Emerging Droplet Microfluidics

Chemical Reviews 117, 7964-8040

DOI: 10.1021/acs.chemrev.6b00848

Citation Report

#	Article	IF	CITATIONS
1	Controlled droplet discretization and manipulation using membrane displacement traps. Lab on A Chip, 2017, 17, 3717-3724.	3.1	20
2	Antibacterial Structural Color Hydrogels. ACS Applied Materials & amp; Interfaces, 2017, 9, 38901-38907.	4.0	34
3	Control of Magnetofluidic Laser Scattering of Aqueous Magnetic Fluids. IEEE Magnetics Letters, 2017, 8, 1-5.	0.6	5
4	Polymer capsules as micro-/nanoreactors for therapeutic applications: Current strategies to control membrane permeability. Progress in Materials Science, 2017, 90, 325-357.	16.0	91
5	Multichannel Dynamic Interfacial Printing: An Alternative Multicomponent Droplet Generation Technique for Lab in a Drop. ACS Applied Materials & Interfaces, 2017, 9, 43545-43552.	4.0	25
6	Surface Wrinkling and Porosity of Polymer Particles toward Biological and Biomedical Applications. Advanced Materials Interfaces, 2017, 4, 1700929.	1.9	20
7	Raman-Activated Droplet Sorting (RADS) for Label-Free High-Throughput Screening of Microalgal Single-Cells. Analytical Chemistry, 2017, 89, 12569-12577.	3.2	113
8	Ionic Liquid Droplet Microreactor for Catalysis Reactions Not at Equilibrium. Journal of the American Chemical Society, 2017, 139, 17387-17396.	6.6	130
9	Ultrasensitive and Stable Au Dimerâ€Based Colorimetric Sensors Using the Dynamically Tunable Gapâ€Dependent Plasmonic Coupling Optical Properties. Advanced Functional Materials, 2018, 28, 1707392.	7.8	48
10	Fluorescent analysis of bioactive molecules in single cells based on microfluidic chips. Lab on A Chip, 2018, 18, 1151-1173.	3.1	58
11	Responsive graphene oxide hydrogel microcarriers for controllable cell capture and release. Science China Materials, 2018, 61, 1314-1324.	3.5	53
12	Droplet Behavior in Open Biphasic Microfluidics. Langmuir, 2018, 34, 5358-5366.	1.6	18
13	Liquid gating elastomeric porous system with dynamically controllable gas/liquid transport. Science Advances, 2018, 4, eaao6724.	4.7	96
14	Magnetic Nanorobots, Generating Vortexes Inside Nanoliter Droplets for Effective Mixing. Advanced Materials Technologies, 2018, 3, 1700312.	3.0	32
15	Microfabricated Probes for Studying Brain Chemistry: A Review. ChemPhysChem, 2018, 19, 1128-1142.	1.0	36
16	Rapid Patterning of PDMS Microfluidic Device Wettability Using Syringe-Vacuum-Induced Segmented Flow in Nonplanar Geometry. ACS Applied Materials & Interfaces, 2018, 10, 3170-3174.	4.0	45
17	Doubleâ€Emulsionâ€Templated Anisotropic Microcapsules for pHâ€Triggered Release. Advanced Materials Interfaces, 2018, 5, 1701472.	1.9	25
18	Ultrasensitive Single-Molecule Enzyme Detection and Analysis Using a Polymer Microarray. Analytical Chemistry, 2018, 90, 3091-3098.	3.2	18

#	Article	IF	CITATIONS
19	Universal, Surfactantâ€Free Preparation of Hydrogel Beads on Superamphiphobic and Slippery Surfaces. Advanced Materials Interfaces, 2018, 5, 1701536.	1.9	12
20	Emerging Biotechnology Applications of Aqueous Twoâ€Phase Systems. Advanced Healthcare Materials, 2018, 7, e1701036.	3.9	84
21	Superwettable Electrochemical Biosensor toward Detection of Cancer Biomarkers. ACS Sensors, 2018, 3, 72-78.	4.0	84
22	Multiscale and Multifunctional Emulsions by Host–Guest Interaction-Mediated Self-Assembly. ACS Central Science, 2018, 4, 600-605.	5.3	25
23	Egg Component-Composited Inverse Opal Particles for Synergistic Drug Delivery. ACS Applied Materials & Interfaces, 2018, 10, 17058-17064.	4.0	22
24	Bioinspired living structural color hydrogels. Science Robotics, 2018, 3, .	9.9	444
25	Recent progress in ICF target fabrication at RCLF. Matter and Radiation at Extremes, 2018, 3, 135-144.	1.5	28
26	Formation of Multicomponent Surface Nanodroplets by Solvent Exchange. Journal of Physical Chemistry C, 2018, 122, 8647-8654.	1.5	35
27	On-chip microfluidic production of cell-sized liposomes. Nature Protocols, 2018, 13, 856-874.	5.5	111
28	Investigation of the Effect of Geometric Parameters on EWOD Actuation in Rectangular Microchannels. Journal of Fluids Engineering, Transactions of the ASME, 2018, 140, .	0.8	3
29	Real-time size modulation and synchronization of a microfluidic dropmaker with pulsed surface acoustic waves (SAW). Scientific Reports, 2018, 8, 4541.	1.6	8
30	Advances in microfluidics for lipid nanoparticles and extracellular vesicles and applications in drug delivery systems. Advanced Drug Delivery Reviews, 2018, 128, 84-100.	6.6	215
31	Microfluidic Generation of Bioinspired Spindleâ€knotted Graphene Microfibers for Oil Absorption. ChemPhysChem, 2018, 19, 1990-1994.	1.0	22
32	Controllable synthesis of nanocrystals in droplet reactors. Lab on A Chip, 2018, 18, 41-56.	3.1	97
33	Renewable superwettable biochip for miRNA detection. Sensors and Actuators B: Chemical, 2018, 258, 715-721.	4.0	42
34	Microfluidic Generation of Particle-Stabilized Water-in-Water Emulsions. Langmuir, 2018, 34, 213-218.	1.6	17
35	Bioâ€Inspired Anisotropic Wettability Surfaces from Dynamic Ferrofluid Assembled Templates. Advanced Functional Materials, 2018, 28, 1705802.	7.8	76
36	Realization of a stable, monodisperse water-in-oil droplet system with micro-scale and nano-scale confinement for tandem microscopy and diffusion NMR studies. Soft Matter, 2018, 14, 448-459.	1.2	5

#	Article	IF	CITATIONS
37	Microfluidic diamagnetic water-in-water droplets: a biocompatible cell encapsulation and manipulation platform. Lab on A Chip, 2018, 18, 3361-3370.	3.1	43
38	Microfluidic screening of antibiotic susceptibility at a single-cell level shows the inoculum effect of cefotaxime on <i>E. coli</i> . Lab on A Chip, 2018, 18, 3668-3677.	3.1	37
39	Digital polymerase chain reaction technology – recent advances and future perspectives. Lab on A Chip, 2018, 18, 3717-3732.	3.1	98
40	Simulation before fabrication: a case study on the utilization of simulators for the design of droplet microfluidic networks. RSC Advances, 2018, 8, 34733-34742.	1.7	29
41	Flexible Superwettable Tapes for On-Site Detection of Heavy Metals. Analytical Chemistry, 2018, 90, 14105-14110.	3.2	59
42	Microfluidic generation of self-contained multicomponent microcapsules for self-healing materials. Applied Physics Letters, 2018, 113, .	1.5	32
43	Continuous Recirculation of Microdroplets in a Closed Loop Tailored for Screening of Bacteria Cultures. Micromachines, 2018, 9, 469.	1.4	11
44	Bioinspired Photonic Barcodes with Graphene Oxide Encapsulation for Multiplexed MicroRNA Quantification. Small, 2018, 14, e1803551.	5.2	46
45	Coding of Experimental Conditions in Microfluidic Droplet Assays Using Colored Beads and Machine Learning Supported Image Analysis. Small, 2019, 15, e1802384.	5.2	15
46	Silk Fibroin Microparticles with Hollow Mesoporous Silica Nanocarriers Encapsulation for Abdominal Wall Repair. Advanced Healthcare Materials, 2018, 7, e1801005.	3.9	31
47	Peanut-inspired anisotropic microparticles from microfluidics. Composites Communications, 2018, 10, 129-135.	3.3	9
48	An integrated chip-mass spectrometry and epifluorescence approach for online monitoring of bioactive metabolites from incubated Actinobacteria in picoliter droplets. Analytical and Bioanalytical Chemistry, 2018, 410, 7679-7687.	1.9	44
49	Multifunctional Chitosan Inverse Opal Particles for Wound Healing. ACS Nano, 2018, 12, 10493-10500.	7.3	141
50	Pollen-inspired microparticles with strong adhesion for drug delivery. Applied Materials Today, 2018, 13, 303-309.	2.3	46
51	Liquid Marble Actuator for Microfluidic Logic Systems. Scientific Reports, 2018, 8, 14153.	1.6	22
52	Design of capillary microfluidics for spinning cell-laden microfibers. Nature Protocols, 2018, 13, 2557-2579.	5.5	152
53	Current Trends of Microfluidic Single-Cell Technologies. International Journal of Molecular Sciences, 2018, 19, 3143.	1.8	63
54	A versatile and robust microfluidic device for capillary-sized simple or multiple emulsions production. Biomedical Microdevices, 2018, 20, 94.	1.4	4

#	Article	IF	CITATIONS
55	Vitamin metal–organic framework-laden microfibers from microfluidics for wound healing. Materials Horizons, 2018, 5, 1137-1142.	6.4	105
56	Centrifugal microfluidics for ultra-rapid fabrication of versatile hydrogel microcarriers. Applied Materials Today, 2018, 13, 116-125.	2.3	44
57	Composite Multifunctional Micromotors from Droplet Microfluidics. ACS Applied Materials & Interfaces, 2018, 10, 34618-34624.	4.0	42
58	Mesoporous Colloidal Photonic Crystal Particles for Intelligent Drug Delivery. ACS Applied Materials & Interfaces, 2018, 10, 33936-33944.	4.0	38
59	Evaluating nanomedicine with microfluidics. Nanotechnology, 2018, 29, 492001.	1.3	21
60	Programmable wettability on photocontrolled graphene film. Science Advances, 2018, 4, eaat7392.	4.7	245
61	Microdroplets Advancement in Newtonian and Non- Newtonian Microfluidic Multiphase System. , 2018, , .		2
62	Preparation and application of flavor and fragrance capsules. Polymer Chemistry, 2018, 9, 4926-4946.	1.9	76
63	Janus nanoarchitectures: From structural design to catalytic applications. Nano Today, 2018, 22, 62-82.	6.2	137
64	Investigation of In-Air Droplet Generation in Confined PDMS Microchannels Operating in the Jetting Regime. , 2018, , .		0
65	4. Continuous synthesis of gold nanoparticles in micro- and millifluidic systems. , 2018, , 157-220.		2
66	Ultrafast, Continuous and Shape-Controlled Preparation of CeO ₂ Nanostructures: Nanorods and Nanocubes in a Microfluidic System. Industrial & Engineering Chemistry Research, 2018, 57, 7525-7532.	1.8	19
67	On the autonomous motion of active drops or bubbles. Journal of Colloid and Interface Science, 2018, 527, 180-186.	5.0	14
68	Interfacial Emulsification: An Emerging Monodisperse Droplet Generation Method for Microreactors and Bioanalysis. Langmuir, 2018, 34, 11655-11666.	1.6	22
69	Graphene oxide hydrogel particles from microfluidics for oil decontamination. Journal of Colloid and Interface Science, 2018, 528, 372-378.	5.0	16
70	Rapid and flexible actuation of droplets via a low-adhesive and deformable magnetically functionalized membrane. Journal of Materials Science, 2018, 53, 13253-13263.	1.7	10
71	Multicolored photonic barcodes from dynamic micromolding. Materials Horizons, 2018, 5, 979-983.	6.4	40
72	A self-sufficient micro-droplet generation system using highly porous elastomeric sponges: A versatile tool for conducting cellular assays. Sensors and Actuators B: Chemical, 2018, 274, 645-653.	4.0	23

#	Article	IF	CITATIONS
73	Multiphase Microfluidic Processes to Produce Alginate-Based Microparticles and Fibers. Journal of Chemical Engineering of Japan, 2018, 51, 318-330.	0.3	17
74	Application of Microfluidics in Experimental Ecology: The Importance of Being Spatial. Frontiers in Microbiology, 2018, 9, 496.	1.5	27
75	Label-Free Sensing in Microdroplet-Based Microfluidic Systems. Chemosensors, 2018, 6, 23.	1.8	23
76	Single Micrometer-Sized Gels: Unique Mechanics and Characters for Applications. Gels, 2018, 4, 29.	2.1	10
77	Moving Droplets in 3D Using Light. Advanced Materials, 2018, 30, e1801821.	11.1	49
78	Fab on a Package: LTCC Microfluidic Devices Applied to Chemical Process Miniaturization. Micromachines, 2018, 9, 285.	1.4	12
79	Microfluidics Fabrication of Soft Microtissues and Bottomâ€Up Assembly. Advanced Biology, 2018, 2, 1800119.	3.0	10
80	Microfluidic fabrication of microparticles for biomedical applications. Chemical Society Reviews, 2018, 47, 5646-5683.	18.7	410
81	Quantum-dot-encapsulated core–shell barcode particles from droplet microfluidics. Journal of Materials Chemistry B, 2018, 6, 7257-7262.	2.9	28
82	Dual-nozzle microfluidic droplet generator. Nano Convergence, 2018, 5, 12.	6.3	10
83	High-Throughput Aqueous Two-Phase System Droplet Generation by Oil-Free Passive Microfluidics. ACS Omega, 2018, 3, 9296-9302.	1.6	25
84	Droplet microfluidics in thermoplastics: device fabrication, droplet generation, and content manipulation using integrated electric and magnetic fields. Analytical Methods, 2018, 10, 4264-4274.	1.3	21
85	Prospects of Platinum-Based Nanostructures for the Electrocatalytic Reduction of Oxygen. ACS Catalysis, 2018, 8, 9388-9398.	5.5	52
86	Microfluidic-Assisted Fabrication of Clay Microgels for Cell-Free Protein Synthesis. ACS Applied Materials & Interfaces, 2018, 10, 29308-29313.	4.0	41
87	A Microfluidic Strategy for Controllable Generation of Waterâ€inâ€Water Droplets as Biocompatible Microcarriers. Small, 2018, 14, e1801095.	5.2	58
88	Azodendrimers as a Functional Material. , 0, , .		2
89	Liquid–liquid phase separation in artificial cells. Interface Focus, 2018, 8, 20180032.	1.5	145
90	Control of Particle Adsorption for Stability of Pickering Emulsions in Microfluidics. Small, 2018, 14, e1802902.	5.2	34

ARTICLE IF CITATIONS # Biocompatible fabrication of cell-laden calcium alginate microbeads using microfluidic double 2.0 20 91 flow-focusing device. Sensors and Actuators A: Physical, 2018, 279, 313-320. Bioinspired Multifunctional Hybrid Hydrogel Promotes Wound Healing. Advanced Functional Materials, 2018, 28, 1801386. Biomimetic enzyme cascade reaction system in microfluidic electrospray microcapsules. Science 93 4.7 277 Advances, 2018, 4, eaat2816. Folic Acid-Functionalized Hybrid Photonic Barcodes for Capture and Release of Circulating Tumor 94 4.0 Cells. ACS Applied Materials & amp; Interfaces, 2018, 10, 21206-21212. Hierarchically porous composite microparticles from microfluidics for controllable drug delivery. 95 2.8 41 Nanoscale, 2018, 10, 12595-12604. The numerical study of the effect of design parameters on EWOD actuation in microchannels of rectangular cross section. International Journal on Interactive Design and Manufacturing, 2019, 13, 1.3 413-422. Controlled fabrication of solid-shelled capsules with designed geometry sphericity. Chemical 98 1.9 8 Engineering Science, 2019, 208, 115153. Mimicking Cellular Signaling Pathways within Synthetic Multicompartment Vesicles with Triggered Enzyme Activity and Induced Ion Channel Recruitment. Advanced Functional Materials, 2019, 29, 90 7.8 58 1904267. Dynamic behavior and driving force model of droplet formation in a T-junction microchannel. Journal 100 1.5 5 of Micromechanics and Microengineering, 2019, 29, 115002. Electrowetting induced droplet jumping over a bump. Extreme Mechanics Letters, 2019, 32, 100538. Microfluidic generation of cholesteric liquid crystal droplets with an integrative cavity for 102 3.118 dual-gain and controllable lasing. Lab on A Chip, 2019, 19, 3116-3122. Droplet microfluidics: from proof-of-concept to real-world utility?. Chemical Communications, 2019, 2.2 55, 9895-9903. Microfluidic fabrication of fatty alcohol-based microparticles for NIR light-triggered drug release. 104 2.9 13 Journal of Industrial and Engineering Chemistry, 2019, 80, 778-783. Automated Femtoliter Droplet-Based Determination of Oil–Water Partition Coefficient. Analytical 3.2 Chemistry, 2019, 91, 10371-10375. An acoustofluidic platform for non-contact trapping of cell-laden hydrogel droplets compatible 106 1.2 13 with optical microscopy. Biomicrofluidics, 2019, 13, 044101. Progress and challenges in the fabrication of DPS shells for ICF. Matter and Radiation at Extremes, 2019, 4, . Rapid Isolation and Multiplexed Detection of Exosome Tumor Markers Via Queued Beads Combined 108 14.4 43 with Quantum Dots in a Microarray. Nano-Micro Letters, 2019, 11, 59. Advances in Hydrogels in Organoids and Organsâ€onâ€eâ€Chip. Advanced Materials, 2019, 31, e1902042. 11.1

#	Article	IF	CITATIONS
110	"Learning on a chip:―Microfluidics for formal and informal science education. Biomicrofluidics, 2019, 13, 041501.	1.2	20
111	Clinical translation of microfluidic sensor devices: focus on calibration and analytical robustness. Lab on A Chip, 2019, 19, 2537-2548.	3.1	23
112	Biomimetic intestinal barrier based on microfluidic encapsulated sucralfate microcapsules. Science Bulletin, 2019, 64, 1418-1425.	4.3	50
113	Rapid Stabilization of Droplets by Particles in Microfluidics: Role of Droplet Formation. ChemSystemsChem, 2019, 1, 16-24.	1.1	10
114	Microfluidic triple-gradient generator for efficient screening of chemical space. Talanta, 2019, 204, 569-575.	2.9	8
115	Nanometre-sized droplets from a gas dynamic virtual nozzle. Journal of Applied Crystallography, 2019, 52, 800-808.	1.9	5
116	Electrohydrodynamic analysis of electrowetting-on-dielectric (EWOD)-Induced transport of a microdroplet based on the lattice Boltzmann method. AIP Advances, 2019, 9, .	0.6	13
117	Effect of Geometry Configuration on the Merged Droplet Formation in a Double T-Junction. Microgravity Science and Technology, 2019, 31, 855-864.	0.7	20
118	Learning from droplet flows in microfluidic channels using deep neural networks. Scientific Reports, 2019, 9, 8114.	1.6	44
119	Quantum dots from microfluidics for nanomedical application. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2019, 11, e1567.	3.3	29
120	Encoded Microneedle Arrays for Detection of Skin Interstitial Fluid Biomarkers. Advanced Materials, 2019, 31, e1902825.	11.1	145
121	Coldâ€Responsive Nanocapsules Enable the Soleâ€Cryoprotectantâ€Trehalose Cryopreservation of β Cell–Laden Hydrogels for Diabetes Treatment. Small, 2019, 15, e1904290.	5.2	36
122	Microfluidic Devices in Fabricating Nano or Micromaterials for Biomedical Applications. Advanced Materials Technologies, 2019, 4, 1900488.	3.0	48
123	A New Collector for Effectively Increasing Recovery in Copper Oxide Ore-Staged Flotation. Minerals (Basel, Switzerland), 2019, 9, 595.	0.8	6
124	Sticker Microfluidics: A Method for Fabrication of Customized Monolithic Microfluidics. ACS Biomaterials Science and Engineering, 2019, 5, 6801-6810.	2.6	17
125	Simulation and Experiment on Droplet Volume for the Needle-Type Piezoelectric Jetting Dispenser. Micromachines, 2019, 10, 623.	1.4	11
126	Binary optical barcodes for label-free multiplex detection based on molybdenum disulfide composites. Composites Communications, 2019, 16, 136-142.	3.3	10
127	On-Demand Generation of Double Emulsions Based on Interface Shearing for Controlled Ultrasound Activation. ACS Applied Materials & amp; Interfaces, 2019, 11, 40932-40943.	4.0	21

