Revisiting Optical Tidal Disruption Events with iPTF16a

Astrophysical Journal 842, 29 DOI: 10.3847/1538-4357/aa7337

Citation Report

#	Article	IF	CITATIONS
1	Radiative interaction between the relativistic jet and optically thick envelope in tidal disruption events. Monthly Notices of the Royal Astronomical Society, 2017, 471, 1141-1152.	4.4	8
2	iPTF16fnl: A Faint and Fast Tidal Disruption Event in an E+A Galaxy. Astrophysical Journal, 2017, 844, 46.	4.5	111
3	X-Ray Brightening and UV Fading of Tidal Disruption Event ASASSN-150i. Astrophysical Journal Letters, 2017, 851, L47.	8.3	93
4	Black hole masses of tidal disruption event host galaxies. Monthly Notices of the Royal Astronomical Society, 2017, 471, 1694-1708.	4.4	108
5	What Sets the Line Profiles in Tidal Disruption Events?. Astrophysical Journal, 2018, 855, 54.	4.5	59
6	Gravitational interactions of stars with supermassive black hole binaries – I. Tidal disruption events. Monthly Notices of the Royal Astronomical Society, 2018, 477, 4009-4034.	4.4	15
7	On the Mass and Luminosity Functions of Tidal Disruption Flares: Rate Suppression due to Black Hole Event Horizons. Astrophysical Journal, 2018, 852, 72.	4.5	94
8	Classification of Tidal Disruption Events Based on Stellar Orbital Properties. Astrophysical Journal, 2018, 855, 129.	4.5	22
9	Sifting for Sapphires: Systematic Selection of Tidal Disruption Events in iPTF. Astrophysical Journal, Supplement Series, 2018, 238, 15.	7.7	30
10	The supermassive black hole coincident with the luminous transient ASASSN-15lh. Astronomy and Astrophysics, 2018, 610, A14.	5.1	24
11	A large accretion disc of extreme eccentricity in the TDE ASASSN-14li. Monthly Notices of the Royal Astronomical Society, 2018, 480, 2929-2938.	4.4	45
12	iPTF 16hgs: A Double-peaked Ca-rich Gap Transient in a Metal-poor, Star-forming Dwarf Galaxy. Astrophysical Journal, 2018, 866, 72.	4.5	31
13	A Dependence of the Tidal Disruption Event Rate on Global Stellar Surface Mass Density and Stellar Velocity Dispersion. Astrophysical Journal, 2018, 853, 39.	4.5	62
14	On the Missing Energy Puzzle of Tidal Disruption Events. Astrophysical Journal, 2018, 865, 128.	4.5	31
15	The unusual late-time evolution of the tidal disruption event ASASSN-15oi. Monthly Notices of the Royal Astronomical Society, 2018, 480, 5689-5703.	4.4	52
16	The Delay Time Distribution of Tidal Disruption Flares. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	36
17	Tidal Disruptions of Main-sequence Stars of Varying Mass and Age: Inferences from the Composition of the Fallback Material. Astrophysical Journal, 2018, 857, 109.	4.5	25
18	A Unified Model for Tidal Disruption Events. Astrophysical Journal Letters, 2018, 859, L20.	8.3	200

