–Organic Frameworks, Coated on Cotton, on Removal of Particulate Matters via Selective Interactions. ACS Applied Materials & Interfaces, 2019, 11, 47649-47657.	4.0	33
417	A Thiophene-2-carboxamide-Functionalized Zr(IV) Organic Framework as a Prolific and Recyclable Heterogeneous Catalyst for Regioselective Ring Opening of Epoxides. Inorganic Chemistry, 2019, 58, 16581-16591.	1.9	16
418	Editorial: Functional Metal-Organic Frameworks: Gas Sorption, Separation, and Heterogeneous Catalysis. Frontiers in Materials, 2019, 6, .	1.2	1
419	Coordination Assemblies of Zn(II) Coordination Polymers: Positional Isomeric Effect and Optical Properties. Crystals, 2019, 9, 664.	1.0	6
420	Recent advances in metallopolymer-based drug delivery systems. RSC Advances, 2019, 9, 37009-37051.	1.7	18
421	Partial deligandation of M/Ce-BTC nanorods (M = Au, Cu, au-cu) with "Quasi-MOF―structures towards improving catalytic activity and stability. Applied Catalysis A: General, 2019, 572, 34-43.	2.2	46
422	Cobalt(II)-Based Metal–Organic Framework as Bifunctional Materials for Ag(I) Detection and Proton Reduction Catalysis for Hydrogen Production. Inorganic Chemistry, 2019, 58, 924-931.	1.9	33
423	Formation of C–C and C–Heteroatom Bonds by C–H Activation by Metal Organic Frameworks as Catalysts or Supports. ACS Catalysis, 2019, 9, 1081-1102.	5.5	99
424	Metalâ€Helix Frameworks from Short Hybrid Peptide Foldamers. Angewandte Chemie, 2019, 131, 2273-2277.	1.6	16
425	Metalâ€Helix Frameworks from Short Hybrid Peptide Foldamers. Angewandte Chemie - International Edition, 2019, 58, 2251-2255.	7.2	45
426	Enhanced hydrophobic UiO-66 (University of Oslo 66) metal-organic framework with high capacity and selectivity for toluene capture from high humid air. Journal of Colloid and Interface Science, 2019, 539, 152-160.	5.0	151
427	Metal-organic frameworks/carbon-based materials for environmental remediation: A state-of-the-art mini-review. Journal of Environmental Management, 2019, 232, 964-977.	3.8	117
428	Solvent Directed Synthesis of Molecular Cage and Metal Organic Framework of Copper(II) Paddlewheel Cluster. Israel Journal of Chemistry, 2019, 59, 292-298.	1.0	14
429	In Situ Generation of an Nâ€Heterocyclic Carbene Functionalized Metal–Organic Framework by Postsynthetic Ligand Exchange: Efficient and Selective Hydrosilylation of CO ₂ . Angewandte Chemie - International Edition, 2019, 58, 2844-2849.	7.2	73
430	Guest-Dependent Single-Crystal-to-Single-Crystal Phase Transitions in a Two-Dimensional Uranyl-Based Metal–Organic Framework. Crystal Growth and Design, 2019, 19, 506-512.	1.4	29
431	In Operando Analysis of Diffusion in Porous Metalâ€Organic Framework Catalysts. Chemistry - A European Journal, 2019, 25, 3465-3476.	1.7	42
432	Co3O4@PC derived from ZIF-67 as an efficient catalyst for the selective catalytic reduction of NO with NH3 at low temperature. Chemical Engineering Journal, 2019, 361, 703-712.	6.6	57
433	Ultrasensitive "signal-on―electrochemical aptasensor for assay of acetamiprid residues based on copper-centered metal-organic frameworks. Analytica Chimica Acta, 2019, 1050, 51-59.	2.6	58

	CITATION	Report	
#	Article	IF	CITATIONS
434	4,5-Diamino-1,2-dihydropyridazine-3,6-dione-based layered Zn2+ coordination polymer and sensing properties on 2,4,6-trinitrophenol and Cr2O72 Journal of Solid State Chemistry, 2019, 270, 212-218.	1.4	8
435	Mechanistic insights into the Knoevenagel condensation reaction over ZnO catalysts: Direct observation of surface intermediates using in situ FTIR. Journal of Catalysis, 2019, 369, 157-167.	3.1	28
436	Hierarchical porous zeolitic imidazolate frameworks nanoparticles for efficient adsorption of rare-earth elements. Microporous and Mesoporous Materials, 2019, 278, 175-184.	2.2	149
437	Using Carbon Dioxide as a Building Block in Continuous Flow Synthesis. Advanced Synthesis and Catalysis, 2019, 361, 247-264.	2.1	64
438	Metal–organic frameworks: Structures and functional applications. Materials Today, 2019, 27, 43-68.	8.3	627
439	Metalâ€Organic Precursor–Derived Mesoporous Carbon Spheres with Homogeneously Distributed Molybdenum Carbide/Nitride Nanoparticles for Efficient Hydrogen Evolution in Alkaline Media. Advanced Functional Materials, 2019, 29, 1807419.	7.8	104
440	A Nobleâ€Metalâ€Free Metal–Organic Framework (MOF) Catalyst for the Highly Efficient Conversion of CO ₂ with Propargylic Alcohols. Angewandte Chemie - International Edition, 2019, 58, 577-581.	7.2	140
441	A Nobleâ€Metalâ€Free Metal–Organic Framework (MOF) Catalyst for the Highly Efficient Conversion of CO ₂ with Propargylic Alcohols. Angewandte Chemie, 2019, 131, 587-591.	1.6	27
442	Engineering UiOâ€66 Metal Organic Framework for Heterogeneous Catalysis. ChemCatChem, 2019, 11, 899-923.	1.8	182
443	Enhanced adsorption performance of gaseous toluene on defective UiO-66 metal organic framework: Equilibrium and kinetic studies. Journal of Hazardous Materials, 2019, 365, 597-605.	6.5	215
444	A bifunctional metal–organic framework platform for catalytic applications. Polyhedron, 2019, 159, 382-386.	1.0	3
445	Click chemistry as a versatile reaction for construction and modification of metal-organic frameworks. Coordination Chemistry Reviews, 2019, 380, 484-518.	9.5	86
446	A mononuclear Cu(II)-based metal-organic framework as an efficient heterogeneous catalyst for chemical transformation of CO2 and Knoevenagel condensation reaction. Inorganic Chemistry Communication, 2019, 101, 87-92.	1.8	21
447	Highly Active Cobalt/Tungsten Carbide@Nâ€Doped Porous Carbon Nanomaterials Derived from Metalâ€Organic Frameworks as Bifunctional Catalysts for Overall Water Splitting. Energy Technology, 2019, 7, 1800969.	1.8	40
448	Coll Complexes with a Tripyridine Ligand, Containing a 2,6-Di-tert-butylphenolic Fragment: Synthesis, Structure, and Formation of Stable Radicals. ACS Omega, 2019, 4, 203-213.	1.6	3
449	In Situ Generation of an Nâ€Heterocyclic Carbene Functionalized Metal–Organic Framework by Postsynthetic Ligand Exchange: Efficient and Selective Hydrosilylation of CO 2. Angewandte Chemie, 2019, 131, 2870-2875.	1.6	25
450	Mechanically fabricated Metal–organic framework/resin composite nanoparticles for efficient basic catalysis. Applied Organometallic Chemistry, 2019, 33, e4788.	1.7	5
451	Construction of a Noncentrosymmetric Luminescent Coordination Polymer from [BaL ₃] Unit (L = Pyridineâ€2,6â€dicarboxylate Acid) and Li(I) Ion. Chinese Journal of Chemistry, 2019, 37, 131-134.	2.6	2

#	Article	IF	CITATIONS
452	A fluorescent Eu(III) MOF for highly selective and sensitive sensing of picric acid. Science China Chemistry, 2019, 62, 205-211.	4.2	34
453	Cyclodextrin-metal–organic framework (CD-MOF): From synthesis to applications. Journal of Industrial and Engineering Chemistry, 2019, 72, 50-66.	2.9	153
454	Flexible and breathing metal–organic framework with high and selective carbon dioxide storage versus nitrogen. Polyhedron, 2019, 161, 56-62.	1.0	16
455	Ionothermal Synthesis of Five Keggin-Type Polyoxometalate-Based Metal–Organic Frameworks. Inorganic Chemistry, 2019, 58, 1794-1805.	1.9	53
456	Co,N-doped mesoporous carbons cobalt derived from coordination polymer as supercapacitors. Electrochimica Acta, 2019, 299, 987-998.	2.6	24
457	Ultrathin two-dimension metal-organic framework nanosheets/multi-walled carbon nanotube composite films for the electrochemical detection of H2O2. Journal of Electroanalytical Chemistry, 2019, 835, 178-185.	1.9	48
458	Sustainable Metallocavitand for Flue Gas-Selective Sorption: A Multiscale Study. Journal of Physical Chemistry C, 2019, 123, 3188-3202.	1.5	5
459	Catalysts Confined in Programmed Framework Pores Enable New Transformations and Tune Reaction Efficiency and Selectivity. Journal of the American Chemical Society, 2019, 141, 1577-1582.	6.6	61
460	A Review on the Synthesis and Characterization of Metal Organic Frameworks for Photocatalytic Water Purification. Catalysts, 2019, 9, 52.	1.6	215
461	MOF-derived carbonaceous materials enriched with nitrogen: Preparation and applications in adsorption and catalysis. Materials Today, 2019, 25, 88-111.	8.3	180
462	A Convenient and Versatile Aminoâ€Acidâ€Boosted Biomimetic Strategy for the Nondestructive Encapsulation of Biomacromolecules within Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2019, 58, 1463-1467.	7.2	231
463	A Highly Stable Dual Functional Zinc Phosphite Carboxylate as Luminescent Sensor of Fe ³⁺ and Cr ₂ O ₇ ^{2–} . Crystal Growth and Design, 2019, 19, 45-48.	1.4	37
464	Crystal Engineering of Metal–Organic Framework Thin Films for Gas Separations. ACS Sustainable Chemistry and Engineering, 2019, 7, 49-69.	3.2	52
465	A series of two-photon absorption organotin (IV) cyano carboxylate derivatives for targeting nuclear and visualization of anticancer activities. Journal of Inorganic Biochemistry, 2019, 192, 1-6.	1.5	22
466	Large Pore Isoreticular Strontium-Organic Frameworks: Syntheses, Crystal Structures, and Thermal and Luminescent Properties. Crystal Growth and Design, 2019, 19, 268-274.	1.4	10
467	Synthesis and characterization of guanine-functionalized mesoporous silica [SBA-16-G]: a metal-free and recyclable heterogeneous solid base catalyst for synthesis of pyran-annulated heterocyclic compounds. Research on Chemical Intermediates, 2019, 45, 1619-1637.	1.3	13
468	Tritopic Triazatruxene Ligands for Multicomponent Metalâ€Organic Frameworks. Chemistry - an Asian Journal, 2019, 14, 1167-1174.	1.7	13
469	CO2 cycloaddition with propylene oxide to form propylene carbonate on a copper metal-organic framework: A density functional theory study. Molecular Catalysis, 2019, 463, 37-44.	1.0	28

#	Article	IF	CITATIONS
470	TiO ₂ @UiO-68-CIL: A Metal–Organic-Framework-Based Bifunctional Composite Catalyst for a One-Pot Sequential Asymmetric Morita–Baylis–Hillman Reaction. Inorganic Chemistry, 2019, 58, 4722-4730.	1.9	27
471	Ultrasmall Metal Nanoparticles Confined within Crystalline Nanoporous Materials: A Fascinating Class of Nanocatalysts. Advanced Materials, 2019, 31, e1803966.	11.1	260
472	Design and application of heterogeneous catalysts as peroxydisulfate activator for organics removal: An overview. Chemical Engineering Journal, 2019, 358, 110-133.	6.6	248
473	A Dual-Functional Lead(II) Metal–Organic Framework Based on 5-Aminonicotinic Acid as a Luminescent Sensor for Selective Sensing of Nitroaromatic Compounds and Detecting the Temperature. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 291-298.	1.9	9
474	Enhanced cycloaddition of CO2 to epichlorohydrin over zeolitic imidazolate frameworks with mixed linkers under solventless and co-catalyst-free condition. Catalysis Today, 2020, 339, 337-343.	2.2	62
475	State of the Art and Prospects in Metal–Organic Framework (MOF)-Based and MOF-Derived Nanocatalysis. Chemical Reviews, 2020, 120, 1438-1511.	23.0	1,505
476	Formation of CX Bonds in CO ₂ Chemical Fixation Catalyzed by Metalâ^'Organic Frameworks. Advanced Materials, 2020, 32, e1806163.	11.1	102
477	N-doped porous carbon supported Ni catalysts derived from modified Ni-MOF-74 for highly effective and selective catalytic hydrodechlorination of 1,2-dichloroethane to ethylene. Chemosphere, 2020, 241, 124978.	4.2	43
478	A Dye@MOF composite as luminescent sensory material for selective and sensitive recognition of Fe(III) ions in water. Inorganica Chimica Acta, 2020, 500, 119205.	1.2	34
479	Toward Optimal Metal–Organic Frameworks for Adsorption Chillers: Insights from the Scaleâ€Up of MILâ€101(Cr) and NH ₂ â€MILâ€125. Energy Technology, 2020, 8, 1900617.	1.8	18
480	Porous Materials for Catalysis. , 2020, , 115-137.		11
481	Ultrasonic-assisted degradation of a triarylmethane dye using combined peroxydisulfate and MOF-2 catalyst: Synergistic effect and role of oxidative species. Journal of Molecular Liquids, 2020, 297, 111838.	2.3	41
482	A One-Dimensional Double-Chain Co(II) Metal–Organic Framework Based on Mixed Flexible N-donor Carboxylate and Bipyridine Ligands: Synthesis, Structure, Thermal Stability and Magnetic Property. Journal of Cluster Science, 2020, 31, 347-354.	1.7	5
483	Functionalized Polymer-Based Composite Photocatalysts. Environmental Chemistry for A Sustainable World, 2020, , 167-188.	0.3	3
484	Green Photocatalysts. Environmental Chemistry for A Sustainable World, 2020, , .	0.3	5
485	Ultra-thin metal-organic framework nanoribbons. National Science Review, 2020, 7, 46-52.	4.6	38
486	Dual sensing of copper ion and chromium (VI) oxyanions by benzotriazole functionalized UiO-66 metal-organic framework in aqueous media. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 389, 112238.	2.0	20
487	Highly efficient Mn2O3 catalysts derived from Mn-MOFs for toluene oxidation: The influence of MOFs precursors. Molecular Catalysis, 2020, 482, 110701.	1.0	76

#	Article	IF	CITATIONS
488	Construction of 3D hierarchical microarchitectures of Z-scheme UiO-66-(COOH)2/ZnIn2S4 hybrid decorated with non-noble MoS2 cocatalyst: A highly efficient photocatalyst for hydrogen evolution and Cr(VI) reduction. Chemical Engineering Journal, 2020, 384, 123352.	6.6	137
489	Adsorptive purification of organic contaminants of emerging concern from water with metal–organic frameworks. , 2020, , 47-92.		2
490	Rapid synthesis of UiO-66 by means of electrochemical cathode method with electrochemical detection of 2,4,6-TCP. Inorganic Chemistry Communication, 2020, 111, 107671.	1.8	39
491	Hydrophobic strong solid base derived from graphene oxide hybrid zirconium MOFs and its enhanced stability on furfural-MIBK aldol condensation to synthesize branched biofuel precursors. Fuel Processing Technology, 2020, 198, 106250.	3.7	11
492	Postâ€synthetic Modification of DUTâ€5â€based Metal Organic Frameworks for the Generation of Singleâ€site Catalysts and their Application in Selective Epoxidation Reactions. ChemCatChem, 2020, 12, 1134-1142.	1.8	16
493	Organosulfonate Counteranions—A Trapped Coordination Polymer as a Highâ€Output Triboelectric Nanogenerator Material for Selfâ€Powered Anticorrosion. Chemistry - A European Journal, 2020, 26, 584-591.	1.7	51
494	Kinetics of photocatalytic degradation of gaseous <i>p</i> â€xylene on UiOâ€66â€NH ₂ and LaFeO ₃ thin films under combined illumination of ultraviolet and visible lights. International Journal of Chemical Kinetics, 2020, 52, 35-51.	1.0	4
495	Synthesis of magnetic hollow mesoporous N-doped silica rods as a basic catalyst for the preparation of some spirooxindole-1,4-dihydropyridine derivatives. Applied Surface Science, 2020, 504, 144466.	3.1	18
496	Development of an SBUâ€Based Mechanochemical Approach for Drug‣oaded MOFs. European Journal of Inorganic Chemistry, 2020, 2020, 796-800.	1.0	14
497	Time-dependent solid-state molecular motion and colour tuning of host-guest systems by organic solvents. Nature Communications, 2020, 11, 77.	5.8	51
498	Metal organic frameworks as solid catalysts for liquid-phase continuous flow reactions. Chemical Communications, 2020, 56, 26-45.	2.2	47
499	Design and Construction of a Metal–Organic Framework as an Efficient Luminescent Sensor for Detecting Antibiotics. Inorganic Chemistry, 2020, 59, 1323-1331.	1.9	72
501	Three 3D LnIII-MOFs based on a nitro-functionalized biphenyltricarboxylate ligand: syntheses, structures, and magnetic properties. CrystEngComm, 2020, 22, 267-274.	1.3	11
502	3D lanthanide-coordination frameworks constructed by a ternary mixed-ligand: crystal structure, luminescence and luminescence sensing. CrystEngComm, 2020, 22, 740-750.	1.3	32
503	Macrocyclic multinuclear metal complexes acting as catalysts for organic synthesis. Catalysis Science and Technology, 2020, 10, 12-34.	2.1	34
504	Nitrogen precursor-mediated construction of N-doped hierarchically porous carbon-supported Pd catalysts with controllable morphology and composition. Carbon, 2020, 159, 451-460.	5.4	50
505	A 2D copper(I) metal-organic framework: Synthesis, structure and luminescence sensing for cupric, ferric, chromate and TNP. Dyes and Pigments, 2020, 175, 108159.	2.0	48
506	The syntheses, structures, and properties of metal-organic frameworks based on mixed multi-N donor and carboxylate ligands. Journal of Solid State Chemistry, 2020, 283, 121133.	1.4	9