#	ARTICLE	IF	CITATIONS
128	<i><i></i>>o</i> > <i>>o</i> > <i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><</i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i>	2.6	5
129	Microfluidic Fabrication of Capsule Sensor Platform with Doubleâ€Shell Structure. Advanced Functional Materials, 2019, 29, 1902670.	7.8	23
130	Multibioinspired slippery surfaces with wettable bump arrays for droplets pumping. Proceedings of the United States of America, 2019, 116, 20863-20868.	3.3	112
131	Bioinspired Tip-Guidance Liquid Jetting and Droplet Emission at a Rotary Disk <i>via</i> a Surface Energy Gradient. ACS Nano, 2019, 13, 13100-13108.	7.3	15
132	Wash- and Amplification-Free Digital Immunoassay Based on Single-Particle Motion Analysis. ACS Nano, 2019, 13, 13116-13126.	7.3	45
133	Polymer-Salt Aqueous Two-Phase System (ATPS) Micro-Droplets for Cell Encapsulation. Scientific Reports, 2019, 9, 15561.	1.6	34
134	Three-Dimensional Printed Devices in Droplet Microfluidics. Micromachines, 2019, 10, 754.	1.4	35
135	Droplet Microfluidics-Enabled High-Throughput Screening for Protein Engineering. Micromachines, 2019, 10, 734.	1.4	43
136	On demand coalescence in microchannel: Viscosity matters. Chemical Engineering Science, 2019, 208, 115173.	1.9	4
137	Compoundâ€Dropletâ€Pairsâ€Filled Hydrogel Microfiber for Electricâ€Fieldâ€Induced Selective Release. Small, 2019, 15, e1903098.	5.2	30
138	Optical tweezers assisted controllable formation and precise manipulation of microdroplet. Applied Physics Express, 2019, 12, 117001.	1.1	2
139	Injection and Selfâ€Assembly of Bioinspired Stem Cell‣aden Gelatin/Hyaluronic Acid Hybrid Microgels Promote Cartilage Repair In Vivo. Advanced Functional Materials, 2019, 29, 1906690.	7.8	82
140	Microfluidic fabrication and thermal properties of microencapsulated n-heptadecane with hexanediol diacrylate shell for thermal energy storage. Applied Thermal Engineering, 2019, 162, 114278.	3.0	19
141	Flexible Ferrofluids: Design and Applications. Advanced Materials, 2019, 31, e1903497.	11.1	111
142	Droplet Dilution Unit Operation Including Bead Washing Using Integrated Acoustophoresis. , 2019, , .		0
144	"Basicles― Microbial Growth and Production Monitoring in Giant Lipid Vesicles. ACS Applied Materials & Interfaces, 2019, 11, 34698-34706.	4.0	17
145	NK-Cell-Encapsulated Porous Microspheres via Microfluidic Electrospray for Tumor Immunotherapy. ACS Applied Materials & Interfaces, 2019, 11, 33716-33724.	4.0	63
146	Microfluidic Systems for Droplet Generation in Aqueous Continuous Phases: A Focus Review. Langmuir, 2019, 35, 12597-12612.	1.6	57

		CITATION REPORT		
#	Article		IF	Citations
147	Photoresponsive Delivery Microcarriers for Tissue Defects Repair. Advanced Science, 20)19, 6, 1901280.	5.6	50
148	Rapid and Highly Controlled Generation of Monodisperse Multiple Emulsions via a One- Microfluidic Device. Scientific Reports, 2019, 9, 12694.	-Step Hybrid	1.6	16
149	High-throughput droplet microfluidic synthesis of hierarchical metal-organic framework microcapsules. Nano Research, 2019, 12, 2736-2742.	۱ nanosheet	5.8	23
150	Droplet incubation and splitting in open microfluidic channels. Analytical Methods, 201	.9, 11, 4528-4536.	1.3	27
151	Robotic Fabrication of Microchannels for Microfluidic Analysis by Hydrogel Molding. Ch Letters, 2019, 48, 971-974.	emistry	0.7	2
152	Photon-Upconversion Barcoding with Multiple Barcode Channels: Application for Dropl Microfluidics. Analytical Chemistry, 2019, 91, 12630-12635.	et	3.2	11
153	A Plasmonic Approach to Study Protein Interaction Kinetics through the Dimerization c Functionalized Ag Nanoparticles. Scientific Reports, 2019, 9, 13122.	of	1.6	2
154	Highly Stretchable Photonic Crystal Hydrogels for a Sensitive Mechanochromic Sensor Writing. Chemistry of Materials, 2019, 31, 8918-8926.	and Direct Ink	3.2	117
155	One-Step Synthesis of Highly Monodisperse ZnO Core-Shell Microspheres in Microfluid 2019, , .	ic Devices. ,		1
156	Quantitative protein detection using single molecule imaging enzyme-linked immunoso (iELISA). Analytical Biochemistry, 2019, 587, 113466.	prbent assay	1.1	7
157	A microfluidic platform utilizing anchored water-in-oil-in-water double emulsions to crea for analyzing single non-adherent cells. Lab on A Chip, 2019, 19, 422-431.	ate a niche	3.1	25
158	Microfluidic on-demand droplet generation, storage, retrieval, and merging for single-co Lab on A Chip, 2019, 19, 493-502.	ell pairing.	3.1	38
159	Large-Scale Production of Compound Bubbles Using Parallelized Microfluidics for Efficient Extraction of Metal Ions. Lab on A Chip, 2019, 19, 665-673.	ent	3.1	12
160	Cascaded bowknot-type taper based Mach–Zehnder interferometer for microfluidic f Optical Fiber Technology, 2019, 48, 12-14.	low rate sensing.	1.4	2
161	3D Droplet-Based Microfluidic Device Easily Assembled from Commercially Available Mo Coupled with ICPMS for Determination of Silver in Single Cell. Analytical Chemistry, 20 2869-2875.	odules Online 19, 91,	3.2	34
162	Rapid preparation of auto-healing gels with actuating behaviour. Soft Matter, 2019, 15	, 2517-2525.	1.2	13
163	Towards the rapid and efficient mixing on 'open-surface' droplet-based microfluidics via actuation. Sensors and Actuators B: Chemical, 2019, 286, 181-190.	a magnetic	4.0	37
164	Combined effects of pinning and adhesion force on solidliquid interfacial friction behav applied voltage. Tribology International, 2019, 134, 102-108.	iors under	3.0	7

#	Article	IF	CITATIONS
165	30 years of microfluidics. Micro and Nano Engineering, 2019, 2, 76-91.	1.4	357
166	Advanced methods for microRNA biosensing: a problem-solving perspective. Analytical and Bioanalytical Chemistry, 2019, 411, 4425-4444.	1.9	37
167	Batch-Scale Preparation of Reverse Janus Emulsions. Langmuir, 2019, 35, 3490-3497.	1.6	28
168	Visualization study on solid-core encapsulation behaviors of double emulsion in a flow-focusing microchannel. Microsystem Technologies, 2019, 25, 4143-4150.	1.2	1
169	Fluorescence lifetime-activated droplet sorting in microfluidic chip systems. Lab on A Chip, 2019, 19, 403-409.	3.1	40
170	A responsive porous hydrogel particle-based delivery system for oncotherapy. Nanoscale, 2019, 11, 2687-2693.	2.8	30
171	Microfluidic assisted synthesis of PLGA drug delivery systems. RSC Advances, 2019, 9, 2055-2072.	1.7	87
172	Cell-based drug screening on microfluidics. TrAC - Trends in Analytical Chemistry, 2019, 117, 231-241.	5.8	48
173	Micromotors from Microfluidics. Chemistry - an Asian Journal, 2019, 14, 2417-2430.	1.7	14
174	Bio-inspired clamping microneedle arrays from flexible ferrofluid-configured moldings. Science Bulletin, 2019, 64, 1110-1117.	4.3	98
175	Deformation, speed, and stability of droplet motion in closed electrowetting-based digital microfluidics. Physics of Fluids, 2019, 31, .	1.6	20
176	Bottom-up synthetic biology: reconstitution in space and time. Current Opinion in Biotechnology, 2019, 60, 179-187.	3.3	75
177	Small, Traceable, Endosome-Disrupting, and Bioresponsive Click Nanogels Fabricated via Microfluidics for CD44-Targeted Cytoplasmic Delivery of Therapeutic Proteins. ACS Applied Materials & Interfaces, 2019, 11, 22171-22180.	4.0	49
178	Microfluidic gradient device for simultaneously preparing four distinct types of microparticles. RSC Advances, 2019, 9, 17623-17630.	1.7	4
179	A Microfluidic System for Oneâ€Chip Harvesting of Singleâ€Cell‣aden Hydrogels in Culture Medium. Advanced Biology, 2019, 3, e1900076.	3.0	21
180	Magnetically responsive colloidal crystals with angle-independent gradient structural colors in microfluidic droplet arrays. Nanoscale, 2019, 11, 12898-12904.	2.8	17
181	Solvent-resistant and fully recyclable perfluoropolyether-based elastomer for microfluidic chip fabrication. Journal of Materials Chemistry A, 2019, 7, 16249-16256.	5.2	30
182	One-step preparation of multifunctional alginate microspheres loaded with <i>in situ</i> -formed gold nanostars as a photothermal agent. Materials Chemistry Frontiers, 2019, 3, 2018-2024.	3.2	10

#	Article	IF	Citations
183	Peanut Detection Using Droplet Microfluidic Polymerase Chain Reaction Device. Journal of Sensors, 2019, 2019, 1-9.	0.6	16
184	Microfluidic Technologies and Platforms for Protein Crystallography. Bioanalysis, 2019, , 27-51.	0.1	0
185	Dynamic covalent constructed self-healing hydrogel for sequential delivery of antibacterial agent and growth factor in wound healing. Chemical Engineering Journal, 2019, 373, 413-424.	6.6	185
186	Bioinspired superwettable micropatterns for biosensing. Chemical Society Reviews, 2019, 48, 3153-3165.	18.7	110
187	Responsive Porous Microcarriers With Controllable Oxygen Delivery for Wound Healing. Small, 2019, 15, e1901254.	5.2	65
188	Microfluidic preparation, shrinkage, and surface modification of monodispersed alginate microbeads for 3D cell culture. RSC Advances, 2019, 9, 11101-11110.	1.7	12
189	Ionophoreâ€Based Biphasic Chemical Sensing in Droplet Microfluidics. Angewandte Chemie - International Edition, 2019, 58, 8092-8096.	7.2	17
190	Fluorescent nucleic acid probe in droplets for bacterial sorting (FNAP-sort) as a high-throughput screening method for environmental bacteria with various growth rates. PLoS ONE, 2019, 14, e0214533.	1.1	19
191	Ionophoreâ€Based Biphasic Chemical Sensing in Droplet Microfluidics. Angewandte Chemie, 2019, 131, 8176-8180.	1.6	9
192	Microfluidics tubing as a synthesizer for ordered microgel networks. Soft Matter, 2019, 15, 3848-3853.	1.2	8
193	Design of a Novel Axial Gas Pulses Micromixer and Simulations of its Mixing Abilities via Computational Fluid Dynamics. Micromachines, 2019, 10, 205.	1.4	6
194	High-Throughput Nanoelectrospray Ionization-Mass Spectrometry Analysis of Microfluidic Droplet Samples. Analytical Chemistry, 2019, 91, 6645-6651.	3.2	71
195	Condensing-enriched magnetic photonic barcodes on superhydrophobic surface for ultrasensitive multiple detection. Lab on A Chip, 2019, 19, 1783-1789.	3.1	15
196	Controlling the interfacial and bulk concentrations of spontaneously charged colloids in non-polar media. European Physical Journal: Special Topics, 2019, 227, 2603-2616.	1.2	1
197	New insights into the pressure during the merged droplet formation in the squeezing time. Chemical Engineering Research and Design, 2019, 145, 213-225.	2.7	38
198	Droplet CAR-Wash: continuous picoliter-scale immunocapture and washing. Lab on A Chip, 2019, 19, 1589-1598.	3.1	12
199	Smart Superhydrophobic Shape Memory Adhesive Surface toward Selective Capture/Release of Microdroplets. ACS Applied Materials & amp; Interfaces, 2019, 11, 10988-10997.	4.0	77
200	Hollow Colloid Assembled Photonic Crystal Clusters as Suspension Barcodes for Multiplex Bioassays. Small, 2019, 15, e1900056.	5.2	43

#	Article	IF	CITATIONS
201	Self-healing atypical liquid-infused surfaces: Superhydrophobicity and superoleophobicity in submerged conditions. Journal of the Taiwan Institute of Chemical Engineers, 2019, 97, 96-104.	2.7	13
202	Finger-Actuated Microfluidic Concentration Gradient Generator Compatible with a Microplate. Micromachines, 2019, 10, 174.	1.4	19
203	Population-based analysis of cell-penetrating peptide uptake using a microfluidic droplet trapping array. Analytical and Bioanalytical Chemistry, 2019, 411, 2729-2741.	1.9	18
204	Engineering inverse opals with enclosed voids via Bottom-up assembly of double emulsions. Chemical Engineering Science, 2019, 205, 414-419.	1.9	3
205	Conductive Polymer Hydrogel Microfibers from Multiflow Microfluidics. Small, 2019, 15, e1805162.	5.2	59
206	Antibacterial Porous Microcarriers with a Pathological State Responsive Switch for Wound Healing. ACS Applied Bio Materials, 2019, 2, 2155-2161.	2.3	14
207	Microfluidic one-step preparation of alginate microspheres encapsulated with in situ-formed bismuth sulfide nanoparticles and their photothermal effect. European Polymer Journal, 2019, 115, 282-289.	2.6	22
208	Microfluidic Technology for Nucleic Acid Aptamer Evolution and Application. Advanced Biology, 2019, 3, e1900012.	3.0	24
209	Separation efficiency of parallel flow microfluidic extractors with transport enhanced by electric field. Separation and Purification Technology, 2019, 221, 311-318.	3.9	9
210	Hydrophobic chirality amplification in confined water cages. Nature Communications, 2019, 10, 851.	5.8	33
211	Migration of ferrofluid droplets in shear flow under a uniform magnetic field. Soft Matter, 2019, 15, 2439-2446.	1.2	19
212	Gasâ€Shearing Fabrication of Multicompartmental Microspheres: A Oneâ€Step and Oilâ€Free Approach. Advanced Science, 2019, 6, 1802342.	5.6	87
213	Droplet Microarray on Patterned Butterfly Wing Surfaces for Cell Spheroid Culture. Langmuir, 2019, 35, 3832-3839.	1.6	36
214	Bio-inspired intelligent structural color materials. Materials Horizons, 2019, 6, 945-958.	6.4	213
215	Microencapsulated Immunoassays for Detection of Cytokines in Human Blood. ACS Sensors, 2019, 4, 578-585.	4.0	12
216	High-Throughput, Off-Chip Microdroplet Generator Enabled by a Spinning Conical Frustum. Analytical Chemistry, 2019, 91, 3725-3732.	3.2	27
217	Spinning and Applications of Bioinspired Fiber Systems. ACS Nano, 2019, 13, 2749-2772.	7.3	151
218	Label-Free Detection of Multiplexed Metabolites at Single-Cell Level via a SERS-Microfluidic Droplet Platform. Analytical Chemistry, 2019, 91, 15484-15490.	3.2	58

#	Article	IF	CITATIONS
219	Elaboration of the Demulsification Process of W/O Emulsion with Three-Dimensional Electric Spiral Plate-Type Microchannel. Micromachines, 2019, 10, 751.	1.4	5
220	Effect of soluble surfactant on the motion of a confined droplet in a square microchannel. Physics of Fluids, 2019, 31, .	1.6	33
221	Controllable Fabrication of Functional Microhelices with Droplet Microfluidics. ACS Applied Materials & amp; Interfaces, 2019, 11, 46241-46250.	4.0	16
222	A centrifugal microfluidic pressure regulator scheme for continuous concentration control in droplet-based microreactors. Lab on A Chip, 2019, 19, 3870-3879.	3.1	19
223	Cross-Flow Filtration of Escherichia coli at a Nanofluidic Gap for Fast Immobilization and Antibiotic Susceptibility Testing. Micromachines, 2019, 10, 691.	1.4	10
224	Flexible Microfluidics: Fundamentals, Recent Developments, and Applications. Micromachines, 2019, 10, 830.	1.4	130
225	A Scalable Random Access Micro-traps Array for Formation, Selective Retrieval and Capturing of Individual Droplets. , 2019, 2019, 1054-1057.		0
226	Real-time impedimetric droplet measurement (iDM). Lab on A Chip, 2019, 19, 3815-3824.	3.1	19
227	Motion of droplets into hydrophobic parallel plates. RSC Advances, 2019, 9, 32278-32287.	1.7	1
228	Exploring the water/oil/water interface of phospholipid stabilized double emulsions by micro-focusing synchrotron SAXS. RSC Advances, 2019, 9, 33429-33435.	1.7	5
229	Effects of surfactant adsorption on the formation of compound droplets in microfluidic devices. RSC Advances, 2019, 9, 41943-41954.	1.7	2
230	Rugby-ball-like photonic crystal supraparticles with non-close-packed structures and multiple magneto-optical responses. Journal of Materials Chemistry C, 2019, 7, 15042-15048.	2.7	15
231	Tofu-inspired microcarriers from droplet microfluidics for drug delivery. Science China Chemistry, 2019, 62, 87-94.	4.2	42
232	Disposable Off-Chip Micro-Dispenser for Accurate Droplet Transportation. IEEE Sensors Journal, 2019, 19, 575-586.	2.4	1
233	Moving shot, an affordable and high-throughput setup for direct imaging of fast-moving microdroplets. Microsystem Technologies, 2019, 25, 3417-3423.	1.2	3
234	Cardiomyocyte-Driven Structural Color Actuation in Anisotropic Inverse Opals. ACS Nano, 2019, 13, 796-802.	7.3	99
235	Recent Advances in Design of Fluorescence-Based Assays for High-Throughput Screening. Analytical Chemistry, 2019, 91, 482-504.	3.2	99
236	Functional Femtoliter Droplets for Ultrafast Nanoextraction and Supersensitive Online Microanalysis. Small, 2019, 15, e1804683.	5.2	34

