Plant fibre based bio-composites: Sustainable and renev

Renewable and Sustainable Energy Reviews 79, 558-584 DOI: 10.1016/j.rser.2017.05.094

Citation Report

#	Article	IF	CITATIONS
1	Multiscale tribo-mechanical analysis of natural fiber composites for manufacturing applications. Tribology International, 2018, 122, 143-150.	5.9	38
2	Ï€â€ <scp>P</scp> lasmon absorbance films of carboxylic functionalized <scp>CNT</scp> s coupled with renewable <scp>PGP</scp> platforms. Polymers for Advanced Technologies, 2018, 29, 1861-1869.	3.2	5
3	The tensile strength of mechanical joint prototype of lontar fiber composite. IOP Conference Series: Materials Science and Engineering, 2018, 316, 012049.	0.6	2
4	Optimal manufacturing and mechanical characterization of high performance biocomposites reinforced by sisal fibers. Composite Structures, 2018, 194, 575-583.	5.8	37
5	X-ray diffraction study on new organic- natural building materials. Procedia Manufacturing, 2018, 22, 372-379.	1.9	5
6	Novel Biocomposites Based on Sunflower Oil and Alfa Fibers as Renewable Resources. Journal of Polymers and the Environment, 2018, 26, 3086-3096.	5.0	17
7	Mechanical and thermal properties of biocomposites from nonwoven industrial Fique fiber mats with Epoxy Resin and Linear Low Density Polyethylene. Results in Physics, 2018, 8, 461-467.	4.1	49
8	Multifunctional green nanostructured composites: preparation and characterization. Materials Research Express, 2018, 5, 055010.	1.6	4
9	The influence of the binder and volcanic rocks in natural-organic building materials. Procedia Manufacturing, 2018, 22, 364-371.	1.9	1
10	Effects of sodium carbonate on the performance of epoxy and polyester coir-reinforced composites. Polymer Testing, 2018, 67, 533-544.	4.8	80
11	Structural design and test of automobile bonnet with natural flax composite through impact damage analysis. Composite Structures, 2018, 184, 800-806.	5.8	42
12	Effect of fiber orientation on tensile behavior of biocomposites prepared from nettle and poly(lactic) Tj ETQq1 1	0.784314 12.0	rg $_{16}^{BT}$ /Overic
13	Natural Fibers and Biopolymers Characterization: A Future Potential Composite Material. Strojnicky Casopis, 2018, 68, 33-50.	0.9	62
14	Experimental investigation on morphological, physical and shear properties of hybrid composite laminates reinforced with flax and carbon fibers. Journal of the Chinese Advanced Materials Society, 2018, 6, 640-654.	0.7	19
15	Cutting force analysis on drilling parameters of sugarcane fibre reinforced polymer composite. IOP Conference Series: Materials Science and Engineering, 0, 402, 012183.	0.6	3
16	Thermo-mechanical Effects in Mechanical Polishing of Natural Fiber Composites. Procedia Manufacturing, 2018, 26, 294-304.	1.9	9
17	Thermal Effects on Tribological Behavior in Machining Natural Fiber Composites. Procedia Manufacturing, 2018, 26, 305-316.	1.9	15
18	Natural Fibre Composites and Their Applications: A Review. Journal of Composites Science, 2018, 2, 66.	3.0	424

#	Article	IF	CITATIONS
19	Assessment of Induced Delamination During End-Milling of Natural Fiber Reinforced Composites: A Statistical Analysis. , 2018, , .		1
20	Effect of carbon nanotube (CNT) concentration on flexural properties of flax hybrid bio-composite. AIP Conference Proceedings, 2018, , .	0.4	3
21	The importance of surfaces and interfaces in clays for water remediation processes. Surface Topography: Metrology and Properties, 2018, 6, 043001.	1.6	6
22	Preparation and properties of carbonâ€fiber―and pineâ€coneâ€fiberâ€reinforced highâ€density polyethylene composites. Journal of Applied Polymer Science, 2019, 136, 47304.	2.6	9
23	Construction of Hierarchical Natural Fabric Surface Structure Based on Two-Dimensional Boron Nitride Nanosheets and Its Application for Preparing Biobased Toughened Unsaturated Polyester Resin Composites. ACS Applied Materials & Interfaces, 2018, 10, 40168-40179.	8.0	43
24	Synthesis and structure characterization of polymeric nanoporous microspheres with lignin. Cellulose, 2018, 25, 5843-5862.	4.9	29
25	Investigations on short coir fibre–reinforced composites via full factorial design. Polymers and Polymer Composites, 2018, 26, 391-399.	1.9	32
26	Recent Advances in Polyethylene-Based Biocomposites. , 2018, , 71-96.		6
27	Experimental study of expanded cork agglomerate blocks – Compressive creep behavior and dynamic performance. Construction and Building Materials, 2018, 181, 551-564.	7.2	8
28	Perspectives on the basic and applied aspects of crassulacean acid metabolism (CAM) research. Plant Science, 2018, 274, 394-401.	3.6	18
29	Maximum tangential stress coupled with probabilistic aspect of fracture toughness of hybrid bio-composite. Engineering Science and Technology, an International Journal, 2018, 21, 201-214.	3.2	8
30	The Evaluation of Physio-Mechanical and Tribological Characterization of Friction Composites Reinforced by Waste Corn Stalk. Materials, 2018, 11, 901.	2.9	25
31	Natural fibre reinforced non-asbestos organic non-metallic friction composites: effect of abaca fibre on mechanical and tribological behaviour. Materials Research Express, 2018, 5, 055101.	1.6	23
32	Fabrication and characterization of chitosan coated human hair reinforced phytagel modified soy protein-based green composite. Journal of the Mechanical Behavior of Materials, 2018, 27, .	1.8	10
33	Development and characterization of alkali treated abaca fiber reinforced friction composites. Composite Interfaces, 2019, 26, 67-82.	2.3	63
34	Natural Fiber-Based Hybrid Bio-composites: Processing, Characterization, and Applications. Textile Science and Clothing Technology, 2019, , 1-46.	0.5	16
35	The effect of lignin on the physicomechanical, tribological, and morphological performance indicators of corn stalk fiber-reinforced friction materials. Materials Research Express, 2019, 6, 105325.	1.6	7
36	Sustainable Alternative Composites Using Waste Vegetable Oil Based Resins. Journal of Polymers and the Environment, 2019, 27, 2464-2477.	5.0	24

#	ARTICLE	IF	Citations
37	Effect of comingling techniques on mechanical properties of natural fibre reinforced cross-ply thermonlastic composites. Composites Part B: Engineering, 2019, 177, 107279	12.0	44
38	Rheology and buildability of sustainable cement-based composites containing micro-crystalline cellulose for 3D-printing. Journal of Cleaner Production, 2019, 239, 118054.	9.3	118
39	Effects of stacking sequences on static, dynamic mechanical and thermal properties of completely biodegradable green epoxy hybrid composites. Materials Research Express, 2019, 6, 105351.	1.6	43
40	Physico-Mechanical and Thermodynamic Properties of Mycelium-Based Biocomposites: A Review. Sustainability, 2019, 11, 281.	3.2	126
41	Investigation into mechanical, absorption and swelling behaviour of hemp/sisal fibre reinforced bioepoxy hybrid composites: Effects of stacking sequences. International Journal of Biological Macromolecules, 2019, 140, 637-646.	7.5	117
42	Investigation of Thermoplastic Polyurethanes Synthesized via Two Different Prepolymers. Journal of Polymers and the Environment, 2019, 27, 2588-2599.	5.0	37
43	Green Composite Materials from Biopolymers Reinforced with Agroforestry Waste. Journal of Polymers and the Environment, 2019, 27, 2651-2673.	5.0	34
44	Micromechanical modeling of the machining behavior of natural fiber-reinforced polymer composites. International Journal of Advanced Manufacturing Technology, 2019, 105, 1549-1561.	3.0	14
45	Investigation of the possible origins of the differences in mechanical properties of hemp and flax fibres: A numerical study based on sensitivity analysis. Composites Part A: Applied Science and Manufacturing, 2019, 124, 105488.	7.6	17
46	Recent developments in the synthesis of poly(hydroxybutyrate) based biocomposites. Biotechnology Progress, 2019, 35, e2855.	2.6	20
47	Additive manufacturing of natural fiber reinforced polymer composites: Processing and prospects. Composites Part B: Engineering, 2019, 174, 106956.	12.0	329
48	Review of Functional Properties of Natural Fiber-Reinforced Polymer Composites: Thermal Insulation, Biodegradation and Vibration Damping Properties. Advanced Composite Materials, 2019, 28, 525-543.	1.9	41
49	Effects of sol-gel modification on the interfacial and mechanical properties of sisal fiber reinforced polypropylene composites. Industrial Crops and Products, 2019, 137, 89-97.	5.2	31
50	Characterization of natural cellulose fiber from corn stalk waste subjected to different surface treatments. Cellulose, 2019, 26, 4707-4719.	4.9	97
51	Natural fiber-reinforced mortars. Journal of Building Engineering, 2019, 25, 100786.	3.4	69
52	Tribo-functional effects of double-crossed helix on surface finish, cutting friction and tool wear mechanisms during the milling process of natural fiber composites. Wear, 2019, 426-427, 1507-1514.	3.1	22
53	Critical Review of the Parameters Affecting the Effectiveness of Moisture Absorption Treatments Used for Natural Composites. Journal of Composites Science, 2019, 3, 27.	3.0	81
54	Eco-friendly sodium bicarbonate treatment and its effect on epoxy and polyester coir fibre composites. Construction and Building Materials, 2019, 211, 427-436.	7.2	49