#	Article	IF	CITATIONS
507	Hierarchically Porous Reduced Graphene Oxide Coated with Metal–Organic Framework HKUST-1 for Enhanced Hydrogen Gas Affinity. ACS Applied Nano Materials, 2020, 3, 985-991.	2.4	20
508	Computational Predictions and Experimental Validation of Alkane Oxidative Dehydrogenation by Fe ₂ M MOF Nodes. ACS Catalysis, 2020, 10, 1460-1469.	5.5	53
509	Conversion from Heterometallic to Homometallic Metal–Organic Frameworks. Chemistry - A European Journal, 2020, 26, 11767-11775.	1.7	3
510	Highly ordered mesoporous La(III)â€substituted 5â€oxopyrrolidineâ€2â€carboxylic acid (Glp) immobilized on SBAâ€15 as a very efficient nanocatalyst for green aerobic oxidative coupling of thiols to disulfides. Applied Organometallic Chemistry, 2020, 34, e5328.	1.7	22
511	Modulating the Biofunctionality of Metal–Organicâ€Frameworkâ€Encapsulated Enzymes through Controllable Embedding Patterns. Angewandte Chemie, 2020, 132, 2889-2896.	1.6	25
512	Target-Driven Cascade-Amplified Release of Loads from DNA-Gated Metal–Organic Frameworks for Electrochemical Detection of Cancer Biomarker. ACS Applied Materials & Interfaces, 2020, 12, 2087-2094.	4.0	52
513	Metal Ion-Driven Assembly of Coordination Polymers Based on 1,3-Bis(4-imidazolylphenoxy)propane: Crystal Structures and Photocatalytic Properties. Journal of Chemical Crystallography, 2020, 50, 428-437.	0.5	0
514	CO2 fixation by cycloaddition of mono/disubstituted epoxides using acyl amide decorated Co(II) MOF as a synergistic heterogeneous catalyst. Applied Catalysis A: General, 2020, 590, 117375.	2.2	42
515	Metal–Organic Frameworks with Double Channels for Rapid and Reversible Adsorption of 1,2-Ethylenediamine and Gases. ACS Applied Materials & Interfaces, 2020, 12, 1412-1418.	4.0	14
516	Selective and sensitive recognition of Fe3+ ion by a Lewis basic functionalized chemically stable metal-organic framework (MOF). Inorganica Chimica Acta, 2020, 502, 119359.	1.2	22
517	Electrospinning of Metal–Organic Frameworks for Energy and Environmental Applications. Advanced Science, 2020, 7, 1902590.	5.6	199
518	Design and synthesis of novel ditopic ligands with a pyrazole ring in the central unit. Research on Chemical Intermediates, 2020, 46, 1587-1611.	1.3	4
519	Advanced Photoresponsive Materials Using the Metal–Organic Framework Approach. Advanced Materials, 2020, 32, e1905227.	11.1	184
520	Modulating the Biofunctionality of Metal–Organicâ€Frameworkâ€Encapsulated Enzymes through Controllable Embedding Patterns. Angewandte Chemie - International Edition, 2020, 59, 2867-2874.	7.2	190
521	Metal–Organic Framework Based on Heptanuclear Cu–O Clusters and Its Application as a Recyclable Photocatalyst for Stepwise Selective Catalysis. Inorganic Chemistry, 2020, 59, 254-263.	1.9	13
522	Water-stable CdII-based metal–organic framework as a reversible luminescent sensor for NFT with excellent recyclability and selectivity. Inorganic Chemistry Communication, 2020, 111, 107668.	1.8	9
523	Enhancing the separation efficiency of a C ₂ H ₂ /C ₂ H ₄ mixture by a chromium metal–organic framework fabricated <i>via</i> post-synthetic metalation. Journal of Materials Chemistry A, 2020, 8, 2083-2089.	5.2	45
524	Lanthanide contraction effect and white-emitting luminescence in a series of metal–organic frameworks based on 2,5-pyrazinedicarboxylic acid. RSC Advances, 2020, 10, 38252-38259.	1.7	6

		CITATION REPORT		
#	Article		IF	Citations
525	Single-molecule mapping of catalytic reactions on heterostructures. Nano Today, 2020), 34, 100957.	6.2	15
526	Exciton Coupling and Conformational Changes Impacting the Excited State Properties Organic Frameworks. Molecules, 2020, 25, 4230.	of Metal	1.7	9
527	Bimetallic metal–organic framework-derived carbon nanocubes as efficient electroca oxygen evolution reaction. Journal of Solid State Chemistry, 2020, 291, 121679.	italysts for	1.4	8
528	Polydopamine-Modified Metal–Organic Frameworks, NH2-Fe-MIL-101, as pH-Sensitiv Controlled Pesticide Release. Nanomaterials, 2020, 10, 2000.	re Nanocarriers for	1.9	32
529	Reticular Materials for Artificial Photoreduction of CO ₂ . Advanced Energy 2020, 10, 2002091.	Materials,	10.2	92
530	Co-based MOF for efficient degradation of RB in aqueous solutions by peroxymonosulf Inorganic Chemistry Communication, 2020, 122, 108282.	fate activation.	1.8	22
531	A viologen-based multifunctional Eu-MOF: photo/electro-modulated chromism and lum Chemical Communications, 2020, 56, 13093-13096.	iinescence.	2.2	59
532	Computational screening and design of nanoporous membranes for efficient carbon is separation. Green Energy and Environment, 2020, 5, 364-373.	otope	4.7	9
533	Rare-earth metal–organic frameworks as advanced catalytic platforms for organic sy Coordination Chemistry Reviews, 2020, 425, 213543.	nthesis.	9.5	49
534	Three Aminoâ€functionalized Alkaline Earth Metalâ€Organic Frameworks as Catalysts Condensation. ChemistrySelect, 2020, 5, 11510-11516.	for Knoevenagel	0.7	6
535	Too Many Materials and Too Many Applications: An Experimental Problem Waiting for Solution. ACS Central Science, 2020, 6, 1890-1900.	a Computational	5.3	63
536	Multiple catalytic sites in MOF-based hybrid catalysts for organic reactions. Organic an Biomolecular Chemistry, 2020, 18, 8508-8525.	d	1.5	11
537	pH stable cationic luminescence Metalâ^'Organic framework material with nitrate gues selective sensor for detecting 2, 4, 6-trinitrophenol. Journal of Solid State Chemistry, 2 121583.		1.4	4
538	Comparative study of sonocatalytic process using MOF-5 and peroxydisulfate by centr design and artificial neural network. Journal of Molecular Liquids, 2020, 316, 113801.	al composite	2.3	12
539	Zeolite Imidazolate Framework-8 Metal–Organic Frameworks Embedded with Bimet Nanoparticles for Reductive Dechlorination. ACS Applied Nano Materials, 2020, 3, 808		2.4	12
540	Micromotor-assisted highly efficient Fenton catalysis by a laccase/Fe-BTC-NiFe ₂ O ₄ nanozyme hybrid with a 3D hierarcl Environmental Science: Nano, 2020, 7, 2573-2583.	nical structure.	2.2	29
541	Selective CO2 adsorption over functionalized Zr-based metal organic framework under or lower pressure: Contribution of functional groups to adsorption. Chemical Engineer 2020, 402, 126254.		6.6	58
542	Rare earth metal complexes based on a tripodal ligand and their application as highly s "turn-on―fluorescent probe for Fe3+ ion. Inorganic Chemistry Communication, 20		1.8	4

	CHANON R		
#	Article	IF	CITATIONS
543	Electronic Structure Modeling of Metal–Organic Frameworks. Chemical Reviews, 2020, 120, 8641-8715.	23.0	149
544	Nanocomposites formed by combination of urchin like NiS with Ni-nanoparticles/N-doped nanoporous carbon, derived from nickel organic framework, and decorated with RuO2 nanoparticles: Construction and kinetics for hydrogen evolution reaction. Electrochimica Acta, 2020, 355, 136710.	2.6	2
545	Evolution of a Metalâ€Organic Framework into a BrÃ,nsted Acid Catalyst for Glycerol Dehydration to Acrolein. ChemSusChem, 2020, 13, 5073-5079.	3.6	31
546	Removal of nitrogen-containing compounds from microalgae derived biofuel by adsorption over functionalized metal organic frameworks. Fuel, 2020, 280, 118622.	3.4	31
547	<i>In situ</i> transformation of bismuth metal–organic frameworks for efficient selective electroreduction of CO ₂ to formate. Journal of Materials Chemistry A, 2020, 8, 24486-24492.	5.2	50
548	Covalent Organic Frameworks: Pore Design and Interface Engineering. Accounts of Chemical Research, 2020, 53, 1672-1685.	7.6	153
549	Low-temperature fabrication of K2O supported mesoporous tetragonal ZrO2 solid base for synthesis of dimethyl carbonate. Molecular Catalysis, 2020, 495, 111141.	1.0	5
550	2D lanthanide coordination polymers constructed from a semi-rigid tricarboxylic acid ligand: crystal structure, luminescence sensing and color tuning. CrystEngComm, 2020, 22, 6161-6169.	1.3	10
551	Effective removal of particulate matter from air by using zeolite-coated filters. Journal of Materials Chemistry A, 2020, 8, 17960-17968.	5.2	10
552	Removal of particulate matter with metal–organic framework-incorporated materials. Coordination Chemistry Reviews, 2020, 422, 213477.	9.5	66
553	Postmodified Dual Functional UiO Sensor for Selective Detection of Ozone and Tandemly Derived Sensing of Al ³⁺ . Analytical Chemistry, 2020, 92, 11600-11606.	3.2	22
554	Facile Synthesis of Enzyme-Embedded Metal–Organic Frameworks for Size-Selective Biocatalysis in Organic Solvent. Frontiers in Bioengineering and Biotechnology, 2020, 8, 714.	2.0	15
555	Effect of Substituents on the Crystal Structures, Optical Properties, and Catalytic Activity of Homoleptic Zn(II) and Cd(II) β-oxodithioester Complexes. Inorganic Chemistry, 2020, 59, 11417-11431.	1.9	17
556	A Mixedâ€Metal Porphyrinic Framework Promoting Gasâ€Phase CO ₂ Photoreduction without Organic Sacrificial Agents. ChemSusChem, 2020, 13, 6273-6277.	3.6	26
557	L-proline functionalized pillar-layered MOF as a heterogeneous catalyst for aldol addition reaction. Inorganic Chemistry Communication, 2020, 119, 108052.	1.8	12
558	Indium-Based Metal–Organic Framework for High-Performance Electroreduction of CO ₂ to Formate. Inorganic Chemistry, 2020, 59, 11298-11304.	1.9	35
559	Sonochemical synthesis of rho-ZMOF catalyst for an enhanced CO2 cycloaddition reaction. Materials Letters, 2020, 277, 128387.	1.3	7
560	Enhanced properties of sulfonated polyether ether ketone proton exchange membrane by incorporating carboxylic-contained zeolitic imidazolate frameworks. New Journal of Chemistry, 2020, 44, 13788-13795.	1.4	8

	CITATION RE	PORT	
#	Article	IF	CITATIONS
561	Catalysis in Confined Spaces of Metal Organic Frameworks. ChemCatChem, 2020, 12, 4732-4753.	1.8	61
562	One-Step Electrodeposition of Silver Nanostructures on 2D/3D Metal–Organic Framework ZIF-67: Comparison and Application in Electrochemical Detection of Hydrogen Peroxide. ACS Applied Materials & Interfaces, 2020, 12, 41960-41968.	4.0	90
563	Unraveling the electronic structure, mechanical, and dielectric properties of ZnPurBr-MOF: <i>Ab initio</i> calculations. APL Materials, 2020, 8, .	2.2	11
564	Metal–organic frameworks: a future toolbox for biomedicine?. Chemical Society Reviews, 2020, 49, 9121-9153.	18.7	130
565	CO2 adsorption at low pressure over polymers-loaded mesoporous metal organic framework PCN-777: effect of basic site and porosity on adsorption. Journal of CO2 Utilization, 2020, 42, 101332.	3.3	14
566	Series of M-MOF-184 (M = Mg, Co, Ni, Zn, Cu, Fe) Metal–Organic Frameworks for Catalysis Cycloaddition of CO ₂ . Inorganic Chemistry, 2020, 59, 16747-16759.	1.9	81
567	Structural transformation from 1D to 3D in [K(µ5-L1).H2O]n (L1 = 2,4-dinitrobenzoate) by nitro group coordination: Comparison with theoretical and Hirshfeld surface calculations. Supramolecular Chemistry, 2020, 32, 535-545.	1.5	0
568	Design of Organic/Inorganic Hybrid Catalysts for Energy and Environmental Applications. ACS Central Science, 2020, 6, 1916-1937.	5.3	38
569	Metal–Organicâ€Frameworkâ€Engineered Enzymeâ€Mimetic Catalysts. Advanced Materials, 2020, 32, e20030)6 5 1.1	183
570	Structural evolution of ZIF-67-derived catalysts for furfural hydrogenation. Journal of Catalysis, 2020, 392, 302-312.	3.1	25
571	Progressive Increasing of Pt Nanoparticles with Multiple-Layered Manner inside Metal–Organic Frameworks for Enhanced Catalytic Activity. Inorganic Chemistry, 2020, 59, 13184-13189.	1.9	10
572	Metal–organic frameworks as acid- and/or base-functionalized catalysts for tandem reactions. Dalton Transactions, 2020, 49, 14723-14730.	1.6	31
573	Bifunctional Dinuclear Complexes Based on Iminodiacetate and 1,2-Di(4-pyridyl)ethylene: Crystal Structures, Vapochromism, and Iodine Adsorption. Crystal Growth and Design, 2020, 20, 7439-7449.	1.4	9
574	In Vitro Studies of Fe ₃ O ₄ â€ZIFâ€8 Core–Shell Nanoparticles Designed as Potential Theragnostics. Particle and Particle Systems Characterization, 2020, 37, 2000185.	1.2	9
575	An in situ approach to functionalize metal–organic frameworks with tertiary aliphatic amino groups. Chemical Communications, 2020, 56, 13177-13180.	2.2	10
576	A robust 3D In–MOF with an imidazole acid ligand as a fluorescent sensor for sensitive and selective detection of Fe ³⁺ ions. New Journal of Chemistry, 2020, 44, 16076-16081.	1.4	9
577	Isolated Mixed-Valence Iron Vanadium Malate and Its Metal Hydrates (M = Fe ²⁺ ,) Tj ETQq0 0 0 rgBT Inorganic Chemistry, 2020, 59, 12768-12777.	/Overlock 1.9	2 10 Tf 50 10 7
578	Metal phosphonates incorporating metalloligands: assembly, structures and properties. Chemical Communications, 2020, 56, 12090-12108.	2.2	36

#	Article	IF	CITATIONS
579	Framework Copper Catalyzed Oxidative Synthesis of Quinazolinones: A Benign Approach Using Cu ₃ (BTC) ₂ MOF as an Efficient and Reusable Catalyst. ChemistrySelect, 2020, 5, 10041-10047.	0.7	13
580	Synthesis, Structural Features, and Hydrogen Adsorption Properties of Three New Flexible Sulfur-Containing Metal–Organic Frameworks. Crystal Growth and Design, 2020, 20, 6707-6714.	1.4	6
581	Structural Isomerism of Two Ceâ€BTC for Fabricating Pt/CeO ₂ Nanorods toward Lowâ€Temperature CO Oxidation. Small, 2020, 16, e2003597.	5.2	62
582	Accelerating Biodiesel Catalytic Production by Confined Activation of Methanol over High-Concentration Ionic Liquid-Grafted UiO-66 Solid Superacids. ACS Catalysis, 2020, 10, 11848-11856.	5.5	32
583	Near-Field Infrared Nanospectroscopy Reveals Guest Confinement in Metal–Organic Framework Single Crystals. Nano Letters, 2020, 20, 7446-7454.	4.5	25
584	Synthesis, structure and properties of a 3D coordination polymer based on tetranuclear copper(I) and a tetra(triazole) ligand. Journal of Coordination Chemistry, 2020, 73, 2042-2054.	0.8	2
585	Recent Advances of Solidâ€State NMR Spectroscopy for Microporous Materials. Advanced Materials, 2020, 32, e2002879.	11.1	50
586	Effecting structural diversity in a series of Co(<scp>ii</scp>)–organic frameworks by the interplay between rigidity of a dicarboxylate and flexibility of bis(tridentate) spanning ligands. Dalton Transactions, 2020, 49, 12298-12310.	1.6	20
587	Heterogeneous epoxidation of menadione with hydrogen peroxide over the zeolite imidazolate framework ZIF-8. Dalton Transactions, 2020, 49, 12546-12549.	1.6	7
589	Novel H-Bonded Synthons in Copper Supramolecular Frameworks with Aminoethylpiperazine-Based Ligands. Synthesis, Structure and Catalytic Activity. Materials, 2020, 13, 5435.	1.3	8
590	Strategies for Controlling Through-Space Charge Transport in Metal-Organic Frameworks via Structural Modifications. Nanomaterials, 2020, 10, 2372.	1.9	4
591	Electrostatic Design of Polar Metal–Organic Framework Thin Films. Nanomaterials, 2020, 10, 2420.	1.9	4
592	Hybrid nanomaterials for asymmetric purposes: green enantioselective C–C bond formation by chiralization and multi-functionalization approaches. Catalysis Science and Technology, 2020, 10, 8240-8253.	2.1	13
593	Preparation and characterization of novel polyoxometalate/CoFe ₂ O ₄ /metal–organic framework magnetic core–shell nanocomposites for the rapid removal of organic dyes from water. RSC Advances, 2020, 10, 39881-39893.	1.7	40
594	Structure-induced Lewis-base Ga4B2O9 and its superior performance in Knoevenagel condensation reaction. Molecular Catalysis, 2020, 490, 110914.	1.0	13
595	Metal-organic framework-derived sulfur and nitrogen dual-doped bimetallic carbon nanotubes as electrocatalysts for oxygen evolution reaction. Journal of Solid State Chemistry, 2020, 288, 121421.	1.4	12
596	Green Synthesis of Metal-Organic Framework Bacterial Cellulose Nanocomposites for Separation Applications. Polymers, 2020, 12, 1104.	2.0	45
597	Thhorium Metal–Organic Framework Showing Proton Transformation from [NH ₂ (CH ₃) ₂ ⁺ to the Carboxyl Group to Enhance Porosity for Selective Adsorption of D ₂ over H ₂ and Ammonia Capture. Crystal Growth and Design, 2020, 20, 3605-3610.	1.4	5