#	Article	IF	Citations
19	Spectral features of tidal disruption candidates and alternative origins for such transient flares. Monthly Notices of the Royal Astronomical Society, 2018, 474, 3307-3323.	4.4	15
20	Double tidal disruption events with massive black hole binaries. Monthly Notices of the Royal Astronomical Society, 2018, 479, 1569-1578.	4.4	3
21	The Zwicky Transient Facility: Science Objectives. Publications of the Astronomical Society of the Pacific, 2019, 131, 078001.	3.1	453
22	Late-time UV Observations of Tidal Disruption Flares Reveal Unobscured, Compact Accretion Disks ^{â^—} . Astrophysical Journal, 2019, 878, 82.	4.5	82
23	Black hole masses of tidal disruption event host galaxies II. Monthly Notices of the Royal Astronomical Society, 2019, 487, 4136-4152.	4.4	75
24	The tidal disruption event AT2017eqx: spectroscopic evolution from hydrogen rich to poor suggests an atmosphere and outflow. Monthly Notices of the Royal Astronomical Society, 2019, 488, 1878-1893.	4.4	49
25	Evidence for rapid disc formation and reprocessing in the X-ray bright tidal disruption event candidate AT 2018fyk. Monthly Notices of the Royal Astronomical Society, 2019, 488, 4816-4830.	4.4	100
26	Discovery of Highly Blueshifted Broad Balmer and Metastable Helium Absorption Lines in a Tidal Disruption Event. Astrophysical Journal, 2019, 879, 119.	4.5	38
27	Discovery and Early Evolution of ASASSN-19bt, the First TDE Detected by TESS. Astrophysical Journal, 2019, 883, 111.	4.5	71
28	On the Diversity of Fallback Rates from Tidal Disruption Events with Accurate Stellar Structure. Astrophysical Journal Letters, 2019, 882, L26.	8.3	43
29	Optical follow-up of the tidal disruption event iPTF16fnl: new insights from X-shooter observations. Monthly Notices of the Royal Astronomical Society, 2019, 489, 1463-1480.	4.4	23
30	A New Class of Changing-look LINERs. Astrophysical Journal, 2019, 883, 31.	4.5	66
31	A Forward Modeling Approach to AGN VariabilityMethod Description and Early Applications. Astrophysical Journal, 2019, 883, 139.	4.5	15
32	PS18kh: A New Tidal Disruption Event with a Non-axisymmetric Accretion Disk. Astrophysical Journal, 2019, 880, 120.	4.5	68
33	Streams collision as possible precursor of double tidal disruption events. Monthly Notices of the Royal Astronomical Society, 2019, 484, 1301-1316.	4.4	7
34	Weighing Black Holes Using Tidal Disruption Events. Astrophysical Journal, 2019, 872, 151.	4.5	139
35	â€ ⁻ Failed' tidal disruption events and X-ray flares from the Galactic Centre. Monthly Notices of the Royal Astronomical Society, 2019, 486, 1833-1839.	4.4	11
36	The fast, luminous ultraviolet transient AT2018cow: extreme supernova, or disruption of a star by an intermediate-mass black hole?. Monthly Notices of the Royal Astronomical Society, 2019, 484, 1031-1049.	4.4	136

#	Article	IF	CITATIONS
37	The Broad Absorption Line Tidal Disruption Event iPTF15af: Optical and Ultraviolet Evolution. Astrophysical Journal, 2019, 873, 92.	4.5	69
38	The First Tidal Disruption Flare in ZTF: From Photometric Selection to Multi-wavelength Characterization. Astrophysical Journal, 2019, 872, 198.	4.5	74
39	Stellar tidal disruption events in general relativity. General Relativity and Gravitation, 2019, 51, 1.	2.0	54
40	Partial Stellar Disruption by a Supermassive Black Hole: Is the Light Curve Really Proportional to t ^{â^9/4} ?. Astrophysical Journal Letters, 2019, 883, L17.	8.3	58
41	An Unusual Mid-infrared Flare in a Type 2 AGN: An Obscured Turning-on AGN or Tidal Disruption Event?. Astrophysical Journal, 2019, 885, 110.	4.5	14
42	1ES 1927+654: An AGN Caught Changing Look on a Timescale of Months. Astrophysical Journal, 2019, 883, 94.	4.5	95
43	A new class of flares from accreting supermassive black holes. Nature Astronomy, 2019, 3, 242-250.	10.1	57
44	An outflow powers the optical rise of the nearby, fast-evolving tidal disruption event AT2019qiz. Monthly Notices of the Royal Astronomical Society, 2020, 499, 482-504.	4.4	58
45	X-ray flares from the stellar tidal disruption by a candidate supermassive black hole binary. Nature Communications, 2020, 11, 5876.	12.8	26
46	Optical-Ultraviolet Tidal Disruption Events. Space Science Reviews, 2020, 216, 1.	8.1	99
47	ATÂ2017gbl: a dust obscured TDE candidate in a luminous infrared galaxy. Monthly Notices of the Royal Astronomical Society, 2020, 498, 2167-2195.	4.4	29
48	Discovery and follow-up of ASASSN-19dj: an X-ray and UV luminous TDE in an extreme post-starburst galaxy. Monthly Notices of the Royal Astronomical Society, 2020, 500, 1673-1696.	4.4	64
49	The tidal disruption event AT 2018hyz – I. Double-peaked emission lines and a flat Balmer decrement. Monthly Notices of the Royal Astronomical Society, 2020, 498, 4119-4133.	4.4	35
50	Examining a Peak-luminosity/Decline-rate Relationship for Tidal Disruption Events. Astrophysical Journal Letters, 2020, 894, L10.	8.3	22
51	Multiwavelength Study of an X-Ray Tidal Disruption Event Candidate in NGC 5092. Astrophysical Journal, 2020, 891, 121.	4.5	14
52	Rates of Stellar Tidal Disruption. Space Science Reviews, 2020, 216, 1.	8.1	60
53	Continuum-fitting the X-Ray Spectra of Tidal Disruption Events. Astrophysical Journal, 2020, 897, 80.	4.5	38
54	Implications from Late-time X-Ray Detections of Optically Selected Tidal Disruption Events: State Changes, Unification, and Detection Rates. Astrophysical Journal, 2020, 889, 166.	4.5	55