#	Article	IF	CITATIONS
237	Collision characteristics of droplet pairs with the presence of arriving distance differences. Journal of Industrial and Engineering Chemistry, 2019, 69, 225-232.	2.9	2
238	Porous scaffolds from droplet microfluidics for prevention of intrauterine adhesion. Acta Biomaterialia, 2019, 84, 222-230.	4.1	60
239	Development and validation of a glass-silicon microdroplet-based system to measure sulfite concentrations in beverages. Analytical and Bioanalytical Chemistry, 2019, 411, 1127-1134.	1.9	3
240	All-Aqueous-Phase Microfluidics for Cell Encapsulation. ACS Applied Materials & amp; Interfaces, 2019, 11, 4826-4832.	4.0	99
241	Multilayer giant unilamellar vesicles as a model of artificial tissue for drug screen. Chemical Physics Letters, 2019, 717, 34-37.	1.2	6
242	Droplet microfluidics with gravity-driven overflow system. Chemical Engineering Journal, 2019, 362, 169-175.	6.6	27
243	Construction of Selfâ€Healing Internal Electric Field for Sustainably Enhanced Photocatalysis. Advanced Functional Materials, 2019, 29, 1807934.	7.8	64
244	Breakup dynamics of droplets in an asymmetric bifurcation by μPIV and theoretical investigations. Chemical Engineering Science, 2019, 197, 258-268.	1.9	28
245	Fluid properties and hydrodynamics of microfluidic systems. , 2019, , 37-77.		4
246	Microfluidics for pharmaceutical applications. , 2019, , 101-119.		13
247	Luminescent nanomaterials for droplet tracking in a microfluidic trapping array. Analytical and Bioanalytical Chemistry, 2019, 411, 157-170.	1.9	17
247 248	Luminescent nanomaterials for droplet tracking in a microfluidic trapping array. Analytical and Bioanalytical Chemistry, 2019, 411, 157-170. A digital acoustofluidic device for on-demand and oil-free droplet generation. Nanotechnology, 2019, 30, 084001.	1.9 1.3	17
247 248 249	Luminescent nanomaterials for droplet tracking in a microfluidic trapping array. Analytical and Bioanalytical Chemistry, 2019, 411, 157-170. A digital acoustofluidic device for on-demand and oil-free droplet generation. Nanotechnology, 2019, 30, 084001. A Review of Stateâ€ofâ€theâ€Art Microfluidic Technologies for Environmental Applications: Detection and Remediation. Global Challenges, 2019, 3, 1800060.	1.9 1.3 1.8	17 18 66
247 248 249 250	Luminescent nanomaterials for droplet tracking in a microfluidic trapping array. Analytical and Bioanalytical Chemistry, 2019, 411, 157-170. A digital acoustofluidic device for on-demand and oil-free droplet generation. Nanotechnology, 2019, 30, 084001. A Review of Stateâ€ofâ€theâ€Art Microfluidic Technologies for Environmental Applications: Detection and Remediation. Clobal Challenges, 2019, 3, 1800060. Ocean In Situ Sensors., 2019, 27-80.	1.9 1.3 1.8	17 18 66 0
247 248 249 250 251	Luminescent nanomaterials for droplet tracking in a microfluidic trapping array. Analytical and Bioanalytical Chemistry, 2019, 411, 157-170.A digital acoustofluidic device for on-demand and oil-free droplet generation. Nanotechnology, 2019, 30, 084001.A Review of Stateâ€ofâ€theâ€Art Microfluidic Technologies for Environmental Applications: Detection and Remediation. Global Challenges, 2019, 3, 1800060.Ocean In Situ Sensors. , 2019, , 27-80.Analysis of Industry-Related Flows by Optical Coherence Tomographyâ€"A Review. KONA Powder and Particle Journal, 2020, 37, 42-63.	1.9 1.3 1.8 0.9	17 18 66 0 8
247 248 249 250 251 252	Luminescent nanomaterials for droplet tracking in a microfluidic trapping array. Analytical and Bioanalytical Chemistry, 2019, 411, 157-170.A digital acoustofluidic device for on-demand and oil-free droplet generation. Nanotechnology, 2019, 30, 084001.A Review of Stateâ€ofâ€theâ€Art Microfluidic Technologies for Environmental Applications: Detection and Remediation. Global Challenges, 2019, 3, 1800060.Ocean In Situ Sensors. , 2019, , 27-80.Analysis of Industry-Related Flows by Optical Coherence Tomographyâ€"A Review. KONA Powder and Particle Journal, 2020, 37, 42-63.Repeated geometrical T-junction breakup microfluidic filter device by injection of premixed emulsion for microdroplet production. Journal of Industrial and Engineering Chemistry, 2020, 81, 81-87.	1.9 1.3 1.8 0.9 2.9	17 18 66 0 8
247 248 249 250 251 252 253	Luminescent nanomaterials for droplet tracking in a microfluidic trapping array. Analytical and Bioanalytical Chemistry, 2019, 411, 157-170.A digital acoustofluidic device for on-demand and oil-free droplet generation. Nanotechnology, 2019, 30, 084001.A Review of Stateâ€ofâ€theâ€Art Microfluidic Technologies for Environmental Applications: Detection and Remediation. Global Challenges, 2019, 3, 1800060.Ocean In Situ Sensors. , 2019, , 27-80.Analysis of Industry-Related Flows by Optical Coherence Tomographyâ€"A Review. KONA Powder and Particle Journal, 2020, 37, 42-63.Repeated geometrical T-junction breakup microfluidic filter device by injection of premixed emulsion for microdroplet production. Journal of Industrial and Engineering Chemistry, 2020, 81, 81-87.Microfluidic spinning of editable polychromatic fibers. Journal of Colloid and Interface Science, 2020, S58, 115-122.	1.9 1.3 1.8 0.9 2.9 5.0	17 18 66 0 8 8 8 24

ARTICLE IF CITATIONS # Microfluidics for Biomedical Analysis. Small Methods, 2020, 4, 1900451. 255 4.6 107 Microfluidics for Biosynthesizing: from Droplets and Vesicles to Artificial Cells. Small, 2020, 16, 5.2 101 e1903940. 257 Continuous flow synthesis of porous materials. Chinese Chemical Letters, 2020, 31, 1448-1461. 4.8 28 The structural fate of lipid nanoparticles in the extracellular matrix. Materials Horizons, 2020, 7, 6.4 125-134. Microfluidic Generation of Nanomaterials for Biomedical Applications. Small, 2020, 16, e1901943. 260 5.2 70 Real-time sensing of bioaerosols: Review and current perspectives. Aerosol Science and Technology, 2020, 54, 465-495. 1.5 144 262 Onâ€Demand Droplet Collection for Capturing Single Cells. Small, 2020, 16, e1902889. 5.2 29 Mini-pillar microarray for individually electrochemical sensing in microdroplets. Biosensors and 5.3 Bioelectronics, 2020, 149, 111845. Microfluidics for Production of Particles: Mechanism, Methodology, and Applications. Small, 2020, 16, 264 5.2 63 e1904673. Integrated droplet microfluidic device for magnetic particles handling: Application to DNA size selection in NGS libraries preparation. Sensors and Actuators B: Chemical, 2020, 305, 127346. Capillaryâ€Based Microfluidicsâ€"Coflow, Flowâ€Focusing, Electroâ€Coflow, Drops, Jets, and Instabilities. 266 5.2 46 Small, 2020, 16, e1904344. Creation of Nonspherical Microparticles through Osmosisâ€Driven Arrested Coalescence of 5.2 Microfluidic Emulsions. Small, 2020, 16, e1903884. Recent Progress of Microfluidic Devices for Hemodialysis. Small, 2020, 16, e1904076. 268 5.2 24 Microâ€/Nanostructured Interface for Liquid Manipulation and Its Applications. Small, 2020, 16, 269 5.2 e1903849. Microfluidicsâ€Assisted Assembly of Injectable Photonic Hydrogels toward Reflective Cooling. Small, 270 5.263 2020, 16, e1903939. Immunotherapeutic silk inverse opal particles for post-surgical tumor treatment. Science Bulletin, 271 2020, 65, 380-388. Anisotropic structural color particles from colloidal phase separation. Science Advances, 2020, 6, 272 4.7 133 eaay1438. External Stimuli Responsive Liquidâ€Infused Surfaces Switching between Slippery and Nonslippery 273 States: Fabrications and Applications. Advanced Functional Materials, 2020, 30, 1901130.

#	Article	IF	CITATIONS
274	Droplet and Microchamberâ€Based Digital Loopâ€Mediated Isothermal Amplification (dLAMP). Small, 2020, 16, e1904469.	5.2	53
275	In vivo directed enzyme evolution in nanoliter reactors with antimetabolite selection. Metabolic Engineering, 2020, 59, 15-23.	3.6	13
276	Manipulating the hydrophobicity of DNA as a universal strategy for visual biosensing. Nature Protocols, 2020, 15, 316-337.	5.5	19
277	Advances in ultrahigh-throughput screening for directed enzyme evolution. Chemical Society Reviews, 2020, 49, 233-262.	18.7	182
278	A self-driven microfluidic surface-enhanced Raman scattering device for Hg ²⁺ detection fabricated by femtosecond laser. Lab on A Chip, 2020, 20, 414-423.	3.1	24
281	Emerging aqueous two-phase systems: from fundamentals of interfaces to biomedical applications. Chemical Society Reviews, 2020, 49, 114-142.	18.7	233
282	Droplet-based optofluidic systems for measuring enzyme kinetics. Analytical and Bioanalytical Chemistry, 2020, 412, 3265-3283.	1.9	27
283	Microfluidic random number generator driven by water-head pressure and human finger push. Sensors and Actuators A: Physical, 2020, 302, 111802.	2.0	1
284	Preparation of Silica@Silica Core–Shell Microspheres Using an Aqueous Two-Phase System in a Novel Microchannel Device. Langmuir, 2020, 36, 576-584.	1.6	6
285	Multi-stimuli-responsive liquid marbles stabilized by superhydrophobic luminescent carbon dots for miniature reactors. Chemical Engineering Journal, 2020, 391, 123478.	6.6	19
286	Combined alternating current electrothermal and dielectrophoresis-induced tunable patterning to actuate on-chip microreactions and switching at a floating electrode. Sensors and Actuators B: Chemical, 2020, 304, 127397.	4.0	14
287	Recent Advances in Microfluidic Platforms Applied in Cancer Metastasis: Circulating Tumor Cells' (CTCs) Isolation and Tumorâ€Onâ€Aâ€Chip. Small, 2020, 16, e1903899.	5.2	76
289	Cellâ€free protein synthesis: The transition from batch reactions to minimal cells and microfluidic devices. Biotechnology and Bioengineering, 2020, 117, 1204-1229.	1.7	32
290	Method to improve the tunable capacity of time-resolved encoding to a xanthene dye. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 229, 117943.	2.0	0
291	Dropletâ€based microreactor for the production of micro/nanoâ€materials. Electrophoresis, 2020, 41, 833-851.	1.3	34
292	Inkjet Pattern-Guided Liquid Templates on Superhydrophobic Substrates for Rapid Prototyping of Microfluidic Devices. ACS Applied Materials & Interfaces, 2020, 12, 1817-1824.	4.0	21
293	A micrometer head integrated microfluidic device for facile droplet size control and automatic measurement of a droplet size. Electrophoresis, 2020, 41, 306-310.	1.3	0
294	Concentrating Single Cells in Picoliter Droplets for Phospholipid Profiling on a Microfluidic System. Small, 2020, 16, e1903402.	5.2	36

#	Article	IF	CITATIONS
295	Stomatocyte structural color-barcode micromotors for multiplex assays. National Science Review, 2020, 7, 644-651.	4.6	56
296	Inner Surface Design of Functional Microchannels for Microscale Flow Control. Small, 2020, 16, e1905318.	5.2	30
297	Targeting Enzymes for Pharmaceutical Development. Methods in Molecular Biology, 2020, , .	0.4	2
298	Ultrahigh throughput screening for enzyme function in droplets. Methods in Enzymology, 2020, 643, 317-343.	0.4	32
299	Advances in Label-Free Detections for Nanofluidic Analytical Devices. Micromachines, 2020, 11, 885.	1.4	18
300	Modeling droplet formation in microfluidic flow-focusing devices using the two-phases level set method. Materials Today: Proceedings, 2022, 48, 30-40.	0.9	9
301	Photon-upconversion barcode for monitoring an enzymatic reaction with a fluorescence reporter in droplet microfluidics. Analyst, The, 2020, 145, 7718-7723.	1.7	4
302	Microfluidics for Medical Additive Manufacturing. Engineering, 2020, 6, 1244-1257.	3.2	45
303	Fluorescence-activated droplet sorting for enhanced pyruvic acid accumulation by Candida glabrata. Bioresource Technology, 2020, 318, 124258.	4.8	10
304	Accurate and rapid 3D printing of microfluidic devices using wavelength selection on a DLP printer. Lab on A Chip, 2020, 20, 4128-4140.	3.1	51
305	Conversion Efficiencies of a Few Living Microbial Cells Detected at a High Throughput by Droplet-Based ESI-MS. Analytical Chemistry, 2020, 92, 10700-10708.	3.2	21
306	Reconfigurable complex emulsions: Design, properties, and applications. Chemical Physics Reviews, 2020, 1, 011301.	2.6	34
307	DNA recovery from Droplet Digitalâ"¢ PCR emulsions using liquid nitrogen. BioTechniques, 2020, 69, 450-454.	0.8	3
308	Perfluorocarbon-Loaded Hydrogel Microcapsules from Interface Shearing for Magnetic Guided Ultrasound and Laser Activation. Frontiers in Physics, 2020, 8, .	1.0	3
309	Polymer Microchannel and Micromold Surface Polishing for Rapid, Low-Quantity Polydimethylsiloxane and Thermoplastic Microfluidic Device Fabrication. Polymers, 2020, 12, 2574.	2.0	5
310	Hierarchically Molecular Imprinted Porous Particles for Biomimetic Kidney Cleaning. Advanced Materials, 2020, 32, e2005394.	11.1	58
311	Anisotropy-induced directional self-transportation of low surface tension liquids: a review. RSC Advances, 2020, 10, 40569-40581.	1.7	15
312	Microfluidic systems in cancer research. , 2020, , 331-377.		8

#	Article	IF	CITATIONS
313	Newly emerged engineering of in vitro 3D tumor models using biomaterials for chemotherapy. , 2020, , 533-550.		0
314	Thermodynamic perspectives on liquid–liquid droplet reactors for biochemical applications. Chemical Society Reviews, 2020, 49, 6555-6567.	18.7	14
315	Efficient coalescence of microdroplet in the cross-focused microchannel with symmetrical chamber. Journal of the Taiwan Institute of Chemical Engineers, 2020, 112, 52-59.	2.7	7
316	Critical Review: digital resolution biomolecular sensing for diagnostics and life science research. Lab on A Chip, 2020, 20, 2816-2840.	3.1	35
317	Rapid isolation of rare targets from large fluid volumes. Scientific Reports, 2020, 10, 12458.	1.6	4
318	Era of nano-lab-on-a-chip (LOC) technology. , 2020, , 1-17.		0
319	Smart soft photonic dressing toward fast drug release and visualized self-monitoring. Journal of Colloid and Interface Science, 2020, 580, 681-689.	5.0	14
320	<i>In situ</i> , <i>in vivo</i> , and <i>in operando</i> imaging and spectroscopy of liquids using microfluidics in vacuum. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, .	0.9	12
321	Stripped Electrode Based Electrowetting-on-Dielectric Digital Microfluidics for Precise and Controllable Parallel Microdrop Generation. Langmuir, 2020, 36, 9540-9550.	1.6	12
322	Microfluidic Fabrication of Click Chemistry-Mediated Hyaluronic Acid Microgels: A Bottom-Up Material Guide to Tailor a Microgel's Physicochemical and Mechanical Properties. Polymers, 2020, 12, 1760.	2.0	14
323	Computational design of Janus polymersomes with controllable fission from double emulsions. Physical Chemistry Chemical Physics, 2020, 22, 24934-24942.	1.3	5
324	Shear-induced ordering in liquid microjets seen by x-ray cross correlation analysis. Structural Dynamics, 2020, 7, 054901.	0.9	5
325	Inorganic Photonic Microspheres with Localized Concentric Ordering for Deep Pattern Encoding and Triple Sensory Microsensor. Small, 2020, 16, e2003638.	5.2	10
326	Modular off-chip emulsion generator enabled by a revolving needle. Lab on A Chip, 2020, 20, 4592-4599.	3.1	11
327	Microfluidic Production of Autofluorescent BSA Hydrogel Microspheres and Their Sequential Trapping for Fluorescence-Based On-Chip Permanganate Sensing. Sensors, 2020, 20, 5886.	2.1	5
328	Enabling intensification of multiphase chemical processes with additive manufacturing. Advances in Colloid and Interface Science, 2020, 285, 102294.	7.0	4
329	Distinct coalescence behaviors of hot and cold drops in the presence of a surrounding viscous liquid. Physics of Fluids, 2020, 32, .	1.6	9
330	An ultra high-efficiency droplet microfluidics platform using automatically synchronized droplet pairing and merging. Lab on A Chip, 2020, 20, 3948-3959.	3.1	28

ARTICLE IF CITATIONS # Cross-stream migration of droplets in a confined shear-thinning viscoelastic flow: Role of 331 1.6 9 shear-thinning induced lift. Physics of Fluids, 2020, 32, . Microfluidic Technology for the Production of Well-Ordered Porous Polymer Scaffolds. Polymers, 2020, 12, 1863. Selective cell encapsulation, lysis, pico-injection and size-controlled droplet generation using 333 3.126 traveling surface acoustic waves in a microfluidic device. Lab on A Chip, 2020, 20, 3914-3921. Bioinspired Multiple Stimuli-Responsive Optical Microcapsules Enabled by Microfluidics. ACS Applied 334 Materials & amp; interfaces, 2020, 12, 46788-46796. Crosstalk-free colloidosomes for high throughput single-molecule protein analysis. Science China 335 4.2 11 Chemistry, 2020, 63, 1507-1514. Oil-mediated high-throughput generation and sorting of water-in-water droplets. Microsystems and 3.4 Nanoengineering, 2020, 6, 70. Two Orders of Magnitude Boost in the Detection Limit of Droplet-Based Micro-Magnetofluidics with 337 1.6 7 Planar Hall Effect Sensors. ACS Omega, 2020, 5, 20609-20617. Droplet Microfluidics for Microbial Biotechnology. Advances in Biochemical 338 0.6 10 Engineering/Biotechnology, 2020, , 129-157. The Unidirectional Wettability Property of a New Warp-knitted Double-face Fabric. Fibers and 339 1.1 1 Polymers, 2020, 21, 1627-1633. An on-demand bench-top fabrication process for fluidic chips based on cross-diffusion through 340 1.2 photopolymerization. Biomicrofluidics, 2020, 14, 044104. Bioinspired Robust Allâ€Aqueous Droplet via Diffusionâ€Controlled Interfacial Coacervation. Advanced 341 7.8 15 Functional Materials, 2020, 30, 2004166. Retardation of droplet transport in confined microchannel by interfacial jamming of nanoparticles. 1.6 Physics of Fluids, 2020, 32, . Universal motion of mirror-symmetric microparticles in confined Stokes flow. Proceedings of the 343 3.3 14 National Academy of Sciences of the United States of America, 2020, 117, 21865-21872. Capabilities and Limitations of Fire-Shaping to Produce Class Nozzles. Materials, 2020, 13, 5477. 344 1.3 Dielectrophoresis Response of Water-in-Oil-in-Water Double Emulsion Droplets with Singular or Dual 345 1.4 9 Cores. Micromachines, 2020, 11, 1121. Charging Organic Liquids by Static Charge. Journal of the American Chemical Society, 2020, 142, 21004-21016. 346 Microfluidic droplet generation based on non-embedded co-flow-focusing using 3D printed nozzle. 347 1.6 38 Scientific Reports, 2020, 10, 21616. A droplet microfluidic platform for high-throughput photochemical reaction discovery. Nature 348 5.8 Communications, 2020, 11, 6202.