#	Article	IF	CITATIONS
598	Effect of Larger Pore Size on the Sorption Properties of Isoreticular Metal–Organic Frameworks with High Number of Open Metal Sites. Chemistry - A European Journal, 2020, 26, 13523-13531.	1.7	8
599	Synthesis and catalytic activities of a Zn(<scp>ii</scp>) based metallomacrocycle and a metal–organic framework towards one-pot deacetalization-Knoevenagel tandem reactions under different strategies: a comparative study. Dalton Transactions, 2020, 49, 8075-8085.	1.6	26
600	Ag nanoparticles wrapped by N-doped carbon as an efficient electricatalyst for hydrogen evolution reaction. Journal of Porous Materials, 2020, 27, 1213-1218.	1.3	1
601	Dual-fixations of europium cations and TEMPO species on metal–organic frameworks for the aerobic oxidation of alcohols. Dalton Transactions, 2020, 49, 8060-8066.	1.6	12
602	A Heterometallic Three-Dimensional Metalâ^'Organic Framework Bearing an Unprecedented One-Dimensional Branched-Chain Secondary Building Unit. Molecules, 2020, 25, 2190.	1.7	6
603	Ultrafast scale-up synthesis of calcium rod/layer MOFs and luminescence detection of water in organic solvents. Materials Advances, 2020, 1, 689-697.	2.6	2
604	Monodispersed mesoporous SiO2@metal-organic framework (MSN@MIL-101(Fe)) composites as sorbent for extraction and preconcentration of phytohormones prior to HPLC-DAD analysis. Mikrochimica Acta, 2020, 187, 367.	2.5	15
605	Crystal Structure Directed Catalysis by Aluminum Metal-Organic Framework: Mechanistic Insight into the Role of Coordination of Al Sites and Entrance Size of Catalytic Pocket. , 2020, 2, 699-704.		7
606	Mechanochemical defect engineering of HKUST-1 and impact of the resulting defects on carbon dioxide sorption and catalytic cyclopropanation. RSC Advances, 2020, 10, 19822-19831.	1.7	20
607	Designing CO ₂ reduction electrode materials by morphology and interface engineering. Energy and Environmental Science, 2020, 13, 2275-2309.	15.6	251
608	A novel 3D cobalt(II) metal–organic framework to activate peroxymonosulfate for degradation of organic dyes in water. Journal of Solid State Chemistry, 2020, 289, 121443.	1.4	22
609	Porous nitrogen-rich covalent organic framework for capture and conversion of CO2 at atmospheric pressure conditions. Microporous and Mesoporous Materials, 2020, 308, 110314.	2.2	41
610	Coordination tailoring of water-labile 3D MOFs to fabricate ultrathin 2D MOF nanosheets. Nanoscale, 2020, 12, 12767-12772.	2.8	40
611	Design and Assembly of a Hierarchically Micro- and Mesoporous MOF as a Highly Efficient Heterogeneous Catalyst for Knoevenagel Condensation Reaction. Crystal Growth and Design, 2020, 20, 4845-4851.	1.4	29
612	Highly Improved Performance of Cotton Air Filters in Particulate Matter Removal by the Incorporation of Metal–Organic Frameworks with Functional Groups Capable of Large Charge Separation. ACS Applied Materials & Interfaces, 2020, 12, 28885-28893.	4.0	48
613	Pore engineering of metal-organic frameworks with coordinating functionalities. Coordination Chemistry Reviews, 2020, 420, 213377.	9.5	75
614	Oxygen Electrocatalysis with Mesoporous Coâ^'Nâ^'C Catalysts: Towards Understanding the Active Site and Development of Rechargeable Znâ€Air Batteries. ChemElectroChem, 2020, 7, 2877-2887.	1.7	12
615	Engineering zirconium-based UiO-66 for effective chemical conversion of <scp>d</scp> -xylose to lactic acid in aqueous condition. Chemical Communications, 2020, 56, 8019-8022.	2.2	33

#	ARTICLE	IF	Citations
616	Self-assembly of three-dimensional oxalate-bridged alkali(<scp>i</scp>)–lanthanide(<scp>iii</scp>) heterometal–organic frameworks. CrystEngComm, 2020, 22, 4833-4841.	1.3	6
617	Luminescent Properties of Lanthanoid-Poly(Sodium Acrylate) Composites: Insights on the Interaction Mechanism. Polymers, 2020, 12, 1314.	2.0	5
618	Semiconductive microporous hydrogen-bonded organophosphonic acid frameworks. Nature Communications, 2020, 11, 3180.	5.8	50
619	Adsorption of Rhodamine B by Yttrium-Succinate metal organic framework (MOF). AIP Conference Proceedings, 2020, , .	0.3	2
620	Post-synthetic modification of a metal–organic framework with a chemodosimeter for the rapid detection of lethal cyanide <i>via</i> dual emission. Dalton Transactions, 2020, 49, 8684-8692.	1.6	32
621	Targeted classification of metal–organic frameworks in the Cambridge structural database (CSD). Chemical Science, 2020, 11, 8373-8387.	3.7	119
622	Dithiooxalato-bridged Nickel Coordination Polymers: Synthesis and Structures. Chemistry Letters, 2020, 49, 1050-1052.	0.7	1
623	Organic–Inorganic Hybrid Nanomaterials for Electrocatalytic CO ₂ Reduction. Small, 2020, 16, e2001847.	5.2	79
624	Green synthesis of metal–organic frameworks: A state-of-the-art review of potential environmental and medical applications. Coordination Chemistry Reviews, 2020, 420, 213407.	9.5	256
625	A cadmium-imidazole coordination polymer as solid state buffering material: Synthesis, characterization and its use for photocatalytic degradation of ionic dyes. Journal of Solid State Chemistry, 2020, 289, 121493.	1.4	18
626	Znâ€MOFâ€74 as pHâ€Responsive Drugâ€Delivery System of Arsenic Trioxide. ChemNanoMat, 2020, 6, 122	9-1.236.	46
627	Insight into light-driven antibacterial cotton fabrics decorated by in situ growth strategy. Journal of Colloid and Interface Science, 2020, 579, 233-242.	5.0	29
628	Electroactive Metal–Organic Frameworks as Emitters for Selfâ€Enhanced Electrochemiluminescence in Aqueous Medium. Angewandte Chemie - International Edition, 2020, 59, 10446-10450.	7.2	96
629	Turn-on fluorescence in a stable Cd(II) metal-organic framework for highly sensitive detection of Cr3+ in water. Dyes and Pigments, 2020, 178, 108359.	2.0	23
630	Multicomponent nanohybrids of nickel/ferric oxides and nickel cobaltate spinel derived from the MOF-on-MOF nanostructure as efficient scaffolds for sensitively determining insulin. Analytica Chimica Acta, 2020, 1110, 44-55.	2.6	23
631	Utilization of metal–organic frameworks for the adsorptive removal of an aliphatic aldehyde mixture in the gas phase. Nanoscale, 2020, 12, 8330-8343.	2.8	25
632	Charting the Metal-Dependent High-Pressure Stability of Bimetallic UiO-66 Materials. , 2020, 2, 438-445.		21
633	Synthesis, crystal structure, and optical properties of fluorinated poly(pyrazole) ligands and <i>in silico</i> assessment of their affinity for volatile organic compounds. New Journal of Chemistry, 2020, 44, 6443-6455.	1.4	7

#	Article	IF	CITATIONS
634	Tetranuclear and 1D Polymeric Cd(II) Complexes with a Tetrapyridyl Imidazolidine Ligand: Synthesis, Structure, and Fluorescence Sensing Activity. Crystal Growth and Design, 2020, 20, 2904-2913.	1.4	11
635	Self-supported rhodium catalysts based on a microporous metal–organic framework for polymerization of phenylacetylene and its derivatives. Polymer Chemistry, 2020, 11, 2904-2913.	1.9	8
636	Metal–Organic Frameworks in Heterogeneous Catalysis: Recent Progress, New Trends, and Future Perspectives. Chemical Reviews, 2020, 120, 8468-8535.	23.0	1,001
637	General Approach for Constructing Mechanoresponsive and Redox-Active Metal–Organic and Covalent Organic Frameworks by Solid–Liquid Reaction: Ferrocene as the Versatile Function Unit. Inorganic Chemistry, 2020, 59, 5271-5275.	1.9	10
638	Room-temperature preparation of coordination polymers for biomedicine. Coordination Chemistry Reviews, 2020, 411, 213256.	9.5	25
639	The stepwise substitution in the hierarchical building of {Co ₁₁ Cd ₆ } cluster-based MOFs from {Co ₁₄ } precursor. Inorganic Chemistry Frontiers, 2020, 7, 3011-3018.	3.0	3
640	Removal of Particulate Matters with Isostructural Zr-Based Metal–Organic Frameworks Coated on Cotton: Effect of Porosity of Coated MOFs on Removal. ACS Applied Materials & Interfaces, 2020, 12, 34423-34431.	4.0	26
641	Engineering a homochiral metal–organic framework based on an amino acid for enantioselective separation. Chemical Communications, 2020, 56, 9016-9019.	2.2	29
642	Construction of highly water-stable fluorinated 2D coordination polymers with various N, N'-donors: Syntheses, crystal structures and photoluminescence properties. Journal of Solid State Chemistry, 2020, 290, 121560.	1.4	4
643	Chitosan-Coated Metal–Organic-Framework Nanoparticles as Catalysts for Tandem Deacetalization–Knoevenagel Condensation Reactions. ACS Applied Nano Materials, 2020, 3, 6316-6320.	2.4	54
644	Controlling crystal growth of MIL-100(Fe) on Ag nanowire surface for optimizing catalytic performance. RSC Advances, 2020, 10, 25260-25265.	1.7	6
645	Integration of metal organic frameworks with enzymes as multifunctional solids for cascade catalysis. Dalton Transactions, 2020, 49, 11059-11072.	1.6	31
646	Catalytic hydrolysis of β-lactam antibiotics via MOF-derived MgO nanoparticles embedded on nanocast silica. Science of the Total Environment, 2020, 738, 139742.	3.9	13
647	New Microporous Lanthanide Organic Frameworks. Synthesis, Structure, Luminescence, Sorption, and Catalytic Acylation of 2-Naphthol. Molecules, 2020, 25, 3055.	1.7	12
648	Highly Active Heterogeneous PdCl 2 /MOF Catalyst for Suzuki–Miyaura Cross oupling Reactions of Aryl Chloride. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2020, 646, 1336-1341.	0.6	9
649	<i>In Situ</i> Fluorescence Imaging of the Levels of Glycosylation and Phosphorylation by a MOF-Based Nanoprobe in Depressed Mice. Analytical Chemistry, 2020, 92, 3716-3721.	3.2	25
650	A new 3D four-fold interpenetrated dia-like luminescent Zn(<scp>ii</scp>)-based metal–organic framework: the sensitive detection of Fe ³⁺ , Cr ₂ O ₇ ^{2â^'} , and CrO ₄ ^{2â^'} in water, and nitrobenzene in ethanol. New Journal of Chemistry, 2020, 44, 4011-4022.	1.4	29
651	Substantial Turnover Frequency Enhancement of MOF Catalysts by Crystallite Downsizing Combined with Surface Anchoring. ACS Catalysis, 2020, 10, 3203-3211.	5.5	41

#	Article	IF	Citations
652	Iron-based porous metal–organic frameworks with crop nutritional function as carriers for controlled fungicide release. Journal of Colloid and Interface Science, 2020, 566, 383-393.	5.0	66
653	Preparation of Quasi-MIL-101(Cr) Loaded Ceria Catalysts for the Selective Catalytic Reduction of NOx at Low Temperature. Catalysts, 2020, 10, 140.	1.6	18
654	Surfaceâ€Ðeactivated Core–Shell Metal–Organic Framework by Simple Ligand Exchange for Enhanced Size Discrimination in Aerobic Oxidation of Alcohols. Chemistry - A European Journal, 2020, 26, 7568-7572.	1.7	34
655	Porous Aromatic Frameworks (PAFs). Chemical Reviews, 2020, 120, 8934-8986.	23.0	389
656	Construction of a functionalized hierarchical pore metal–organic framework <i>via</i> a palladium-reduction induced strategy. Nanoscale, 2020, 12, 6250-6255.	2.8	13
657	Synthesis, structure, and luminescence of a new 3D Cd-MOF based on three mixed organic linkers. Inorganic and Nano-Metal Chemistry, 2020, 50, 699-704.	0.9	2
658	General Approach to Metal-Organic Framework Nanosheets With Controllable Thickness by Using Metal Hydroxides as Precursors. Frontiers in Materials, 2020, 7, .	1.2	21
659	Short rod-like Ni-MOF anchored on graphene oxide nanosheets: A promising voltammetric platform for highly sensitive determination of p-chloronitrobenzene. Journal of Electroanalytical Chemistry, 2020, 861, 113954.	1.9	29
660	In Situ Synthesis of Defect-Engineered MOFs as a Photoregenerable Catalytic Adsorbent: Understanding the Effect of LML, Adsorption Behavior, and Photoreaction Process. ACS Applied Materials & Interfaces, 2020, 12, 12706-12716.	4.0	51
661	Synthon Robustness and Structural Modularity of Copper(II) Two-Dimensional Coordination Polymers with Isomeric Amino Acids and 4,4′-Bipyridine. Crystal Growth and Design, 2020, 20, 2415-2423.	1.4	6
662	Uranyl Ion Complexes of Polycarboxylates: Steps towards Isolated Photoactive Cavities. Chemistry, 2020, 2, 63-79.	0.9	10
663	Supramolecular Organic Frameworks with Controllable Shape and Aggregationâ€Induced Emission for Tunable Luminescent Materials through Aqueous Host–Guest Complexation. Advanced Optical Materials, 2020, 8, 1902154.	3.6	35
664	A Redox-Innocent Uranium(IV)-Quinoid Metal-Organic Framework. ACS Omega, 2020, 5, 3462-3466.	1.6	5
665	Water Adsorption Properties of Fe(pz)[Pt(CN) ₄] and the Capture of CO ₂ and CO. Organometallics, 2020, 39, 949-955.	1.1	17
666	Stable Ln-MOFs as multi-responsive photoluminescence sensors for the sensitive sensing of Fe ³⁺ , Cr ₂ O ₇ ^{2â^'} , and nitrofuran. CrystEngComm, 2020, 22, 1695-1704.	1.3	63
667	Adsorptive removal of nitrogenous compounds from microalgae-derived bio-oil using metal-organic frameworks with an amino group. Chemical Engineering Journal, 2020, 388, 124195.	6.6	25
668	Colorimetric detection of Hg(<scp>ii</scp>) based on the gold amalgam-triggered reductase mimetic activity in aqueous solution by employing AuNP@MOF nanoparticles. Analyst, The, 2020, 145, 1362-1367.	1.7	30
669	Easy Processing of Metal–Organic Frameworks into Pellets and Membranes. Applied Sciences (Switzerland), 2020, 10, 798.	1.3	6