#	Article	IF	CITATIONS
55	Modified pullout test for indirect characterization of natural fiber and cementitious matrix interface properties. Construction and Building Materials, 2019, 208, 381-393.	7.2	42
56	Characterization of bio-carbon and ligno-cellulosic fiber reinforced bio-composites with compatibilizer. Construction and Building Materials, 2019, 204, 193-202.	7.2	47
57	Fabrication and characterization of chitosan-coated sisal fiber – Phytagel modified soy protein-based green composite. Journal of Composite Materials, 2019, 53, 2481-2504.	2.4	75
58	Microstructural and Thermo-Physical Characterization of a Water Hyacinth Petiole for Thermal Insulation Particle Board Manufacture. Materials, 2019, 12, 560.	2.9	27
59	Mode-I interlaminar fracture toughness of flax, glass and hybrid flax-glass fibre woven composites: Failure mechanism evaluation using acoustic emission analysis. Polymer Testing, 2019, 75, 246-253.	4.8	50
60	Static and Dynamic Mechanical Properties of Eco-friendly Polymer Composites. , 2019, , 259-292.		5
61	Research status of anion in treating water by biomass adsorbent. IOP Conference Series: Earth and Environmental Science, 2019, 332, 032033.	0.3	0
62	Impact Behavior of Sustainable Sandwich Panels with Flax FRP Faces and Cardboard Cores. , 2019, , .		2
63	Analysis of Sisal Fiber Waviness Effect on the Elastic Properties of Natural Composites Using Analytical and Experimental Methods. Journal of Natural Fibers, 2021, 18, 1675-1688.	3.1	14
64	Review of natural fiber-reinforced engineering plastic composites, their applications in the transportation sector and processing techniques. Journal of Thermoplastic Composite Materials, 2022, 35, 1169-1209.	4.2	130
65	Effect of layering pattern on the mechanical properties of jute-linen reinforced polypropylene hybrid laminated composites. Materials Today: Proceedings, 2019, 18, 4182-4189.	1.8	2
66	Effects of cellulose nanofibrils on the structure and properties of maleic anhydride crosslinked poly(vinyl alcohol) electrospun nanofibers. SN Applied Sciences, 2019, 1, 1.	2.9	0
67	Natural-synthetic fiber reinforced homogeneous and functionally graded vinylester composites: Effect of bagasse-Kevlar hybridization on wear behavior. Journal of Materials Research and Technology, 2019, 8, 5961-5971.	5.8	39
68	Utilization of Areca Nut Leaf Sheath Fibers for the Extraction of Cellulose Whiskers. Journal of Natural Fibers, 2021, 18, 1261-1273.	3.1	7
69	Effect of varying reinforcement content on the mechanical properties of hemp-recycled HDPE composites. Materials Today: Proceedings, 2019, 18, 5286-5291.	1.8	7
70	Processing of Green Composites. Textile Science and Clothing Technology, 2019, , 47-72.	0.5	10
71	Mechanical Properties' Evaluation of Hemp Fibre-Reinforced Polymer Composites. Lecture Notes in Mechanical Engineering, 2019, , 343-351.	0.4	7
72	Flax (Linum usitatissimum L.) fibre reinforced polymer composite materials: A review on preparation, properties and prospects. Progress in Materials Science, 2019, 102, 109-166.	32.8	162

.,		15	Circiana
#	ARTICLE	IF	CHATIONS
73	nanocrystals/ZnS quantum dots/polyvinyl alcohol. Cellulose, 2019, 26, 2363-2373.	4.9	27
74	Influence of silane treatment on the mechanical, tribological and morphological properties of corn stalk fiber reinforced polymer composites. Tribology International, 2019, 131, 398-405.	5.9	118
75	High-toughness natural polymer nonwoven preforms inspired by silkworm cocoon structure. International Journal of Biological Macromolecules, 2019, 127, 146-152.	7.5	16
76	Threeâ€dimensional printing of poly(lactic acid) bioâ€based composites with sugarcane bagasse fiber: Effect of printing orientation on tensile performance. Polymers for Advanced Technologies, 2019, 30, 910-922.	3.2	111
77	Multilayer cotton fabric bio-composites based on PLA and PHB copolymer for industrial load carrying applications. Composites Part B: Engineering, 2019, 163, 761-768.	12.0	44
78	Carbon footprint considerations for biocomposite materials for sustainable products: A review. Journal of Cleaner Production, 2019, 208, 785-794.	9.3	55
79	Comparative study of oil palm trunk and rice husk as fillers in gypsum composite for building material. Construction and Building Materials, 2019, 197, 526-532.	7.2	26
80	Voids in biocomposites and their hybrids. , 2019, , 193-213.		0
81	Investigation of Microfibril Angle of Flax Fibers Using X-Ray Diffraction and Scanning Electron Microscopy. Journal of Natural Fibers, 2020, 17, 1001-1010.	3.1	13
82	Mechanical and aging resistance properties of polypropylene (PP) reinforced with nanocellulose/attapulgite composites (NCC/AT). Composite Interfaces, 2020, 27, 73-85.	2.3	17
83	Tribological behavior of glass/sisal fiber reinforced polyester composites. Polymer Composites, 2020, 41, 112-120.	4.6	19
84	The Effect of Filler Loading and Silane Treatment on Kenaf Core Reinforced Polyurethane Composites: Mechanical and Thermal Properties. Journal of Polymers and the Environment, 2020, 28, 517-531.	5.0	17
85	Advances in Unconventional Machining and Composites. Lecture Notes on Multidisciplinary Industrial Engineering, 2020, , .	0.6	1
86	On the mixed mode I/II/III inter-laminar fracture toughness of cotton/epoxy laminated composites. Theoretical and Applied Fracture Mechanics, 2020, 105, 102400.	4.7	19
87	Building incorporated bio-based materials: Experimental and numerical study. Journal of Building Engineering, 2020, 28, 101088.	3.4	19
88	Development of sustainable jute geotextiles by bitumen emulsion and polyester resin: Effect of gamma radiation. Journal of Engineered Fibers and Fabrics, 2020, 15, 155892502095796.	1.0	6
89	Structural performance of fibrous plaster. Part 1: Physical and mechanical properties of hessian and glass fibre reinforced gypsum composites. Construction and Building Materials, 2020, 259, 120396.	7.2	16
90	Inverse approach for flax yarns mechanical properties identification from statistical mechanical characterization of the fabric. Mechanics of Materials, 2020, 151, 103638.	3.2	6

#	Article	IF	CITATIONS
91	Dual cantilever creep and recovery behavior of sisal/hemp fibre reinforced hybrid biocomposites: Effects of layering sequence, accelerated weathering and temperature. Journal of Industrial Textiles, 2022, 51, 2372S-2390S.	2.4	18
92	A novel sandwich panel made of prepreg flax skins and bamboo core. Composites Part C: Open Access, 2020, 3, 100048.	3.2	6
93	Recent Progress in Hybrid Biocomposites: Mechanical Properties, Water Absorption, and Flame Retardancy. Materials, 2020, 13, 5145.	2.9	52
94	Advanced polymeric composites via commingling for critical engineering applications. Polymer Testing, 2020, 91, 106774.	4.8	15
95	Low-velocity impact behaviour of green epoxy biocomposite laminates reinforced by sisal fibers. Composite Structures, 2020, 253, 112744.	5.8	35
96	Study of translaminar fracture toughness of unidirectional flax/epoxy composite. Composites Part C: Open Access, 2020, 1, 100008.	3.2	3
97	The effect of composition on hardness and wear resistance of rice plant fiber reinforced composite as a material of brake lining. IOP Conference Series: Materials Science and Engineering, 2020, 771, 012069.	0.6	2
98	Investigation of characteristics of bamboo fiber for composite structures. IOP Conference Series: Materials Science and Engineering, 2020, 850, 012028.	0.6	4
99	Enhancing Mechanical Performance of Bagasse Fiber-Epoxy Composite by Surface Treatment. Solid State Phenomena, 2020, 305, 8-17.	0.3	1
100	A Review on Plant Cellulose Nanofibre-Based Aerogels for Biomedical Applications. Polymers, 2020, 12, 1759.	4.5	154
100 101	A Review on Plant Cellulose Nanofibre-Based Aerogels for Biomedical Applications. Polymers, 2020, 12, 1759. Tensile and flexural properties of epoxy laminates with natural papaya bast fibre cellular layers. Composites Part C: Open Access, 2020, 2, 100017.	4.5 3.2	154 4
100 101 102	A Review on Plant Cellulose Nanofibre-Based Aerogels for Biomedical Applications. Polymers, 2020, 12, 1759. Tensile and flexural properties of epoxy laminates with natural papaya bast fibre cellular layers. Composites Part C: Open Access, 2020, 2, 100017. The effect of cryogenically treated drilling tool on GFRP composite drilling holes-A comparative study. Materials Today: Proceedings, 2020, 33, 4362-4367.	4.5 3.2 1.8	154 4 4
100 101 102 103	A Review on Plant Cellulose Nanofibre-Based Aerogels for Biomedical Applications. Polymers, 2020, 12, 1759.Tensile and flexural properties of epoxy laminates with natural papaya bast fibre cellular layers. Composites Part C: Open Access, 2020, 2, 100017.The effect of cryogenically treated drilling tool on GFRP composite drilling holes-A comparative study. Materials Today: Proceedings, 2020, 33, 4362-4367.Sisal xylem fibre-based activated carbon fibres for fuel adsorption: effect of thermal stabilization of diammonium phosphate. Royal Society Open Science, 2020, 7, 200966.	4.5 3.2 1.8 2.4	154 4 4 1
100 101 102 103	A Review on Plant Cellulose Nanofibre-Based Aerogels for Biomedical Applications. Polymers, 2020, 12, 1759. Tensile and flexural properties of epoxy laminates with natural papaya bast fibre cellular layers. Composites Part C: Open Access, 2020, 2, 100017. The effect of cryogenically treated drilling tool on CFRP composite drilling holes-A comparative study. Materials Today: Proceedings, 2020, 33, 4362-4367. Sisal xylem fibre-based activated carbon fibres for fuel adsorption: effect of thermal stabilization of diammonium phosphate. Royal Society Open Science, 2020, 7, 200966. Influence of eggshell particles on mechanical and water absorption properties of hemp-glass fibres reinforced hybrid composites. IOP Conference Series: Materials Science and Engineering, 2020, 923, 012042.	4.5 3.2 1.8 2.4 0.6	154 4 4 1 3
 100 101 102 103 104 105 	A Review on Plant Cellulose Nanofibre-Based Aerogels for Biomedical Applications. Polymers, 2020, 12, 1759.Tensile and flexural properties of epoxy laminates with natural papaya bast fibre cellular layers. Composites Part C: Open Access, 2020, 2, 100017.The effect of cryogenically treated drilling tool on GFRP composite drilling holes-A comparative study. Materials Today: Proceedings, 2020, 33, 4362-4367.Sisal xylem fibre-based activated carbon fibres for fuel adsorption: effect of thermal stabilization of diammonium phosphate. Royal Society Open Science, 2020, 7, 200966.Influence of eggshell particles on mechanical and water absorption properties of hemp-glass fibres reinforced hybrid composites. IOP Conference Series: Materials Science and Engineering, 2020, 923, 012042.Modelling and optimisation of natural fibre reinforced polymer nanocomposite: application of mixture-design technique. Multidiscipline Modeling in Materials and Structures, 2020, 17, 507-521.	4.5 3.2 1.8 2.4 0.6 1.3	154 4 4 1 3 6
 100 101 102 103 104 105 106 	A Review on Plant Cellulose Nanofibre-Based Aerogels for Biomedical Applications. Polymers, 2020, 12, 1759. Tensile and flexural properties of epoxy laminates with natural papaya bast fibre cellular layers. Composites Part C: Open Access, 2020, 2, 100017. The effect of cryogenically treated drilling tool on GFRP composite drilling holes-A comparative study. Materials Today: Proceedings, 2020, 33, 4362-4367. Sisal xylem fibre-based activated carbon fibres for fuel adsorption: effect of thermal stabilization of diammonium phosphate. Royal Society Open Science, 2020, 7, 200966. Influence of eggshell particles on mechanical and water absorption properties of hemp-glass fibres reinforced hybrid composites. IOP Conference Series: Materials Science and Engineering, 2020, 923, 012042. Modelling and optimisation of natural fibre reinforced polymer nanocomposite: application of mixture-design technique. Multidiscipline Modeling in Materials and Structures, 2020, 17, 507-521. Potential of Cellulose Microfibers for PHA and PLA Biopolymers Reinforcement. Molecules, 2020, 25, 4653.	4.5 3.2 1.8 2.4 0.6 1.3 3.8	154 4 4 1 3 6 40
 100 101 102 103 104 105 106 107 	A Review on Plant Cellulose Nanofibre-Based Aerogels for Biomedical Applications. Polymers, 2020, 12, 1759. Tensile and flexural properties of epoxy laminates with natural papaya bast fibre cellular layers. Composites Part C: Open Access, 2020, 2, 100017. The effect of cryogenically treated drilling tool on CFRP composite drilling holes-A comparative study. Materials Today: Proceedings, 2020, 33, 4362-4367. Sisal xylem fibre-based activated carbon fibres for fuel adsorption: effect of thermal stabilization of diammonium phosphate. Royal Society Open Science, 2020, 7, 200966. Influence of eggshell particles on mechanical and water absorption properties of hemp-glass fibres reinforced hybrid composites. IOP Conference Series: Materials Science and Engineering, 2020, 923, 012042. Modelling and optimisation of natural fibre reinforced polymer nanocomposite: application of mixture-design technique. Multidiscipline Modeling in Materials and Structures, 2020, 17, 507-521. Potential of Cellulose Microfibers for PHA and PLA Biopolymers Reinforcement. Molecules, 2020, 25, 4653. Recycled polyethylene bottle caps as sandwich panel circular honeycomb: Experimental and numerical approach. Polymer Composites, 2020, 41, 4678-4691.	 4.5 3.2 1.8 2.4 0.6 1.3 3.8 4.6 	154 4 4 1 3 6 40 8