ARTICLE IF CITATIONS Controllable microfluidic fabrication of microstructured functional materials. Biomicrofluidics, 349 1.2 17 2020, 14, 061501. Structural color barcodes for biodiagnostics. View, 2020, 1, e8. 2.7 Rapid In Situ Photoimmobilization of a Planar Droplet Array for Digital PCR. Analytical Chemistry, 351 3.2 18 2020, 92, 8530-8535. Engineering an adhesive based on photosensitive polymer hydrogels and silver nanoparticles for wound healing. Journal of Materials Chemistry B, 2020, 8, 5756-5764. Liquid flow and control without solid walls. Nature, 2020, 581, 58-62. 353 13.7 80 Flower-like droplets obtained by self-emulsification of a phase-separating (SEPS) aqueous film. Soft 354 1.2 Matter, 2020, 16, 6050-6055. Controlled Chemistry via Contactless Manipulation and Merging of Droplets in an Acoustic Levitator. 355 3.2 14 Analytical Chemistry, 2020, 92, 8371-8377. Electrical Actuation of Hydrophobic Bilayer Membranes of Reduced Graphene Oxide and Agar for 2.4 9 Inducing Chemical Reactions in Microdroplets. ACS Applied Nano Materials, 2020, 3, 6629-6635. High-throughput screening by droplet microfluidics: perspective into key challenges and future prospects. Lab on A Chip, 2020, 20, 2247-2262. 357 3.1 106 Trapping and Coalescence of Diamagnetic Aqueous Droplets Using Negative Magnetophoresis. 1.6 Langmuir, 2020, 36, 5960-5966. Quantum dots integrated biomass pollens as functional multicolor barcodes. Chemical Engineering 359 12 6.6 Journal, 2020, 395, 125106. Research of double emulsion formation and shell-thickness influence factors in a novel six-way junction microfluidic device. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 2.3 601, 124917. Reducing the droplet/solid interfacial sliding resistance under electrowetting-on-dielectric by different voltage slew rate signals. Colloids and Surfaces A: Physicochemical and Engineering 361 2.3 4 Aspects, 2020, 602, 125075. Experimental Investigation on the Dynamics of On-Demand Ferrofluid Drop Formation under a Pulse-Width-Modulated Nonuniform Magnetic Field. Langmuir, 2020, 36, 7724-7740. 1.6 Microfluidic cloth-based analytical devices: Emerging technologies and applications. Biosensors and 363 5.324 Bioelectronics, 2020, 168, 112391. Redox-Driven Spontaneous Double Emulsion. ACS Macro Letters, 2020, 9, 985-990. 364 Nanoliter-Scale Dropletâ€"Droplet Microfluidic Microextraction Coupled with MALDI-TOF Mass 365 3.224 Spectrometry for Metabolite Analysis of Cell Droplets. Analytical Chemistry, 2020, 92, 8759-8767. Mixing characterization of binary-coalesced droplets in microchannels using deep neural network. 1.2 19 Biomicrofluidics, 2020, 14, 034111.

#	Article	IF	CITATIONS
367	Shape-Anisotropy-Induced Ordered Packings in Cylindrical Confinement. Physical Review Letters, 2020, 124, 248002.	2.9	15
368	Development of Cell Spheroids by Advanced Technologies. Advanced Materials Technologies, 2020, 5, 2000183.	3.0	32
369	Droplet encapsulation of electrokinetically-focused analytes without loss of resolution. Lab on A Chip, 2020, 20, 2209-2217.	3.1	2
370	Breaking the Interface: Efficient Extraction of Magnetic Beads from Nanoliter Droplets for Automated Sequential Immunoassays. Analytical Chemistry, 2020, 92, 10283-10290.	3.2	9
371	In-Droplet Electrophoretic Separation and Enrichment of Biomolecules. Analytical Chemistry, 2020, 92, 8414-8421.	3.2	15
372	C3PE: counter-current continuous phase extraction for improved precision of in-droplet chemical reactions. Microfluidics and Nanofluidics, 2020, 24, 1.	1.0	4
373	Direct Infusion ICP- <i>q</i> MS of Lined-up Single-Cell Using an Oil-Free Passive Microfluidic System. Analytical Chemistry, 2020, 92, 5286-5293.	3.2	22
374	Dynamics of a spherical droplet driven by active slip and stress. International Journal of Multiphase Flow, 2020, 127, 103274.	1.6	4
375	"Development and application of analytical detection techniques for droplet-based microfluidics―A review. Analytica Chimica Acta, 2020, 1113, 66-84.	2.6	61
376	Ultrafast Self-Propelled Directional Liquid Transport on the Pyramid-Structured Fibers with Concave Curved Surfaces. Journal of the American Chemical Society, 2020, 142, 6111-6116.	6.6	42
377	Microfluidics control the ballistic energy of thermocavitation liquid jets for needle-free injections. Journal of Applied Physics, 2020, 127, .	1.1	24
378	Microchannel fabrication via ultraviolet-nanoimprint lithography and electron-beam lithography using an ultraviolet-curable positive-tone electron-beam resist. Microelectronic Engineering, 2020, 226, 111278.	1.1	10
379	Multiplexed Detection Strategy for Bladder Cancer MicroRNAs Based on Photonic Crystal Barcodes. Analytical Chemistry, 2020, 92, 6121-6127.	3.2	43
380	The Fabrication and Application Mechanism of Microfluidic Systems for High Throughput Biomedical Screening: A Review. Micromachines, 2020, 11, 297.	1.4	21
381	Microfluidic Synthesis of Functional Materials as Potential Sorbents for Water Remediation and Resource Recovery. , 0, , .		1
382	Advances in Droplet Microfluidics with Off-the-Shelf Devices and Other Novel Designs. , 0, , .		0
383	Three-dimensional ordered macroporous magnetic photonic crystal microspheres for enrichment and detection of mycotoxins (I):ÂDroplet-basedÂmicrofluidicÂself-assemblyÂsynthesis. Journal of Chromatography A, 2020, 1626, 461379.	1.8	7
384	Droplet-based continuous flow synthesis of biologically active Bis(indolyl)methanes and Tris(indolyl)methanes. Tetrahedron Letters, 2020, 61, 152178.	0.7	5

#	Article	IF	CITATIONS
385	Single Molecule Protein Detection with Attomolar Sensitivity Using Droplet Digital Enzyme-Linked Immunosorbent Assay. ACS Nano, 2020, 14, 9491-9501.	7.3	138
386	A convenient plug-and-play coaxial microfluidic device and quantitative prediction of monodisperse droplets generation. Journal of Micromechanics and Microengineering, 2020, 30, 065009.	1.5	2
387	Controllable preparation of monodisperse alginate microcapsules with oil cores. Journal of Colloid and Interface Science, 2020, 569, 307-319.	5.0	34
388	PRESCIENT: platform for the rapid evaluation of antibody success using integrated microfluidics enabled technology. Lab on A Chip, 2020, 20, 1628-1638.	3.1	19
389	A programmable microfluidic platform for multisample injection, discretization, and droplet manipulation. Biomicrofluidics, 2020, 14, 014112.	1.2	4
390	Magnetic hierarchical porous SiO ₂ microparticles from droplet microfluidics for water decontamination. Soft Matter, 2020, 16, 2581-2593.	1.2	13
391	Enhanced sample filling and discretization in thermoplastic 2D microwell arrays using asymmetric contact angles. Biomicrofluidics, 2020, 14, 014113.	1.2	7
392	Air-Bubble Induced Mixing: A Fluidic Mixer Chip. Micromachines, 2020, 11, 195.	1.4	2
393	A multicolor-SERS dual-mode pH sensor based on smart nano-in-micro particles. Sensors and Actuators B: Chemical, 2020, 310, 127889.	4.0	20
394	Development of a Droplet Microfluidics Device Based on Integrated Soft Magnets and Fluidic Capacitor for Passive Extraction and Redispersion of Functionalized Magnetic Particles. Advanced Materials Technologies, 2020, 5, 1901088.	3.0	9
395	Label-free separation of mesenchymal stem cell subpopulations with distinct differentiation potencies and paracrine effects. Biomaterials, 2020, 240, 119881.	5.7	28
396	Tiny water droplet with huge power. Science Bulletin, 2020, 65, 693-695.	4.3	5
397	Charge reduced nanoparticles by sub-kHz ac electrohydrodynamic atomization toward drug delivery applications. Applied Physics Letters, 2020, 116, .	1.5	14
398	Numerical investigation of continuous droplet transport in parallel-plate electrowetting-on-dielectric digital microfluidics (EWOD DMF) with stripped electrodes. Physics of Fluids, 2020, 32, .	1.6	12
399	Programmable droplet manipulation by a magnetic-actuated robot. Science Advances, 2020, 6, eaay5808.	4.7	160
400	Engineering of Droplet Charges in Microfluidic Chips. Advanced Engineering Materials, 2020, 22, 1901521.	1.6	3
401	Concentration Enrichment, Separation, and Cation Exchange in Nanoliter-Scale Water-in-Oil Droplets. Journal of the American Chemical Society, 2020, 142, 3196-3204.	6.6	24
402	Biointerface: a nano-modulated way for biological transportation. Journal of Drug Targeting, 2020, 28, 456-467.	2.1	8

	Сіл	TATION REPORT	
#	Article	IF	CITATIONS
403	A novel micro-injection droplet microfluidic system for studying locomotive behavior responses to Cu2+ induced neurotoxin in individual C.elegans. Analytica Chimica Acta, 2020, 1106, 61-70.	2.6	6
404	Differentiated Visualization of Single-Cell 5-Hydroxymethylpyrimidines with Microfluidic Hydrogel Encoding. Journal of the American Chemical Society, 2020, 142, 2889-2896.	6.6	32
405	Bioinspired Smart Liquid Directional Transport Control. Langmuir, 2020, 36, 667-681.	1.6	31
406	Automated, flexible and versatile manipulation of nanoliter-to-picoliter droplets based on sequential operation droplet array technique. TrAC - Trends in Analytical Chemistry, 2020, 124, 115812.	5.8	32
407	Wash-Free, Digital Immunoassay in Polydisperse Droplets. Analytical Chemistry, 2020, 92, 3535-3543.	. 3.2	31
408	Isolation and analysis of extracellular vesicles in a Morpho butterfly wing-integrated microvortex biochip. Biosensors and Bioelectronics, 2020, 154, 112073.	5.3	53
409	Heart-on-chips screening based on photonic crystals. Bio-Design and Manufacturing, 2020, 3, 266-280). 3.9	25
410	Advances of droplet-based microfluidics in drug discovery. Expert Opinion on Drug Discovery, 2020, 15, 969-979.	2.5	34
411	Magnetic nanoparticles in microfluidic and sensing: From transport to detection. Electrophoresis, 2020, 41, 1206-1224.	1.3	37
412	Current and near-future technologies for antibiotic susceptibility testing and resistant bacteria detection. TrAC - Trends in Analytical Chemistry, 2020, 127, 115891.	5.8	53
413	Vaporizable endoskeletal droplets via tunable interfacial melting transitions. Science Advances, 2020, 6, eaaz7188.	4.7	16
414	Coalescence of oil droplets in microchannels under brine flow. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 598, 124864.	2.3	19
415	Controllable Structural Colored Screen for Real-Time Display via Near-Infrared Light. ACS Applied Materials & Interfaces, 2020, 12, 20867-20873.	4.0	22
416	Influence of channel height on mixing efficiency and synthesis of iron oxide nanoparticles using droplet-based microfluidics. RSC Advances, 2020, 10, 15179-15189.	1.7	29
417	Responsive Colloidal Polymer Particles with Ordered Mesostructures. Advanced Functional Materials, 2021, 31, 2008169.	7.8	45
418	Multibioinspired Janus membranes with superwettable performance for unidirectional transportation and fog collection. Chemical Engineering Journal, 2021, 404, 126515.	6.6	48
419	Thriving microfluidic technology. Science Bulletin, 2021, 66, 9-12.	4.3	20
420	Designable dual-power micromotors fabricated from a biocompatible gas-shearing strategy. Chemical Engineering Journal, 2021, 407, 127187.	6.6	29

	CITATION	REPORT	
#	Article	IF	CITATIONS
421	Sensing of inorganic ions in microfluidic devices. Sensors and Actuators B: Chemical, 2021, 329, 129171.	4.0	28
422	Dynamic pneumatic rails enabled microdroplet manipulation. Lab on A Chip, 2021, 21, 105-112.	3.1	7
423	Total Integration of the Sample Injection, Microdroplet Reaction, Phase Separation, Realâ€Time Optical Detection, and Recovery of Diverse Silver–Gold Bimetallic Nanoalloys in a Continuous Process. Particle and Particle Systems Characterization, 2021, 38, .	1.2	3
424	Time-resolved investigation of mesoporous silica microsphere formation using in situ heating optical microscopy. Journal of Colloid and Interface Science, 2021, 585, 118-125.	5.0	2
425	Living Materials for Life Healthcare. Accounts of Materials Research, 2021, 2, 59-70.	5.9	30
426	Photocontrolled directional transport using water-in-oil droplets. New Journal of Chemistry, 2021, 45, 1172-1175.	1.4	5
427	Quantitative characterization of surface wettability by friction force. Applied Surface Science, 2021, 536, 147788.	3.1	16
428	Anisotropic Microparticles from Microfluidics. CheM, 2021, 7, 93-136.	5.8	54
429	Effects of surface topography on low Reynolds number droplet/bubble flow through a constricted passage. Physics of Fluids, 2021, 33, .	1.6	19
430	Breakup a droplet passing through an obstacle in an orthogonal cross-section microchannel. Theoretical and Computational Fluid Dynamics, 2021, 35, 249-264.	0.9	4
431	Applications of microcapillary films in bioanalytical techniques. Analyst, The, 2021, 146, 1529-1537.	1.7	8
432	Magnetic-Particle-Encapsulated Alginate Beads for Aqueous-Based Bacteria Culturing and Manipulation. IEEE Transactions on Magnetics, 2022, 58, 1-5.	1.2	1
433	Hydrophilic modification of SLA 3D printed droplet generators by photochemical grafting. RSC Advances, 2021, 11, 21745-21753.	1.7	16
434	Microbial factories: Monitoring vitamin B2 production by Escherichia coli in microfluidic cultivation chambers. Lab on A Chip, 2021, 21, 4071-4080.	3.1	0
435	One cell at a time: droplet-based microbial cultivation, screening and sequencing. Marine Life Science and Technology, 2021, 3, 169-188.	1.8	29
436	Monodispersed sodium hyaluronate microcapsules for transdermal drug delivery systems. Materials Advances, 0, , .	2.6	5
437	Innovative 3D Microfluidic Tools for On-Chip Fluids and Particles Manipulation: From Design to Experimental Validation. Micromachines, 2021, 12, 104.	1.4	15
438	Massive droplet generation for digital PCR <i>via</i> a smart step emulsification chip integrated in a reaction tube. Analyst, The, 2021, 146, 1559-1568.	1.7	15

#	Article	IF	CITATIONS
439	Dielectrophoretic medium exchange around droplets for on-chip fabrication of layer-by-layer microcapsules. Lab on A Chip, 2021, 21, 3352-3360.	3.1	6
440	Multiplexed droplet loop-mediated isothermal amplification with scorpion-shaped probes and fluorescence microscopic counting for digital quantification of virus RNAs. Chemical Science, 2021, 12, 8445-8451.	3.7	21
441	A robust and scalable active-matrix driven digital microfluidic platform based on printed-circuit board technology. Lab on A Chip, 2021, 21, 1886-1896.	3.1	24
442	The fabrication of phospholipid vesicle-based artificial cells and their functions. New Journal of Chemistry, 2021, 45, 3364-3376.	1.4	12
443	Living Materials for Regenerative Medicine. Engineered Regeneration, 2021, 2, 96-104.	3.0	43
444	Continuous microfluidic fabrication of anisotropic microparticles for enhanced wastewater purification. Lab on A Chip, 2021, 21, 1517-1526.	3.1	13
445	Devices and techniques used to obtain and analyze <scp>threeâ€dimensional</scp> cell cultures. Biotechnology Progress, 2021, 37, e3126.	1.3	15
446	Precision ejection of microfluidic droplets into air with a superhydrophobic outlet. Lab on A Chip, 2021, 21, 1484-1491.	3.1	13
447	Nonlinear microfluidics: device physics, functions, and applications. Lab on A Chip, 2021, 21, 1241-1268.	3.1	32
448	Microfluidic Systems for Antimicrobial Susceptibility Testing. Advances in Biochemical Engineering/Biotechnology, 2021, , 1.	0.6	1
449	Bioinspired Unidirectional Liquid Transport Micro-nano Structures: A Review. Journal of Bionic Engineering, 2021, 18, 1-29.	2.7	22
450	Highly paralleled emulsion droplets for efficient isolation, amplification, and screening of cancer biomarker binding phages. Lab on A Chip, 2021, 21, 1175-1184.	3.1	5
451	Integration of capillary–hydrodynamic logic circuitries for built-in control over multiple droplets in microfluidic networks. Lab on A Chip, 2021, 21, 1771-1778.	3.1	7
452	Rotational scan digital LAMP for accurate quantitation of nucleic acids. Lab on A Chip, 2021, 21, 2265-2271.	3.1	5
453	Are droplets really suitable for single-cell analysis? A case study on yeast in droplets. Lab on A Chip, 2021, 21, 3793-3803.	3.1	9
454	Microfluidic synthesis of quantum dots and their applications in bio-sensing and bio-imaging. Nanoscale Advances, 2021, 3, 2180-2195.	2.2	27
455	Development overview of Raman-activated cell sorting devoted to bacterial detection at single-cell level. Applied Microbiology and Biotechnology, 2021, 105, 1315-1331.	1.7	19
456	Research Progress of Microfluidic Technique in Synthesis of Micro/Nano Materials. Acta Chimica Sinica, 2021, 79, 809.	0.5	4

#	Article	IF	CITATIONS
457	Principles, Materials, and Fabrication Methods of Microfluidics. , 2021, , 11-33.		0
458	Extracellular scaffold design for ultra-soft microtissue engineering. Light Advanced Manufacturing, 2021, 2, 1-13.	2.2	3
459	Integration of segmented microflow chemistry and online HPLC/MS analysis on a microfluidic chip system enabling enantioselective analyses at the nanoliter scale. Lab on A Chip, 2021, 21, 2614-2624.	3.1	23
460	Flexible online in-droplet cell/synthetic particle concentration utilizing alternating current electrothermal-flow field-effect transistor. Lab on A Chip, 2021, 21, 1987-1997.	3.1	6
461	Ice Inhibition for Cryopreservation: Materials, Strategies, and Challenges. Advanced Science, 2021, 8, 2002425.	5.6	141
462	Dynamic Coloration of Complex Emulsions by Localization of Gold Rings Near the Triphase Junction. Small, 2021, 17, e2007507.	5.2	6
463	Hypersound-Assisted Size Sorting of Microparticles on Inkjet-Patterned Protein Films. Langmuir, 2021, 37, 2826-2832.	1.6	3
464	Artificial Structural Colors and Applications. Innovation(China), 2021, 2, 100081.	5.2	92
465	Fabrication of a T-Shaped Microfluidic Channel Using a Consumer Laser Cutter and Application to Monodisperse Microdroplet Formation. Micromachines, 2021, 12, 160.	1.4	3
466	Microfluidic Assembly: An Innovative Tool for the Encapsulation, Protection, and Controlled Release of Nutraceuticals. Journal of Agricultural and Food Chemistry, 2021, 69, 2936-2949.	2.4	18
467	Review of ultrasensitive readout for micro-/nanofluidic devices by thermal lens microscopy. Journal of Optical Microsystems, 2021, 1, .	0.9	4
468	Catalytic Mechanism of Interfacial Water in the Cycloaddition of Quadricyclane and Diethyl Azodicarboxylate. Journal of Physical Chemistry Letters, 2021, 12, 3026-3030.	2.1	3
469	High-efficient crystal particle manufacture by microscale process intensification technology. Green Chemical Engineering, 2021, 2, 57-69.	3.3	9
470	Dual sequentially addressable dielectrophoretic array for high-throughput, scalable, multiplexed droplet sorting. Microfluidics and Nanofluidics, 2021, 25, 1.	1.0	6
471	Fast inverse opal humidity sensor based on acrylamide/AMPS hydrogel. Materials Today Communications, 2021, 26, 101997.	0.9	13
472	Nanomaterials Synthesis through Microfluidic Methods: An Updated Overview. Nanomaterials, 2021, 11, 864.	1.9	77
473	A Study of Dielectrophoresis-Based Liquid Metal Droplet Control Microfluidic Device. Micromachines, 2021, 12, 340.	1.4	7
474	Interfacial Tension Measurements in Microfluidic Quasi-Static Extensional Flows. Micromachines, 2021, 12, 272.	1.4	4