#	Article	IF	Citations
670	Design of nitrogen-doped graphitized 2D hierarchical porous carbons as efficient solid base catalysts for transesterification to biodiesel. Green Chemistry, 2020, 22, 903-912.	4.6	26
671	A comparative study between Cu(INA) ₂ -MOF and [Cu(INA) ₂ (H ₂ O) ₄] complex for a click reaction and the Biginelli reaction under solvent-free conditions. RSC Advances, 2020, 10, 3407-3415.	1.7	23
672	Plasmonic metal–semiconductor heterostructures for hot-electron-driven photochemistry. MRS Bulletin, 2020, 45, 37-42.	1.7	14
673	UiOâ€66 microcrystals catalyzed direct arylation of enol acetates and heteroarenes with aryl diazonium salts in water. Applied Organometallic Chemistry, 2020, 34, e5482.	1.7	7
674	Constructing Ptl@COF for semi-hydrogenation reactions of phenylacetylene. Journal of Solid State Chemistry, 2020, 285, 121176.	1.4	8
675	Organic Counteranion Co-assembly Strategy for the Formation of Î ³ -Cyclodextrin-Containing Hybrid Frameworks. Journal of the American Chemical Society, 2020, 142, 2042-2050.	6.6	26
676	Charge-Separated Metal–Organic Frameworks Derived from Boron-Centered Tetrapods. Crystal Growth and Design, 2020, 20, 1598-1608.	1.4	5
677	A novel 3D pillar-layered metal-organic framework: Pore-size-dependent catalytic activity and CO2/N2 affinity. Polyhedron, 2020, 180, 114422.	1.0	9
678	Facile Fabrication of Hierarchical MOF–Metal Nanoparticle Tandem Catalysts for the Synthesis of Bioactive Molecules. ACS Applied Materials & Interfaces, 2020, 12, 23002-23009.	4.0	27
679	A remarkable adsorbent for removal of bisphenol S from water: Aminated metal-organic framework, MIL-101-NH2. Chemical Engineering Journal, 2020, 396, 125224.	6.6	63
680	Direct observation of dimethyl sulfide trapped by MOF proving efficient removal of sulfur impurities. RSC Advances, 2020, 10, 4710-4714.	1.7	7
681	Construction of 3D lanthanide based MOFs with pores decorated with basic imidazole groups for selective capture and chemical fixation of CO ₂ . New Journal of Chemistry, 2020, 44, 9090-9096.	1.4	15
682	Metal–Organic Framework-Based Catalysts with Single Metal Sites. Chemical Reviews, 2020, 120, 12089-12174.	23.0	692
683	Electroactive Metal–Organic Frameworks as Emitters for Selfâ€Enhanced Electrochemiluminescence in Aqueous Medium. Angewandte Chemie, 2020, 132, 10532-10536.	1.6	13
684	Control of In-MOF topologies and tuning of porosity through ligand structure, functionality and interpenetration: Selective cationic dye exchange. Applied Materials Today, 2020, 19, 100613.	2.3	22
685	Systematic activation of potassium peroxydisulfate with ZIF-8 via sono-assisted catalytic process: Mechanism and ecotoxicological analysis. Journal of Molecular Liquids, 2020, 308, 113018.	2.3	81
686	Chiral cobalt-peptide metal-organic framework (Co-P-MOF): As an efficient and reusable heterogeneous catalyst for the asymmetric sulfoxidative cross-coupling reaction using poly sulfinylpiperazine. Synthetic Metals, 2020, 263, 116362.	2.1	17
687	A Zn(II)-Coordination Polymer for the Instantaneous Cleavage of Csp3–Csp3 Bond and Simultaneous Reduction of Ketone to Alcohol. Inorganic Chemistry, 2020, 59, 5350-5356.	1.9	5

#	Article	IF	CITATIONS
688	Controlling the morphology of metal–organic frameworks and porous carbon materials: metal oxides as primary architecture-directing agents. Chemical Society Reviews, 2020, 49, 3348-3422.	18.7	190
689	From metal–organic frameworks to single/dual-atom and cluster metal catalysts for energy applications. Energy and Environmental Science, 2020, 13, 1658-1693.	15.6	323
690	Metal–Organic Framework with Dual Active Sites in Engineered Mesopores for Bioinspired Synergistic Catalysis. Journal of the American Chemical Society, 2020, 142, 8602-8607.	6.6	53
691	2D Porous Polymers with sp ² â€Carbon Connections and Sole sp ² â€Carbon Skeletons. Advanced Functional Materials, 2020, 30, 2000857.	7.8	42
692	Highly Efficient Separation of Anionic Organic Pollutants from Water via Construction of Functional Cationic Metal–Organic Frameworks and Mechanistic Study. ACS Applied Materials & Interfaces, 2020, 12, 22835-22844.	4.0	12
693	Designing ZIF-8/hydroxylated MWCNT nanocomposites for phosphate adsorption from water: Capability and mechanism. Chemical Engineering Journal, 2020, 394, 124992.	6.6	85
694	Solvatochromism Study of DCM Encapsulated in ZIF-90 and the Potential Application of DCM/ZIF-90 as the Fluorescence Down-Conversion Layer for an LED Chip. Journal of Physical Chemistry C, 2020, 124, 8854-8860.	1.5	6
695	One-pot synthesis of trypsin-based magnetic metal–organic frameworks for highly efficient proteolysis. Journal of Materials Chemistry B, 2020, 8, 4642-4647.	2.9	14
696	Impact of dehydration and mechanical amorphization on the magnetic properties of Ni(<scp>ii</scp>)-MOF-74. Journal of Materials Chemistry C, 2020, 8, 7132-7142.	2.7	21
697	A feasible linker transformation strategy towards the formation of Cu ₂ O nanoparticles for immobilization in hierarchical CuBTC for adsorption desulfurization. Journal of Materials Chemistry A, 2020, 8, 8678-8683.	5.2	30
698	Incorporation of Active Metal Species in Crystalline Porous Materials for Highly Efficient Synergetic Catalysis. Small, 2021, 17, e2003971.	5.2	31
699	Recent advances in naphthalenediimide-based metal-organic frameworks: Structures and applications. Coordination Chemistry Reviews, 2021, 430, 213665.	9.5	65
700	Adsorptive removal of hazardous organics from water and fuel with functionalized metal-organic frameworks: Contribution of functional groups. Journal of Hazardous Materials, 2021, 403, 123655.	6.5	109
701	A remarkable adsorbent for removal of nitrogenous compounds from fuel: A metal–organic framework functionalized both on metal and ligand. Chemical Engineering Journal, 2021, 404, 126491.	6.6	29
702	Effect of pyridyl donors from organic ligands <i>versus</i> metalloligands on material design. Inorganic Chemistry Frontiers, 2021, 8, 1334-1373.	3.0	18
703	Hierarchical assemblies of molecular frameworks—MOF-on-MOF epitaxial heterostructures. Nano Research, 2021, 14, 355-368.	5.8	58
704	Metal–organic frameworks based on multicarboxylate linkers. Coordination Chemistry Reviews, 2021, 426, 213542.	9.5	158
705	Enhancing MOF performance through the introduction of polymer guests. Coordination Chemistry Reviews, 2021, 427, 213525.	9.5	109

#	Article	IF	CITATIONS
706	Heterometallic metal-organic frameworks: two-step syntheses, structures and catalytic for imine synthesis. Microporous and Mesoporous Materials, 2021, 310, 110626.	2.2	7
707	Diels–Alder Conversion of Acrylic Acid and 2,5â€Dimethylfuran to <i>para</i> â€Xylene Over Heterogeneous Biâ€BTC Metalâ€Organic Framework Catalysts Under Mild Conditions. Angewandte Chemie - International Edition, 2021, 60, 624-629.	7.2	27
708	A copper diimineâ€based honeycombâ€like porous network as an efficient reduction catalyst. Applied Organometallic Chemistry, 2021, 35, .	1.7	4
709	Synthesis, structure and fluorescent sensing for nitrobenzene of a Zn-based MOF. Journal of Molecular Structure, 2021, 1223, 129217.	1.8	26
710	CoPd Nanoalloys with Metal–Organic Framework as Template for Both Nâ€Đoped Carbon and Cobalt Precursor: Efficient and Robust Catalysts for Hydrogenation Reactions. Chemistry - A European Journal, 2021, 27, 2707-2716.	1.7	8
711	Metal–Organic Framework Derived Bimetallic Materials for Electrochemical Energy Storage. Angewandte Chemie, 2021, 133, 11148-11167.	1.6	12
712	A new type bimetallic NiMn-MOF-74 as an efficient low-temperatures catalyst for selective catalytic reduction of NO by CO. Chemical Engineering and Processing: Process Intensification, 2021, 159, 108232.	1.8	32
713	Metal–Organic Layers Hierarchically Integrate Three Synergistic Active Sites for Tandem Catalysis. Angewandte Chemie - International Edition, 2021, 60, 3115-3120.	7.2	25
714	Hydrogen production from additive-free formic acid over highly active metal organic frameworks-supported palladium-based catalysts. International Journal of Hydrogen Energy, 2021, 46, 5259-5269.	3.8	13
715	Porous Composites Embedded With Cu and Co Nanoparticles for Efficient Catalytic Reduction of <scp>4â€Nitrophenol</scp> . Bulletin of the Korean Chemical Society, 2021, 42, 303-308.	1.0	11
716	Metal-organic framework-derived porous carbon templates for catalysis. , 2021, , 73-121.		0
717	Porphyrinic Zirconium Metal–Organic Frameworks (MOFs) as Heterogeneous Photocatalysts for PETâ€RAFT Polymerization and Stereolithography. Angewandte Chemie, 2021, 133, 5549-5556.	1.6	16
718	Porphyrinic Zirconium Metal–Organic Frameworks (MOFs) as Heterogeneous Photocatalysts for PETâ€RAFT Polymerization and Stereolithography. Angewandte Chemie - International Edition, 2021, 60, 5489-5496.	7.2	122
719	Nanocomposite Hydrogel of Pd@ZIFâ€8 and Laponite [®] : Sizeâ€Selective Hydrogenation Catalyst under Mild Conditions. Chemistry - A European Journal, 2021, 27, 3268-3272.	1.7	16
720	Smart recycling of PET to sorbents for insecticides through in situ MOF growth. Applied Materials Today, 2021, 22, 100910.	2.3	17
721	Metal–Organic Layers Hierarchically Integrate Three Synergistic Active Sites for Tandem Catalysis. Angewandte Chemie, 2021, 133, 3152-3157.	1.6	4
722	Application of Metalâ€Organic Frameworks in Adsorptive Removal of Organic Contaminants from Water, Fuel and Air. Chemistry - an Asian Journal, 2021, 16, 185-196.	1.7	31
723	Low-temperature conversion of base precursor KNO3 on core–shell structured Fe3O4@C: Fabrication of magnetically responsive solid strong bases. Catalysis Today, 2021, 374, 200-207.	2.2	5

#	Article	IF	CITATIONS
724	Prospective applications of nanometer-scale pore size biomimetic and bioinspired membranes. Journal of Membrane Science, 2021, 620, 118968.	4.1	40
725	Power of Infrared and Raman Spectroscopies to Characterize Metal-Organic Frameworks and Investigate Their Interaction with Guest Molecules. Chemical Reviews, 2021, 121, 1286-1424.	23.0	349
726	A robust heterogeneous Co-MOF catalyst in azide–alkyne cycloaddition and Friedel–Crafts reactions as well as hydrosilylation of alkynes. New Journal of Chemistry, 2021, 45, 872-880.	1.4	12
727	Study of hydrogen adsorption onto kenaf sorbent surface by metal impregnation method. Materials Today: Proceedings, 2021, 39, 1088-1093.	0.9	2
728	Cobalt embedded in nitrogen-doped porous carbon as a robust heterogeneous catalyst for the atom-economic alcohol dehydrogenation to carboxylic acids. Carbon, 2021, 174, 284-294.	5.4	23
729	High Adsorption Capacity and Selectivity of SO ₂ over CO ₂ in a Metal–Organic Framework. Inorganic Chemistry, 2021, 60, 4-8.	1.9	22
730	Diels–Alder Conversion of Acrylic Acid and 2,5â€Dimethylfuran to <i>para</i> â€Xylene Over Heterogeneous Biâ€BTC Metalâ€Organic Framework Catalysts Under Mild Conditions. Angewandte Chemie, 2021, 133, 634-639.	1.6	8
731	Visible Light–Initiated Synergistic/Cascade Reactions over Metal–Organic Frameworks. Solar Rrl, 2021, 5, 2000454.	3.1	24
732	Indirect differential pulse voltammetric analysis of cyanide at porous copper based metal organic framework modified carbon paste electrode: Application to different water samples. Talanta, 2021, 221, 121562.	2.9	21
733	Synthesis of Yolk/Shell heterostructures MOF@MOF as biomimetic sensing platform for catechol detection. Sensors and Actuators B: Chemical, 2021, 329, 129133.	4.0	25
734	Metal–Organic Framework Derived Bimetallic Materials for Electrochemical Energy Storage. Angewandte Chemie - International Edition, 2021, 60, 11048-11067.	7.2	179
735	Synthesis of Bimetallic Ag-Ni-MOF-74 Catalyst with Excellent CO-SCR Performance in Low Temperature Range. Acta Chimica Sinica, 2021, 79, 361.	0.5	7
736	HKUST-1 MOF in reline deep eutectic solvent: synthesis and phase transformation. Dalton Transactions, 2021, 50, 4145-4151.	1.6	21
737	Perspectives for polychlorinated trityl radicals. Journal of Materials Chemistry C, 2021, 9, 10610-10623.	2.7	22
738	A new 2D lanthanum based microporous MOF for efficient synthesis of cyclic carbonates through CO ₂ fixation. New Journal of Chemistry, 2021, 45, 9189-9196.	1.4	12
739	Recent progress in the design and synthesis of zeolite-like metal–organic frameworks (ZMOFs). Dalton Transactions, 2021, 50, 3450-3458.	1.6	8
740	The key role of metal nanoparticle in metal organic frameworks of UiO family (MOFs) for the application of CO2 capture and heterogeneous catalysis. , 2021, , 369-404.		1
741	Synthesis, structure, and fluorescence properties of coordination polymers of 3,5-bis(1′,2′,4′-triazol-1′-yl) pyridine. CrystEngComm, 2021, 23, 1744-1755.	1.3	5

#	ARTICLE Hybridization of MOFs and ionic POFs: a new strategy for the construction of bifunctional catalysts	IF	CITATIONS
742	for CO ₂ cycloaddition. Green Chemistry, 2021, 23, 1766-1771.	4.6	26
743	Metal-Organic Frameworks for Catalytic Applications. , 2021, , 228-259. Photocatalysis by metal-organic frameworks. , 2021, , 543-559.		2
745	MOF-based electrocatalysts for high-efficiency CO ₂ conversion: structure, performance, and perspectives. Journal of Materials Chemistry A, 2021, 9, 22710-22728.	5.2	20
746	Porous organic polymers as metal free heterogeneous organocatalysts. Green Chemistry, 2021, 23, 7361-7434.	4.6	54
747	Metal–organic frameworks of linear trinuclear cluster secondary building units: structures and applications. Dalton Transactions, 2021, 50, 12692-12707.	1.6	12
748	Multifunctionality in an Ion-Exchanged Porous Metal–Organic Framework. Journal of the American Chemical Society, 2021, 143, 1365-1376.	6.6	31
749	Metal–organic frameworks as proton conductors: strategies for improved proton conductivity. Dalton Transactions, 2021, 50, 10655-10673.	1.6	36
750	Two-dimensional stable and ultrathin cluster-based metal–organic layers for efficient electrocatalytic water oxidation. CrystEngComm, 2021, 23, 4700-4707.	1.3	4
751	Hybridization with Ti ₃ C ₂ T <i>_x</i> MXene: An Effective Approach to Boost the Hydrothermal Stability and Catalytic Performance of Metal–Organic Frameworks. Inorganic Chemistry, 2021, 60, 1380-1387.	1.9	17
752	Vapor-Phase Cyclohexene Epoxidation by Single-Ion Fe(III) Sites in Metal–Organic Frameworks. Inorganic Chemistry, 2021, 60, 2457-2463.	1.9	17
753	First transition series metal–organic frameworks: synthesis, properties and applications. Materials Advances, 2021, 2, 7308-7335.	2.6	18
754	Beyond structural motifs: the frontier of actinide-containing metal–organic frameworks. Chemical Science, 2021, 12, 7214-7230.	3.7	43
755	Robust 4d–5f Bimetal–Organic Framework for Efficient Removal of Trace SO ₂ from SO ₂ /CO ₂ and SO ₂ /CO ₂ /N ₂ Mixtures. Inorganic Chemistry, 2021, 60, 1310-1314.	1.9	14
756	Catalytic decomposition of NO2 over a copper-decorated metal–organic framework by non-thermal plasma. Cell Reports Physical Science, 2021, 2, 100349.	2.8	10
757	Two-Dimensional Metal-Organic Framework Materials: Synthesis, Structures, Properties and Applications. Chemical Reviews, 2021, 121, 3751-3891.	23.0	442
758	Rational design, synthesis, and applications of carbon dots@metal–organic frameworks (CD@MOF) based sensors. TrAC - Trends in Analytical Chemistry, 2021, 135, 116163.	5.8	77
759	Chiral metal-organic framework [Co2(d-cam)2(TMDPy)]@SiO2 core-shell microspheres for HPLC separation. Microchemical Journal, 2021, 161, 105815.	2.3	19