#	Article	IF	CITATIONS
109	Sustainable and Renewable Bio-Based Natural Fibres and Its Application for 3D Printed Concrete: A Review. Sustainability, 2020, 12, 10485.	3.2	54
110	Biomass derived Fibers as a Substitute to Synthetic Fibers in Polymer Composites. ChemBioEng Reviews, 2020, 7, 193-215.	4.4	14
111	Potential Application of Green Composites for Cross Arm Component in Transmission Tower: A Brief Review. International Journal of Polymer Science, 2020, 2020, 1-15.	2.7	80
112	Effects of magnesium carbonate concentration and lignin presence on properties of natural cellulosic Cissus quadrangularis fiber composites. International Journal of Biological Macromolecules, 2020, 164, 3611-3620.	7.5	14
113	Influence of Eggshell Nanoparticles and Effect of Alkalization on Characterization of Industrial Hemp Fibre Reinforced Epoxy Composites. Journal of Polymers and the Environment, 2020, 28, 2178-2190.	5.0	50
114	Mechanical and free vibration properties of skin and core designed basalt woven intertwined with flax layered polymeric laminates. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2020, 234, 4505-4519.	2.1	31
115	Effect of Alkalization on Characterization of Ripe Bulrush (<i>Typha Domingensis</i>) Grass Fiber Reinforced Epoxy Composites. Journal of Natural Fibers, 2022, 19, 931-942.	3.1	31
116	Structural Behavior of Sandwich Beams with Flax Fiber–Reinforced Polymer Faces and Cardboard Cores under Monotonic and Impact Loads. Journal of Architectural Engineering, 2020, 26, .	1.6	17
117	Potential and Applications of Green Composites in Industrial Space. Materials Today: Proceedings, 2020, 22, 2041-2048.	1.8	34
118	Experiments and nonlinear analysis of the impact behaviour of sandwich panels constructed with flax fibre-reinforced polymer faces and foam cores. Journal of Sandwich Structures and Materials, 2021, 23, 3139-3163.	3.5	15
119	Spraying Preparation of Eco-Friendly Superhydrophobic Coatings with Ultralow Water Adhesion for Effective Anticorrosion and Antipollution. ACS Applied Materials & Interfaces, 2020, 12, 25484-25493.	8.0	61
120	Study on a Novel natural cellulosic fiber from Kigelia africana fruit: Characterization and analysis. Carbohydrate Polymers, 2020, 244, 116494.	10.2	86
121	In-Situ Biofabrication of Silver Nanoparticles in Ceiba pentandra Natural Fiber Using Entada spiralis Extract with Their Antibacterial and Catalytic Dye Reduction Properties. Nanomaterials, 2020, 10, 1104.	4.1	18
122	Dynamic Characteristics of Honeycomb Sandwich Beam Made with Jute/Epoxy Composite Skin. Emerging Materials Research, 2020, 9, 1-12.	0.7	9
123	Environmental effects on hardness and wear resistance of composites reinforced by rice plant fiber as a material of brake lining. IOP Conference Series: Materials Science and Engineering, 2020, 771, 012071.	0.6	0
124	Effect of Modification Methods of Wheat Straw Fibers on Water Absorbency and Mechanical Properties of Wheat Straw Fiber Cement-Based Composites. Advances in Materials Science and Engineering, 2020, 2020, 1-14.	1.8	23
125	Effect of Straw Fiber Modification Methods on Compatibility between Straw Fibers and Cement-Based Materials. Advances in Civil Engineering, 2020, 2020, 1-16.	0.7	2
126	Effect of microcrystalline and microfibrillated cellulose on the evolution of hydration of cement pastes by thermogravimetry. Journal of Thermal Analysis and Calorimetry, 2020, 142, 1413-1428.	3.6	6

#	Article	IF	CITATIONS
127	A Study of the Interlaminar Fracture Toughness of Unidirectional Flax/Epoxy Composites. Journal of Composites Science, 2020, 4, 66.	3.0	12
128	A Study About Water/Alkali Treatments of Hemp Fiber on Ultraviolet Ageing of the Reinforced Polypropylene Composites. Journal of Polymers and the Environment, 2020, 28, 2572-2583.	5.0	16
129	Durability Evaluation of Cement Board produced from Untreated and Pre-treated Empty Fruit Bunch Fibre through Accelerating Ageing. IOP Conference Series: Materials Science and Engineering, 2020, 713, 012019.	0.6	4
130	Synthetic materials to bionanocomposites: an overview. , 2020, , 1-20.		4
131	Novel biodegradable polymer films based on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and Ceiba pentandra natural fibers for packaging applications. Food Packaging and Shelf Life, 2020, 25, 100538.	7.5	57
132	The mechanical, thermal and sound absorption properties of flexible polyurethane foam composites reinforced with artichoke stem waste fibers. Journal of Industrial Textiles, 2022, 51, 8738S-8763S.	2.4	17
133	A sugar-beet waste based thermoplastic agro-composite as substitute for raw materials. Journal of Cleaner Production, 2020, 257, 120382.	9.3	23
134	Torsional fatigue in bamboo fibers reinforced epoxy resin composites. Engineering Research Express, 2020, 2, 015018.	1.6	4
135	Calculation and comparison on fracture toughness of specific reliability between ASTM and ISO standards. Materials Research Express, 2020, 7, 026529.	1.6	5
136	Hybrid Polyester Composites Reinforced with CurauÃ; Fibres and Nanoclays. Fibers and Polymers, 2020, 21, 399-406.	2.1	31
137	Non-wood fibers as raw material for pulp and paper industry. Nordic Pulp and Paper Research Journal, 2020, 35, 215-230.	0.7	101
138	The aluminum powder size' effect on rice plant fiber reinforced composite to hardness, wear and coefficient of friction of brake lining. IOP Conference Series: Materials Science and Engineering, 2020, 722, 012002.	0.6	10
139	Recycled low-density polyethylene composite to mitigate the environmental impacts generated from coal mining waste in Brazil. Journal of Environmental Management, 2020, 260, 110149.	7.8	15
140	Effect of flax fiber orientation on machining behavior and surface finish of natural fiber reinforced polymer composites. Journal of Manufacturing Processes, 2020, 54, 337-346.	5.9	42
141	Natural Fibers: Applications. , 0, , .		14
142	Numerical modeling of micro-friction and fiber orientation effects on the machinability of green composites. Tribology International, 2020, 150, 106380.	5.9	8
143	Large-scale tribological characterisation of eco-friendly basalt and jute fibre reinforced thermoset composites. Wear, 2020, 450-451, 203274.	3.1	11
144	Direct ink writing of surface-modified flax elastomer composites. Composites Part B: Engineering, 2020, 194, 108061.	12.0	16