#	Article	IF	CITATIONS
475	Utility of low-cost, miniaturized peristaltic and Venturi pumps in droplet microfluidics. Analytica Chimica Acta, 2021, 1151, 338230.	2.6	15
476	Recent advances in droplet microfluidics for enzyme and cell factory engineering. Critical Reviews in Biotechnology, 2021, 41, 1023-1045.	5.1	16
477	Isotope Effect in the Liquid Properties of Water Confined in 100 nm Nanofluidic Channels. Journal of Physical Chemistry B, 2021, 125, 3178-3183.	1.2	6
478	Droplet digital PCR of viral ‎DNA/RNA, current progress, challenges, and future perspectives. Journal of Medical Virology, 2021, 93, 4182-4197.	2.5	100
479	Microfluidics in cardiovascular disease research: state of the art and future outlook. Microsystems and Nanoengineering, 2021, 7, 19.	3.4	47
480	Can 3D Printing Bring Droplet Microfluidics to Every Lab?—A Systematic Review. Micromachines, 2021, 12, 339.	1.4	17
481	Prediction of droplet sizes in a T-junction microchannel: Effect of dispersed phase inertial forces. Physics of Fluids, 2021, 33, .	1.6	23
482	Responsive Hydrogel Microcarrierâ€Integrated Microneedles for Versatile and Controllable Drug Delivery. Advanced Healthcare Materials, 2021, 10, e2002249.	3.9	41
483	Continuous Fluidic Techniques for the Precise Synthesis of Metalâ€Organic Frameworks. ChemPlusChem, 2021, 86, 650-661.	1.3	8
484	Electrochemical assessments of droplet contents in microfluidic channels. Application to the titration of heterogeneous droplets. Analytica Chimica Acta, 2021, 1155, 338344.	2.6	4
485	Nanoscale Bilayer Mechanical Lithography Using Water as Developer. Nano Letters, 2021, 21, 3827-3834.	4.5	2
486	Describing Droplet Motion on Surface-Textured Ratchet Tracks with an Inverted Double Pendulum Model. Langmuir, 2021, 37, 4810-4816.	1.6	3
487	On-chip micro pressure sensor for microfluidic pressure monitoring. Journal of Micromechanics and Microengineering, 2021, 31, 055013.	1.5	7
488	Phase-Field Modeling of Multiple Emulsions Via Spinodal Decomposition. Langmuir, 2021, 37, 5275-5281.	1.6	17
489	Emerging Functional Biomaterials as Medical Patches. ACS Nano, 2021, 15, 5977-6007.	7.3	48
490	Bioinspired Soft Microactuators. Advanced Materials, 2021, 33, e2008558.	11.1	22
491	Microfluidics for Peptidomics, Proteomics, and Cell Analysis. Nanomaterials, 2021, 11, 1118.	1.9	30
492	Magnetofluidic mixing of a ferrofluid droplet under the influence of a time-dependent external field. Journal of Fluid Mechanics, 2021, 917, .	1.4	31

#	Article	IF	CITATIONS
493	Microfluidics for flexible electronics. Materials Today, 2021, 44, 105-135.	8.3	65
494	Studying phase separation in confinement. Current Opinion in Colloid and Interface Science, 2021, 52, 101419.	3.4	18
495	Deep Learningâ€Enabled Labelâ€Free Onâ€Chip Detection and Selective Extraction of Cell Aggregateâ€Laden Hydrogel Microcapsules. Small, 2021, 17, e2100491.	5.2	16
496	Artificial Leaf for Switchable Droplet Manipulation. Langmuir, 2021, 37, 5745-5752.	1.6	15
497	Microfluidics-based quantum dot color conversion layers for full-color micro-LED display. Applied Physics Letters, 2021, 118, .	1.5	20
498	Inkjet printing based ultra-small MnO2 nanosheets synthesis for glutathione sensing. Talanta, 2021, 225, 121989.	2.9	6
499	Crystallization of l-glutamic acid under microfluidic conditions and levitation. Chemical Engineering Research and Design, 2021, 169, 176-188.	2.7	5
500	(R)evolution-on-a-chip. Trends in Biotechnology, 2022, 40, 60-76.	4.9	11
501	Microfluidics for Drug Development: From Synthesis to Evaluation. Chemical Reviews, 2021, 121, 7468-7529.	23.0	95
502	Microfluidics for Microswimmers: Engineering Novel Swimmers and Constructing Swimming Lanes on the Microscale, a Tutorial Review. Small, 2021, 17, e2007403.	5.2	25
503	Softness Meets with Brightness: Dyeâ€Doped Multifunctional Fluorescent Polymer Particles via Microfluidics for Labeling. Advanced Optical Materials, 2021, 9, 2002219.	3.6	14
504	Integrating Engineering, Automation, and Intelligence to Catalyze the Biomedical Translation of Organoids. Advanced Biology, 2021, 5, 2100535.	1.4	3
505	Controllable and high-throughput preparation of microdroplet using an ultra-high speed rotating packed bed. Chinese Journal of Chemical Engineering, 2022, 48, 116-124.	1.7	3
506	Multivariate thinking for optical microfluidic analytical devices – A tutorial review. Microchemical Journal, 2021, 164, 105959.	2.3	1
507	A droplet acoustofluidic platform for time-controlled microbead-based reactions. Biomicrofluidics, 2021, 15, 034103.	1.2	3
508	Thermal droplet microfluidics: From biology to cooling technology. TrAC - Trends in Analytical Chemistry, 2021, 138, 116234.	5.8	21
509	Interfacial evolution and dynamics of liquid bridge during droplet coalescence in rectangular microchannels: Effect of aspect ratio. Journal of the Taiwan Institute of Chemical Engineers, 2021, 123, 59-59.	2.7	6
510	Photo-Responsive Fluorosurfactant Enabled by Plasmonic Nanoparticles for Light-Driven Droplet Manipulation. ACS Applied Materials & Interfaces, 2021, 13, 21914-21923.	4.0	9

#	Article	IF	CITATIONS
511	Broad-Band Spectrum, High-Sensitivity Absorbance Spectroscopy in Picoliter Volumes. Analytical Chemistry, 2021, 93, 7673-7681.	3.2	15
512	Tunable Superparamagnetic Ring (tSPRing) for Droplet Manipulation. Advanced Functional Materials, 2021, 31, 2100178.	7.8	19
513	Microdroplet-based system for culturing of environmental microorganisms using FNAP-sort. Scientific Reports, 2021, 11, 9506.	1.6	12
515	A Showcase of Green Chemistry: Sustainable Synthetic Approach of Zirconiumâ€Based MOF Materials. Chemistry - A European Journal, 2021, 27, 9967-9987.	1.7	33
517	Stimuli-responsive surfaces for switchable wettability and adhesion. Journal of the Royal Society Interface, 2021, 18, 20210162.	1.5	38
518	Droplet-based microfluidic screening and sorting of microalgal populations for strain engineering applications. Algal Research, 2021, 56, 102293.	2.4	23
519	Expanding the codes: The development of density-encoded hydrogel microcarriers for suspension arrays. Biosensors and Bioelectronics, 2021, 181, 113133.	5.3	5
520	Segmented Microfluidics-Based Packing Technology for Chromatographic Columns. Analytical Chemistry, 2021, 93, 8450-8458.	3.2	9
521	Crosslinking Strategies for the Microfluidic Production of Microgels. Molecules, 2021, 26, 3752.	1.7	20
522	Fabrication of Multi-Layered Microspheres Based on Phase Separation for Drug Delivery. Micromachines, 2021, 12, 723.	1.4	7
523	Effects of channel geometry and physicochemical properties of solutions on stable double emulsion production in planar microfluidic devices having triangular orifices. AIP Advances, 2021, 11, .	0.6	2
524	Bioinspired perovskite quantum dots microfibers from microfluidics. Science China Materials, 2021, 64, 2858-2867.	3.5	5
525	Flow Analysis of Regenerated Silk Fibroin/Cellulose Nanofiber Suspensions via a Bioinspired Microfluidic Chip. Advanced Materials Technologies, 2021, 6, 2100124.	3.0	14
526	Tip Streaming of a Lipid-Stabilized Double Emulsion Generated in a Microfluidic Channel. Langmuir, 2021, 37, 7442-7448.	1.6	2
527	Active Flow Control and Dynamic Analysis in Droplet Microfluidics. Annual Review of Analytical Chemistry, 2021, 14, 133-153.	2.8	9
528	Digital Hybridization Human Papillomavirus Assay with Attomolar Sensitivity without Amplification. ACS Nano, 2021, 15, 13077-13084.	7.3	24
529	Droplet Microfluidics for Food and Nutrition Applications. Micromachines, 2021, 12, 863.	1.4	30
530	Encapsulated Cell Dynamics in Droplet Microfluidic Devices with Sheath Flow. Micromachines, 2021, 12, 839.	1.4	1

#	Article	IF	CITATIONS
532	Microfluidic technologies for drug discovery and development: friend or foe?. Trends in Pharmacological Sciences, 2021, 42, 518-526.	4.0	21
533	Formation mechanism and criterion of tail satellite droplets for moving droplet in microchannel. Chemical Engineering Science, 2021, 238, 116607.	1.9	7
534	Heat Transfer and Thermocapillary Flow of a Double-Emulsion Droplet Heated Using an Infrared Laser by the Photothermal Effect: a Numerical Study. Microgravity Science and Technology, 2021, 33, 1.	0.7	4
535	Metal-organic frameworks for improving wound healing. Coordination Chemistry Reviews, 2021, 439, 213929.	9.5	76
536	Droplet based microfluidic device integrated with ink jet printed three electrode system for electrochemical detection of ascorbic acid. Sensors and Actuators A: Physical, 2021, 325, 112685.	2.0	18
537	Recent Advances in Microfluidic Platforms for Programming Cellâ€Based Living Materials. Advanced Materials, 2021, 33, e2005944.	11.1	26
538	Microfluidic 3D Printing Responsive Scaffolds with Biomimetic Enrichment Channels for Bone Regeneration. Advanced Functional Materials, 2021, 31, 2105190.	7.8	59
539	Near-bulge oil meniscus-induced migration and condensation of droplets for water collection: Energy saving, generalization and recyclability. Chemical Engineering Journal, 2021, 417, 129215.	6.6	22
540	Recent developments of droplets-based microfluidics for bacterial analysis. Chinese Chemical Letters, 2022, 33, 2243-2252.	4.8	12
541	Shaping synthetic cells through cytoskeleton-condensate-membrane interactions. Current Opinion in Colloid and Interface Science, 2021, 54, 101459.	3.4	15
542	Practical quality attributes of polymeric microparticles with current understanding and future perspectives. Journal of Drug Delivery Science and Technology, 2021, 64, 102608.	1.4	9
543	Recent advances in droplet microfluidics for microbiology. Chinese Chemical Letters, 2022, 33, 1729-1742.	4.8	15
544	Kinetics of protein-assisted nucleic acid interconversion monitored by transient time resolved fluorescence in microfluidic droplets. Nucleic Acids Research, 2021, 49, e111.	6.5	1
545	Manufacturing of Microfluidic Sensors Utilizing 3D Printing Technologies: A Production System. Journal of Nanomaterials, 2021, 2021, 1-16.	1.5	12
546	Multifunctional wound dressing for rapid hemostasis, bacterial infection monitoring and photodynamic antibacterial therapy. Acta Biomaterialia, 2021, 135, 179-190.	4.1	33
547	Microfluidic single-cell coating with defined chemomechanical cues for cell therapy. Science Bulletin, 2021, 66, 2434-2434.	4.3	1
548	Luteolin-Loading Her-2 Nanospheres Enhances Targeting and Therapeutic Effects of Breast Cancer. Journal of Biomedical Nanotechnology, 2021, 17, 1545-1553.	0.5	3
549	Molecular-level similarity search brings computing to DNA data storage. Nature Communications, 2021, 12, 4764.	5.8	34

#	Article	IF	CITATIONS
550	Functional liquid droplets for analyte sensing and energy harvesting. Advances in Colloid and Interface Science, 2021, 294, 102453.	7.0	6
551	Epidermal Sensor for Potentiometric Analysis of Metabolite and Electrolyte. Analytical Chemistry, 2021, 93, 11525-11531.	3.2	32
552	Flow regimes of the immiscible liquids within a rectangular microchannel. Acta Mechanica Sinica/Lixue Xuebao, 2021, 37, 1544-1556.	1.5	6
553	Sequential storage and release of microdroplets. Microsystems and Nanoengineering, 2021, 7, 76.	3.4	3
554	Numerical and experimental investigation of a flow focusing droplet-based microfluidic device. European Journal of Mechanics, B/Fluids, 2021, 89, 289-300.	1.2	18
555	Coupling Droplet Microfluidics with Ion Mobility Spectrometry for Monitoring Chemical Conversions at Nanoliter Scale. Analytical Chemistry, 2021, 93, 13615-13623.	3.2	11
556	Advances in Magnetic Nanoparticles Engineering for Biomedical Applications—A Review. Bioengineering, 2021, 8, 134.	1.6	21
557	Fabrication approaches for high-throughput and biomimetic disease modeling. Acta Biomaterialia, 2021, 132, 52-82.	4.1	5
558	Elastic MXene Hydrogel Microfiber-Derived Electronic Skin for Joint Monitoring. ACS Applied Materials & Interfaces, 2021, 13, 47800-47806.	4.0	26
559	Encapsulation of a highly hydrophilic drug in polymeric particles: A comparative study of batch and microfluidic processes. International Journal of Pharmaceutics, 2021, 606, 120906.	2.6	6
560	How Microgels Can Improve the Impact of Organ-on-Chip and Microfluidic Devices for 3D Culture: Compartmentalization, Single Cell Encapsulation and Control on Cell Fate. Polymers, 2021, 13, 3216.	2.0	10
561	Ion-Induced Phase Transfer of Cationic Dyes for Fluorescence-Based Electrolyte Sensing in Droplet Microfluidics. Analytical Chemistry, 2021, 93, 13694-13702.	3.2	6
562	Scaling up the throughput of microfluidic droplet-based materials synthesis: A review of recent progress and outlook. Applied Physics Reviews, 2021, 8, 031304.	5.5	27
563	Recent advances in microdroplet techniques for single-cell protein analysis. TrAC - Trends in Analytical Chemistry, 2021, 143, 116411.	5.8	12
564	Localized Surface Plasmon Resonance Sensors for Biomarker Detection with On-Chip Microfluidic Devices in Point-of-Care Diagnostics. Materials Horizons, 2022, , 199-223.	0.3	2
565	Quantitative electrolysis of droplet contents in microfluidic channels. Concept and experimental validation. Electrochimica Acta, 2021, 393, 139017.	2.6	1
566	Three months extended-release microspheres prepared by multi-microchannel microfluidics in beagle dog models. International Journal of Pharmaceutics, 2021, 608, 121039.	2.6	8
567	Liquid crystal–based open surface microfluidics manipulate liquid mobility and chemical composition on demand. Science Advances, 2021, 7, eabi7607.	4.7	39

#	Article	IF	Citations
568	Droplet Microfluidics—A Tool for Biosensing and Bioengineering Applications. Materials Horizons, 2022, , 145-171.	0.3	1
569	Continuous-mode encapsulation of human stemÂcell spheroids using droplet-based glass-capillary microfluidic device for 3D bioprinting technology. Biochemical Engineering Journal, 2021, 174, 108122.	1.8	8
570	Multiplex assays of bladder cancer protein markers with magnetic structural color hydrogel microcarriers based on microfluidics. Sensors and Actuators B: Chemical, 2021, 346, 130464.	4.0	22
571	Hydrodynamics of triple emulsion droplet generation in a flow-focusing microfluidic device. Chemical Engineering Science, 2021, 243, 116648.	1.9	17
572	Open-source and do-it-yourself microfluidics. Sensors and Actuators B: Chemical, 2021, 347, 130624.	4.0	19
573	Microfluidic aqueous two-phase system-based nitrifying bacteria encapsulated colloidosomes for green and sustainable ammonium-nitrogen wastewater treatment. Bioresource Technology, 2021, 342, 126019.	4.8	5
574	Exploiting machine learning for bestowing intelligence to microfluidics. Biosensors and Bioelectronics, 2021, 194, 113666.	5.3	31
575	Evaporation-triggered directional transport of asymmetrically confined droplets. Journal of Colloid and Interface Science, 2021, 604, 550-561.	5.0	3
576	Droplet based microfluidics integrated with machine learning. Sensors and Actuators A: Physical, 2021, 332, 113096.	2.0	30
577	Millifluidics, microfluidics, and nanofluidics: manipulating fluids at varying length scales. Materials Today Nano, 2021, 16, 100136.	2.3	51
578	Applied surface enhanced Raman Spectroscopy in plant hormones detection, annexation of advanced technologies: A review. Talanta, 2022, 236, 122823.	2.9	17
579	The preparation of mono- and multicomponent nanoparticle aggregates with layer-by-layer structure using emulsion templating method in microfluidics. Chemical Engineering Science, 2022, 247, 117084.	1.9	4
580	Continuous-flow rapid synthesis of wavelength-tunable luminescent lanthanide metal-organic framework nanorods by a microfluidic reactor. Journal of Alloys and Compounds, 2022, 890, 161860.	2.8	6
581	Photonic crystal barcode: An emerging tool for cancer diagnosis. Smart Materials in Medicine, 2021, 2, 182-195.	3.7	5
582	Study of droplet asymmetrical splitting behaviors with a tunnel in a Microfluidic T-junciton. Wuli Xuebao/Acta Physica Sinica, 2021, .	0.2	0
583	Metformin loaded porous particles with bio-microenvironment responsiveness for promoting tumor immunotherapy. Biomaterials Science, 2021, 9, 2082-2089.	2.6	11
584	Microfluidic devices for pathogen detection. , 2021, , 117-151.		3
585	A compact fiber-integrated optofluidic platform for highly specific microRNA Förster resonance energy transfer detection. Analyst, The, 2021, 146, 4454-4460.	1.7	2

ARTICLE IF CITATIONS # A photofabricated honeycomb micropillar array for loss-free trapping of microfluidic droplets and 586 3.1 18 application to digital PCR. Lab on A Chip, 2021, 21, 3933-3941. Review of microfluidic approaches for fabricating intelligent fiber devices: importance of shape characteristics. Lab on A Chip, 2021, 21, 1217-1240. 587 3.1 588 Droplet-Templated Synthetic Cells. Matter, 2021, 4, 95-115. 5.0 33 Geminate labels programmed by two-tone microdroplets combining structural and fluorescent color. 5.8 136 Nature Communications, 2021, 12, 699. Dropletâ€based Continuous Flow Synthesis of Palladium Supported on Reduced Graphene Oxide. 590 1.0 3 Bulletin of the Korean Chemical Society, 2020, 41, 374-377. Droplet-Based Microfluidics Methods for Detecting Enzyme Inhibitors. Methods in Molecular Biology, 0.4 2020, 2089, 209-233. Droplet-Based Microfluidics for Single-Cell Encapsulation and Analysis. Integrated Analytical Systems, 592 0.4 4 2019, 119-141. Modelling double emulsion formation in planar flow-focusing microchannels. Journal of Fluid 1.4 Mechanics, 2020, 895, . Dynamic Complex Emulsions as Amplifiers for On-Chip Photonic Cavity-Enhanced Resonators. ACS 594 4.0 14 Sénsors, 2020, 5, 1996-2002. Rapid preparation of highly transparent piezoresistive balls for optoelectronic devices. Chemical 2.2 Communications, 2020, 56, 2771-2774. Synthetic life on a chip. Emerging Topics in Life Sciences, 2019, 3, 559-566. 596 1.1 10 Droplets breakup via a splitting microchannel. Chinese Physics B, 2020, 29, 054702. Three-dimensional numerical simulation of a droplet generation in a double T-junction microchannel. 598 1.0 24 Journal of Micro/ Nanolithography, MEMS, and MOEMS, 2018, 17, 1. Monitoring and external control of pH in microfluidic droplets during microbial culturing. Microbial Cell Factories, 2020, 19, 16. 599 Perspective on light-induced transport of particles: from optical forces to phoretic motion. Advances 600 12.1 91 in Optics and Photonics, 2019, 11, 577. Microfluidics chip design analysis and control. Journal of Mechatronics and Artificial Intelligence in Engineering, 2020, 1, 2-7. Fabrication and Characterization of a Low-Cost Microfluidic System for the Manufacture of 602 2.022 Alginate–Lacasse Microcapsules. Polymers, 2020, 12, 1158. Microfluidic Electrospray Niacin Metal-Organic Frameworks Encapsulated Microcapsules for Wound 2.8 Healing. Research, 2019, 2019, 6175398.