#	Article	IF	CITATIONS
760	Small Molecules, Big Effects: Tuning Adsorption and Catalytic Properties of Metal–Organic Frameworks. Chemistry of Materials, 2021, 33, 1444-1454.	3.2	56
761	A Fluorescent Titaniumâ€based Metalâ€Organic Framework Sensor for Nitroâ€aromatics Detection. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2021, 647, 759-763.	0.6	17
762	<scp>Oneâ€pot</scp> synthesis of 1, <scp>4â€dihydropyridine</scp> derivatives using the <scp>Fe₂ZnAl₂O₇</scp> catalyzed Hantzsch <scp>threeâ€component</scp> reaction. Journal of the Chinese Chemical Society, 2021, 68, 1310-1316.	0.8	3
763	Bifunctional Metal–Organic Layer with Organic Dyes and Iron Centers for Synergistic Photoredox Catalysis. Journal of the American Chemical Society, 2021, 143, 3075-3080.	6.6	60
764	Recent Advances in Catalytic Confinement Effect within Micro/Mesoâ€Porous Crystalline Materials. Small, 2021, 17, e2005334.	5.2	62
765	Ultrasound targeted microbubble destruction combined with Fe-MOF based bio-/enzyme-mimics nanoparticles for treating of cancer. Journal of Nanobiotechnology, 2021, 19, 92.	4.2	29
766	Unprecedented Application of Covalent Organic Frameworks for Polymerization Catalysis: Rh/TPB-DMTP-COF in Polymerization of Phenylacetylene and Its Functional Derivatives. ACS Applied Materials & Interfaces, 2021, 13, 13693-13704.	4.0	9
768	Particulate matters removal by using cotton coated with isomeric metal-organic frameworks (MOFs): Effect of voidage of MOFs on removal. Journal of Industrial and Engineering Chemistry, 2021, 95, 277-285.	2.9	13
769	Engineered Bifunctional Luminescent Pillared‣ayer Frameworks for Adsorption of CO 2 and Sensitive Detection of Nitrobenzene in Aqueous Media. Chemistry - A European Journal, 2021, 27, 6529-6537.	1.7	13
770	Engineering Nanoscale Metalâ€Organic Frameworks for Heterogeneous Catalysis. Small Structures, 2021, 2, 2000141.	6.9	28
771	Oneâ€pot Synthesis of Pd/Azoâ€polymer as an Efficient Catalyst for 4â€Nitrophenol Reduction and Suzukiâ€Miyaura Coupling Reaction. Chemistry - an Asian Journal, 2021, 16, 837-844.	1.7	14
772	Photoactive Zr and Ti Metalâ€Organicâ€Frameworks for Solidâ€State Solar Cells. ChemPhysChem, 2021, 22, 842-848.	1.0	2
773	A microfluidic biosensor for rapid and automatic detection of Salmonella using metal-organic framework and Raspberry Pi. Biosensors and Bioelectronics, 2021, 178, 113020.	5.3	65
774	A novel copper framework with amino tridentate Nâ€donor ligand as heterogeneous catalyst for ring opening of epoxides. Applied Organometallic Chemistry, 2021, 35, e6262.	1.7	5
775	Nanomaterials: Applications, waste-handling, environmental toxicities, and future challenges – A review. Journal of Environmental Chemical Engineering, 2021, 9, 105028.	3.3	133
776	Conductive Metallophthalocyanine Framework Films with High Carrier Mobility as Efficient Chemiresistors. Angewandte Chemie, 2021, 133, 10901-10908.	1.6	8
777	Enhancing osteoregenerative potential of biphasic calcium phosphates by using bioinspired ZIF8 coating. Materials Science and Engineering C, 2021, 123, 111972.	3.8	11
778	Conductive Metallophthalocyanine Framework Films with High Carrier Mobility as Efficient Chemiresistors. Angewandte Chemie - International Edition, 2021, 60, 10806-10813.	7.2	63

#	Article	IF	CITATIONS
779	Metal-to-Semiconductor Transition in Two-Dimensional Metal–Organic Frameworks: An <i>Ab Initio</i> Dynamics Perspective. ACS Applied Materials & Interfaces, 2021, 13, 25270-25279.	4.0	8
780	Highly Emissive Metalâ€Organic Frameworks for Sensitive and Selective Detection of Nitrofuran and Quinolone Antibiotics. Chemistry - an Asian Journal, 2021, 16, 1773-1779.	1.7	34
781	Die Dreikomponentenâ€Selbstorganisation ädert ihre Richtung: Ein Sprung von einfachen Polymeren zu 3Dâ€Netzwerken sphäscher Wirt/Gastâ€Aggregate. Angewandte Chemie, 2021, 133, 12239-12250.	1.6	2
782	Detection and Removal of Arsenite from Water Using Bisâ€Urea Supramolecular Polymer and Dipeptide Adsorbent. ChemistrySelect, 2021, 6, 4448-4455.	0.7	3
783	Catalytic C–H Bond Activation and Knoevenagel Condensation Using Pyridine-2,3-Dicarboxylate-Based Metal–Organic Frameworks. ACS Omega, 2021, 6, 13240-13259.	1.6	18
784	Tuning electronic properties of conductive 2D layered metal–organic frameworks via host–guest interactions: Dioxygen as an electroactive chemical stimuli. APL Materials, 2021, 9, .	2.2	7
785	Programmable Logic in Metal–Organic Frameworks for Catalysis. Advanced Materials, 2021, 33, e2007442.	11.1	129
786	Diffusion of confined fluids in microporous zeolites and clay materials. Reports on Progress in Physics, 2021, 84, 066501.	8.1	8
787	Removal of decidedly lethal metal arsenic from water using metal organic frameworks: a critical review. Reviews in Inorganic Chemistry, 2022, 42, 197-227.	1.8	14
788	On-Surface Fabrication of Bimetallic Metal–Organic Frameworks through the Synergy and Competition among Noncovalent Interactions. Journal of Physical Chemistry Letters, 2021, 12, 5228-5232.	2.1	6
789	A water-stable europium-MOF as a multifunctional luminescent sensor for some inorganic ions and dichloromethane molecule. Journal of Industrial and Engineering Chemistry, 2021, 97, 180-187.	2.9	16
790	Threeâ€Component Selfâ€Assembly Changes its Course: A Leap from Simple Polymers to 3Dâ€Networks of Spherical Host–Guest Assemblies. Angewandte Chemie - International Edition, 2021, 60, 12132-12142.	7.2	14
791	lonic Salts@Metal–Organic Frameworks: Remarkable Component to Improve Performance of Fabric Filters to Remove Particulate Matters from Air. ACS Applied Materials & Interfaces, 2021, 13, 23092-23102.	4.0	10
792	Biocatalytic and Antioxidant Nanostructures for ROS Scavenging and Biotherapeutics. Advanced Functional Materials, 2021, 31, 2101804.	7.8	71
793	1-(4-Carboxyphenyl)-5-methyl-1H-1,2,3-triazole-4-carboxylic acid – A versatile ligand for the preparation of coordination polymers and mononuclear complexes. Polyhedron, 2021, 200, 115115.	1.0	2
794	A 3D MOF based on Adamantoid Tetracopper(II) and Aminophosphine Oxide Cages: Structural Features and Magnetic and Catalytic Properties. Inorganic Chemistry, 2021, 60, 9631-9644.	1.9	7
795	Structure and reversible crystal-to-crystal transformations of a zinc(II) coordination polymer constructed from an imide-based dicarboxylic acid. Journal of Solid State Chemistry, 2021, 298, 122129.	1.4	0
796	Preparation of Bi3.64Mo0.36O6.55 by reflux method and its application in photodegradation of organic pollution. Journal of Materials Science: Materials in Electronics, 2021, 32, 17890-17900.	1.1	3

#	Article	IF	Citations
797	A base-free Chan–Lam reaction catalyzed by an easily assembled Cu(II)-carboxylate metal-organic framework. Journal of Chemical Research, 2021, 45, 795-799.	0.6	0
798	Asymmetric catalysis using metal-organic frameworks. Coordination Chemistry Reviews, 2021, 437, 213845.	9.5	80
799	Templated interfacial synthesis of metal-organic framework (MOF) nano- and micro-structures with precisely controlled shapes and sizes. Communications Chemistry, 2021, 4, .	2.0	29
800	Computational catalysis for metal-organic frameworks: An overview. Coordination Chemistry Reviews, 2021, 436, 213777.	9.5	34
801	In-situ generated Ni-MOF/LDH heterostructures with abundant phase interfaces for enhanced oxygen evolution reaction. Applied Catalysis B: Environmental, 2021, 286, 119906.	10.8	133
802	Preparation and characterisation of new Ti/Fluorapatite/MWCNTs ternary nanocomposite and its catalytic activity in the synthesis of pyrazolo[3,4-b]quinoline moieties. Materials Today Communications, 2021, 27, 102206.	0.9	0
803	Research progress on supported solid superbase and its catalytic application. Chemical Papers, 2021, 75, 4445-4463.	1.0	3
804	Highly Regio- and Stereoselective Markovnikov Hydrosilylation of Alkynes Catalyzed by High-Nuclearity {Co ₁₄ } Clusters. ACS Catalysis, 2021, 11, 6944-6950.	5.5	46
805	Advances in Enzyme and Ionic Liquid Immobilization for Enhanced in MOFs for Biodiesel Production. Molecules, 2021, 26, 3512.	1.7	28
806	Enhancing the activity, selectivity, and recyclability of Rh/PPh3 system-catalyzed hydroformylation reactions through the development of a PPh3-derived quasi-porous organic cage as a ligand. Chinese Journal of Catalysis, 2021, 42, 1216-1226.	6.9	13
807	Molybdenum nitride@porous carbon, derived from phosphomolybdic acid loaded metal-azolate framework-6: A highly effective catalyst for oxidative desulfurization. Applied Catalysis B: Environmental, 2021, 288, 119988.	10.8	70
808	ZIF-8 Nanoparticles for Facile Processing into Useful Fabric Composites. ACS Applied Nano Materials, 2021, 4, 6562-6567.	2.4	6
809	A cobalt coordination polymer from bulk to nanoscale crystals as heterogeneous catalysts for tandem reactions. Journal of Solid State Chemistry, 2021, 299, 122174.	1.4	0
810	Maximizing the Carrier Mobilities of Metal–Organic Frameworks Comprising Stacked Pentacene Units. Journal of Physical Chemistry Letters, 2021, 12, 7002-7009.	2.1	6
811	Metal-organic frameworks for C6–C8 hydrocarbon separations. EnergyChem, 2021, 3, 100057.	10.1	58
812	Removal of Particulate Matters by Using Zeolitic Imidazolate Framework-8s (ZIF-8s) Coated onto Cotton: Effect of the Pore Size of ZIF-8s on Removal. ACS Applied Materials & Interfaces, 2021, 13, 35214-35222.	4.0	14
813	Cu2+-modified MOF as laccase-mimicking material for colorimetric determination and discrimination of phenolic compounds with 4-aminoantipyrine. Mikrochimica Acta, 2021, 188, 272.	2.5	27
814	Lanthanide complexes based on an anthraquinone derivative ligand and applications as photocatalysts for visible-light driving photooxidation reactions. Journal of Molecular Structure, 2021, 1236, 130289.	1.8	1

#	Article	IF	CITATIONS
815	Colorimetric Detection of Cholesterol Based on the Peroxidaseâ€Like Activity of Metalâ€Organic Framework MILâ€101(Cr). ChemistrySelect, 2021, 6, 7143-7149.	0.7	6
816	Reversible Electroactive Behavior in a Zn-Based Metal–Organic Framework via Mild Oxidation Potential. Inorganic Chemistry, 2021, 60, 11458-11465.	1.9	2
817	Ligand-Directed Conformational Control over Porphyrinic Zirconium Metal–Organic Frameworks for Size-Selective Catalysis. Journal of the American Chemical Society, 2021, 143, 12129-12137.	6.6	73
818	Azoâ€Functionalized Zirconiumâ€Based Metalâ^'Organic Polyhedron as an Efficient Catalyst for CO ₂ Fixation with Epoxides. Chemistry - A European Journal, 2021, 27, 12890-12899.	1.7	8
819	Metal–organic frameworks containing uncoordinated nitrogen: Preparation, modification, and application in adsorption. Materials Today, 2021, 51, 566-585.	8.3	50
820	Pyrazolate-based porphyrinic metal-organic frameworks as catechol oxidase mimic enzyme for fluorescent and colorimetric dual-mode detection of dopamine with high sensitivity and specificity. Sensors and Actuators B: Chemical, 2021, 341, 130000.	4.0	29
821	Effect of amino-defective-MOF materials on the selective hydrodeoxygenation of fatty acid over Pt-based catalysts. Journal of Catalysis, 2021, 400, 283-293.	3.1	18
822	Amino-functionalized zirconium and cerium MOFs: Catalysts for visible light induced aerobic oxidation of benzylic alcohols and microwaves assisted N-Alkylation of amines. Applied Catalysis A: General, 2021, 623, 118287.	2.2	17
823	ZnO–Co ₃ O ₄ /N–C Cage Derived from the Hollow Zn/Co ZIF for Enhanced Degradation of Bisphenol A with Persulfate. Inorganic Chemistry, 2021, 60, 13041-13050.	1.9	9
824	Water-Stable Two-Dimensional Metal–Organic Framework Nanostructures for Fe ³⁺ lons Detection. Crystal Growth and Design, 2021, 21, 5275-5282.	1.4	16
825	Rapid detection of cadmium ions in meat by a multi-walled carbon nanotubes enhanced metal-organic framework modified electrochemical sensor. Food Chemistry, 2021, 357, 129762.	4.2	47
826	Oxidative desulfurization of liquid fuel with tungsten-nitride@porous carbon, derived from MAF-6(Zn) loaded with phosphotungstic acid and melamine. Chemical Engineering Journal, 2021, 419, 129485.	6.6	34
827	Defective UiO-66(Zr) as an efficient catalyst for the synthesis of bio jet-fuel precursors via aldol condensation of furfural and MIBK. Journal of Catalysis, 2021, 401, 27-39.	3.1	19
828	Solid-State Synthesis of Defect-Rich Zr-UiO-66 Metal–Organic Framework Nanoparticles for the Catalytic Ring Opening of Epoxides with Alcohols. ACS Applied Nano Materials, 2021, 4, 9752-9759.	2.4	8
829	Adsorption of molybdenum on Zr-based MOFs for potential application in the 99Mo/99mTc generator. Applied Surface Science, 2022, 572, 151340.	3.1	12
830	A joint mechanism for singlet oxygen generation by diketone-anchored MIL-101: Exciton-mediated energy transfer and photosensitization. Applied Catalysis A: General, 2021, 626, 118360.	2.2	7
831	Synthesis of nanocellulose aerogels and Cu-BTC/nanocellulose aerogel composites for adsorption of organic dyes and heavy metal ions. Scientific Reports, 2021, 11, 18553.	1.6	33
832	Cu-BTC Metal-Organic Frameworks as Catalytic Modifier for Ultrasensitive Electrochemical Determination of Methocarbamol in the Presence of Methadone. Journal of the Electrochemical Society, 2021, 168, 097507.	1.3	15

#	Article	IF	CITATIONS
833	A two-fold interpenetrated Zn-based coordination polymer for highly selective and sensitive detection of MnO4â^. Journal of Molecular Structure, 2021, 1239, 130486.	1.8	7
834	The structural appeal of metal–organic frameworks in antimicrobial applications. Coordination Chemistry Reviews, 2021, 442, 214007.	9.5	51
835	Nanoscale coordination polymers with live-cell imaging property. Journal of Molecular Structure, 2022, 1249, 131590.	1.8	5
836	Post-Synthesis modification of metal-organic frameworks using Schiff base complexes for various catalytic applications. Chemical Engineering Journal, 2021, 423, 130230.	6.6	42
837	Sono-synthesis of basic metal-organic framework for reusable catalysis of organic reactions in the eco-friendly conditions. Journal of Solid State Chemistry, 2021, 303, 122525.	1.4	8
838	Molecular approaches to heterogeneous catalysis. Coordination Chemistry Reviews, 2021, 448, 214179.	9.5	29
839	Rational design of ionic V-MOF with confined Mo species for highly efficient oxidative desulfurization. Applied Catalysis B: Environmental, 2021, 298, 120594.	10.8	40
840	Adsorptive removal of nitro- or sulfonate-containing dyes by a functional metal–organic framework: Quantitative contribution of hydrogen bonding. Chemical Éngineering Journal, 2021, 425, 130598.	6.6	33
841	Adsorptive removal of herbicides with similar structures from water over nitrogen-enriched carbon, derived from melamine@metal-azolate framework-6. Environmental Research, 2022, 204, 111991.	3.7	7
842	Oxidative modification of metal-organic framework-derived carbon: An effective strategy for adsorptive elimination of carbazole and benzonitrile. Fuel, 2022, 307, 121764.	3.4	16
843	Fabrication of synergistic sites on an oxygen-rich covalent organic framework for efficient removal of Cd(II) and Pb(II) from water. Journal of Hazardous Materials, 2022, 424, 127301.	6.5	36
844	Confined Pd clusters with dynamic structure for highly efficient Cascade-type catalysis. Chemical Engineering Journal, 2022, 429, 132128.	6.6	5
845	ZIF-8@GMP-Tb nanocomplex for ratiometric fluorescent detection of alkaline phosphatase activity. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 264, 120230.	2.0	15
846	A dual-signal output electrochemical immunosensor based on Au–MoS2/MOF catalytic cycle amplification strategy for neuron-specific enolase ultrasensitive detection. Biosensors and Bioelectronics, 2022, 195, 113648.	5.3	38
847	Solid catalysts for environmentally benign synthesis. , 2022, , 23-80.		0
848	Atomically dispersed Pd–Ru dual sites in an amorphous matrix towards efficient phenylacetylene semi-hydrogenation. Chemical Communications, 2021, 57, 5670-5673.	2.2	7
849	An uncoordinated tertiary nitrogen based tricarboxylate calcium network with Lewis acid–base dual catalytic sites for cyanosilylation of aldehydes. Dalton Transactions, 2021, 50, 1740-1745.	1.6	8
850	Copper nanoparticle anchored biguanidine-modified Zr-UiO-66 MOFs: a competent heterogeneous and reusable nanocatalyst in Buchwald–Hartwig and Ullmann type coupling reactions. RSC Advances, 2021, 11, 22278-22286.	1.7	16