#	Article	IF	CITATIONS
145	Water Absorption and Hygrothermal Aging Behavior of Wood-Polypropylene Composites. Polymers, 2020, 12, 782.	4.5	27
146	First report on fabrication and characterization of soybean hull fiber: polymer composite filaments for fused filament fabrication. Progress in Additive Manufacturing, 2021, 6, 39-52.	4.8	17
147	Impact of Alkali Treatment on Characterization of Tapsi (<i>Sterculia Urens</i>) Natural Bark Fiber Reinforced Polymer Composites. Journal of Natural Fibers, 2021, 18, 378-389.	3.1	40
148	Study on mechanical and thermomechanical properties of flax/glass fiber <scp>hybridâ€reinforced</scp> epoxy composites. Polymer Composites, 2021, 42, 714-723.	4.6	23
149	Rice plant waste reinforced polyurethane composites for use as the acoustic absorption material. Applied Acoustics, 2021, 173, 107733.	3.3	35
150	Polysaccharides and phenolics of miscanthus belowground cell walls and their influence on polyethylene composites. Carbohydrate Polymers, 2021, 251, 117086.	10.2	1
151	Multiscale Tribo-Mechanical Behavior of Natural Fiber Composites. , 2021, , 149-158.		1
152	Sustainability in e-commerce packaging: A review. Journal of Cleaner Production, 2021, 280, 124314.	9.3	131
153	Influence of Different Diss Fiber Treatments over the Properties of Poly Propylene/Recycled and Regenerated Low Density Polyethylene BasedÂBiocomposites. Journal of Polymers and the Environment, 2021, 29, 291-303.	5.0	1
154	Machining Behavior of Natural Fiber Composites. , 2021, , 168-185.		5
155	Mechanical and damping performances of flax fibre composites – A review. Composites Part C: Open Access, 2021, 4, 100081.	3.2	26
156	Morphological and structural analysis of treated sisal fibers and their impact on mechanical properties in cementitious composites. Journal of Building Engineering, 2021, 34, 102025.	3.4	11
157	Experimental investigation on mechanical properties of banana/snake grass fiber reinforced hybrid composites. Materials Today: Proceedings, 2021, 42, 350-355.	1.8	45
158	Drilling of In-Line Compression Molded Jute / Polypropylene Composites. Journal of Natural Fibers, 2021, 18, 91-104.	3.1	16
159	A Hierarchical Coupled Multi-Scale Model for Short Fiber Composites. , 0, , .		1
161	Automotive and construction applications of fiber reinforced composites. , 2021, , 785-819.		6
162	FEA analysis of ballistic impact on carbon nanotube bulletproof vest. Materials Today: Proceedings, 2021, 46, 3937-3940.	1.8	2
163	Bio-innovation of new-generation nonwoven natural fibrous materials for the footwear industry: Current state-of-the-art and sustainability panorama. Journal of Natural Fibers, 2022, 19, 4897-4907.	3.1	2

#	Article	IF	CITATIONS
164	Polymer blend natural fiber based composites. , 2021, , 215-239.		1
165	Ductile behaviour and dynamic mechanical analysis of hybrid bio composites. Materials Today: Proceedings, 2021, 46, 772-776.	1.8	5
166	Comprehensive review on plant fiber-reinforced polymeric biocomposites. Journal of Materials Science, 2021, 56, 7231-7264.	3.7	122
167	Tribological Behavior of Glass/Sisal Fiber Reinforced Polyester Composites. Composites Science and Technology, 2021, , 445-459.	0.6	15
168	A Review on Natural Fiber Bio-Composites, Surface Modifications and Applications. Molecules, 2021, 26, 404.	3.8	124
169	Two Body Wear Characteristics of Polyalthia Longifolia/Mangifera Indica/Jute Fiber Reinforced Epoxy Composites using Taguchi Technique. Materials Research, 2021, 24, .	1.3	3
170	Experimental investigation on stacking sequence of Kevlar and natural fibres/epoxy polymer composites. Polimeros, 2021, 31, .	0.7	4
171	Enhancement of Thermo-mechanical Properties of Okra Fiber by Photografting Technique. Journal of the Institution of Engineers (India): Series E, 2021, 102, 45-59.	0.9	2
172	Cocoa: Beyond chocolate, a promising material for potential value-added products. , 2021, , 267-288.		3
173	Date Palm fibre reinforced composite by multiple resin to enhance the properties of a composite - A Review. IOP Conference Series: Materials Science and Engineering, 0, 1013, 012034.	0.6	2
174	Banana fibre: a natural and sustainable bioresource for eco-friendly applications. Clean Technologies and Environmental Policy, 2021, 23, 1389-1401.	4.1	35
175	Morphology study of Agave fiber surface by using scanning electron microscopy. Journal of Physics: Conference Series, 2021, 1816, 012018.	0.4	0
176	Setting characteristics of natural cellulose fiber reinforced cement composite. Construction and Building Materials, 2021, 271, 121910.	7.2	37
177	Development and Characterization of Weft-Knitted Fabrics of Naturally Occurring Polymer Fibers for Sustainable and Functional Textiles. Polymers, 2021, 13, 665.	4.5	11
178	Properties of Biocomposites from Rapeseed Meal, Fruit Pomace and Microcrystalline Cellulose Made by Press Pressing: Mechanical and Physicochemical Characteristics. Materials, 2021, 14, 890.	2.9	17
179	Production and characterization of films based on gelatin, agave microfibers and nanoclays. Polymer Bulletin, 2022, 79, 1437-1466.	3.3	4
180	Biodegradation of acetyl cellulose etrols. IOP Conference Series: Earth and Environmental Science, 2021, 678, 012033.	0.3	0
181	Mechanical and Physical Characterisation of Typha domingensis-Based Thermal Insulation Boards for Developing Areas such as Nigeria. Waste and Biomass Valorization, 2021, 12, 5795-5806.	3.4	1

#	Article	IF	CITATIONS
183	Impact of Silane Treatment on Characterization of <i>Ipomoea Staphylina</i> Plant Fiber Reinforced Epoxy Composites. Journal of Natural Fibers, 2022, 19, 5888-5899.	3.1	52
184	Abrasive wear and dynamic–mechanical behavior of marble dust filled bagasse fiber reinforced hybrid polymer composites. Polymer Composites, 2021, 42, 2817-2828.	4.6	15
185	Mechanical and biodegradation analysis of fully biodegradable ecoâ€friendly natural fiber reinforced sapling pot. Polymer Composites, 2021, 42, 2910-2919.	4.6	9
186	An Overview of the Antimicrobial Properties of Lignocellulosic Materials. Molecules, 2021, 26, 1749.	3.8	27
187	Assessing the long-term potential of fiber reinforced polymer composites for sustainable marine construction. Journal of Ocean Engineering and Marine Energy, 2021, 7, 129-144.	1.7	7
188	Influence of Mercerization on the Physical and Mechanical Properties of Polymeric Composites Reinforced with Amazonian Fiber. Fibers and Polymers, 2021, 22, 1950-1956.	2.1	5
189	Characterization of a new natural fiber extracted from Corypha taliera fruit. Scientific Reports, 2021, 11, 7622.	3.3	46
190	Mechanical properties and moisture behaviour of neem/banyan fibres reinforced with polymer matrix hybrid composite. Advances in Materials and Processing Technologies, 2022, 8, 2349-2360.	1.4	3
191	The Empirical Analysis of Green Innovation for Fashion Brands, Perceived Value and Green Purchase Intention—Mediating and Moderating Effects. Sustainability, 2021, 13, 4238.	3.2	42
192	Environmental challenges induced by extensive use of face masks during COVID-19: A review and potential solutions. Environmental Challenges, 2021, 3, 100039.	4.2	214
193	Investigations on the Mechanical Properties of Natural Fiber Granulated Composite Using Hybrid Additive Manufacturing: A Novel Approach. Advances in Materials Science and Engineering, 2021, 2021, 1-12.	1.8	10
194	A Review on Green Composites Based on Natural Fiber-Reinforced Polybutylene Succinate (PBS). Polymers, 2021, 13, 1200.	4.5	56
195	Green composites and their contribution toward sustainability: A review. Polymers and Polymer Composites, 2021, 29, S1588-S1608.	1.9	18
196	Influence of Haritaki (Terminalia chebula) nano-powder on thermo-mechanical, water absorption and morphological properties of Tindora (Coccinia grandis) tendrils fiber reinforced epoxy composites. Journal of Natural Fibers, 2022, 19, 6452-6468.	3.1	42
197	Extraction, Treatment and Applications of Natural Fibers for Bio-Composites – A Critical Review. International Polymer Processing, 2021, 36, 114-130.	0.5	23
198	Investigations on Dynamic Mechanical Analysis and Crystalline Effect of Neem/Banyan Fiber–Reinforced Hybrid Polymer Composite. Journal of Testing and Evaluation, 2022, 50, 479-489.	0.7	10
199	Effect of cascara/testa natural fiber reinforced (epoxy based) hybrid composites. Journal of Physics: Conference Series, 2021, 1921, 012093.	0.4	2
200	Development of biomaterial fillers using eggshells, water hyacinth fibers, and banana fibers for green concrete construction. Construction and Building Materials, 2021, 283, 122627.	7.2	35

#	Article	IF	CITATIONS
201	Influence of fiber surface treatment on the tribological properties of <scp><i>Calotropis gigantea</i></scp> plant fiber reinforced polymer composites. Polymer Composites, 2021, 42, 4308-4317.	4.6	67
202	Progress and challenges in sustainability, compatibility, and production of <scp>ecoâ€composites</scp> : A <scp>stateâ€ofâ€art</scp> review. Journal of Applied Polymer Science, 2021, 138, 51284.	2.6	34
203	Post-impact residual strength and resilience of sandwich panels with natural fiber composite faces. Journal of Building Engineering, 2021, 38, 102184.	3.4	8
204	Experimental investigation of bamboo-concrete composite beams with threaded reinforcement connections. Journal of Sandwich Structures and Materials, 2022, 24, 601-626.	3.5	19
205	Extraction of new natural cellulosic fiber from Trachelospermum jasminoides (star jasmine) and its characterization for textile and composite uses. Cellulose, 2021, 28, 6899-6915.	4.9	26
207	An economical and environmentally benign approach to extract banana fibres from agricultural waste for fibre reinforced composites. Journal of the Textile Institute, 2022, 113, 1967-1973.	1.9	3
208	Rice husk cement-based composites for acoustic barriers and thermal insulating layers. Journal of Building Engineering, 2021, 39, 102297.	3.4	5
209	Structural, Morphological and Thermal Properties of Nano Filler Produced from Date Palm-Based Micro Fibers (Phoenix dactylifera L.). Journal of Polymers and the Environment, 2022, 30, 622-630.	5.0	8
210	Development of Natural Fiber Hybrid Composites Using Sugarcane Bagasse and Bamboo Charcoal for Automotive Thermal Insulation Materials. Advances in Materials Science and Engineering, 2021, 2021, 1-10.	1.8	25
211	Investigation of tribological, physicomechanical, and morphological properties of resin-based friction materials reinforced with Agave americana waste. Materials Research Express, 2021, 8, 075308.	1.6	6
212	A review on biomolecular immobilization of polymeric textile biocomposites, bionanocomposites, and nano-biocomposites. Journal of the Textile Institute, 2022, 113, 2016-2032.	1.9	13
213	Core–Shell Microcapsules from Unpurified Legume Flours. ACS Applied Materials & Interfaces, 2021, 13, 37598-37608.	8.0	12
214	On the use of prickly pear seed fibres as reinforcement in polylactic acid biocomposites. Emergent Materials, 2022, 5, 859-872.	5.7	4
215	Critical Factors for Optimum Biodegradation of Bast Fiber's Gums in Bacterial Retting. Fibers, 2021, 9, 52.	4.0	5
216	Evaluation of Mechanical and Thermal Properties of Jute and Ramie Reinforced Epoxy-based Hybrid Composites. Journal of Natural Fibers, 2022, 19, 8022-8032.	3.1	66
217	Composites of a Polypropylene Random Copolymer and Date Stone Flour: Crystalline Details and Mechanical Response. Polymers, 2021, 13, 2957.	4.5	2
218	Effect of Fiber Shape on the Tribological, Mechanical, and Morphological Behaviors of Sisal Fiber-Reinforced Resin-Based Friction Materials: Helical, Undulated, and Straight Shapes. Materials, 2021, 14, 5410.	2.9	10
219	Food waste eggshell valorization through development of new composites: A review. Sustainable Materials and Technologies, 2021, 29, e00317.	3.3	16