#	Article	IF	CITATIONS
55	Polarimetry of relativistic tidal disruption event SwiftÂJ2058+0516. Monthly Notices of the Royal Astronomical Society, 2020, 491, 1771-1776.	4.4	12
56	To TDE or not to TDE: the luminous transient ASASSN-18jd with TDE-like and AGN-like qualities. Monthly Notices of the Royal Astronomical Society, 2020, 494, 2538-2560.	4.4	34
57	The SiTian Project. Anais Da Academia Brasileira De Ciencias, 2021, 93, e20200628.	0.8	23
58	Limits on mass outflow from optical tidal disruption events. Monthly Notices of the Royal Astronomical Society, 2021, 502, 3385-3393.	4.4	13
59	Seventeen Tidal Disruption Events from the First Half of ZTF Survey Observations: Entering a New Era of Population Studies. Astrophysical Journal, 2021, 908, 4.	4.5	174
60	The Young Supernova Experiment: Survey Goals, Overview, and Operations. Astrophysical Journal, 2021, 908, 143.	4.5	52
61	Measuring Black Hole Masses from Tidal Disruption Events and Testing the M _{BH} –΃ _* Relation. Astrophysical Journal, 2021, 907, 77.	4.5	16
62	Elliptical Accretion Disk as a Model for Tidal Disruption Events. Astrophysical Journal, 2021, 908, 179.	4.5	11
63	A Swift Fix for Nuclear Outbursts. Astrophysical Journal, 2021, 910, 83.	4.5	17
64	Rapid Accretion State Transitions following the Tidal Disruption Event AT2018fyk. Astrophysical Journal, 2021, 912, 151.	4.5	34
65	Distinguishing Tidal Disruption Events from Impostors. Space Science Reviews, 2021, 217, 1.	8.1	25
66	Discovery of a Fast Iron Low-ionization Outflow in the Early Evolution of the Nearby Tidal Disruption Event AT 2019qiz. Astrophysical Journal, 2021, 917, 9.	4.5	17
67	Global simulations of tidal disruption event disc formation via stream injection in GRRMHD. Monthly Notices of the Royal Astronomical Society, 2021, 507, 3207-3227.	4.4	12
68	Tidal Disruption Events. Annual Review of Astronomy and Astrophysics, 2021, 59, 21-58.	24.3	140
69	An Energy Inventory of Tidal Disruption Events. Astrophysical Journal, 2021, 906, 101.	4.5	13
70	What causes the fragmentation of debris streams in TDEs?. Monthly Notices of the Royal Astronomical Society, 2020, 495, 1227-1238.	4.4	2
71	Neutrino Emissions from Tidal Disruption Remnants. Astrophysical Journal, 2019, 886, 114.	4.5	17
72	The Spectral Evolution of AT 2018dyb and the Presence of Metal Lines in Tidal Disruption Events. Astrophysical Journal, 2019, 887, 218.	4.5	72