#	Article	IF	CITATIONS
851	The chemistry and applications of hafnium and cerium(<scp>iv</scp>) metal–organic frameworks. Chemical Society Reviews, 2021, 50, 4629-4683.	18.7	135
852	Photocatalytic Performance of the MOF-Coating Layer on SPR-Excited Ag Nanowires. ACS Omega, 2021, 6, 2882-2889.	1.6	14
853	Charge-transfer dynamics at a Ag/Ni-MOF/Cu ₂ O heterostructure in photoelectrochemical NH ₃ production. Chemical Communications, 2021, 57, 8031-8034.	2.2	33
854	A Series of Metal–Organic Frameworks: Syntheses, Structures and Luminescent Detection, Gas Adsorption, Magnetic Properties. Crystal Growth and Design, 2021, 21, 869-885.	1.4	36
855	Recent progress on pristine metal/covalent-organic frameworks and their composites for lithium–sulfur batteries. Energy and Environmental Science, 2021, 14, 1835-1853.	15.6	150
856	Engineering aldolases for asymmetric synthesis. Methods in Enzymology, 2020, 644, 149-167.	0.4	5
857	Amine-functionalized hollow mesoporous nano-bowl with bulky acid-imprinted free space around base sites and DMF-annealed mesoporous channels as an efficient solid base catalyst. Applied Catalysis A: General, 2020, 600, 117560.	2.2	9
858	Remarkable metal–organic framework composites for adsorptive removal of nitrogenous compounds from fuel. Chemical Engineering Journal, 2020, 398, 125590.	6.6	9
859	Recent progress on synthesis of ZIF-67-based materials and their application to heterogeneous catalysis. Green Energy and Environment, 2022, 7, 3-15.	4.7	94
860	Defect-Engineered Metal–Organic Frameworks: A Thorough Characterization of Active Sites Using CO as a Probe Molecule. Journal of Physical Chemistry C, 2021, 125, 593-601.	1.5	15
861	Metal–Organic Frameworks (MOFs) as Potential Hybrid Ferroelectric Materials. RSC Smart Materials, 2019, , 197-244.	0.1	2
862	Size and function influence study on enhanced catalytic performance of a cooperative MOF for mild, green and fast C–C bond formation. Dalton Transactions, 2020, 49, 3234-3242.	1.6	19
863	From isolated Ti-oxo clusters to infinite Ti-oxo chains and sheets: recent advances in photoactive Ti-based MOFs. Journal of Materials Chemistry A, 2020, 8, 15245-15270.	5.2	209
864	Modified Electrospun Polymeric Nanofibers and Their Nanocomposites as Nanoadsorbents for Toxic Dye Removal from Contaminated Waters: A Review. Polymers, 2021, 13, 20.	2.0	59
865	Hydroxylation of Phenol Catalyzed by Iron Metal-Organic Framework (Fe-BTC) with Hydrogen Peroxide. Journal of Materials Science and Chemical Engineering, 2020, 08, 55-64.	0.2	4
866	A tryptophan-based copper(<scp>ii</scp>) coordination polymer: catalytic activity towards Suzuki–Miyaura cross-coupling reactions. CrystEngComm, 2021, 23, 7855-7864.	1.3	6
867	Cu–citric acid metal–organic framework: Synthesis, characterization and catalytic application in Suzuki–Miyaura cross oupling reaction and oxidation of sulfides. Applied Organometallic Chemistry, 2021, 35, e6434.	1.7	20
868	Rational fabrication of ordered porous solid strong bases by utilizing the inherent reducibility of metal-organic frameworks. Nano Research, 2022, 15, 2905-2912.	5.8	7

#	Article	IF	CITATIONS
869	Graphene-Modulated PDI/g-C ₃ N ₄ All-Organic S-Scheme Heterojunction Photocatalysts for Efficient CO ₂ Reduction under Full-Spectrum Irradiation. Journal of Physical Chemistry C, 2021, 125, 23830-23839.	1.5	24
870	State of the art on the ultrasonic-assisted removal of environmental pollutants using metal-organic frameworks. Journal of Hazardous Materials, 2022, 424, 127558.	6.5	71
871	Understanding the Anisotropic Elastic Properties of Metal–Organic Frameworks at the Nanoscale: The Instructive Example of MOF-74. Journal of Physical Chemistry C, 2021, 125, 24728-24745.	1.5	5
872	Synthesis, Structure and Fluorescence Properties of Transition Metal Coordination Polymers Constructed by 3,5-bis(3',5'-dicarboxylphenyl)-1H-1,2,4-triazole. Journal of Advances in Physical Chemistry, 2018, 07, 163-173.	0.1	0
873	Metal-Organic Frameworks (MOFs). Engineering Materials, 2021, , 105-146.	0.3	0
875	Flow-Driven Release of Molecules from a Porous Surface Explored Using Dynamical Density Functional Theory. Journal of the Taiwan Institute of Chemical Engineers, 2020, 117, 26-38.	2.7	4
876	ZIF-8-derived ZnS–Ni3Fe–Ni co-loaded N-doped porous carbon for efficient hydrogen evolution reaction catalysis. Journal of Electroanalytical Chemistry, 2020, 879, 114804.	1.9	3
877	Dual confinement of high–loading enzymes within metal–organic frameworks for glucoseâ€,sensor with enhanced cascade biocatalysis. Biosensors and Bioelectronics, 2022, 196, 113695.	5.3	37
878	Metal- and covalent organic frameworks as catalyst for organic transformation: Comparative overview and future perspectives. Coordination Chemistry Reviews, 2022, 451, 214259.	9.5	40
879	Metal-organic frameworks bearing free carboxylic acids: Preparation, modification, and applications. Coordination Chemistry Reviews, 2022, 450, 214237.	9.5	66
880	Original pathway to selectively precipitate cobalt from an old battery solution thanks to imidazole linker. Separation and Purification Technology, 2022, 281, 119890.	3.9	1
881	Heteroatom-doped hollow carbon material as an electrocatalyst for oxygen reduction reaction. Journal of Physics: Conference Series, 2021, 2079, 012007.	0.3	0
882	Pd immobilization biguanidine modified Zr-UiO-66 MOF as a reusable heterogeneous catalyst in Suzuki–Miyaura coupling. Scientific Reports, 2021, 11, 21883.	1.6	32
883	Biological Application of Porous Aromatic Frameworks: State of the Art and Opportunities. Journal of Physical Chemistry Letters, 2021, 12, 11050-11060.	2.1	4
884	Crystalline assembly of perylene in metal–organic framework thin film: J-aggregate or excimer? Insight into the electronic structure. Journal of Physics Condensed Matter, 2021, 33, 034001.	0.7	1
885	Optimized safranin adsorption onto poly(vinylidene fluoride)-based nanofiber via response surface methodology. Materials Chemistry and Physics, 2022, 276, 125407.	2.0	10
886	Efficient Helium Separation with Two-Dimensional Metal–Organic Framework Fe/Ni-PTC: A Theoretical Study. Membranes, 2021, 11, 927.	1.4	1
887	A new two-dimensional homochiral cadmium(II) coordination polymer: synthesis, structure determination, optical properties, and fluorescent sensing. Journal of Coordination Chemistry, 2021, 74, 2898-2911.	0.8	1

#	Article	IF	CITATIONS
888	Construction of poly-iodine aromatic carboxylate Mn/Co frameworks and iodine adsorption behavior. Transition Metal Chemistry, 2021, 46, 633-644.	0.7	2
889	Friedel-Crafts alkylation reaction efficiently catalyzed by a di-amide functionalized Zr(IV) metal-organic framework. Molecular Catalysis, 2022, 517, 112007.	1.0	6
890	Zeolitic imidazolate frameworks containing Zn as catalysts for the Knoevenagel condensation reaction. Brazilian Journal of Chemical Engineering, 0, , 1.	0.7	0
891	MOF-inorganic nanocomposites: Bridging a gap with inorganic materials. Applied Materials Today, 2022, 26, 101283.	2.3	8
892	Influence of the framework on the catalytic performance of Rh-supported Zr-MOFs in the hydroformylation of n-alkenes. Molecular Catalysis, 2022, 517, 112005.	1.0	8
893	Phase engineering of metalâ€organic frameworks. Aggregate, 2022, 3, e145.	5.2	15
894	CaO nanoparticles incorporated metal organic framework (NH2-MIL-101) for Knoevenagel condensation reaction. Arabian Journal of Chemistry, 2022, 15, 103588.	2.3	12
895	Mesoporous Zeolitic Imidazolate Frameworks. CCS Chemistry, 2022, 4, 2906-2913.	4.6	7
896	Ultrasonic-Assisted Synthesis of Fe–BTC–PEG Metal–Organic Complex: An Effective and Safety Nanocarrier for Anticancer Drug Delivery. ACS Omega, 2021, 6, 33419-33427.	1.6	4
897	Selective and Sensitive Fluorescence Turnâ€on Detection of Cyanide Ions in Water by Post Metallization of a MOF. ChemPlusChem, 2021, 87, e202100426.	1.3	6
898	Nanospace Engineering of Metalâ€Organic Frameworks for Heterogeneous Catalysis. ChemNanoMat, 2022, 8, .	1.5	27
899	Comparison of 2D/3D Imidazole-Based MOF and its Applications as Non-Enzymatic Electrochemical Sensors. SSRN Electronic Journal, 0, , .	0.4	0
900	PolyMOFs: Molecular Level Integration of MOFs and Polymers. RSC Smart Materials, 2021, , 6-30.	0.1	0
901	The boosting of electrocatalytic CO2-to-CO transformation by using the carbon nanotubes-supported PCN-222(Fe) nanoparticles composite. Journal of Materials Science, 2022, 57, 526-537.	1.7	9
902	MOF-enabled confinement and related effects for chemical catalyst presentation and utilization. Chemical Society Reviews, 2022, 51, 1045-1097.	18.7	148
903	A remarkable adsorbent for denitrogenation of liquid fuel: Ethylenediaminetetraacetic acid-grafted metal–organic framework, MOF-808. Separation and Purification Technology, 2022, 284, 120248.	3.9	14
904	Urea and thiourea based coordination polymers and metal-organic frameworks: Synthesis, structure and applications. Coordination Chemistry Reviews, 2022, 453, 214314.	9.5	24
905	Dynamic ring-opening polymerization, D-ROP: Applications in coordination polymers. Coordination Chemistry Reviews, 2022, 454, 214342.	9.5	4

#	Article	IF	CITATIONS
906	Surface synergetic effects of Pt clusters/monolayer Bi2MoO6 nanosheet for promoting the photocatalytic selective reduction of 4-nitrostyrene to 4-vinylaniline. Applied Catalysis B: Environmental, 2022, 304, 121010.	10.8	27
907	Exploration of structural transition phenomenon in flexible metal–organic framework formed on polymer substrate. CrystEngComm, 2021, 23, 8498-8505.	1.3	1
908	A Review on Metal-Organic Frameworks as Congenial Heterogeneous Catalysts for Potential Organic Transformations. Frontiers in Chemistry, 2021, 9, 747615.	1.8	19
909	Autonomous Reaction Network Exploration in Homogeneous and Heterogeneous Catalysis. Topics in Catalysis, 2022, 65, 6-39.	1.3	27
910	Fumarate Based Metal–Organic Framework: An Effective Catalyst for the Transesterification of Used Vegetable Oil. Crystals, 2022, 12, 151.	1.0	19
911	A new method of Bi-MOF nanostructures production using UAIM procedure for efficient electrocatalytic oxidation of aminophenol: a controllable systematic study. Journal of Applied Electrochemistry, 2022, 52, 709-728.	1.5	7
912	2D Covalent Organic Frameworks: From Synthetic Strategies to Advanced Opticalâ€Electricalâ€Magnetic Functionalities. Advanced Materials, 2022, 34, e2102290.	11.1	96
913	Identifying the Polymorphs of Zr-Based Metal–Organic Frameworks via Time-Resolved Fluorescence Imaging. , 2022, 4, 370-377.		8
915	Single-Crystal-to-Single-Crystal Transformation of Two Copper(II) Metal–Organic Frameworks Modulated by Auxiliary Ligands. Inorganic Chemistry, 2022, 61, 1360-1367.	1.9	9
916	Temperature-Induced Structural Transformations of Lanthanide Coordination Polymers Based on a Semirigid Tricarboxylic Acid Ligand: Crystal Structures and Luminescence Properties. Crystal Growth and Design, 2022, 22, 1583-1593.	1.4	17
917	Solvent-Mediated Synthesis of Hierarchical MOFs and Derived Urchin-Like Pd@SC/HfO ₂ with High Catalytic Activity and Stability. ACS Applied Materials & Interfaces, 2022, 14, 5887-5896.	4.0	12
918	Computational chemistry and the study and design of catalysts. , 2022, , 299-332.		1
919	The synthesis of a copper metalâ€organic framework Cu 3 TDPAT and its application in a Moritaâ€Baylisâ€Hillman (MBH) reaction. Applied Organometallic Chemistry, 0, , .	1.7	1
920	The mechanism of MOF as a heterogeneous catalyst for propene hydroformylation: a DFT study. Reaction Chemistry and Engineering, 2022, 7, 1156-1167.	1.9	8
921	Metal-organic framework-derived Mg-Zn hybrid nanocatalyst for biodiesel production. Advanced Powder Technology, 2022, 33, 103365.	2.0	17
922	Twoâ€Dimensional Metal–Organic Framework Nanosheets: Synthesis and Applications in Electrocatalysis and Photocatalysis. ChemSusChem, 2022, 15, .	3.6	33
923	Generation of Strong Basicity in Metal–Organic Frameworks: How Do Coordination Solvents Matter?. ACS Applied Materials & Interfaces, 2022, 14, 8058-8065.	4.0	6
924	Reversible One―to Two―to Threeâ€Dimensional Transformation in Cu ^{II} Coordination Polymer. Angewandte Chemie - International Edition, 2022, 61, .	7.2	18

#	Article	IF	CITATIONS
925	1D/2D/3D Reversible Dimensional Transformation in Cu(II) Coordination Polymer. Angewandte Chemie, 0, , .	1.6	0
926	MOF effectively deliver CRISPR and enhance gene-editing efficiency via MOF's hydrolytic activity of phosphate ester bonds. Chemical Engineering Journal, 2022, 439, 134992.	6.6	7
927	Fluorescent sensing framework based on mixed-ligand as a highly sensitive probe for selective detection of Fe3+ cations, Cr2O72â^' and nitrobenzene. Journal of Solid State Chemistry, 2022, 308, 122915.	1.4	5
928	Modulated construction of Fe-based MOF via formic acid modulator for enhanced degradation of sulfamethoxazoleï¼sDesign, degradation pathways, and mechanism. Journal of Hazardous Materials, 2022, 429, 128299.	6.5	74
929	Facile synthesis of Fe-BTC and electrochemical enhancement effect for sunset yellow determination. Talanta Open, 2022, 5, 100084.	1.7	15
930	A microporous anionic metal–organic framework for aqueous encapsulation and highly reversible sensitization of light-emitting Tb ³⁺ ions. New Journal of Chemistry, 2022, 46, 5201-5205.	1.4	3
931	The bulky Pd-PEPPSI-embedded conjugated microporous polymer-catalyzed Suzuki–Miyaura cross-coupling of aryl chlorides and arylboronic acids. Polymer Chemistry, 2022, 13, 1547-1558.	1.9	8
932	On-Surface Synthesis: A New Route Realizing Single-Layer Conjugated Metal–Organic Structures. Journal of Physical Chemistry Letters, 2022, 13, 1356-1365.	2.1	15
933	Cooperation between covalent organic frameworks (COFs) and metal organic frameworks (MOFs): application of COFs-MOFs hybrids. Advanced Composites and Hybrid Materials, 2022, 5, 1595-1611.	9.9	42
934	Rational Design of ZIF-8 for Constructing Luminescent Biosensors with Glucose Oxidase and AIE-Type Gold Nanoclusters. Analytical Chemistry, 2022, 94, 3408-3417.	3.2	34
935	Construction of Pyrazine-Appended 1D and 3D Cobalt(II) Succinate Coordination Polymers: Influence of Solvent on Architectures and Applications in Gas Adsorption and NAC Detection. ACS Omega, 2022, 7, 5698-5712.	1.6	6
936	Metal–Organic Frameworks (Mofs) for the Efficient Removal of Contaminants from Water: Underlying Mechanisms, Recent Advances, Challenges, and Future Prospects. SSRN Electronic Journal, 0, , .	0.4	0
938	Porous organic–inorganic hybrid materials for catalysis, energy and environmental applications. Chemical Communications, 2022, 58, 3429-3460.	2.2	35
939	Selective CO ₂ adsorption at low pressure with a Zr-based UiO-67 metal–organic framework functionalized with aminosilanes. Journal of Materials Chemistry A, 2022, 10, 8856-8865.	5.2	29
940	2D and 3D metal–organic frameworks constructed with a mechanically rigidified [3]rotaxane ligand. Chemical Communications, 2022, 58, 5829-5832.	2.2	7
941	Strategies for the application of metal–organic frameworks in catalytic reactions. RSC Advances, 2022, 12, 10114-10125.	1.7	16
942	Structural regulation of Co-based coordination polymers by adjusting solvent polarity toward electrocatalytic hydrogen evolution performance. New Journal of Chemistry, 2022, 46, 7355-7365.	1.4	2
943	MOF-derived three-dimensional ordered porous carbon nanomaterial for efficient alkaline zinc-air batteries. Science China Materials, 2022, 65, 1453-1462.	3.5	24