#	ARTICLE	IF	CITATIONS
220	Comprehensive characterization of raw and alkali (NaOH) treated natural fibers from Symphirema involucratum stem. International Journal of Biological Macromolecules, 2021, 186, 886-896.	7.5	54
221	Moving towards the era of bio fibre based polymer composites. Cleaner Engineering and Technology, 2021, 4, 100182.	4.0	40
222	Thermo-mechanical behaviour of flax/green epoxy composites: Evaluation of thermal expansion coefficients and application to internal stress calculation. Industrial Crops and Products, 2021, 170, 113786.	5.2	14
223	Properties and Applications of Bamboo Fiber–A Current-State-of-the Art. Journal of Renewable Materials, 2022, 10, 605-624.	2.2	24
224	A systematic review on sustainable green fibre reinforced composite and their analytical models. Materials Today: Proceedings, 2021, 46, 6541-6546.	1.8	7
226	Mechanical and thermophysical behavior of hemp fiber reinforced gypsum composites. Materials Today: Proceedings, 2021, 44, 2245-2249.	1.8	12
227	Mechanical and water absorption properties of Calotropis gigantea plant fibers reinforced polymer composites. Materials Today: Proceedings, 2021, 46, 3367-3372.	1.8	46
228	Effect of TiC Nanoparticles Reinforcement in Coir Fiber Based Bio/Synthetic Epoxy Hybrid Composites: Mechanical and Thermal Characteristics. Journal of Polymers and the Environment, 2021, 29, 2609-2627.	5.0	34
229	Optimization of drilling output responses of eggshell fillers reinforced hemp/glass fibres hybrid composites. Materials Today: Proceedings, 2021, 46, 3245-3250.	1.8	1
230	A Concise Report on properties of Hybrid Composites manufactured from glass and natural fibers. Materials Today: Proceedings, 2020, 22, 2008-2015.	1.8	2
231	Experimental Investigation and Fabrication of Palmyra Palm Natural Fiber with Tamarind seed powder Reinforced Composite. IOP Conference Series: Materials Science and Engineering, 0, 988, 012022.	0.6	14
232	Life-cycle and environmental impact assessments on processing of plant fibres and its bio-composites: A critical review. Journal of Industrial Textiles, 2022, 51, 5518S-5542S.	2.4	159
233	Testing and Evaluation of TensileÂand Impact Strength of Neem/Banyan Fiber-Reinforced Hybrid Composite. Journal of Testing and Evaluation, 2020, 48, 647-655.	0.7	39
234	Evaluation of Thermal Stability and Thermal Properties of Neem/Banyan Reinforced Hybrid Polymer Composite. Materials Performance and Characterization, 2019, 8, 20190135.	0.3	14
235	Optimal Tensile Properties of Biocomposites Made of Treated Amazonian Curauá Fibres Using Taguchi Method. Materials Research, 2021, 24, .	1.3	2
236	Experimental and numerical study on physicoâ€mechanical properties and Taguchi's designed abrasive wear behavior of hemp/nettleâ€polyester hybrid composite. Polymer Composites, 2021, 42, 6912-6927.	4.6	24
237	Characterization and fatty acid profile analysis of Jatropha curcas L. oil cultivated in the Algerian desert. Biomass Conversion and Biorefinery, 2023, 13, 12205-12212.	4.6	2
238	Studies on Mechanical Properties of Kevlar/Napier Grass Fibers Reinforced with Polymer Matrix Hybrid Composite. Advances in Materials Science and Engineering, 2021, 2021, 1-9.	1.8	15

#	Article	IF	CITATIONS
239	Development of biocomposite films from natural protein sources for food packaging applications: Structural characterization and physicochemical properties. Journal of Applied Polymer Science, 2022, 139, .	2.6	2
240	Critical Review of Natural Fiber Reinforced Hybrid Composites: Processing, Properties, Applications and Cost. Polymers, 2021, 13, 3514.	4.5	85
241	Wheat Biocomposite Extraction, Structure, Properties and Characterization: A Review. Polymers, 2021, 13, 3624.	4.5	18
242	Efficient plant fibre yarn pre-treatment for 3D printed continuous flax fibre/poly(lactic) acid composites. Composites Part B: Engineering, 2021, 227, 109389.	12.0	24
243	Damping and sound absorption properties of polymer matrix composites: A review. Polymer Testing, 2021, 104, 107388.	4.8	53
244	COLD-PRESSED HYBRID COMPOSITES REINFORCED WITH COIR FIBRES AND CEMENT PARTICLES: A STATISTICAL APPROACH. , 0, , .		0
245	Effect of Carnauba Wax and Coconut Fiber Contents on Tensile Properties of Corn Starch-Based Biocomposites. Materials Research, 2019, 22, .	1.3	2
246	Current Research and Patents of Plant Fiber Composites. Recent Patents on Mechanical Engineering, 2019, 12, 37-44.	0.3	0
248	Mechanical and Crystallization Behaviour of Sisal Fiber and Talc Reinforced Polylactic Acid Composites. Lecture Notes on Multidisciplinary Industrial Engineering, 2020, , 749-756.	0.6	0
249	Plant fiber reinforced biocomposites: properties and applications. MuÄŸla Journal of Science and Technology, 0, , .	0.1	0
250	Properties of Cellulose Based Bio-fibres Reinforced Polymer Composites. , 2020, , 71-89.		2
251	Composite Materials in Epoxy Resin Matrix Using Curaua Fibers. Lecture Notes in Mechanical Engineering, 2021, , 333-340.	0.4	0
252	Pineapple Leaf Fiber Polymer Composites as a Promising Tool for Sustainable, Eco-friendly Composite Material: Review. Journal of Natural Fibers, 2022, 19, 10031-10052.	3.1	6
253	Performance Evaluation of PLA Based Biocomposites Reinforced with Photografted PALF. Tekstilec, 2021, 64, 230-246.	0.6	0
254	Effect of silane treatments on mechanical performance of kenaf fibre reinforced polymer composites: a review. Functional Composites and Structures, 2021, 3, 045003.	3.4	20
255	Extraction of cellulosic fibres from agricultural waste and its applications. AIP Conference Proceedings, 2021, , .	0.4	6
256	A Concise Review on processing of Hybrid Composites produced by the combination of glass and natural fibers. Materials Today: Proceedings, 2020, 22, 2016-2024.	1.8	4
257	Rapid Prototyping Methods in Manufacturing of Biomedical Implants: A Review. Materials Horizons, 2020, , 187-208.	0.6	0

#	Article	IF	CITATIONS
258	Sustainable Green-Based Composites from Renewable Resources in Textile: Industrial Cotton Wastes. Sustainable Textiles, 2020, , 45-61.	0.7	2
259	Leaf fibres as reinforcements in green composites: a review on processing, properties and applications. Emergent Materials, 2022, 5, 833-857.	5.7	32
261	Investigation of the Dielectric Characteristics of Banana Residue-Reinforced Epoxy Resin. International Journal of Electrochemical Science, 2021, 16, 21124.	1.3	4
262	Towards the use of acrylic acid graft-copolymerized plant biofiber in sustainable fortified composites: Manufacturing and characterization. E-Polymers, 2021, 21, 881-896.	3.0	1
263	Impacts of Baobab (Adansonia digitata) Powder on the Poly(Butylene Succinate) Polymer Degradability to Form an Eco-Friendly Filler-Based Composite. Frontiers in Materials, 2021, 8, .	2.4	6
264	A mini review on fibre reinforced polymer composites. Materials Today: Proceedings, 2022, 54, 682-689.	1.8	19
265	Lignocellulosic fiber reinforced composites: Progress, performance, properties, applications, and future perspectives. Polymer Composites, 2022, 43, 645-691.	4.6	182
266	Possibilities for the application of agro-industrial wastes in cementitious materials: A brief review of the Brazilian perspective. Cleaner Materials, 2022, 3, 100040.	5.1	41
267	Mechanical and sound absorption properties of open-cell polyurethane foams modiï¬ed with rock wool fiber. Journal of Building Engineering, 2022, 48, 103872.	3.4	6
268	Introduction to bio-based fibers and their composites. , 2022, , 1-20.		3
269	Development and evaluation of a novel agro-based multifunctional oxygenated bio-additive "HFS―as a combustion catalyst for diesel. Materials Today: Proceedings, 2022, 62, 6972-6977.	1.8	0
270	Synthesis and surface treatments of bio-based fibers. , 2022, , 21-32.		0
271	Environmental impact analysis of plant fibers and their composites relative to their synthetic counterparts based on life cycle assessment approach. , 2022, , 741-781.		2
272	Influence of Moisture Absorption on Mechanical propertiesÂof BiocompositesÂreinforced Surface Modified Natural Fibers. Composites Science and Technology, 2022, , 17-34.	0.6	7
273	Comparison of Young's Modulus of Continuous and Aligned Lignocellulosic Jute and Mallow Fibers Reinforced Polyester Composites Determined Both Experimentally and from Theoretical Prediction Models. Polymers, 2022, 14, 401.	4.5	8
274	Study on Axial Compression Behavior of Concrete Short Columns Confined by Flax/Glass Fiber Hybrid-Reinforced Epoxy Resin Composites. Polymers, 2022, 14, 517.	4.5	3
275	Continuous Bamboo Fibers/Fire-Retardant Polyamide 11: Dynamic Mechanical Behavior of the Biobased Composite. Polymers, 2022, 14, 299.	4.5	4
276	Keratin-based biofibers and their composites. , 2022, , 315-334.		5