#	Article	IF	CITATIONS
73	A Tidal Disruption Event Candidate Discovered in the Active Galactic Nucleus SDSS J022700.77-042020.6. Astrophysical Journal, 2020, 894, 93.	4.5	29
74	Fallback Rates from Partial Tidal Disruption Events. Astrophysical Journal, 2020, 899, 36.	4.5	32
75	Tidal Disruption Flares from Stars on Marginally Bound and Unbound Orbits. Astrophysical Journal, 2020, 900, 3.	4.5	8
76	The Rise and Fall of ASASSN-18pg: Following a TDE from Early to Late Times. Astrophysical Journal, 2020, 898, 161.	4.5	41
77	Double-peaked Balmer Emission Indicating Prompt Accretion Disk Formation in an X-Ray Faint Tidal Disruption Event. Astrophysical Journal, 2020, 903, 31.	4.5	37
78	Measuring Stellar and Black Hole Masses of Tidal Disruption Events. Astrophysical Journal, 2020, 904, 73.	4.5	43
79	Stellar Tidal Disruption Events with Abundances and Realistic Structures (STARS): Library of Fallback Rates. Astrophysical Journal, 2020, 905, 141.	4.5	36
80	Application of The Wind-driven Model to a Sample of Tidal Disruption Events. Astrophysical Journal Letters, 2020, 905, L5.	8.3	8
81	The Persistence of Pancakes and the Revival of Self-gravity in Tidal Disruption Events. Astrophysical Journal Letters, 2020, 900, L39.	8.3	5
82	The effect of impact parameter on tidal disruption events. Monthly Notices of the Royal Astronomical Society, 2020, 501, 1748-1754.	4.4	4
83	Partial, Zombie, and Full Tidal Disruption of Stars by Supermassive Black Holes. Astrophysical Journal, 2021, 922, 168.	4.5	22
84	Observable gravitational waves from tidal disruption events and their electromagnetic counterpart. Monthly Notices of the Royal Astronomical Society, 2021, 510, 2025-2040.	4.4	6
85	A detailed spectroscopic study of tidal disruption events. Astronomy and Astrophysics, 2022, 659, A34.	5.1	21
86	The Eccentric Nature of Eccentric Tidal Disruption Events. Astrophysical Journal, 2022, 924, 34.	4.5	10
87	Evidence for the Preferential Disruption of Moderately Massive Stars by Supermassive Black Holes. Astrophysical Journal, 2022, 924, 70.	4.5	17
88	The UV/Optical Peak and X-Ray Brightening in TDE Candidate AT 2019azh: A Case of Stream–Stream Collision and Delayed Accretion. Astrophysical Journal, 2022, 925, 67.	4.5	17
89	An analytical, fully relativistic framework for tidal disruption event streams in Schwarzschild geometry. Monthly Notices of the Royal Astronomical Society, 2022, 511, 3408-3419.	4.4	1
90	Stars Crushed by Black Holes. II. A Physical Model of Adiabatic Compression and Shock Formation in Tidal Disruption Events. Astrophysical Journal, 2022, 926, 47.	4.5	8