#	Article	IF	CITATIONS
944	Integration of CdS with a Fiber-Based Cadmium Coordination Polymer for Turning On Photocatalytic Oxidative Coupling Reactions. Crystal Growth and Design, 2022, 22, 1792-1800.	1.4	7
945	A Stable Y(III)-Based Amide-Functionalized Metal–Organic Framework for Propane/Methane Separation and Knoevenagel Condensation. Inorganic Chemistry, 2022, 61, 3708-3715.	1.9	25
946	Data-Driven Matching of Experimental Crystal Structures and Gas Adsorption Isotherms of Metal–Organic Frameworks. Journal of Chemical & Engineering Data, 2022, 67, 1743-1756.	1.0	6
947	Ab Initio Study of Hydrostable Metal–Organic Frameworks for Postsynthetic Modification and Tuning toward Practical Applications. ACS Omega, 2022, 7, 7791-7805.	1.6	1
948	Research Progress in Semiconductor Materials with Application in the Photocatalytic Reduction of CO2. Catalysts, 2022, 12, 372.	1.6	13
949	Increasing the Stability of Metal–Organic Frameworks by Coating with Poly(tetrafluoroethylene). Inorganic Chemistry, 2022, 61, 5092-5098.	1.9	8
950	The synthesis of heterogenous Coâ€MOFs and application in the catalytic hydrosilylation of alkenes. Applied Organometallic Chemistry, 2022, 36, .	1.7	5
951	Tridimensional N, P-Codoped Carbon Sponges as Highly Selective Catalysts for Aerobic Oxidative Coupling of Benzylamine. ACS Omega, 2022, 7, 11092-11100.	1.6	5
952	Vibrational Modes and Terahertz Phenomena of the Large-Cage Zeolitic Imidazolate Framework-71. Journal of Physical Chemistry Letters, 2022, 13, 2838-2844.	2.1	11
953	Designing Sites in Heterogeneous Catalysis: Are We Reaching Selectivities Competitive With Those of Homogeneous Catalysts?. Chemical Reviews, 2022, 122, 8594-8757.	23.0	118
954	Defect Engineering in Metal–Organic Framework Nanocrystals: Implications for Mechanical Properties and Performance. ACS Applied Nano Materials, 2022, 5, 6398-6409.	2.4	26
955	Synthesis, Structure and Fluorescent Probes for Sensitive Detection for Nitrobenzene of a Cd-MOF. Journal of Inorganic and Organometallic Polymers and Materials, 2022, 32, 2763-2770.	1.9	6
956	Surface Modification of 2D Photocatalysts for Solar Energy Conversion. Advanced Materials, 2022, 34, e2200180.	11.1	184
957	Metal precursors from eggshells wastes for the production of calcium–organic frameworks and their use in accelerating the formation of carbon–carbon bonds. Applied Catalysis A: General, 2022, 635, 118558.	2.2	10
958	Simultaneous determination of citalopram and selegiline using an efficient electrochemical sensor based on ZIF-8 decorated with RGO and g-C3N4 in real samples. Analytica Chimica Acta, 2022, 1203, 339662.	2.6	31
959	Metal-organic framework (MOF-808) functionalized with ethyleneamines: Selective adsorbent to capture CO2 under low pressure. Journal of CO2 Utilization, 2022, 58, 101932.	3.3	36
960	Understanding the Origin of the Particularly Small and Anisotropic Thermal Expansion of MOFâ€₹4. Advanced Theory and Simulations, 2022, 5, .	1.3	5
961	Improved method for increasing accessible pores of MIL-101(Cr) by encapsulation and removal of Phosphotungstic acid (PTA): Pd/PTA-MIL-101(Cr) as an effective catalyst for CO oxidation. Journal of Cleaner Production, 2022, 347, 131168.	4.6	12

#	ARTICLE	IF	CITATIONS
962	Cataluminescence sensor based on Pt/NU-901 nanocomposite for rapid capture, catalysis and detection of acetone in exhaled breath. Analytica Chimica Acta, 2022, 1206, 339787.	2.6	4
963	2D paddle wheel lanthanide metal-organic framework: Synthesis, structure and exploration of catalytic N-arylation reaction. Polyhedron, 2022, 219, 115789.	1.0	1
964	The syntheses and efficient electromagnetic wave absorption properties of two Cu based coordination polymers. Inorganica Chimica Acta, 2022, 536, 120909.	1.2	1
965	Recent advances of functional heterometallic-organic framework (HMOF) materials: Design strategies and applications. Coordination Chemistry Reviews, 2022, 463, 214521.	9.5	45
966	Anthracene-triazole-dicarboxylate-Based Zn(II) 2D Metal Organic Frameworks for Efficient Catalytic Carbon Dioxide Fixation into Cyclic Carbonates under Solvent-Free Condition and Theoretical Study for the Reaction Mechanism. Industrial & Engineering Chemistry Research, 2022, 61, 175-186.	1.8	18
967	A Thermally Stable Undulated Coordination Layer Showing a Sequentially Interweaving 2D → 3D Net as a Turn-On Sensor for Luminescence Detection of Al ³⁺ in Water. Crystal Growth and Design, 2022, 22, 228-236.	1.4	8
968	Slip/Stick Viscosity Models of Nanoconfined Liquids: Solvent-Dependent Rotation in Metal–Organic Frameworks. Journal of Organic Chemistry, 2022, 87, 1780-1790.	1.7	3
969	From a Well-Defined Organozinc Precursor to Diverse Luminescent Coordination Polymers Based on Zn(II)-Quinolinate Building Units Interconnected by Mixed Ligand Systems. Molecules, 2021, 26, 7402.	1.7	1
970	Biofunctionalized metal–organic frameworks and host–guest interactions for advanced biomedical applications. Journal of Materials Chemistry B, 2022, 10, 7194-7205.	2.9	11
971	Electrocatalyst Derived from NiCu–MOF Arrays on Graphene Oxide Modified Carbon Cloth for Water Splitting. Inorganics, 2022, 10, 53.	1.2	8
972	Green and efficient Knoevenagel condensation catalyzed by pristine Zn-MOFs of amino acid derivatives. Inorganica Chimica Acta, 2022, 538, 120970.	1.2	3
973	Four Cd(II)–based metal organic frameworks: Syntheses, structures and fluorescent probes for highly selective, sensitive detection for nitrobenzene. Journal of Solid State Chemistry, 2022, 311, 123144.	1.4	1
974	A novel 2D zinc(II)-organic framework for efficient catalytic cycloaddition of CO2 with epoxides. Polyhedron, 2022, 220, 115850.	1.0	6
979	Synthesis of Singleâ€Layer Twoâ€Dimensional Metal–Organic Frameworks M ₃ (HAT) ₂ (M=Ni, Fe, Co, HAT=1,4,5,8,9,12â€hexaazatriphenylene) Using an Onâ€Surface Reaction. Angewandte Chemie - International Edition, 2022, 61, .	7.2	6
980	Supramolecular Effects and Systems in Catalysis. A Review. Doklady Chemistry, 2022, 502, 1-27.	0.2	3
981	A critical review on emerging photocatalysts for syngas generation <i>via</i> CO ₂ reduction under aqueous media: a sustainable paradigm. Materials Advances, 2022, 3, 5274-5298.	2.6	9
982	Shaping MOF oxime oxidation catalysts as three-dimensional porous aerogels through structure-directing growth inside chitosan microspheres. Green Chemistry, 2022, 24, 4533-4543.	4.6	16
983	Observation of oxygen evolution over a {Ni12}-cluster-based metal-organic framework. Science China Chemistry, 2022, 65, 1088-1093.	4.2	11

#	Article	IF	Citations
984	A chemometric approach based on Box–Behnken and response surface methodology for design and optimization of ciprofloxacin adsorption from water. Chemical Papers, 2022, 76, 4873-4883.	1.0	4
985	MOF‣upported Copper Complexâ€Catalyzed Synthesis of Unsymmetrical 1,3â€Ðiynes Without External Additives. ChemCatChem, 0, , .	1.8	1
986	Enhancing the oxidative desulfurization efficiency of cobalt-loaded-porous carbon catalyst via nitrogen doping on carbon support. Journal of Cleaner Production, 2022, 360, 132168.	4.6	19
987	Discovery of Highâ€Performing Metal–Organic Frameworks for Onâ€Board Methane Storage and Delivery via LNG–ANG Coupling: Highâ€Throughput Screening, Machine Learning, and Experimental Validation. Advanced Science, 2022, 9, e2201559.	5.6	14
988	Synthesis of Singleâ€Layer Twoâ€Dimensional Metal–Organic Frameworks M ₃ (HAT) ₂ (M=Ni, Fe, Co, HAT=1,4,5,8,9,12â€hexaazatriphenylene) Using an Onâ€Surface Reaction. Angewandte Chemie, 2022, 134, .	1.6	4
989	Engineering of catalytically active sites in photoactive metal–organic frameworks. Coordination Chemistry Reviews, 2022, 465, 214561.	9.5	22
990	A new 3D POMOF built upon Keggin clusters and flexible n-heterocycle carboxylate ligands for catalytic and antimicrobial properties. Inorganic Chemistry Communication, 2022, 141, 109520.	1.8	3
991	Zeolite encapsulated Cu(II)-salen complexes for the catalytic degradation of dyes in a neutral condition. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648, 129153.	2.3	1
992	Synthesis of a Symmetrical tris-Tetrazole as Isostere of a Tricarboxylic Acid: Behind New Tridentate Ligands for MOFs. , 2021, 8, .		0
993	Discrete Arsonate-Grafted Inverted-Keggin 12-Molybdate Ion [Mo ₁₂ O ₃₂ (OH) ₂ (4-N ₃ C ₂ H ₂ -C <s and Formation of a Copper(II)-Mediated Metal–Organic Framework. Inorganic Chemistry, 2022, , .</s 	sub ⊵.6 <td>b>kd_{4<}</td>	b>kd _{4<}
994	Two isomeric metal–organic frameworks bearing stilbene moieties for highly volatile iodine uptake. Inorganic Chemistry Frontiers, 2022, 9, 3436-3443.	3.0	10
995	Synergetic and Cooperative Effects in Multimetallic Macrocyclic Complexes for Biological, Catalytic and Magnetic Activity. Asian Journal of Chemistry, 2022, 34, 1333-1346.	0.1	0
996	Single-Chain Polymer Nanoparticles-Encapsulated Chiral Bifunctional Metal-Organic Frameworks for Asymmetric Sequential Reactions. Inorganic Chemistry Communication, 2022, , 109577.	1.8	5
997	The catalytic mechanism of hydroformylation of 1-butene on rhodium-coordinated organic linkers in MOFs: A computational study. Computational and Theoretical Chemistry, 2022, 1213, 113743.	1.1	2
998	Rational fabrication of ZIF-8 forests via metal template-guided growth for promoting CO2 chemical transformation. Separation and Purification Technology, 2022, 295, 121336.	3.9	8
999	The Role of Metal Nodes on Rh Coordinated Mofs for Hydroformylation of N-Butene. SSRN Electronic Journal, 0, , .	0.4	0
1000	Generating strongly basic sites on magnetic nano-stirring bars: Multifunctional integrated catalysts for transesterification reaction. Science China Materials, 2022, 65, 2721-2728.	3.5	3
1001	Strategies for the Improvement of Hydrogen Physisorption in Metal-Organic Frameworks and Advantages of Flexibility for the Enhancement. Journal of Molecular and Engineering Materials, 2022, 10, .	0.9	2

#	Article	IF	CITATIONS
1002	One-Pot Method Synthesis of Bimetallic MgCu-MOF-74 and Its CO ₂ Adsorption under Visible Light. ACS Omega, 2022, 7, 19920-19929.	1.6	15
1003	Pronounced effect of phosphidization on the performance of CoOx encapsulated N-doped carbon nanotubes towards oxygen evolution reaction. International Journal of Hydrogen Energy, 2022, 47, 22054-22062.	3.8	8
1004	Bimetallic Fe–Cu metal organic frameworks for room temperature catalysis. Applied Organometallic Chemistry, 2022, 36, .	1.7	15
1005	Metal–organic frameworks (MOFs) for the efficient removal of contaminants from water: Underlying mechanisms, recent advances, challenges, and future prospects. Coordination Chemistry Reviews, 2022, 468, 214595.	9.5	64
1006	Construction and application of base-stable MOFs: a critical review. Chemical Society Reviews, 2022, 51, 6417-6441.	18.7	147
1007	Construction of two novel non-penetrating Co-MOFs derived from designed 2,4,6-tri(2,4-dicarboxyphenyl)pyridine: synthesis, structure and gas adsorption properties. CrystEngComm, 2022, 24, 5097-5104.	1.3	4
1008	A Binuclear Cerium-Based Metal–Organic Framework as an Artificial Monooxygenase for the Saturated Hydrocarbon Aerobic Oxidation with High Efficiency and High Selectivity. ACS Catalysis, 2022, 12, 7821-7832.	5.5	17
1009	Spotting Trends in Organocatalyzed and Other Organomediated (De)polymerizations and Polymer Functionalizations. Angewandte Chemie - International Edition, 2022, 61, .	7.2	11
1010	Spotting Trends in Organocatalyzed and Other Organomediated (De)polymerizations and Polymer Functionalizations. Angewandte Chemie, 0, , .	1.6	0
1011	Photoinduced Phase Transition of Ce-UiO-66 to Ce-BDC-OH. Inorganic Chemistry, 0, , .	1.9	4
1012	Pd and Ni NPs@Eu-MOF, an economically advantageous nanocatalyst for C(sp2)-C(sp2) cross-coupling reactions. Key role of Ni and of the metal nanoparticles. Polyhedron, 2022, 223, 115950.	1.0	3
1013	Selective detection of sulfasalazine antibiotic and its controllable photodegradation into 5-aminosalicylic acid by visible-light-responsive metal–organic framework. Dalton Transactions, 2022, 51, 11730-11736.	1.6	1
1014	Acetylenedicarboxylate as a linker in the engineering of coordination polymers and metal–organic frameworks: challenges and potential. Chemical Communications, 2022, 58, 8900-8933.	2.2	10
1015	Loading of gâ€C ₃ N ₄ on Coreâ€Shell Magnetic Mesoporous Silica Nanospheres as a Solid Base Catalyst for the Green Synthesis of some Chromene Derivatives under Different Conditions. ChemistryOpen, 2022, 11, .	0.9	5
1016	Endohedrally Functionalized Metal–Organic Cage-Cross-Linked Polymer Gels as Modular Heterogeneous Catalysts. Journal of the American Chemical Society, 2022, 144, 13276-13284.	6.6	24
1017	Coupling reactions induced by ionic palladium species deposited onto porous support materials. Coordination Chemistry Reviews, 2022, 470, 214696.	9.5	11
1018	Tuning the Cobalt–Platinum Alloy Regulating Singleâ€Atom Platinum for Highly Efficient Hydrogen Evolution Reaction. Advanced Functional Materials, 2022, 32, .	7.8	38
1019	Experimental and DFT Study of Transition Metal Doping in a Zn-BDC MOF to Improve Electrical and Visible Light Absorption Properties. Journal of Physical Chemistry C, 2022, 126, 12348-12360.	1.5	10

#	Article	IF	CITATIONS
1020	Solar-driven smart ceramic fiber-based monolithic adsorbent for autonomous indoor humidity control. Chemical Engineering Journal, 2022, 450, 138241.	6.6	10
1021	Practice of function-oriented synthesis: high-efficiency CO ₂ conversion and Knoevenagel condensation by two novel In ₃ -based MOFs with high-density active sites under mild conditions. Journal of Materials Chemistry A, 2022, 10, 17773-17781.	5.2	17
1022	A review on chiral metal–organic frameworks: synthesis and asymmetric applications. Nanoscale, 2022, 14, 13405-13427.	2.8	22
1023	Polymelamine Formaldehyde-Coated MIL-101 as an Efficient Dual-Functional Core–Shell Composite to Catalyze the Deacetalization–Knoevenagel Tandem Reaction. Inorganic Chemistry, 2022, 61, 13678-13684.	1.9	7
1024	Sequentially Regulating the Structural Transformation of Copper Metal–Organic Frameworks (Cu-MOFs) for Controlling Site-Selective Reaction. ACS Applied Materials & Interfaces, 2022, 14, 36845-36854.	4.0	6
1025	Synthesis and Characterization of Nickel Metal-Organic Framework Including 4,6-diamino-2-mercaptopyrimidine and its Catalytic Application in Organic Reactions. Catalysis Letters, 2023, 153, 2005-2017.	1.4	21
1026	Palladiumâ€Based Metal Organic Frameworks as Heterogeneous Catalysts for Câ^'C Couplings. ChemCatChem, 2022, 14, .	1.8	7
1027	Highly Active Cyclic Zinc(II) Thione Catalyst for Câ^'C and Câ^'N Bond Formation Reactions. Chemistry - an Asian Journal, 0, , .	1.7	2
1028	CatalyticÂsynthesis of newÂpyrazolo [3,4-b] pyridineÂviaÂa cooperativeÂvinylogousÂanomeric-based oxidation. Scientific Reports, 2022, 12, .	1.6	20
1029	Pore creation nanoarchitectonics from non-porous metal-organic framework to porous carbon for adsorptive elimination of sulfanilamide and chloroxylenol from aqueous solution. Journal of Hazardous Materials, 2022, 439, 129659.	6.5	4
1030	Titanium nitride@nitrogen-enriched porous carbon derived from metal–organic frameworks and melamine: A remarkable oxidative catalyst to remove indoles from fuel. Chemical Engineering Journal, 2022, 450, 138411.	6.6	15
1031	Hydrodeoxygenation of p-cresol over CuNi@C catalyst derived from metal-organic frameworks precursor. Fuel, 2022, 329, 125320.	3.4	7
1032	Metal-organic frameworks composed of nitro groups: Preparation and applications in adsorption and catalysis. Chemical Engineering Journal, 2023, 451, 138538.	6.6	39
1033	Highly Active La(III)â€Based Metalâ€Organic Framework as a Heterogeneous Lewis Acid Catalyst for Friedelâ€Crafts Alkylation. Chemistry - A European Journal, 2022, 28, .	1.7	6
1034	Adsorptive removal of carbamazepine and ibuprofen from aqueous solution using a defective Zr-based metal-organic framework. Journal of Environmental Chemical Engineering, 2022, 10, 108560.	3.3	7
1035	Core-shell mesoporous silica–metal–phenolic network microcapsule for the controlled release of corrosion inhibitor. Applied Surface Science, 2022, 605, 154747.	3.1	5
1036	Sustained-release system based on BTA@MOF-5 for self-healing coating application. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 654, 130139.	2.3	7
1037	MOF-coated upconversion nanoconstructs for synergetic photo-chemodynamic/oxygen-elevated photodynamic therapy. Dalton Transactions, 2022, 51, 16336-16343.	1.6	2