#	Article	IF	CITATIONS
277	Enhanced Thermal Stability, Mechanical Properties and Structural Integrity of MWCNT Filled Bamboo/Kenaf Hybrid Polymer Nanocomposites. Materials, 2022, 15, 506.	2.9	31
278	The Effects of Sodium Carbonate and Bicarbonate Treatments on Sisal Fibre Composites. Materials Research, 0, 25, .	1.3	2
280	Role of agricultural waste in recycled plastic biocomposites. , 2022, , 165-194.		0
281	Single pullout experiment and reinforcement properties of basalt fiber in vegetation concrete. Scientific Reports, 2022, 12, 1264.	3.3	2
282	Experimental Investigation on Mechanical Behaviour of Kevlar and Ramie Fibre Reinforced Epoxy Composites. Journal of Nanomaterials, 2022, 2022, 1-10.	2.7	7
283	Mechanical, thermogravimetric, and dynamic mechanical analysis of basalt and flax fibers intertwined vinyl ester polymer composites. Polymer Composites, 2022, 43, 2196-2207.	4.6	12
284	Effect of silane treatment on tensile strength, moisture absorption and thermal property of unidirectional woven mat enset fibers reinforced polypropylene composite. Composite Interfaces, 2022, 29, 795-815.	2.3	3
286	Bio-fibre Reinforced Composites: Mechanical, Thermal and Tribological Properties and Industrial Applications—An Introduction. Composites Science and Technology, 2022, , 3-12.	0.6	2
288	A Review on the Sustainability Prospects of Bio Fibre Reinforced Composite Materials. Composites Science and Technology, 2022, , 361-374.	0.6	2
290	Reinforced Composites from Natural Fiber: A Review. Lecture Notes in Mechanical Engineering, 2022, , 847-857.	0.4	1
292	Development of Starch-Based Bioplastic from Jackfruit Seed. Advances in Polymer Technology, 2022, 2022, 1-9.	1.7	11
293	Experimental investigation on physical, mechanical, and thermal properties of jute and hemp fibers reinforced hybrid polylactic acid composites. Polymer Composites, 2022, 43, 2854-2863.	4.6	28
294	Evaluation of Physical, Mechanical, and Wear Properties of Jatropha Shell Powder Reinforced Epoxy Glass Fiber Composites. Journal of Natural Fibers, 2022, 19, 12195-12207.	3.1	10
295	Effect of fiber type and content on the performance of extruded wood fiber cement products. Case Studies in Construction Materials, 2022, 16, e00968.	1.7	5
296	Comparative Study of Mechanical Properties and Thermal Stability on Banyan/Ramie Fiber-Reinforced Hybrid Polymer Composite. Advances in Materials Science and Engineering, 2021, 2021, 1-11.	1.8	9
297	Polymer Composite Fabrication Reinforced with Bamboo Fiber for Particle Board Product Raw Material Application. Polymers, 2021, 13, 4377.	4.5	8
299	Safety Risks of Plant Fiber/Plastic Composites (PPCs) Intended for Food Contact: A Review of Potential Hazards and Risk Management Measures. Toxics, 2021, 9, 343.	3.7	4
300	Effect of GNPs on the Piezoresistive, Electrical and Mechanical Properties of PHA and PLA Films. Fibers, 2021, 9, 86.	4.0	7

#	Article	IF	Citations
301	Banana fibers, their composites and applications. , 2022, , 161-180.		2
303	Potential of Flax Fiber Reinforced Biopolymer Composites for Cross-Arm Application in Transmission Tower: A Review. Fibers and Polymers, 2022, 23, 853-877.	2.1	23
304	Mechanical Properties of Polymer Composites Reinforced with Alkaline-Treated Natural Fibre. Advances in Polymer Technology, 2022, 2022, 1-7.	1.7	9
305	Synthesis and characterization of air filter media made from cellulosic ramie fiber (Boehmeria nivea). Carbohydrate Polymer Technologies and Applications, 2022, 3, 100216.	2.6	2
306	Mechanical Properties of Ramie/Hemp Hybrid Composites Influenced by Stacking Arrangement and NaOH Treatment. Advances in Polymer Technology, 2022, 2022, 1-9.	1.7	6
307	Sustainable Development of Agro-Industrial Waste-Based Banana Fiber/Fly Ash Polyester Composites for Wear and Friction Study. Journal of Natural Fibers, 2022, 19, 14771-14787.	3.1	3
308	Mechanical and Water Absorption Characteristics of Sisal Fiber Reinforced Polypropylene Composite. Journal of Natural Fibers, 2022, 19, 14825-14838.	3.1	3
309	Evaluation of structural integrity of needle punched banana fiber reinforced industrial safety helmets. Polymers and Polymer Composites, 2022, 30, 096739112210748.	1.9	1
310	Development of sandwich using low-cost natural fibers: Alfa-Epoxy composite core and jute/metallic mesh-Epoxy hybrid skin composite. Industrial Crops and Products, 2022, 184, 115093.	5.2	11
311	Spinning from Nature: Engineered Preparation and Application of High-Performance Bio-Based Fibers. Engineering, 2022, 14, 100-112.	6.7	24
312	Modification of Fibers and Matrices in Natural Fiber Reinforced Polymer Composites: A Comprehensive Review. Macromolecular Rapid Communications, 2022, 43, .	3.9	37
313	Overview of banana cellulosic fibers: agro-biomass potential, fiber extraction, properties, and sustainable applications. Biomass Conversion and Biorefinery, 0, , .	4.6	14
314	Experimental investigation on the effect of fiber volume fraction of sponge gourd outer skin fiber reinforced epoxy composites. Polymer Composites, 2022, 43, 6932-6942.	4.6	14
315	Aerogel: Functional Emerging Material for Potential Application in Food: a Review. Food and Bioprocess Technology, 2022, 15, 2396-2421.	4.7	15
316	Effect of abaca natural fiber on the setting behavior and autogenous shrinkage of cement composite. Journal of Building Engineering, 2022, 56, 104719.	3.4	14
317	Evaluation of the use of açaÃ-seed residue as reinforcement in polymeric composite. Polymers and Polymer Composites, 2022, 30, 096739112211083.	1.9	0
318	Thermomechanical Characterization of a Bio-Sourced Material Based on Clay and Alfa Fibers. Fluid Dynamics and Materials Processing, 2022, .	0.7	0
319	Global Trends of Research Productivity in Natural Fibre Reinforced Composites: Comprehensive Scientometric Analysis. Journal of Natural Fibers, 2022, 19, 13088-13105.	3.1	6

#	Article	IF	Citations
320	Influence of Age and Harvesting Season on The Tensile Strength of Bamboo-Fibre-Reinforced Epoxy Composites. Materials, 2022, 15, 4144.	2.9	3
321	Green composites, the next-generation sustainable composite materials: Specific features and applications. , 2022, , 55-70.		0
322	Applications of green composites for sustainable development. , 2022, , 43-53.		1
323	Approaches of material selection, alignment and methods of fabrication for natural fiber polymer composites: A review. Journal of Applied and Natural Science, 2022, 14, 490-499.	0.4	5
324	Effect of Ceramic Nano Fillers in Jute Fibre Composites. Advances in Materials Science and Engineering, 2022, 2022, 1-6.	1.8	2
325	Mechanical and microstructure characteristics of alkali-activated coal ash with α-phase ultrafine Al ₂ O ₃ nanoparticles and basalt fibres. Journal of Taibah University for Science, 2022, 16, 646-659.	2.5	4
326	Investigation on Mechanical and Thermal Properties of a Kenaf/Jute Fiber-Reinforced Polyester Hybrid Biocomposite. Advances in Polymer Technology, 2022, 2022, 1-6.	1.7	0
327	Plantâ€Actuated Micro–Nanorobotics Platforms: Structural Designs, Functional Prospects, and Biomedical Applications. Small, 2022, 18, .	10.0	5
328	Construction for Health; Reversing the Impacts. Buildings, 2022, 12, 1133.	3.1	1
329	Dynamic Mechanical Analysis of Banyan/Ramie Fibers Reinforced with Nanoparticle Hybrid Polymer Composite. Advances in Polymer Technology, 2022, 2022, 1-10.	1.7	10
330	Mechanical, absorption, and swelling properties of jute/kenaf/banana reinforced epoxy hybrid composites: Influence of various stacking sequences. Polymer Composites, 2022, 43, 8297-8307.	4.6	10
331	DRILLING PARAMETRIC ANALYSIS OF PERFORATED COPPER FOIL ON HEMP/SISAL FIBER COMPOSITE USING SEQUENTIAL ANN. Surface Review and Letters, 0, , .	1.1	0
332	Recycling ofÂbast textile wastes into high value-added products: a review. Environmental Chemistry Letters, 2022, 20, 3747-3763.	16.2	20
333	State-of-the-art review of product stewardship strategies for large composite wind turbine blades. Resources, Conservation & Recycling Advances, 2022, 15, 200109.	2.5	8
334	Investigation on Physical and Mechanical Properties of Abaca Fiber Composites Using Filament Winding. Advances in Polymer Technology, 2022, 2022, 1-13.	1.7	2
335	Effect of Agave Americana fibers content on morphology and mechanical, rheological, and thermal properties of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) biocomposites. Polymers From Renewable Resources, 0, , 204124792211289.	1.3	1
336	Sustainable Fiberâ€Reinforced Composites: A Review. Advanced Sustainable Systems, 2022, 6, .	5.3	61
337	Mechanical and viscoelastic properties of wool composites. , 2022, , 299-318.		2