#	Article	IF	CITATIONS
604	Microfluidic Generation of Microsprings with Ionic Liquid Encapsulation for Flexible Electronics. Research, 2019, 2019, 6906275.	2.8	60
605	Responsive Inverse Opal Scaffolds with Biomimetic Enrichment Capability for Cell Culture. Research, 2019, 2019, 9783793.	2.8	124
606	Cellular fluidic-based vascular networks for tissue engineering. Engineered Regeneration, 2021, 2, 171-174.	3.0	21
607	Microfluidic droplet-based functional materials for cell manipulation. Lab on A Chip, 2021, 21, 4311-4329.	3.1	21
608	Applications of Microfluidics in Liquid Crystal-Based Biosensors. Biosensors, 2021, 11, 385.	2.3	21
609	Numerical insights into magnetic particle enrichment and separation in an integrated droplet microfluidic system. Chemical Engineering and Processing: Process Intensification, 2022, 170, 108696.	1.8	13
610	Encapsulation of volatile compounds in liquid media: Fragrances, flavors, and essential oils in commercial formulations. Advances in Colloid and Interface Science, 2021, 298, 102544.	7.0	37
611	Microfluidics: Recent Advances Toward Labâ€onâ€Chip Applications in Bioanalysis. Advanced Engineering Materials, 2022, 24, 2100738.	1.6	22
612	Mechanics of colloidal supraparticles under compression. Science Advances, 2021, 7, eabj0954.	4.7	20
613	Arrested Coalescence of Ionic Liquid Droplets: A Facile Strategy for Spatially Organized Multicompartment Assemblies. Small, 2021, 17, e2104385.	5.2	5
614	Influence of Surfactant-Mediated Interparticle Contacts on the Mechanical Stability of Supraparticles. Journal of Physical Chemistry C, 2021, 125, 23445-23456.	1.5	7
615	Breakup regimes of double emulsion droplets in a microfluidic Y-junction. Physics of Fluids, 2021, 33, .	1.6	17
616	Droplets- and Digital-Based Methods. , 2018, , 225-225.		0
617	Continuous synthesis of gold nanoparticles in micro- and millifluidic systems. ChemistrySelect, 2021, 6, .	0.7	1
619	Drops and Bubbles as Controlled Traveling Reactors and/or Carriers Including Microfluidics Aspects. Springer Proceedings in Physics, 2019, , 255-276.	0.1	0
620	Microfluidic Technology for Single-Cell Manipulation. Integrated Analytical Systems, 2019, , 85-117.	0.4	0
621	Hydrodynamics of double emulsion passing through a microfuidic Y-junction. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 054701.	0.2	3
623	Single-Cell Transcriptome Sequencing Using Microfluidics. , 2020, , 1-25.		0

#	Article	IF	CITATIONS
625	Single-Cell Transcriptome Sequencing Using Microfluidics. , 2022, , 607-630.		0
626	Droplet microfluidics-based biomedical microcarriers. Acta Biomaterialia, 2022, 138, 21-33.	4.1	35
627	Computational Study of the Dynamics of the Taylor Bubble. Fluids, 2021, 6, 389.	0.8	5
628	A multi-core compound droplet passing through a diffuser channel. Journal of Mechanical Science and Technology, 2021, 35, 5049-5060.	0.7	3
629	Tailored Double Emulsions Made Simple. Advanced Materials, 2022, 34, e2107338.	11.1	30
630	Multicolor Photonic Pigments for Rotationâ€Asymmetric Mechanochromic Devices. Advanced Materials, 2022, 34, e2107398.	11.1	27
631	Microfluidicâ€Generated Biopolymer Microparticles as Cargo Delivery Systems. Advanced Materials Technologies, 2022, 7, 2100733.	3.0	3
632	Two-step generation of monodisperse agarose-solidified double emulsions (w/w/o) excluding an inner oil barrier. MethodsX, 2021, 8, 101565.	0.7	0
633	Uncertainty of the shadow method for the analysis of evaporating droplets. Journal of Physics: Conference Series, 2020, 1675, 012079.	0.3	0
634	Bioengineering Approaches to Accelerate Clinical Translation of Stem Cell Therapies Treating Osteochondral Diseases. Stem Cells International, 2020, 2020, 1-13.	1.2	4
635	Microfluidic technologies for nanoparticle formation. Lab on A Chip, 2022, 22, 512-529.	3.1	45
636	Design and synthesis of gold nanostars-based SERS nanotags for bioimaging applications. Nanotheranostics, 2022, 6, 10-30.	2.7	31
637	Cancer drug screening with an on-chip multi-drug dispenser in digital microfluidics. Lab on A Chip, 2021, 21, 4749-4759.	3.1	22
638	In vitro disease and organ model. , 2020, , 629-668.		0
639	Microfluidics for Environmental Applications. Advances in Biochemical Engineering/Biotechnology, 2020, , 267-290.	0.6	18
640	Droplet Microfluidics for Precision Medicine. RSC Detection Science, 2020, , 253-278.	0.0	0
641	Surface-textured polymer microspheres generated through interfacial instabilities of microfluidic droplets for cell capture. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 084701.	0.2	3
643	Controlled generation of droplets using an electric field in a flowâ€focusing paperâ€based device. Electrophoresis, 2022, 43, 601-608.	1.3	4

ARTICLE IF CITATIONS # Hierarchically Inverse Opal Porous Scaffolds from Droplet Microfluidics for Biomimetic 3D Cell 3.2 15 644 Co-Culture. Engineering, 2021, 7, 1778-1785. Colloidal Self-Assembly Approaches to Smart Nanostructured Materials. Chemical Reviews, 2022, 122, 645 23.0 4976-5067. Three-dimensional pseudopotential lattice Boltzmann model for multiphase flows at high density 646 0.8 11 ratio. Physical Review E, 2020, 102, 053308. Bio-inspired structural colors and their applications. Chemical Communications, 2021, 57, 13448-13464. 647 Microfluidic droplet detection via region-based and single-pass convolutional neural networks with 648 comparison to conventional image analysis methodologies. Machine Learning With Applications, 2022, 3.0 10 7, 100222. Effect of nanoparticle surfactants on droplet formation in a flow-focusing microchannel. Physics of Fluids, 2021, 33, . 649 1.6 650 Biomaterials for microfluidic technology. Materials Futures, 2022, 1, 012401. 3.1 11 Microfluidic Preparation of Monodisperse Hollow Polyacrylonitrile Microspheres for ICF. Colloids 2.3 and Surfaces A: Physicochemical and Engineering Aspects, 2021, , 127955. Magnetoresponsive Photonic Micromotors and Wireless Sensing Microdevices Based on Robust 652 Magnetic Photonic Microspheres. Industrial & amp; Engineering Chemistry Research, 2021, 60, 1.8 4 17575-17584. Experimental and numerical studies of liquid-liquid slug flows in micro channels with Y-junction 1.9 inlets. Chemical Engineering Science, 2022, 252, 117289. Responsive Janus Structural Color Hydrogel Micromotors for Label-Free Multiplex Assays. Research, 654 2.8 24 2021, 2021, 9829068. Microfluidicâ€based nanoparticle synthesis and their potential applications. Electrophoresis, 2022, 43, 1.3 819-838. Advances in droplet microfluidics for SERS and Raman analysis. Biosensors and Bioelectronics, 2022, 656 5.3 25 198, 113822. Nanomotorâ€Derived Porous Biomedical Particles from Droplet Microfluidics. Advanced Science, 2022, 5.6 9, e2104272. 658 Biomass Microcapsules with Stem Cell Encapsulation for Bone Repair. Nano-Micro Letters, 2022, 14, 4. 14.4 56 Drug Discovery Automation and Library Synthesis in Flow. Topics in Medicinal Chemistry, 2021, , 0.4 421-479. A Generic Sample Preparation Approach for Different Microfluidic Labs-on-Chips. IEEE Transactions on 660 1.9 2 Computer-Aided Design of Integrated Circuits and Systems, 2022, 41, 4612-4625. Fabrication of CeO2 microspheres by internal gelation process using T junction droplet generator.

CITATION REPORT

Brazilian Journal of Chemical Engineering, 2022, 39, 671-689.

		CITATION REPORT		
#	Article		IF	Citations
662	Microfluidic bioscaffolds for regenerative engineering. Engineered Regeneration, 2022	, 3, 110-120.	3.0	13
663	Emerging microfluidics-enabled platforms for osteoarthritis management: from bencht Theranostics, 2022, 12, 891-909.	op to bedside.	4.6	9
664	The collision of immiscible droplets in three-phase liquid systems: A numerical study us lattice Boltzmann method. Chemical Engineering Research and Design, 2022, 178, 289	ing phase-field Э-314.	2.7	7
665	Recent progress of microfluidic technology for pharmaceutical analysis. Journal of Phar and Biomedical Analysis, 2022, 209, 114534.	maceutical	1.4	17
666	Advantages of optical fibers for facile and enhanced detection in droplet microfluidics. and Bioelectronics, 2022, 200, 113910.	Biosensors	5.3	20
667	Robust and scalable production of emulsion-templated microparticles in 3D-printed mi device. Chemical Engineering Journal, 2022, 431, 133998.	lli-fluidic	6.6	9
668	Phase-splitting features and polydispersity of droplet/slug flow split in a mini-T-junctior wall wettability. Experimental Thermal and Fluid Science, 2022, 133, 110579.	1: Effect of	1.5	7
669	A Programmable Nanodroplet Device with Direct Sample-to-Droplet Interface toward High-Throughput Screening. , 2020, , .			1
670	Artificial Neural Network-Based Predictions of Surface Electrocoalescence of Water Dro Hydrocarbon Media. SSRN Electronic Journal, 0, , .	oplets in	0.4	0
671	Nanoparticle Preparation Using Microfluidics for Drug Delivery. , 2021, , .			0
672	Microfluidics-Enabled Soft Manufacture of Materials with Tailorable Wettability. Chemi 2022, 122, 7010-7060.	ical Reviews,	23.0	44
673	Microcarriers in application for cartilage tissue engineering: Recent progress and challe Bioactive Materials, 2022, 17, 81-108.	nges.	8.6	30
674	Single cell transfection of human-induced pluripotent stem cells using a droplet-based system. Royal Society Open Science, 2022, 9, 211510.	microfluidic	1.1	2
675	Fabrication of Biomaterials and Biostructures Based On Microfluidic Manipulation. Sma e2105867.	all, 2022, 18,	5.2	16
676	Water structure in 100Ânm nanochannels revealed by nano X-ray diffractometry and R spectroscopy. Journal of Molecular Liquids, 2022, 350, 118567.	laman	2.3	8
677	Dispensing Single Drops as Electrochemical Reactors. ChemElectroChem, 0, , .		1.7	1
678	Heterogeneously engineered porous media for directional and asymmetric liquid trans Reports Physical Science, 2022, 3, 100710.	port. Cell	2.8	23
679	A Monolithic 3D Printed Axisymmetric Co-Flow Single and Compound Emulsion Genera Micromachines, 2022, 13, 188.	ator.	1.4	4

#	Article	IF	CITATIONS
680	dCITI-Seq: droplet combinational indexed transposon insertion sequencing. Analytical and Bioanalytical Chemistry, 2022, 414, 2661-2670.	1.9	1
681	Scaled-up droplet generation in parallelised 3D flow focusing junctions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 641, 128439.	2.3	4
682	A Machine Learning and Computer Vision Approach to Rapidly Optimize Multiscale Droplet Generation. ACS Applied Materials & Interfaces, 2022, 14, 4668-4679.	4.0	20
683	Emerging Roles of Microfluidics in Brain Research: From Cerebral Fluids Manipulation to Brain-on-a-Chip and Neuroelectronic Devices Engineering. Chemical Reviews, 2022, 122, 7142-7181.	23.0	21
684	Underwater gas self-transportation along femtosecond laser-written open superhydrophobic surface microchannels (<100 Âμm) for bubble/gas manipulation. International Journal of Extreme Manufacturing, 2022, 4, 015002.	6.3	34
685	Microfluidics and surface-enhanced Raman spectroscopy, a win–win combination?. Lab on A Chip, 2022, 22, 665-682.	3.1	42
686	Underoil Directional Self-Transportation of Water Droplets on a TiO ₂ -Coated Conical Spine. ACS Applied Materials & amp; Interfaces, 2022, 14, 6274-6282.	4.0	5
687	Injectable "nano-micron―combined gene-hydrogel microspheres for local treatment of osteoarthritis. NPG Asia Materials, 2022, 14, .	3.8	58
688	Materials and methods for droplet microfluidic device fabrication. Lab on A Chip, 2022, 22, 859-875.	3.1	32
689	Microfluidic Compartmentalization Platforms for Single Cell Analysis. Biosensors, 2022, 12, 58.	2.3	12
690	Single cell multi-miRNAs quantification with hydrogel microbeads for liver cancer cell subtypes discrimination. Chemical Science, 2022, 13, 2062-2070.	3.7	14
691	Reversible Protein Capture and Release by Redox-Responsive Hydrogel in Microfluidics. Polymers, 2022, 14, 267.	2.0	5
692	Microfluidic Control of Coexisting Chemical Microenvironments within Multiphase Water-in-Fluorocarbon Droplets. Langmuir, 2022, 38, 1811-1820.	1.6	3
693	Microfluidic Applications in Drug Development: Fabrication of Drug Carriers and Drug Toxicity Screening. Micromachines, 2022, 13, 200.	1.4	8
694	Increase of one-to-one particle encapsulation yield using dielectrophoretic alignment technique with boxcar-type electrodes. Transactions of the JSME (in Japanese), 2022, 88, 21-00300-21-00300.	0.1	0
695	Preparation of ethyl cellulose particles with different morphologies through microfluidics. Soft Matter, 2022, 18, 1455-1462.	1.2	7
696	Conductive Materials with Elaborate Micro/Nanostructures for Bioelectronics. Advanced Materials, 2022, 34, e2110024.	11.1	12
697	Electrochemical pH regulation in droplet microfluidics. Lab on A Chip, 2022, 22, 632-640.	3.1	7

#	ARTICLE	IF	CITATIONS
698	Controlled preparation of PAMS hollow core microcapsules with high uniformity and its application in the production of GDP fuel capsules for ICF engineering. Fundamental Research, 2023, 3, 602-610.	1.6	3
699	Recent Progress in Preparation and Application of Fibers Using Microfluidic Spinning Technology. Macromolecular Chemistry and Physics, 2022, 223, .	1.1	15
700	Droplet-based microsystems as novel assessment tools for oral microbial dynamics. Biotechnology Advances, 2022, 55, 107903.	6.0	2
701	Microscale synthesis system for regulation and prediction of metal organic framework morphologies. Materials Today Chemistry, 2022, 23, 100767.	1.7	5
702	On-demand augmentation in heat transfer of Taylor bubble flows using ferrofluids. Applied Thermal Engineering, 2022, 205, 118058.	3.0	4
703	Robotic automation of droplet microfluidics. Biomicrofluidics, 2022, 16, 014102.	1.2	5
704	Retro-aza-Michael reaction in continuous flow. Approaches to synthesis of adaline and euphococcinine related products. Tetrahedron, 2022, 109, 132686.	1.0	0
705	Advanced microfluidic devices for fabricating multiâ€structural hydrogel microsphere. Exploration, 2021, 1, .	5.4	35
706	Picoliter liquid handling at gas/liquid interface by surface and geometry control in a micro-nanofluidic device. Journal of Micromechanics and Microengineering, 2022, 32, 024001.	1.5	5
707	Model-Based Feedback Control for On-Demand Droplet Dispensing System with Precise Real-Time Phase Imaging. SSRN Electronic Journal, 0, , .	0.4	0
708	Single-cell droplet microfluidics for biomedical applications. Analyst, The, 2022, 147, 2294-2316.	1.7	33
709	Summary and Perspective. , 2022, , 301-305.		0
710	Fluorescence lifetime activated droplet sorting (FLADS) for label-free sorting of <i>Synechocystis</i> sp. PCC6803. Lab on A Chip, 2022, 22, 1604-1614.	3.1	8
711	Ferrofluids and bio-ferrofluids: looking back and stepping forward. Nanoscale, 2022, 14, 4786-4886.	2.8	50
712	Effect of Thermal History and Hydrocarbon Core Size on Perfluorocarbon Endoskeletal Droplet Vaporization. Langmuir, 2022, 38, 2634-2641.	1.6	2
713	Stationary, Continuous, and Sequential Surfaceâ€Enhanced Raman Scattering Sensing Based on the Nanoscale and Microscale Polymerâ€Metal Composite Sensor Particles through Microfluidics: A Review. Advanced Optical Materials, 2022, 10, .	3.6	11
714	Cell Culture in Microfluidic Droplets. Chemical Reviews, 2022, 122, 7061-7096.	23.0	56
715	Intelligent resistive-switching EWOD device based on the Fe doped ZnO memristor. Ceramics International, 2022, , .	2.3	3

#	Article	IF	CITATIONS
716	Engineering Hydrogels for the Development of Three-Dimensional In Vitro Models. International Journal of Molecular Sciences, 2022, 23, 2662.	1.8	23
717	Small tools for sweet challenges: advances in microfluidic technologies for glycan synthesis. Analytical and Bioanalytical Chemistry, 2022, 414, 5139-5163.	1.9	2
718	Microfluidic Particle Reactors: From Interface Characteristics to Cells and Drugs Related Biomedical Applications. Advanced Materials Interfaces, 2022, 9, .	1.9	4
719	Monodispersed polymer particles with tunable surface structures: Droplet <scp>microfluidicâ€assisted</scp> fabrication and biomedical applications. Journal of Polymer Science, 2022, 60, 1653-1669.	2.0	10
720	Multiple interactions between microfluidic droplets and on-chip pneumatic valves. Microfluidics and Nanofluidics, 2022, 26, 1.	1.0	2
721	Nonlinear Phenomena in Microfluidics. Chemical Reviews, 2022, 122, 6921-6937.	23.0	34
722	Modularizable Liquidâ€Crystalâ€Based Open Surfaces Enable Programmable Chemical Transport and Feeding using Liquid Droplets. Advanced Materials, 2022, 34, e2108788.	11.1	15
723	Microfluidics-enabled functional 3D printing. Biomicrofluidics, 2022, 16, 021501.	1.2	6
724	Nanomaterial-assisted microfluidics for multiplex assays. Mikrochimica Acta, 2022, 189, 139.	2.5	16
725	Food-grade microgel capsules tailored for anti-obesity strategies through microfluidic preparation. Current Opinion in Food Science, 2022, 45, 100816.	4.1	6
727	Reversible bonding for microfluidic devices with UV release tape. Microfluidics and Nanofluidics, 2022, 26, 1.	1.0	7
728	Colorimetric photonic tongue for metal ions screening. Matter, 2022, 5, 1590-1602.	5.0	8
729	Droplet Bouncing: Fundamentals, Regulations, and Applications. Small, 2022, 18, e2200277.	5.2	34
730	Automated and Dynamic Control of Chemical Content in Droplets for Scalable Screens of Small Animals. Small, 2022, 18, e2200319.	5.2	6
731	Microfluidics-based strategies for molecular diagnostics of infectious diseases. Military Medical Research, 2022, 9, 11.	1.9	20
732	Study on the dynamic characteristics of stable formation of single droplet in gas-liquid co-flow device. Journal of Physics: Conference Series, 2022, 2230, 012005.	0.3	0
733	Microfluidic technologies and devices for lipid nanoparticle-based RNA delivery. Journal of Controlled Release, 2022, 344, 80-96.	4.8	92
734	Influence of external magnetic manipulation on thermal transport characteristics of the bubble-slug flow of ferro-nanocolloids. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 646, 128936.	2.3	3