#	Article	IF	CITATIONS
1038	Open metal site (OMS)-inspired investigation of adsorption and catalytic functions in a porous metal–organic framework (MOF). Dalton Transactions, 2022, 51, 15496-15506.	1.6	8
1039	Luminescent MOFs (LMOFs): recent advancement towards a greener WLED technology. Chemical Communications, 2022, 58, 10768-10788.	2.2	20
1040	Regulated synthesis of Zr-metal–organic frameworks with variable hole size and its influence on the performance of novel MOF-based heterogeneous amino acid–thiourea catalysts. RSC Advances, 2022, 12, 21574-21581.	1.7	4
1041	The role of metal nodes on Rh coordinated MOFs for Hydroformylation of n-butene. Applied Catalysis A: General, 2022, 645, 118848.	2.2	8
1042	Straightforward construction of hollow polyoxometalate-based metal-organic framework via pseudo-homoepitaxial growth. Science China Chemistry, 2022, 65, 1921-1928.	4.2	10
1043	MOF-Derived Co ₃ O ₄ Nanoparticles Catalyzing Hydrothermal Deoxygenation of Fatty Acids for Alkane Production. ACS Omega, 2022, 7, 33482-33490.	1.6	2
1044	Surface-Modified Ultrathin Metal–Organic Framework Nanosheets as a Single-Site Iron Electrocatalyst for Oxygen Evolution Reaction. ACS Applied Nano Materials, 2022, 5, 15021-15029.	2.4	3
1045	Metolachlor metal–organic framework nanoparticles for reducing leaching, ecotoxicity and improving bioactivity. Pest Management Science, 2022, 78, 5366-5378.	1.7	3
1046	A Novel Organometallic Coordination Polymer as a Heterogeneous Catalyst for Câ^'C Bond Formation. European Journal of Inorganic Chemistry, 0, , .	1.0	0
1047	Observation of formation and local structures of metal-organic layers via complementary electron microscopy techniques. Nature Communications, 2022, 13, .	5.8	18
1048	Copper-olsalazine metal-organic frameworks as a nanocatalyst and epigenetic modulator for efficient inhibition of colorectal cancer growth and metastasis. Acta Biomaterialia, 2022, 152, 495-506.	4.1	21
1049	Unique Fluorescence Turn-On and Turn-Off–On Responses to Acids by a Carbazole-Based Metal–Organic Framework and Theoretical Studies. Journal of the American Chemical Society, 2022, 144, 17054-17063.	6.6	36
1050	Post-Synthetic Defunctionalization of Ammonium-Functionalized Zr-Based Metal-Organic Framework MIP-202 for Knoevenagel Condensation Reaction. Comments on Inorganic Chemistry, 2023, 43, 202-222.	3.0	0
1051	Roomâ€Temperature Ringâ€Opening Polymerization of δâ€Valerolactone and ϵâ€Caprolactone Caused by Uptak into Porous Pillar[5]arene Crystals. Angewandte Chemie - International Edition, 2022, 61, .	e _{7.2}	4
1052	Roomâ€ŧemperature Ringâ€opening Polymerization of l´â€Valerolactone and εâ€Caprolactone Caused by Uptake into Porous Pillar[5]arene Crystals. Angewandte Chemie, 0, , .	1.6	0
1053	Integration of Au nanoparticles and metal-organic frameworks in hollow double-shelled nanoreactor for efficient tandem catalysis. Applied Surface Science, 2023, 608, 155123.	3.1	6
1054	A flexible route to crisp-like metal–organic framework derivatives by crystalline transformation. Inorganic Chemistry Frontiers, 0, , .	3.0	0
1055	Hyaluronic Acid-Protein Conjugate Modified Iron-Based MOFs (MIL-101 (Fe)) for Efficient Therapy of Neuroblastoma: Molecular Simulation, Stability and Toxicity Studies. Crystals, 2022, 12, 1484.	1.0	5

#	Article	IF	CITATIONS
1056	Au, Ag nanoparticles-doped MIL-53(Fe) in rapid and selective detection of hydrogen peroxide in milk samples. Chemical Papers, 0, , .	1.0	0
1057	Polyphosphazeneâ€Functionalized Microspheres as Efficient Catalysts for the Knoevenagel Reaction under Mild Conditions. ChemPlusChem, 0, , .	1.3	1
1058	A Zirconium–Organic Framework Constructed from Saddle-Shaped Tetratopic Carboxylate for High-Rate and -Efficiency lodine Capture. Inorganic Chemistry, 2022, 61, 17109-17114.	1.9	7
1059	Tuning Proton Reduction Efficiencies of Copper Corrole in Electrocatalysis <i>via</i> Multiple β-Chloro Substitution. ACS Applied Energy Materials, 2022, 5, 13492-13500.	2.5	7
1060	Interpretable Graph Transformer Network for Predicting Adsorption Isotherms of Metal–Organic Frameworks. Journal of Chemical Information and Modeling, 2022, 62, 5446-5456.	2.5	11
1061	Synthesis of 4-styrylquinazolines using copper-based porous solid catalyst. Molecular Catalysis, 2022, 533, 112760.	1.0	1
1062	Effective removal of nitroimidazole antibiotics in aqueous solution by an aluminum-based metal-organic framework: Performance and mechanistic studies. Journal of Solid State Chemistry, 2023, 317, 123659.	1.4	7
1063	MOFs with bridging or terminal hydroxo ligands: Applications in adsorption, catalysis, and functionalization. Coordination Chemistry Reviews, 2023, 475, 214912.	9.5	43
1064	Adsorptive removal of carbazole from model esterified bio-oil composed of methyl laurate by using metal–organic frameworks functionalized with sulfonic acid both on metal and linker sites. Chemical Engineering Journal, 2023, 453, 139822.	6.6	7
1065	The versatility of nanocellulose, modification strategies, and its current progress in wastewater treatment and environmental remediation. Science of the Total Environment, 2023, 858, 159937.	3.9	9
1066	Synthesis, structure and dielectric behavior study of Mn (II)-4,4â€2-sulfonyldibenzoate-auxiliary ligand system based coordination polymers (CPs). Journal of Molecular Structure, 2023, 1274, 134389.	1.8	3
1067	Understanding Your Support System: The Design of a Stable Metal–Organic Framework/Polyazoamine Support for Biomass Conversion. Chemistry of Materials, 2022, 34, 9854-9864.	3.2	4
1068	Effect of sulfur doping of zinc-imidazole coordination polymer (ZnIm CP) as a novel photocatalyst for degradation of ionic dyes. BMC Chemistry, 2022, 16, .	1.6	0
1069	Onâ€Surfaceâ€Assembled Singleâ€Layer Metalâ€Organic Frameworks with Extended Conjugation. ChemPlusChem, 2023, 88, .	1.3	4
1070	Catalytically stable potassium singleâ€atom solid superbases. Angewandte Chemie, 0, , .	1.6	0
1071	Catalytically Stable Potassium Singleâ€Atom Solid Superbases. Angewandte Chemie - International Edition, 2022, 61, .	7.2	9
1072	Metal–organic framework (MOF)-based fluorescence "turn-on―sensors. Materials Chemistry Frontiers, 2023, 7, 405-441.	3.2	38
1073	MOFs derived Fe/Co/C heterogeneous composite absorbers for efficient microwave absorption. Synthetic Metals, 2023, 292, 117229.	2.1	7

#	Article	IF	CITATIONS
1074	Construction of enzyme@glutathione hybrid metal-organic frameworks: glutathione-boosted microenvironment fine-tuning of biomimetic immobilization for improving catalytic performance. Materials Today Chemistry, 2023, 27, 101326.	1.7	8
1075	Formation of a meltable purinate metal–organic framework and its glass analogue. Chemical Communications, 2023, 59, 732-735.	2.2	6
1076	MOF-based membranes for oil/water separation: Status, challenges, and prospects. Journal of Environmental Chemical Engineering, 2023, 11, 109073.	3.3	17
1077	Cadmium-Based coordination polymers (CPs) constructed from two different V-Shaped dicarboxylate Ligands: Synthesis, structure and dielectric properties. Inorganic Chemistry Communication, 2023, 148, 110280.	1.8	3
1078	Fluorine extraction from organofluorine molecules to make fluorinated clusters in yttrium MOFs. Chemical Science, 2022, 13, 14285-14291.	3.7	8
1079	A Mechanistic Study of Asymmetric Transfer Hydrogenation of Imines on a Chiral Phosphoric Acid Derived Indium Metal-Organic Framework. Molecules, 2022, 27, 8244.	1.7	2
1080	Catalytic Efficiency of Primary α-Amino Amides as Multifunctional Organocatalysts in Recent Asymmetric Organic Transformations. Catalysts, 2022, 12, 1674.	1.6	4
1081	Elucidating polymer growth and fragmentation behavior of MOFs in ethylene polymerization by MOF thin films. Cell Reports Physical Science, 2023, 4, 101206.	2.8	1
1082	Fabrication of Porous Fe-Based Metal–Organic Complex for the Enhanced Delivery of 5-Fluorouracil in In Vitro Treatment of Cancer Cells. ACS Omega, 2022, 7, 46674-46681.	1.6	1
1083	Rare earth-based MOFs for photo/electrocatalysis. Materials Chemistry Frontiers, 2023, 7, 806-827.	3.2	20
1084	Unraveling the reversible formation of defective Ce3+ sites in the UiO-66(Ce) material: a multi-technique study. Materials Today Chemistry, 2023, 27, 101337.	1.7	3
1085	Preparation and characterization of Ce-MOF/g-C3N4 composites and evaluation of their photocatalytic performance. Ceramics International, 2023, 49, 24428-24441.	2.3	13
1086	Surface immobilization of nitrogen-coordinated iron atoms: a facile and efficient strategy toward MNC sites with superior catalytic activities. Inorganic Chemistry Frontiers, 2023, 10, 1143-1152.	3.0	3
1087	Tailoring stability, catalytic activity and selectivity of covalent metal–organic frameworks <i>via</i> steric modification of metal nodes. Journal of Materials Chemistry A, 2023, 11, 12777-12783.	5.2	8
1088	Influence of 1-Butene Adsorption on the Dimerization Activity of Single Metal Cations on UiO-66 Nodes. Journal of the American Chemical Society, 2023, 145, 1407-1422.	6.6	9
1089	Effective enhancement of performances on photo-assisted dye degradation using a Zn coordination polymer and its post-modified Cu/Zn bimetallic analogue under natural environments. Journal of Environmental Chemical Engineering, 2023, 11, 109258.	3.3	3
1090	3D Sulfur and nitrogen doped carbon materials Ni-MOF electrocatalysts for oxygen evolution reaction. Ionics, 2023, 29, 1077-1087.	1.2	3
1091	Chemical, physical, and morphological characteristics of nanomaterials for CO2 capture and conversion. , 2023, , 63-87.		0

ARTICLE IF CITATIONS The hydroformylation of 1-butene on phosphine modified 1Rh/MOF-5 prepared by different 1092 1.0 2 immobilization strategies. Molecular Catalysis, 2023, 538, 112973. An ultrastable La-MOF for catalytic hydrogen transfer of furfural: <i>in situ</i> activation of the 1093 2.8 surface. Nanoscale, 2023, 15, 6645-6654 Derivative carbon particles with different sizes from ZIF-8 and their adsorption capacity for MB. 1095 2 1.7 Journal of Materials Science, 2023, 58, 2552-2569. Integration of lanthanide-imidazole containing polymer with metal-organic frameworks for efficient 1096 3.9 cycloaddition of CO2 with epoxides. Separation and Purification Technology, 2023, 313, 123498. In-situ preparation of Cu-BTC modified with organic amines for H2S removal under ambient 1097 0 conditions., 2023, 2, 143-150. Recent progress in mixed rare earth metal-organic frameworks: From synthesis to application. Coordination Chemistry Reviews, 2023, 485, 215121. 1098 Rational design of novel metal-organic framework/Bi4O7 S-scheme heterojunction photocatalyst for 1099 3.1 6 boosting carbamazepine degradation. Applied Surface Science, 2023, 622, 156876. Theoretical studies on the role of water in ionic liquids at ZIF (IL@ZIF) complex and its effect on 1.9 selective CO2 separation. Materials Today Sustainability, 2023, 22, 100376. Highly-sensitive and anti-interferential electrochemical determination of hazardous metronidazole 1101 using w-NiSO4·NiS2 coated ZIF-67-derived cobalt/nitrogen-doped carbon. Colloids and Surfaces A: 2.3 0 Physicochemical and Engineering Aspects, 2023, 666, 131293. Electrocatalytic nitrogen fixation performance of two-dimensional Metal-Organic Frameworks Cu3(C6O6) and TM/Cu3(C6O6) from first-principle study. Chemical Physics, 2023, 568, 111837. Exploring the Potential of a Highly Scalable Metal-Organic Framework CALF-20 for Selective Gas 1103 2 2.0 Adsorption at Low Pressure. Polymers, 2023, 15, 760. Research progress of POMs constructed by 1,3,5-benzene-tricarboxylic acid: From synthesis to 9.5 application. Coordination Chemistry Reviews, 2023, 481, 215044. Thermally activated bipyridyl-based Mn-MOFs with Lewis acidâ€"base bifunctional sites for highly efficient catalytic cycloaddition of CO₂ with epoxides and Knoevenagel condensation 1105 1.6 5 reactions. Dalton Transactions, 2023, 52, 3671-3681. Enhanced CO2/N2 separation performance in HP-Cu-BTCs by modifying the open-metal sites and porosity using added templates. Korean Journal of Chemical Engineering, 2023, 40, 675-692. 1.2 Active site identification and CO oxidation in UiO-66-XX thin films. Nanotechnology, 2023, 34, 205702. 1108 1.3 0 Conceptual and Practical Aspects of Metalâ€"Organic Frameworks for Solidâ€"Gas Reactions. Chemical 1109 Reviews, 2023, 123, 6197-6232. Topologically Porous Heterostructures for Photo/Photothermal Catalysis of Clean Energy 1110 4.6 2 Conversion. Small Methods, 2023, 7, . ZIF-8@Rhodamine B as a Self-Reporting Material for Pollutant Extraction Applications. Nanomaterials, 2023, 13, 842.

#	Article	IF	CITATIONS
1112	Metal–Organic Framework-Based Materials for Wastewater Treatment: Superior Adsorbent Materials for the Removal of Hazardous Pollutants. ACS Omega, 2023, 8, 9004-9030.	1.6	23
1113	Composition States of MOFs. Engineering Materials, 2023, , 139-153.	0.3	2
1114	Sintering Metal–Organic Framework Gels for Application as Structural Adhesives. Small, 0, , 2300298.	5.2	1
1115	Effect of Subtle Changes on the Slow Relaxation Behavior of Co(II) Ions Based Metal-Organic Frameworks. Crystal Growth and Design, 2023, 23, 2099-2105.	1.4	3
1116	Structural Regulation of Two Polyoxometalate-Based Metal–Organic Frameworks for the Heterogeneous Catalysis of Quinazolinones. Inorganic Chemistry, 2023, 62, 5565-5575.	1.9	6
1117	Bioinspired Framework Catalysts: From Enzyme Immobilization to Biomimetic Catalysis. Chemical Reviews, 2023, 123, 5347-5420.	23.0	37
1118	Charge Separation in Metalâ€Organic Framework Enables Heterogeneous Thiol Catalysis. Angewandte Chemie - International Edition, 2023, 62, .	7.2	8
1119	Charge Separation in Metalâ€Organic Framework Enables Heterogeneous Thiol Catalysis. Angewandte Chemie, 0, , .	1.6	0
1120	Metalâ^'Organic Framework-Based Ultrafast Logic Gates for High-Security Optical Encryption. Ultrafast Science, 2023, 3, .	5.8	7
1131	Role of metal–organic frameworks in catalysis. , 2023, , 163-182.		0
1132	Fundamental Perspectives on the Electrochemical Water Applications of Metal–Organic Frameworks. Nano-Micro Letters, 2023, 15, .	14.4	8
1135	MOFganic Chemistry: Challenges and Opportunities for Metal–Organic Frameworks in Synthetic Organic Chemistry. Chemistry of Materials, 2023, 35, 4883-4896.	3.2	4
1151	Proton Conductors: Physics and Technological Advancements for PC-SOFC. Materials Horizons, 2023, , 1-55.	0.3	0
1189	Amorphous porous Fe-BTC prepared <i>via</i> the post-synthetic metal-ion metathesis of HKUST-1. Journal of Materials Chemistry A, 2023, 11, 24591-24597.	5.2	0
1201	Ferrocene carboxylic acid-doped copper MOFs as a nanozyme with high peroxidase-mimicking activity for catalytic dye degradation. New Journal of Chemistry, 0, , .	1.4	0
1211	Nanoarchitectonics of Metal–Organic Frameworks (MOFs) for energy and sensing applications. , 2024, , 387-428.		0
1217	Metal-organic frameworks and their derivatives: emerging materials for energy conversion and		0

storage. , 2024, , 1-17. 1217