#	Article	IF	CITATIONS
338	Physical Modification of Bast Fibre Surface and Their Effects. Springer Series on Polymer and Composite Materials, 2022, , 65-80.	0.7	0
339	Free Vibration Characteristics of Bast Fiber-Based Polymeric Composites. Springer Series on Polymer and Composite Materials, 2022, , 231-243.	0.7	0
340	Mechanical Evaluation on Carbon/Basalt Fiber-Reinforced Hybrid Polymer Matrix Composite. Advances in Polymer Technology, 2022, 2022, 1-6.	1.7	2
341	Development of Sustainable Banana Plantain Fibre Extractor. Lecture Notes in Mechanical Engineering, 2023, , 3-15.	0.4	0
342	Effects of particle size on structural, physical, mechanical and tribology behaviour of agricultural waste (corncob micro/nano-filler) based epoxy biocomposites. Journal of Material Cycles and Waste Management, 2022, 24, 2527-2544.	3.0	7
343	Bamboo as a sustainable building construction material. Materials Today: Proceedings, 2022, 71, 306-311.	1.8	3
344	An Analysis of the Behavior of Peepal Fiber Reinforced Polyester Composites for Tensile, Flexural and Impact Strengths. Lecture Notes in Mechanical Engineering, 2023, , 417-428.	0.4	1
345	Effect of Rape Straw Fiber on Mechanical Properties and Microstructure of Fly Ash Concrete. Advances in Civil Engineering, 2022, 2022, 1-9.	0.7	0
346	CRITICAL REVIEW ON ENZYMATIC ASSISTED ISOLATION OF CELLULOSE NANOFIBRE FROM PLANT FIBRES AND ITS FUNCTIONAL APPLICATION IN NANO-BIOCOMPOSITE. Federal University of Technology Akure Journal of Engineering and Engineering Technology, 2022, 16, 105-112.	0.1	1
347	Green technology of natural fiber reinforced bio-composites as alternative sustainable product. Environmental and Toxicology Management, 2022, 2, 21-25.	0.7	0
348	Corn: Its Structure, Polymer, Fiber, Composite, Properties, and Applications. Polymers, 2022, 14, 4396.	4.5	14
349	Environmental Impact of Polymer Fiber Manufacture. Macromolecular Materials and Engineering, 2022, 307, .	3.6	6
350	The feasibility of continuous basalt fibreâ€reinforced polymer application to composite crossâ€arms. High Voltage, 0, , .	4.7	0
351	How to transform lignin into a useful component of flax fiber for composite materials. Industrial Crops and Products, 2023, 192, 116088.	5.2	3
352	Turning waste plant fibers into advanced plant fiber reinforced polymer composites: A comprehensive review. Composites Part C: Open Access, 2023, 10, 100333.	3.2	19
353	Selected physical and mechanical properties of the oil palm pseudo-trunk: Case of the Tenera variety from Cameroon. Results in Materials, 2023, 17, 100354.	1.8	2
354	Extraction of coir fibers by different methods. , 2022, , 19-42.		1
355	Effects of alkali treatment on properties of willow bark fiber as potential fillers for polymer composites. Journal of Engineered Fibers and Fabrics, 2022, 17, 155892502211381.	1.0	1

#	Article	IF	CITATIONS
356	Energy potential from Areca Palm through Direct Combustion and Pyrolysis in Indonesia: A review. Indonesian Food Science and Technology Journal, 2020, 4, 19-26.	0.3	4
357	Characterization of the Mechanical and Morphological Properties of Cow Dung Fiber-Reinforced Polymer Composites: A Comparative Study with Corn Stalk Fiber Composites and Sisal Fiber Composites. Polymers, 2022, 14, 5041.	4.5	4
358	Introduction to Sand-Restoration Technology and Model in China. Sustainability, 2023, 15, 98.	3.2	4
359	Influence of surface modification on mechanical and tribology performance of jute filler polymer composites and prediction of the performance using artificial neural network. Polymer Bulletin, 2023, 80, 11953-11974.	3.3	6
360	Optimization of Mortar/ <i>Agave americana</i> Fibers Composite Behavior Based on Experimental Design. Journal of Natural Fibers, 2023, 20, .	3.1	8
361	Ecological Insight, Anatomical Features, and Fiber Characterization of Leptadenia pyrotechnica (Forrsk.) Decne. as a Promising Resource. Sustainability, 2022, 14, 16895.	3.2	1
362	Synthesis, characterization and performance of nanocopper impregnated sawdust-reinforced nanocomposite. Polymer Bulletin, 2023, 80, 12393-12416.	3.3	2
363	Evaluation of Tensile, Flexural and Thermal Characteristics on Agro-Waste Based Polymer Composites Reinforced with Banana Fiber/Coconut Shell Filler. Journal of Natural Fibers, 2023, 20, .	3.1	6
364	Multiscale micromechanics modeling of plant fibers: upscaling of stiffness and elastic limits from cellulose nanofibrils to technical fibers. Materials and Structures/Materiaux Et Constructions, 2023, 56, .	3.1	6
365	Advances towards development of industrially relevant short natural fiber reinforced and hybridized polypropylene composites for various industrial applications: a review. Journal of Polymer Research, 2023, 30, .	2.4	13
366	Fire testing and mechanical properties of neat and elastomeric polylactic acid composites reinforced with raw and enzymatically treated hemp fibers. Green Chemistry Letters and Reviews, 2023, 16, .	4.7	4
367	Natural Cellulose from Ziziphus jujuba Fibers: Extraction and Characterization. Materials, 2023, 16, 385.	2.9	6
368	Effect of Cocos nucifera shell powder on mechanical and thermal properties of Mucuna atropurpurea stem fibre-reinforced polyester composites. Biomass Conversion and Biorefinery, 2023, 13, 11275-11294.	4.6	2
369	Mechanical and Thermal Properties of Bamboo Fiber–Reinforced PLA Polymer Composites: A Critical Study. International Journal of Polymer Science, 2022, 2022, 1-15.	2.7	23
370	Effect of Various Plasticizers in Different Concentrations on Physical, Thermal, Mechanical, and Structural Properties of Wheat Starch-Based Films. Polymers, 2023, 15, 63.	4.5	13
371	Applications and technoeconomics of bamboo fibres. , 2023, , 213-230.		0
372	Bio-composites based on cellulosic fibers from agro-industrial waste filled PP matrix: production and properties. Polymer Bulletin, 2023, 80, 13025-13050.	3.3	4
373	Investigation on mechanical properties of flax fiber/expanded polystyrene waste composites. Heliyon, 2023, 9, e13310.	3.2	4

#	Article	IF	CITATIONS
374	Fabrication and characterization of woven and comingled nonwoven sheet polypropylene hybrid composite by recycling and alkali-treated jute waste fibers. Proceedings of the Institution of Mechanical Engineering Science, 2023, 237, 3630-3649.	2.1	9
375	The Effect of Wastes of Nettle Fiber on Mechanical and Thermal Properties of Polypropylene Composite. Journal of Natural Fibers, 2023, 20, .	3.1	0
376	Calixarene-Metal Complexes in Lactide Polymerization: The Story so Far. ACS Omega, 2023, 8, 13479-13491.	3.5	3
377	The Facile and Efficient Fabrication of Rice Husk/poly (lactic acid) Foam Composites by Coordinated the Interface Combination and Bubble Hole Structure. International Journal of Biological Macromolecules, 2023, 234, 123734.	7.5	2
378	Design of a friction material for brake pads based on rice husk and its derivatives. Wear, 2023, 526-527, 204893.	3.1	2
379	Effect of sugarcane bagasse and alumina reinforcements on physical, mechanical, and thermal characteristics of epoxy composites using artificial neural networks and response surface methodology. Biomass Conversion and Biorefinery, 0, , .	4.6	24
380	Elucidation of Non-Intentionally Added Substances from Plant Fiber/Plastic Composites by UPLC-QTOF/MS. Foods, 2023, 12, 678.	4.3	1
381	Properties and Applications of Natural Fiber-Reinforced 3D-Printed Polymer Composites. Advances in Chemical and Materials Engineering Book Series, 2023, , 31-52.	0.3	1
382	Mechanical Properties of Hybrid Lignocellulosic Fiber-Reinforced Biopolymer Green Composites: A Review. Fibers and Polymers, 2023, 24, 337-353.	2.1	10
383	Effect of bonding techniques on thermal insulation and biodegradation of banana fiber/recycled polyester nonwovens. Journal of Reinforced Plastics and Composites, 2024, 43, 293-300.	3.1	0
384	Characterization of biobased materials. , 2023, , 111-143.		0
385	An Experimental and Numerical Analysis of Glued Laminated Beams Strengthened by Pre-Stressed Basalt Fibre-Reinforced Polymer Bars. Materials, 2023, 16, 2776.	2.9	4
386	Numerical and Experimental Analyses of Hybrid Composites Made from Amazonian Natural Fibers. Journal of Research Updates in Polymer Science, 0, 12, 10-18.	0.3	1
387	Plant-Fiber and Wood-Based Functional Materials. Springer Handbooks, 2023, , 1645-1693.	0.6	2
388	Cellulose nanocrystals for drug delivery applications. , 2023, , 291-313.		0
389	Three-dimensional water diffusion and modelling of flax/shape memory epoxy composites. Composites Part A: Applied Science and Manufacturing, 2023, 171, 107574.	7.6	1
390	Reinforcement of Nanocellulose as Green Agent in the Electronic Applications Associated with the Composites of Polymer Matrix. International Journal of Polymer Science, 2023, 2023, 1-9.	2.7	1
392	Production and Testing of Bamboo Composite for Door of a Three-Wheeled Vehicle. Journal of Engineering (United States), 2023, 2023, 1-11.	1.0	0

#	Article	IF	CITATIONS
393	Targeted Pre-Treatment of Hemp Fibers and the Effect on Mechanical Properties of Polymer Composites. Fibers, 2023, 11, 43.	4.0	9
394	Effects of moist ageing on composites of bamboo fiber and montmorillonite/eggshell powder. Cellulose, 2023, 30, 6349-6363.	4.9	4
395	Bio-based sandwich beams made of paper honeycomb cores and flax FRP facings: Flexural and shear characteristics. Structures, 2023, 54, 446-460.	3.6	4
396	Design and fabrication of high-performance 3D printed continuous flax fibre/PLA composites. Journal of Manufacturing Processes, 2023, 99, 351-361.	5.9	2
397	Gypsum plaster composites reinforced with tropical fibre bundles extracted from Rhecktophyllum camerunense and Ananas comosus plants: Microstructure and mechanical performance. Construction and Building Materials, 2023, 392, 131815.	7.2	3
398	Effect of activated coal waste and treated Pinus fibers on the physico-mechanical properties and durability of fibercement composites. Construction and Building Materials, 2023, 392, 132038.	7.2	1
399	Study on water absorption of hydrophobically modified ramie fiber and the reinforced polypropylene composites. Journal of Applied Polymer Science, 2023, 140, .	2.6	3
400	Sustainable self uring epoxy adhesives from Chios natural Mastic (<i>Pistacia lentiscus</i> L.). Journal of Applied Polymer Science, 2023, 140, .	2.6	3
401	Bagasse fiber reinforced chemically functionalized polystyrene composites. Journal of Thermoplastic Composite Materials, 2024, 37, 251-275.	4.2	1
402	Physical and Chemical Properties of Organic Waste Reinforced Polyester Composites. , 2023, 7, 16-19.		1
403	Influences of Nanosilica Particles on Density, Mechanical, and Tribological Properties of Sisal/Hemp Hybrid Nanocomposite. Advances in Polymer Technology, 2023, 2023, 1-7.	1.7	6
404	A review study for characterization and mechanical properties of natural fibre hybrid polymer composites. AIP Conference Proceedings, 2023, , .	0.4	1
405	Flax and hemp composites: Mechanical characterization and numerical modeling. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 0, , .	2.1	0
406	Study of mechanical properties of pineapple leaf fiber and E-glass fiber reinforced hybrid epoxy matrix composite materials. Materials Today: Proceedings, 2023, , .	1.8	13
407	A comprehensive review of natural fibers and their composites: An eco-friendly alternative to conventional materials. Results in Engineering, 2023, 19, 101271.	5.1	54
408	Vegetable Cellulose Fibers in Natural Rubber Composites. Polymers, 2023, 15, 2914.	4.5	3
409	Mechanical and tribological properties of snake grass fibers reinforced epoxy composites: effect of Java plum seed filler weight fraction. International Polymer Processing, 2023, 38, 582-592.	0.5	3
410	LignocellulosicÂSugar Palm Fibre-Reinforced Thermoplastic Composites: Mechanical, Thermal and Dynamic Mechanical Properties. Fibers and Polymers, 2023, 24, 2625-2639.	2.1	0