#	Article	IF	CITATIONS
735	Integrated microfluidic system for isolating exosome and analyzing protein marker PD-L1. Biosensors and Bioelectronics, 2022, 204, 113879.	5.3	28
736	Interface evolution and pinch-off mechanism of droplet in two-phase liquid flow through T-junction microfluidic system. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 642, 128536.	2.3	8
737	Controlled microfluidic encapsulation of phase change material for thermo-regulation. International Journal of Heat and Mass Transfer, 2022, 190, 122738.	2.5	18
738	Determination of Time-Evolving interfacial tension and ionic surfactant adsorption kinetics in microfluidic droplet formation process. Journal of Colloid and Interface Science, 2022, 617, 106-117.	5.0	6
739	Microfluidic-Based Droplets for Advanced Regenerative Medicine: Current Challenges and Future Trends. Biosensors, 2022, 12, 20.	2.3	14
740	Reconfigurable microfluidics. Nature Reviews Chemistry, 2022, 6, 70-80.	13.8	38
741	Negative synergistic effects of surfactant and fluid viscoelasticity on hydrodynamic resistance of single droplet in confined microchannel. Physics of Fluids, 2021, 33, 122012.	1.6	1
742	Jigsaw-like mini-pillar platform for multi-mode biosensing. Chinese Chemical Letters, 2022, 33, 3879-3882.	4.8	7
743	Multiple exosome RNA analysis methods for lung cancer diagnosis through integrated on-chip microfluidic system. Chinese Chemical Letters, 2022, 33, 3188-3192.	4.8	17
744	Photothermal Responsive Microspheresâ€Triggered Separable Microneedles for Versatile Drug Delivery. Advanced Functional Materials, 2022, 32, .	7.8	27
745	Development of a Droplet-Based Microfluidics Platform Toward Single-cell Analysis. , 2021, , .		0
746	Microfluidic Evaporation, Pervaporation, and Osmosis: From Passive Pumping to Solute Concentration. Chemical Reviews, 2022, 122, 6938-6985.	23.0	23
747	Polymersomes Based Versatile Nanoplatforms for Controlled Drug Delivery and Imaging. Advanced Pharmaceutical Bulletin, 2023, 13, 218-232.	0.6	3
748	Thinning dynamics of the liquid thread at different stages in a rectangular cross junction. AICHE Journal, 0, , .	1.8	5
749	Deep-learning-assisted extraction of height-averaged velocity from scalar signal transport in a shallow microfluidic channel. Microfluidics and Nanofluidics, 2022, 26, 1.	1.0	3
751	Unraveling Cancer Metastatic Cascade Using Microfluidics-based Technologies. Biophysical Reviews, 2022, 14, 517-543.	1.5	5
752	Novel regimes of calcium carbonate dissolution in micron-scale confined spaces. Advances in Water Resources, 2022, 164, 104200.	1.7	5
757	Spatial confinement toward creating artificial living systems. Chemical Society Reviews, 2022, 51, 4075-4093.	18.7	16

#	Article	IF	CITATIONS
758	Microfluidic harvesting of breast cancer tumor spheroid-derived extracellular vesicles from immobilized microgels for single-vesicle analysis. Lab on A Chip, 2022, 22, 2502-2518.	3.1	8
759	Systematic characterization of effect of flow rates and buffer compositions on double emulsion droplet volumes and stability. Lab on A Chip, 2022, 22, 2315-2330.	3.1	8
760	Three-Dimensional Dynamic Optical Trapping Using Non-Iterative Computer-Generated Holography. SSRN Electronic Journal, 0, , .	0.4	0
761	Single bacteria detection by droplet DNAzyme-coupled rolling circle amplification. Analytical Methods, 2022, 14, 2244-2248.	1.3	3
762	Microfluidic Generation of Multicomponent Soft Biomaterials. Engineering, 2022, 13, 128-143.	3.2	14
763	Interfacial deformation of confined photocurable fluid for fabrication of shapeâ€imprinted microspheres. Journal of Polymer Science, 0, , .	2.0	1
764	Direct preparation of batteryâ€grade lithium carbonate via a nucleation–crystallization isolating process intensified by a microâ€liquid film reactor. Canadian Journal of Chemical Engineering, 2023, 101, 870-882.	0.9	3
765	Overflow Control for Sustainable Development by Superwetting Surface with Biomimetic Structure. Chemical Reviews, 2023, 123, 2276-2310.	23.0	32
766	Trends in Droplet Microfluidics: From Droplet Generation to Biomedical Applications. Langmuir, 2022, 38, 6233-6248.	1.6	30
767	Microfluidic PLGA microcapsules with PD-L1 aptamers and docetaxel encapsulation for enhancing tumor immunity. Applied Materials Today, 2022, 27, 101484.	2.3	1
768	Model-based feedback control for on-demand droplet dispensing system with precise real-time phase imaging. Sensors and Actuators B: Chemical, 2022, 365, 131936.	4.0	4
769	Improvement of millimeter-scale double droplets stability through synergistic noncovalent interactions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, , 129222.	2.3	Ο
770	Breaking through the Poisson Distribution: A compact high-efficiency droplet microfluidic system for single-bead encapsulation and digital immunoassay detection. Biosensors and Bioelectronics, 2022, 211, 114384.	5.3	25
771	Droplet Microfluidics for High-Resolution Virology. Analytical Chemistry, 2022, 94, 8085-8100.	3.2	6
772	Permanent Hydrophobic Surface Treatment Combined with Solvent Vapor-Assisted Thermal Bonding for Mass Production of Cyclic Olefin Copolymer Microfluidic Chips. ACS Omega, 0, , .	1.6	9
773	Effect of Viscosity on Liquid–Liquid Slug Flow in a Step T-Junction Microchannel. Industrial & Engineering Chemistry Research, 2022, 61, 8333-8345.	1.8	6
774	Multicompartment polymer capsules. , 2022, 1, 100015.		3
775	Reusable microfluidic chip processed by femtosecond double-pulse-assisted polarization-selective etching in fused silica glass. Journal of Optics (India), 0, , .	0.8	0

#	Article	IF	CITATIONS
776	Development of Geraniol-Loaded Liposomal Nanoformulations against <i>Salmonella</i> Colonization in the Pig Gut. Journal of Agricultural and Food Chemistry, 2022, 70, 7004-7014.	2.4	5
777	A New Online Monitoring Method for Water-in-Oil Droplet Based Microfluidic Devices. IEEE Sensors Journal, 2023, 23, 4373-4382.	2.4	0
778	Microfluidic Production of Zwitterion Coating Microcapsules with Low Foreign Body Reactions for Improved Islet Transplantation. Small, 2022, 18, .	5.2	11
779	Hydrogels for Single-Cell Microgel Production: Recent Advances and Applications. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	3
780	One-Step Digital Droplet Auto-Catalytic Nucleic Acid Amplification with High-Throughput Fluorescence Imaging and Droplet Tracking Computation. Analytical Chemistry, 2022, 94, 9166-9175.	3.2	3
781	Photonic Barcodes Combining Branched Hybridization Chain Reaction for Multiplex Quantification of Bladder Cancer MicroRNAs. Advanced Materials Interfaces, 2022, 9, .	1.9	6
782	Microfluidics Fabrication of Micrometerâ€Sized Hydrogels with Precisely Controlled Geometries for Biomedical Applications. Advanced Healthcare Materials, 2022, 11, .	3.9	22
783	Recent Advances in Microscale Electroporation. Chemical Reviews, 2022, 122, 11247-11286.	23.0	22
784	Programmable microfluidic manipulations for biomedical applications. Engineered Regeneration, 2022, 3, 258-261.	3.0	26
785	Applications of Microfluidics. , 2022, , 15-50.		2
785 786	Applications of Microfluidics. , 2022, , 15-50. Open Source Hardware Cost-Effective Imaging Sensors for High-Throughput Droplet Microfluidic Systems. , 2022, , .		2
785 786 787	Applications of Microfluidics., 2022, , 15-50. Open Source Hardware Cost-Effective Imaging Sensors for High-Throughput Droplet Microfluidic Systems., 2022, , . On-Demand Nanoliter Sampling Probe for the Collection of Brain Fluid. Analytical Chemistry, 2022, 94, 10415-10426.	3.2	2 2 1
785 786 787 788	Applications of Microfluidics., 2022,, 15-50. Open Source Hardware Cost-Effective Imaging Sensors for High-Throughput Droplet Microfluidic Systems., 2022,, On-Demand Nanoliter Sampling Probe for the Collection of Brain Fluid. Analytical Chemistry, 2022, 94, 10415-10426. Flowâ€induced shear stress and deformation of a core–shellâ€structured microcapsule in a microchannel. Electrophoresis, 2022, 43, 1993-2004.	3.2	2 2 1 3
785 786 787 788 788	Applications of Microfluidics. , 2022, , 15-50.Open Source Hardware Cost-Effective Imaging Sensors for High-Throughput Droplet Microfluidic Systems. , 2022, , .On-Demand Nanoliter Sampling Probe for the Collection of Brain Fluid. Analytical Chemistry, 2022, 94, 10415-10426.Flowâ€induced shear stress and deformation of a core–shellâ€structured microcapsule in a microchannel. Electrophoresis, 2022, 43, 1993-2004.Capillary tweezer for programmable droplet manipulation. Sensors and Actuators B: Chemical, 2022, 370, 132380.	3.2 1.3 4.0	2 2 1 3 3
 785 786 787 788 789 790 	Applications of Microfluidics. , 2022, , 15-50.Open Source Hardware Cost-Effective Imaging Sensors for High-Throughput Droplet Microfluidic Systems. , 2022, , .On-Demand Nanoliter Sampling Probe for the Collection of Brain Fluid. Analytical Chemistry, 2022, 94, 10415-10426.Flowâ€induced shear stress and deformation of a core–shellâ€structured microcapsule in a microchannel. Electrophoresis, 2022, 43, 1993-2004.Capillary tweezer for programmable droplet manipulation. Sensors and Actuators B: Chemical, 2022, 370, 132380.Emerging platforms for high-throughput enzymatic bioassays. Trends in Biotechnology, 2023, 41, 120-133.	3.2 1.3 4.0 4.9	2 2 1 3 3
 785 786 787 788 789 790 791 	Applications of Microfluidics. , 2022, , 15-50. Open Source Hardware Cost-Effective Imaging Sensors for High-Throughput Droplet Microfluidic Systems. , 2022, , . On-Demand Nanoliter Sampling Probe for the Collection of Brain Fluid. Analytical Chemistry, 2022, 94, 10415-10426. Flowâ€induced shear stress and deformation of a core–shellâ€structured microcapsule in a microchannel. Electrophoresis, 2022, 43, 1993-2004. Capillary tweezer for programmable droplet manipulation. Sensors and Actuators B: Chemical, 2022, 370, 132380. Emerging platforms for high-throughput enzymatic bioassays. Trends in Biotechnology, 2023, 41, 120-133. Experimental and theoretical studies on neck thinning dynamics of droplets in cross junction microchannels. Experimental Thermal and Fluid Science, 2022, 139, 110739.	3.2 1.3 4.0 4.9	2 2 1 3 3 4
 785 786 787 788 789 790 791 792 	Applications of Microfluidics. , 2022, , 15-50.Open Source Hardware Cost-Effective Imaging Sensors for High-Throughput Droplet Microfluidic Systems. , 2022, , .On-Demand Nanoliter Sampling Probe for the Collection of Brain Fluid. Analytical Chemistry, 2022, 94, 10415-10426.Flowã€induced shear stress and deformation of a core〓shellâ€structured microcapsule in a microchannel. Electrophoresis, 2022, 43, 1993-2004.Capillary tweezer for programmable droplet manipulation. Sensors and Actuators B: Chemical, 2022, 370, 132380.Emerging platforms for high-throughput enzymatic bioassays. Trends in Biotechnology, 2023, 41, 120-133.Experimental and theoretical studies on neck thinning dynamics of droplets in cross junction microchannels. Experimental Thermal and Fluid Science, 2022, 139, 110739.Tailoring micro/nano-fibers for biomedical applications. Bioactive Materials, 2023, 19, 328-347.	3.2 1.3 4.0 4.9 1.5 8.6	2 2 1 3 3 4 10 44

#	Article	IF	CITATIONS
794	Simulation of Pressure-Driven and Channel-Based Microfluidics on Different Abstract Levels: A Case Study. Sensors, 2022, 22, 5392.	2.1	2
795	Upconversion encoded microcarriers from electrospray microfluidics for multiplex bioassays. Applied Materials Today, 2022, 29, 101597.	2.3	3
796	A review of optoelectrowetting (OEW): from fundamentals to lab-on-a-smartphone (LOS) applications to environmental sensors. Lab on A Chip, 2022, 22, 3987-4006.	3.1	10
797	Dewettingâ€Assisted Interface Templating: Complex Emulsions to Multicavity Particles. Advanced Science, 2022, 9, .	5.6	3
798	A droplet-based microfluidic approach to isolating functional bacteria from gut microbiota. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	6
799	Facile and scalable tubing-free sample loading for droplet microfluidics. Scientific Reports, 2022, 12, .	1.6	4
800	Generation of double emulsions from commercial single-emulsion microfluidic chips: a quality-control study. Microfluidics and Nanofluidics, 2022, 26, .	1.0	2
801	Recent Advances in Digital Biosensing Technology. Biosensors, 2022, 12, 673.	2.3	4
802	Collective behavior of crowded drops in microfluidic systems. Physical Review Fluids, 2022, 7, .	1.0	2
803	Surface behaviors of droplet manipulation in microfluidics devices. Advances in Colloid and Interface Science, 2022, 308, 102770.	7.0	7
804	Red blood cells tracking and cell-free layer formation in a microchannel with hyperbolic contraction: A CFD model validation. Computer Methods and Programs in Biomedicine, 2022, 226, 107117.	2.6	13
805	Stimulus responsive microcapsules and their aromatic applications. Journal of Controlled Release, 2022, 351, 198-214.	4.8	16
806	Artificial neural network-based predictions of surface electrocoalescence of water droplets in hydrocarbon media. Chemical Engineering Research and Design, 2022, 187, 584-597.	2.7	1
807	Microfluidic emulsification techniques for controllable emulsion production and functional microparticle synthesis. Chemical Engineering Journal, 2023, 452, 139277.	6.6	17
808	Continuous flow system for simple preparation of functionalized polymeric beads from poly(acrylamide-thiolactone). Polymer Chemistry, 2022, 13, 4973-4979.	1.9	1
809	Simplifying the complex: accessible microfluidic solutions for contemporary processes within <i>in vitro</i> diagnostics. Lab on A Chip, 2022, 22, 3340-3360.	3.1	15
810	Droplet transportation by adjusting the temporal phase shift of surface acoustic waves in the exciter–exciter mode. Lab on A Chip, 2022, 22, 3402-3411.	3.1	5
811	Sustained delivery of gemcitabine <i>via in situ</i> injectable mussel-inspired hydrogels for the local therapy of pancreatic cancer. Journal of Materials Chemistry B, 2022, 10, 6338-6350.	2.9	4

#	Article	IF	CITATIONS
812	Abaloneâ€Inspired Adhesive and Photoâ€Responsive Microparticle Delivery Systems for Periodontal Drug Therapy. Advanced Science, 2022, 9, .	5.6	14
813	A Portable Microfluidic-Based Electrochemiluminescence Sensor for Trace Detection of Trenbolone in Natural Water. Analytical Chemistry, 2022, 94, 12531-12537.	3.2	10
814	Application of Janus Particles in Point-of-Care Testing. Biosensors, 2022, 12, 689.	2.3	3
815	Vision-Based Performance Analysis of an Active Microfluidic Droplet Generation System Using Droplet Images. Sensors, 2022, 22, 6900.	2.1	4
816	Microfluidicsâ€Based Urine Biopsy for Cancer Diagnosis: Recent Advances and Future Trends. ChemMedChem, 2022, 17, .	1.6	3
817	Attomole-Level Multiplexed Detection of Neurochemicals in Picoliter Droplets by On-Chip Nanoelectrospray Ionization Coupled to Mass Spectrometry. Analytical Chemistry, 2022, 94, 13804-13809.	3.2	3
818	Microfluidics for Neuronal Cell and Circuit Engineering. Chemical Reviews, 2022, 122, 14842-14880.	23.0	22
820	A droplet-based microfluidic platform enables high-throughput combinatorial optimization of cyanobacterial cultivation. Scientific Reports, 2022, 12, .	1.6	7
821	Bioinspired directional liquid transport induced by the corner effect. Nano Research, 2023, 16, 3913-3923.	5.8	8
822	Superhydrophilic–superhydrophobic patterned surfaces: From simplified fabrication to emerging applications. Nami Jishu Yu Jingmi Gongcheng/Nanotechnology and Precision Engineering, 2022, 5, .	1.7	12
823	Effects of the preferential adsorption in a near-critical binary fluid mixture on dynamics of a droplet. Physics of Fluids, 2022, 34, 092007.	1.6	0
824	Janus Charged Droplet Manipulation Mediated by Invisible Charge Walls. Advanced Science, 2022, 9, .	5.6	6
825	Microcapsule production by droplet microfluidics: A review from the material science approach. Materials and Design, 2022, 223, 111230.	3.3	14
826	Recent Applications of Microfluidics in Bionanotechnology. Topics in Applied Physics, 2022, , 779-791.	0.4	0
827	Phase-Optimized Peristaltic Pumping by Integrated Microfluidic Logic. Micromachines, 2022, 13, 1784.	1.4	1
828	Recent Progress on Hyaluronan-Based Products for Wound Healing Applications. Pharmaceutics, 2022, 14, 2235.	2.0	7
829	Recent Advances in Drug Delivery System Fabricated by Microfluidics for Disease Therapy. Bioengineering, 2022, 9, 625.	1.6	8
830	Chopstick-Like Structure for the Free Transfer of Microdroplets in Robot Chemistry Laboratory. Langmuir, 2022, 38, 13150-13157.	1.6	1

#	Article	IF	CITATIONS
832	Droplet Tweezers Based on the Hydrophilic–Hydrophobic Interface Structure and Their Biological Application. Langmuir, 2022, 38, 13522-13531.	1.6	0
833	Scalable and high-throughput production of an injectable platelet-rich plasma (PRP)/cell-laden microcarrier/hydrogel composite system for hair follicle tissue engineering. Journal of Nanobiotechnology, 2022, 20, .	4.2	13
834	Microspheres in bone regeneration: Fabrication, properties and applications. Materials Today Advances, 2022, 16, 100315.	2.5	5
835	NIR light-triggered core-coalescence of double-emulsion drops for micro-reactions. Chemical Engineering Journal, 2023, 454, 140050.	6.6	4
836	Design and fabrication technologies for microfluidic sensors. , 2023, , 41-85.		0
837	High-Throughput Photochemistry Using Droplet Microfluidics. ACS Symposium Series, 0, , 131-143.	0.5	0
838	A Dualâ€Kinetic Control Strategy for Designing Nanoâ€Metamaterials: Novel Class of Metamaterials with Both Characteristic and Whole Sizes of Nanoscale. Advanced Science, 2023, 10, .	5.6	5
839	Aqueous two-phase emulsions toward biologically relevant applications. Trends in Chemistry, 2023, 5, 61-75.	4.4	5
840	Microfluidics-derived microcarrier systems for oral delivery. , 2023, 1, 30-38.		12
841	The fabrication of conductive material-decorated hydrogels for tissue repair. Molecular Systems Design and Engineering, 0, , .	1.7	0
842	Emerging biotransduction strategies on soft interfaces for biosensing. Nanoscale, 2022, 15, 80-91.	2.8	0
843	Microfluidic synthesis of graphene oxide/MnO ₂ -incorporated self-propelling micromotors for organic dye removal. Journal of Materials Chemistry C, 2023, 11, 1029-1036.	2.7	3
844	Droplet microfluidics for CTC-based liquid biopsy: a review. Analyst, The, 2023, 148, 203-221.	1.7	8
845	Recent advances of integrated microfluidic systems for fungal and bacterial analysis. TrAC - Trends in Analytical Chemistry, 2023, 158, 116850.	5.8	5
846	Advances in metal–organic framework-based hydrogel materials: preparation, properties and applications. Journal of Materials Chemistry A, 2023, 11, 2092-2127.	5.2	23
847	Spinal cord conduits for spinal cord injury regeneration. Engineered Regeneration, 2023, 4, 68-80.	3.0	3
848	Selective Manipulation with Spiraling Transducer Acoustical Tweezers. , 2022, , .		0
849	A 3D-Printed Standardized Modular Microfluidic System for Droplet Generation. Biosensors, 2022, 12, 1085.	2.3	2

#	Article	IF	CITATIONS
850	Recent Trends of Microfluidics in Food Science and Technology: Fabrications and Applications. Foods, 2022, 11, 3727.	1.9	9
851	Ultrafast Self-propelling directionally water transporting wood via cell wall reshaping for water manipulation. Chemical Engineering Journal, 2023, 455, 140563.	6.6	4
852	A versatile chamber for x-ray scattering on liquid jets with sample recycling. Review of Scientific Instruments, 2022, 93, 125106.	0.6	0
853	Droplet-based digital PCR (ddPCR) and its applications. TrAC - Trends in Analytical Chemistry, 2023, 158, 116897.	5.8	15
854	Magnetocontrollable droplet mobility on liquid crystal-infused porous surfaces. Nano Research, 2023, 16, 5098-5107.	5.8	2
855	Noninvasive Multiplexed Analysis of Bladder Cancer-Derived Urine Exosomes via Janus Magnetic Microspheres. Analytical Chemistry, 2022, 94, 18034-18041.	3.2	12
856	DNA Droplets: Intelligent, Dynamic Fluid. Advanced Biology, 2023, 7, .	1.4	11
857	Regulation of droplet size and flow regime by geometrical confinement in a microfluidic flow-focusing device. Physics of Fluids, 2023, 35, .	1.6	7
858	Fabrication of <scp>CeO₂</scp> microspheres by internal gelation process using flowâ€focusing droplet generator. Canadian Journal of Chemical Engineering, 2023, 101, 4493-4505.	0.9	0
859	Engineered Living Materials For Sustainability. Chemical Reviews, 2023, 123, 2349-2419.	23.0	34
860	A home-made pipette droplet microfluidics rapid prototyping and training kit for digital PCR, microorganism/cell encapsulation and controlled microgel synthesis. Scientific Reports, 2023, 13, .	1.6	6
861			
	Microwell array chip-based single-cell analysis. Lab on A Chip, 2023, 23, 1066-1079.	3.1	6
862	Microwell array chip-based single-cell analysis. Lab on A Chip, 2023, 23, 1066-1079. Recent advances in droplet microfluidics for single-cell analysis. TrAC - Trends in Analytical Chemistry, 2023, 159, 116932.	3.1 5.8	6 20
862 863	Microwell array chip-based single-cell analysis. Lab on A Chip, 2023, 23, 1066-1079. Recent advances in droplet microfluidics for single-cell analysis. TrAC - Trends in Analytical Chemistry, 2023, 159, 116932. Microfluidic Manipulation for Biomedical Applications in the Central and Peripheral Nervous Systems. Pharmaceutics, 2023, 15, 210.	3.1 5.8 2.0	6 20 3
862 863 864	Microwell array chip-based single-cell analysis. Lab on A Chip, 2023, 23, 1066-1079. Recent advances in droplet microfluidics for single-cell analysis. TrAC - Trends in Analytical Chemistry, 2023, 159, 116932. Microfluidic Manipulation for Biomedical Applications in the Central and Peripheral Nervous Systems. Pharmaceutics, 2023, 15, 210. Single-molecule fluorescence methods for protein biomarker analysis. Analytical and Bioanalytical Chemistry, 2023, 415, 3655-3669.	3.15.82.01.9	6 20 3 8
862 863 864 865	 Microwell array chip-based single-cell analysis. Lab on A Chip, 2023, 23, 1066-1079. Recent advances in droplet microfluidics for single-cell analysis. TrAC - Trends in Analytical Chemistry, 2023, 159, 116932. Microfluidic Manipulation for Biomedical Applications in the Central and Peripheral Nervous Systems. Pharmaceutics, 2023, 15, 210. Single-molecule fluorescence methods for protein biomarker analysis. Analytical and Bioanalytical Chemistry, 2023, 415, 3655-3669. Lithographic Microneedleâ€Motors from Multimodal Microfluidics for Cargo Delivery. Small, 2023, 19, . 	 3.1 5.8 2.0 1.9 5.2 	6 20 3 8 4
862 863 864 865 866	Microwell array chip-based single-cell analysis. Lab on A Chip, 2023, 23, 1066-1079. Recent advances in droplet microfluidics for single-cell analysis. TrAC - Trends in Analytical Chemistry, 2023, 159, 116932. Microfluidic Manipulation for Biomedical Applications in the Central and Peripheral Nervous Systems. Pharmaceutics, 2023, 15, 210. Single-molecule fluorescence methods for protein biomarker analysis. Analytical and Bioanalytical Chemistry, 2023, 415, 3655-3669. Lithographic Microneedlea€Motors from Multimodal Microfluidics for Cargo Delivery. Small, 2023, 19, . Microfluidics-based observations to monitor dynamic processes occurring in food emulsions and foams. Current Opinion in Food Science, 2023, 50, 100989.	 3.1 5.8 2.0 1.9 5.2 4.1 	6 20 3 8 4 3

#	Article	IF	CITATIONS
868	Advances in microfluidic chips based on islet hormone-sensing techniques. World Journal of Diabetes, 0, 14, 17-25.	1.3	0
869	Recent methods of droplet microfluidics and their applications in spheroids and organoids. Lab on A Chip, 0, , .	3.1	11
870	Progress of Microfluidic Hydrogelâ€Based Scaffolds and Organâ€onâ€Chips for the Cartilage Tissue Engineering. Advanced Materials, 2023, 35, .	11.1	26
871	Biological mass spectrometry enables spatiotemporal â€`omics: From tissues to cells to organelles. Mass Spectrometry Reviews, 2024, 43, 106-138.	2.8	4
872	Functional Liquid Crystal Core/Hydrogel Shell Microcapsules for Monitoring Live Cells in a 3D Microenvironment. Analytical Chemistry, 2023, 95, 2750-2756.	3.2	4
873	Digital CRISPR systems for the next generation of nucleic acid quantification. TrAC - Trends in Analytical Chemistry, 2023, 159, 116917.	5.8	8
874	Design insights for upscaling spontaneous microfluidic emulsification devices based on behavior of the Upscaled Partitioned EDGE device. Food Research International, 2023, 164, 112365.	2.9	0
875	Thermally mediated double emulsion droplets formation in a six-way junction microfluidic device. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 661, 130961.	2.3	1
876	Droplet Detection and Sorting System in Microfluidics: A Review. Micromachines, 2023, 14, 103.	1.4	8
877	Cell-based assays on microfluidic chips. , 2023, , 61-87.		0
877 878	Cell-based assays on microfluidic chips. , 2023, , 61-87. Droplet Microfluidics: A Multiphase System. , 2023, , 43-67.		0
877 878 879	Cell-based assays on microfluidic chips., 2023, , 61-87. Droplet Microfluidics: A Multiphase System., 2023, , 43-67. Advances in droplet digital polymerase chain reaction on microfluidic chips. Lab on A Chip, 2023, 23, 1258-1278.	3.1	0 0 19
877 878 879 880	Cell-based assays on microfluidic chips., 2023,, 61-87. Droplet Microfluidics: A Multiphase System., 2023,, 43-67. Advances in droplet digital polymerase chain reaction on microfluidic chips. Lab on A Chip, 2023, 23, 1258-1278. Interfacial Tension Driven Open Droplet Microfluidics. Advanced Materials Interfaces, 2023, 10, .	3.1 1.9	0 0 19 7
877 878 879 880 881	Cell-based assays on microfluidic chips., 2023,, 61-87. Droplet Microfluidics: A Multiphase System., 2023,, 43-67. Advances in droplet digital polymerase chain reaction on microfluidic chips. Lab on A Chip, 2023, 23, 1258-1278. Interfacial Tension Driven Open Droplet Microfluidics. Advanced Materials Interfaces, 2023, 10,. Resolution considerations for structured illumination microscale particle tracking velocimetry. Experiments in Fluids, 2023, 64,.	3.1 1.9 1.1	0 0 19 7
877 878 879 880 881 881	Cell-based assays on microfluidic chips. , 2023, , 61-87.Droplet Microfluidics: A Multiphase System. , 2023, , 43-67.Advances in droplet digital polymerase chain reaction on microfluidic chips. Lab on A Chip, 2023, 23, 1258-1278.Interfacial Tension Driven Open Droplet Microfluidics. Advanced Materials Interfaces, 2023, 10, .Resolution considerations for structured illumination microscale particle tracking velocimetry.Experiments in Fluids, 2023, 64.Microfluidics for Biomedical Applications. Biosensors, 2023, 13, 161.	3.1 1.9 1.1 2.3	0 0 19 7 1 2
877 878 879 880 881 881 882	Cell-based assays on microfluidic chips., 2023, , 61-87.Droplet Microfluidics: A Multiphase System., 2023, , 43-67.Advances in droplet digital polymerase chain reaction on microfluidic chips. Lab on A Chip, 2023, 23, 1258-1278.Interfacial Tension Driven Open Droplet Microfluidics. Advanced Materials Interfaces, 2023, 10, .Resolution considerations for structured illumination microscale particle tracking velocimetry. Experiments in Fluids, 2023, 64, .Microfluidics for Biomedical Applications. Biosensors, 2023, 13, 161.Three-dimensional dynamic optical trapping using non-iterative computer-generated holography. Optics and Lasers in Engineering, 2023, 164, 107500.	3.1 1.9 1.1 2.3 2.0	0 0 19 7 1 2 0
877 878 879 880 881 881 882 883	Cell-based assays on microfluidic chips., 2023, 61-87. Droplet Microfluidics: A Multiphase System., 2023, 43-67. Advances in droplet digital polymerase chain reaction on microfluidic chips. Lab on A Chip, 2023, 23, 1258-1278. Interfacial Tension Driven Open Droplet Microfluidics. Advanced Materials Interfaces, 2023, 10, . Resolution considerations for structured illumination microscale particle tracking velocimetry. Experiments in Fluids, 2023, 64, . Microfluidics for Biomedical Applications. Biosensors, 2023, 13, 161. Three-dimensional dynamic optical trapping using non-iterative computer-generated holography. Optics and Lasers in Engineering, 2023, 164, 107500. Effect of channel width on droplet generation inside T-junction microchannel. Physics of Fluids, 2023, 35, .	3.1 1.9 1.1 2.3 2.0 1.6	0 19 7 1 2 0 11

#	Article	IF	CITATIONS
886	Mass transfer intensification of slug flow by interfacial deformation at low flow rate in the microchannels with periodic expansion units. Chemical Engineering Science, 2023, 275, 118743.	1.9	1
887	Broad-temperature-range mechanically tunable hydrogel microcapsules for controlled active release. Journal of Controlled Release, 2023, 356, 337-346.	4.8	3
888	Polymer-based responsive structural color materials. Progress in Materials Science, 2023, 135, 101091.	16.0	32
889	Emerging microfluidic technologies for sperm sorting. Engineered Regeneration, 2023, 4, 161-169.	3.0	0
890	Celastrol-encapsulated microspheres prepared by microfluidic electrospray for alleviating inflammatory pain. , 2023, 149, 213398.		2
891	Miniaturizing chemistry and biology using droplets in open systems. Nature Reviews Chemistry, 2023, 7, 439-455.	13.8	8
892	Reversible Molecular Capture and Release in Microfluidics by Host–Guest Interactions in Hydrogel Microdots. Macromolecular Rapid Communications, 2023, 44, .	2.0	2
893	Integrating CRISPR-Cas12a into a Microfluidic Dual-Droplet Device Enables Simultaneous Detection of HPV16 and HPV18. Analytical Chemistry, 2023, 95, 3476-3485.	3.2	15
895	Multifunctional liquid microrobots based on paramagnetic microdroplets. Cell Reports Physical Science, 2023, 4, 101279.	2.8	2
896	Porosity control of polylactic acid porous microneedles using microfluidic technology. , 2022, , .		0
897	Magnetic Nonâ€ S pherical Particles Inducing Vortices in Microchannel for Effective Mixing. Small, 2023, 19, .	5.2	2
898	Advances in Microscale Droplet Generation and Manipulation. Langmuir, 2023, 39, 2461-2482.	1.6	10
899	Microfluidic preparation of optical sensors for biomedical applications. , 2023, 2, .		7
900	Liquid Shuttle Mediated by Microwick for Openâ€Air Microfluidics. Advanced Functional Materials, 2023, 33, .	7.8	2
901	DNA–Polyelectrolyte Composite Responsive Microparticles for Versatile Chemotherapeutics Cleaning. Research, 2023, 6, 0083.	2.8	0
902	Detection of Rice Fungal Spores Based on Micro- Hyperspectral and Microfluidic Techniques. Biosensors, 2023, 13, 278.	2.3	1
903	Cost-Effective Droplet Generator for Portable Bio-Applications. Micromachines, 2023, 14, 466.	1.4	2
904	Process and performance of DAAF microspheres prepared by continuous integration from synthesis to spherical coating based on microfluidic system. Defence Technology, 2024, 32, 629-643.	2.1	2

	Сітат	ION REPORT	
#	Article	IF	Citations
905	Microfluidic Devices with Electrochemical Detection Towards Covid-19 Detection. , 2023, , 21-39.		0
906	Porous Structural Microfluidic Device for Biomedical Diagnosis: A Review. Micromachines, 2023, 14, 547.	1.4	2
907	Partitioning-Induced Isolation of Analyte and Analysis via Multiscaled Aqueous Two-Phase System. Analytical Chemistry, 2023, 95, 4644-4652.	3.2	3
909	Facile and Scalable Rotation-Based Microfluidics for Controllable Production of Emulsions, Microparticles, and Microfibers. Industrial & Engineering Chemistry Research, 2023, 62, 4373-4387.	1.8	1
910	Self-synchronization of reinjected droplets for high-efficiency droplet pairing and merging. Microsystems and Nanoengineering, 2023, 9, .	3.4	4
911	High-throughput screening of microbial strains in large-scale microfluidic droplets. Frontiers in Bioengineering and Biotechnology, 0, 11, .	2.0	1
912	Droplet-induced optical effects in an opto-microfluidic cross-configuration system. Physics of Fluids, 2023, 35, .	1.6	2
913	Modular microfluidics for life sciences. Journal of Nanobiotechnology, 2023, 21, .	4.2	16
914	Microfluidic Methods for Generation of Submicron Droplets: A Review. Micromachines, 2023, 14, 638.	1.4	1
915	Droplet Microfluidic Synthesis of Halide Perovskites Affords Upconversion Lasing in Mie-Resonant Cuboids. ACS Applied Nano Materials, 2023, 6, 4370-4378.	2.4	1
916	Autonomous and directional flow of water and transport of particles across a subliming dynamic crystal surface. Nature Chemistry, 2023, 15, 677-684.	6.6	2
917	Multidimensional Protein Solubility Optimization with an Ultrahigh-Throughput Microfluidic Platform. Analytical Chemistry, 2023, 95, 5362-5368.	3.2	0
918	Shell engineering in soft alginateâ€based capsules for culturing liver spheroids. Biotechnology Journal, 2023, 18, .	1.8	2
919	Multifunctional Droplets Formed by Interfacially Self-Assembled Fluorinated Magnetic Nanoparticles for Biocompatible Single Cell Culture and Magnet-Driven Manipulation. ACS Applied Materials & Interfaces, 2023, 15, 17324-17334.	4.0	2
920	Multiphysics of microfluidics and nanofluidics. Journal of Applied Physics, 2023, 133, 120401.	1.1	0
921	Biomimetic natural biomaterials for tissue engineering and regenerative medicine: new biosynthesis methods, recent advances, and emerging applications. Military Medical Research, 2023, 10, .	1.9	23
922	Droplet microreactor for high-throughput fluorescence-based measurements of single catalyst particle acidity. Microsystems and Nanoengineering, 2023, 9, .	3.4	1
923	Construction of Polymeric DNA Network and Application for Cell Manipulation. Chinese Journal of Chemistry, 2023, 41, 1875-1887.	2.6	1

#	Article	IF	CITATIONS
924	In situ droplet-based on-tissue chemical derivatization for lipid isomer characterization using LESA. Analytical and Bioanalytical Chemistry, 0, , .	1.9	0
925	Microfluidic Spontaneous Emulsification for Generation of O/W Nanoemulsions—Opportunity for Inâ€Space Manufacturing. Advanced Healthcare Materials, 2023, 12, .	3.9	1
926	Hierarchical Spinning of Janus Textiles with Anisotropic Wettability for Wound Healing. Research, 2023, 6, .	2.8	16
927	Auto Flow-Focusing Droplet Reinjection Chip-Based Integrated Portable Droplet System (iPODs). Analytical Chemistry, 2023, 95, 6672-6680.	3.2	3
928	Homogeneous, heterogeneous, and enzyme catalysis in microfluidics droplets. , 2023, 1, .		8
929	Sunset Yellow Confined in Curved Geometry: A Microfluidic Approach. Langmuir, 0, , .	1.6	1
930	Droplet-based microfluidics. Nature Reviews Methods Primers, 2023, 3, .	11.8	27
931	Emerging open-channel droplet arrays for biosensing. National Science Review, 2023, 10, .	4.6	5
932	Microfluidic devices and their applicability to cell studies. , 2023, , 27-118.		0
950	Synthesis of nanoparticles via microfluidic devices and integrated applications. Mikrochimica Acta, 2023, 190, .	2.5	3
975	Optical pH Monitoring in Microdroplet Platforms for Live Cell Experiments Using Colloidal Surfactants. Methods in Molecular Biology, 2023, , 39-51.	0.4	0
992	Tailoring biomaterials for biomimetic organs-on-chips. Materials Horizons, 2023, 10, 4724-4745.	6.4	5
994	Ion-modulated interfacial fluorescence in droplet microfluidics using an ionophore-doped oil. Chemical Communications, 2023, 59, 11867-11870.	2.2	0
998	Microfluidic synthesis of nanomaterials for biomedical applications. Nanoscale Horizons, 0, , .	4.1	0
1031	Numerical Simulation of 3D Printed Resin Droplet-Based Microfluidic Device With T-Junction Geometry. , 2023, , .		0
1041	Recent progress in digital immunoassay: how to achieve ultrasensitive, multiplex and clinical accessible detection?. Sensors & Diagnostics, 2024, 3, 9-27.	1.9	1
1049	Microfluidics: a concise review of the history, principles, design, applications, and future outlook. Biomaterials Science, 2024, 12, 218-251.	2.6	2
1053	Simulation of droplet generation in microfluidic T-junction device for micro-encapsulation process. AIP Conference Proceedings, 2023, , .	0.3	0

			CITATION REF	PORT	
#	Article			IF	CITATIONS
1070	Development and future of droplet microfluidics. Lab on A Chip, 2024, 24, 1135-1153.			3.1	2
1074	Parametric Investigation of Droplet Generation Inside T-Junction Microchannel. Lecture Mechanical Engineering, 2024, , 157-165.	Notes in		0.3	0
1077	Role of quantum technology andÂartificial intelligence for nano-enabled microfluidics. 189-208.	, 2024, ,			0
1078	Contemporary developments, trends, and challenges in cancer phototheranostics. , 20	24, , 1-20.			0
1084	3D-printed droplet-based microfluidic sensor based on ion beam-induced graphitic elec diamond for dopamine detection. , 2024, , .	trodes on			0
1086	The development of droplet-based microfluidic virus detection technology for human in diseases. Analytical Methods, 2024, 16, 971-978.	nfectious		1.3	0
1091	Microfluidic systems for infectious disease diagnostics. Lab on A Chip, 2024, 24, 1441-	-1493.		3.1	0
1097	Hydrodynamics of Two-Phase Immiscible Flow in T-Junction Microchannel. Lecture Note Mechanical Engineering, 2024, 267-275.	es in		0.3	0