#	Article	IF	CITATIONS
411	Sustainable Composites: A Review with Critical Questions to Guide Future Initiatives. Sustainability, 2023, 15, 11088.	3.2	0
412	A coordination-driven interface system for improving the performance of high-filled bamboo fiber /poly (butylene succinate-co-butylene adipate) (PBSA) biocomposites. Journal of Cleaner Production, 2023, 418, 138198.	9.3	1
413	Potential of Non-wood Fibers as Sustainable Reinforcements for Polymeric Composites—A Review. Environmental Footprints and Eco-design of Products and Processes, 2023, , 123-150.	1.1	0
414	Effect of Temperature on Moisture Migration in Earth and Fiber Mixtures for Cob Materials. Energies, 2023, 16, 5526.	3.1	1
415	Natural fiber reinforced rPET/polyester composites: a review on development, mechanical performance, and sustainable management. Polymer-Plastics Technology and Materials, 2023, 62, 1823-1843.	1.3	2
416	Preparation and Characterization of Sisal Cellulose Nanocrystals-Assembled Film. Fibers and Polymers, 2023, 24, 3027-3036.	2.1	1
417	A comprehensive review on recent developments of natural fiber composites synthesis, processing, properties, and characterization. Engineering Research Express, 2023, 5, 032001.	1.6	2
418	Analysis of the characterization of NaOH-treated natural cellulose fibre extracted from banyan aerial roots. Scientific Reports, 2023, 13, .	3.3	17
419	Low Velocity Impact Performance of Natural Fibre Reinforced Polymer Composites: A Review. Functional Composites and Structures, 0, , .	3.4	2
420	Determination of optimum blast furnace slag ash and hemp fiber ratio in cement mortars. Structures, 2023, 57, 105024.	3.6	2
421	Bio-inspired strip-shaped composite composed of glass fabric and waste selvedge from A. pernyi silk for lightweight and high-impact applications. Composites Part A: Applied Science and Manufacturing, 2023, 174, 107715.	7.6	25
422	Mechanical and thermal stability of Millettia pinnata fibre-reinforced ZrO2 nanofiller particulates polyester composite — an experimental study. Biomass Conversion and Biorefinery, 0, , .	4.6	5
423	A review on the hydration properties of dietary fibers derived from food waste and their interactions with other ingredients: opportunities and challenges for their application in the food industry. Critical Reviews in Food Science and Nutrition, 0, , 1-35.	10.3	2
424	Experimental investigation on mechanical properties of novel polymer hybrid composite with reinforcement of banana fiber and sugarcane bagasse powder. Advances in Mechanical Engineering, 2023, 15, .	1.6	1
425	Experimental and numerical investigation of energy performance of building using biobased materials for sustainable construction. Energy Efficiency, 2023, 16, .	2.8	0
426	Mechanical properties analyses of bolted joint of Kusha and Nacha fiber composite laminates. Cogent Engineering, 2023, 10, .	2.2	0
427	Mechanical and thermomechanical behaviour of agro-waste almond shell biochar filler interlaced chemically treated flax fibre vinyl ester composites. Biomass Conversion and Biorefinery, 0, , .	4.6	1
429	Investigation of the mechanical properties of non-conventional fiber materials suitable for sportswear applications in order to achieve an innovative, sustainable, and eco-friendly design. AIP	0.4	0

#	Article	IF	CITATIONS
430	Potential of grass families as reinforcement material in composites: A review. AIP Conference Proceedings, 2023, , .	0.4	0
431	A novel study of biological and structural analysis on Cissus quadrangularis fiber-reinforced CaO particulates epoxy composite for biomedical application. Journal of Materials Research and Technology, 2023, 27, 692-702.	5.8	0
432	Microcrystalline cellulose reinforced polylactic acid composites: comparison of fabrication method and cellulose content. Journal of Polymer Research, 2023, 30, .	2.4	1
433	Eco-Friendly Natural Rubber–Jute Composites for the Footwear Industry. Polymers, 2023, 15, 4183.	4.5	1
434	Unlocking the potential: A paradigm-shifting approach for valorizing lignocellulosic waste biomass of constructed wetland enabling environmental and societal sustainability. Industrial Crops and Products, 2024, 207, 117709.	5.2	1
435	Thermal and Mechanical Properties of Biocomposites Based on Polylactide and Tall Wheatgrass. Materials, 2023, 16, 6923.	2.9	0
436	Composite materials from synthetic and natural sources: Fabrication techniques and applications. , 2023, , .		0
437	Effect of mold temperature on properties of hybrid biocomposites from semicrystalline polymers and agro-industrial by-products. Journal of Reinforced Plastics and Composites, 0, , .	3.1	0
438	Development and Mechanical Proprieties Investigation of Novel Kevlar/E-Glass/Washigntonia Filifera/E-Glass/Epoxy Hybrid Laminated Composite. Composites: Mechanics, Computations, Applications, 2023, , .	0.3	0
439	Influence of the stacking on mechanical and physical properties of jute/banana natural fiber reinforced polymer matrix composite. Materials Today: Proceedings, 2023, , .	1.8	0
440	Preliminary Research on Moss-Based Biocomposites as an Alternative Substrate in Moss Walls. Sustainability, 2023, 15, 16500.	3.2	0
441	Impact Loading Behavior of Large-Scale Two-Way Sandwich Panels with Natural Fiber–Reinforced Polymer Faces. Journal of Composites for Construction, 2024, 28, .	3.2	0
442	Socio-Economic Aspects of Green Materials. , 2023, , .		0
443	Improved Thermal and Mechanical Properties of Kenaf Fiber/ABS Polymer Composites via Resin Coating Treatment. Pertanika Journal of Science and Technology, 2023, 31, 39-57.	0.6	1
444	Processing and properties of jute (Corchorus olitorius L.) fibres and their sustainable composite materials: A review. Journal of Materials Chemistry A, 0, , .	10.3	0
445	Construction of a flame retardant three-dimensional network structure in sisal/polypropylene composites. Industrial Crops and Products, 2024, 209, 117973.	5.2	0
446	Bamboo-Containing Composites with Environmentally Friendly Binders. Chemistry and Chemical Technology, 2023, 17, 807-819.	1.1	0
447	Effect of <i>Kigelia pinnata</i> biochar inclusion on mechanical and thermal properties of curtain climber fiber reinforced epoxide biocomposites. Polymer Composites, 2024, 45, 4459-4472.	4.6	0

#	Article	IF	CITATIONS
448	Effect of bamboo powder on mechanical property of aluminum matrix composite reinforced with aluminum oxide, boron carbide and molybdenum disulfide. Advances in Mechanical Engineering, 2024, 16, .	1.6	0
449	Evaluation of phase, microstructural and mechanical characteristics in stir casted AA6351-Gr-TiC hybrid metal matrix composites. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, O, , .	2.1	0
450	Strength evaluation of alkali treated Sabai Grass (<i>Eulaliopsis binata</i>) fibers and its reinforced composites. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 0, , .	2.1	0
451	New Methodologies to Improve the Interfacial Interaction in Natural Fibre Polymer Composites. Composites Science and Technology, 2024, , 23-45.	0.6	0
452	Plant fiberâ€reinforced composites based on injection molding process: Manufacturing, service life, and remanufacturing. Polymer Composites, 2024, 45, 4876-4899.	4.6	0
453	Biomaterials technology and policiesÂin the building sector: a review. Environmental Chemistry Letters, 2024, 22, 715-750.	16.2	1
454	Potential of lignocellulosic fiber reinforced polymer composites for automobile parts production: Current knowledge, research needs, and future direction. Heliyon, 2024, 10, e24683.	3.2	0
456	Effect of nano alumina particles on Boehmeria nivea fiber-reinforced polyester green composite: biological, elemental and mechanical analysis. Optical and Quantum Electronics, 2024, 56, .	3.3	0
457	Experimental Investigation on the Mechanical Properties of Jute Fiber and Silica Nano Particles Using Artificial Neural Network. , 0, , .		0
458	Castor oilâ€based paper packaging coating with water resistance and degradability obtained by thiolâ€ene click reaction. Journal of Applied Polymer Science, 2024, 141, .	2.6	0
459	Improvement in the strength of concrete reinforced with agriculture fibers: Assessment on mechanical properties and microstructure analysis. Journal of Engineered Fibers and Fabrics, 2024, 19,	1.0	0
461	Towards the development of performance-efficient compressed earth blocks from industrial and agro-industrial by-products. Renewable and Sustainable Energy Reviews, 2024, 194, 114323.	16.4	0
462	Tensile, Dynamic Mechanical, and Vibration Behavior of Layering Sequence Design Effect of Glass Intertwined Natural Kenaf Woven Polymeric Laminates. Journal of Natural Fibers, 2024, 21, .	3.1	0
463	Studies of Potential Migration of Hazardous Chemicals from Sustainable Food Contact Materials. Foods, 2024, 13, 645.	4.3	0
464	Natural and synthetic fiber-reinforced polymer composites and their impact on aging under environmental conditions. , 2024, , 171-188.		0
465	Green Superhydrophobic Paper with Self-cleaning Properties Prepared via One-step Impregnation. , 2023, 8, 9-19.		0
466	Mechanical and cytotoxic analysis of cutlery developed from phenolâ€formaldehyde modified soyâ€jute composite. , 2024, 62, 151-159.		0