#	Article	IF	CITATIONS
91	Revisiting the Rates and Demographics of Tidal Disruption Events: Effects of the Disk Formation Efficiency. Astrophysical Journal Letters, 2022, 927, L19.	8.3	4
92	Is the High-energy Neutrino Event IceCube-200530A Associated with a Hydrogen-rich Superluminous Supernova?. Astrophysical Journal, 2022, 929, 163.	4.5	12
93	Starfall: a heavy rain of stars in â€~turning on' AGN. Monthly Notices of the Royal Astronomical Society, 2022, 514, 4102-4110.	4.4	12
94	The bulge masses of TDE host galaxies and their scaling with black hole mass. Monthly Notices of the Royal Astronomical Society, 2022, 515, 1146-1157.	4.4	12
95	The Host Galaxy and Rapidly Evolving Broad-line Region in the Changing-look Active Galactic Nucleus 1ES 1927+654. Astrophysical Journal, 2022, 933, 70.	4.5	11
96	Systematic light-curve modelling of TDEs: statistical differences between the spectroscopic classes. Monthly Notices of the Royal Astronomical Society, 2022, 515, 5604-5616.	4.4	26
97	Radiative hydrodynamical simulations of super-Eddington accretion flow in tidal disruption event: the origin of optical/UV emission. Monthly Notices of the Royal Astronomical Society, 2022, 516, 2833-2839.	4.4	5
98	On the Impact of Relativistic Gravity on the Rate of Tidal Disruption Events. Astrophysical Journal, 2022, 936, 70.	4.5	11
99	Cooling Envelope Model for Tidal Disruption Events. Astrophysical Journal Letters, 2022, 937, L12.	8.3	16
100	The nuclear transient AT 2017gge: a tidal disruption event in a dusty and gas-rich environment and the awakening of a dormant SMBH. Monthly Notices of the Royal Astronomical Society, 2022, 517, 76-98.	4.4	8
101	A Mid-infrared Flare in the Seyfert Galaxy NGC 3786: A Changing-look Event Triggered by an Obscured Tidal Disruption Event?. Astrophysical Journal, 2022, 937, 3.	4.5	1
102	Probing the tidal disruption event iPTF16axa with <scp>cloudy</scp> and disc-wind models. Monthly Notices of the Royal Astronomical Society, 2022, 518, 5693-5704.	4.4	1
103	The Final Season Reimagined: 30 Tidal Disruption Events from the ZTF-I Survey. Astrophysical Journal, 2023, 942, 9.	4.5	43
104	Discovery of the luminous X-ray ignition eRASSt J234402.9â^'352640. Astronomy and Astrophysics, 2023, 672, A167.	5.1	5
105	General relativistic stream crossing in tidal disruption events. Monthly Notices of the Royal Astronomical Society, 2023, 520, 5192-5208.	4.4	2
106	A Census of Archival X-Ray Spectra for Modeling Tidal Disruption Events. Publications of the Astronomical Society of the Pacific, 2023, 135, 034101.	3.1	1
107	AT 2020wey and the class of faint and fast tidal disruption events. Astronomy and Astrophysics, 2023, 673, A95.	5.1	8
108	Extremely Relativistic Tidal Disruption Events. Astrophysical Journal Letters, 2023, 946, L33.	8.3	2

#	Article	IF	CITATIONS
109	Optical polarization from colliding stellar stream shocks in a tidal disruption event. Science, 2023, 380, 656-658.	12.6	2
110	Radiative hydrodynamical simulations of super-Eddington accretion flow in tidal disruption event: the accretion flow and wind. Monthly Notices of the Royal Astronomical Society, 2023, 523, 4136-4145.	4.4	1
111	A Bright First Day for Tidal Disruption Events. Astrophysical Journal, 2023, 953, 117.	4.5	2
112	Rubin Observatory's Survey Strategy Performance for Tidal Disruption Events. Astrophysical Journal, Supplement Series, 2023, 268, 13.	7.7	1
113	On the relative importance of shocks and self-gravity in modifying tidal disruption event debris streams. Monthly Notices of the Royal Astronomical Society, 2023, 526, 2323-2330.	4.4	0
114	Tidal Disruption Event Demographics with the Zwicky Transient Facility: Volumetric Rates, Luminosity Function, and Implications for the Local Black Hole Mass Function. Astrophysical Journal Letters, 2023, 955, L6.	8.3	20
115	Fundamental scaling relationships revealed in the optical light curves of tidal disruption events. Monthly Notices of the Royal Astronomical Society, 2023, 527, 2452-2489.	4.4	2
116	Massive black hole growth using the star gulping mechanism. Romanian Reports in Physics, 2023, 75, 204-204.	0.0	0
117	Loss cone shielding. Monthly Notices of the Royal Astronomical Society, 2023, 527, 3094-3105.	4.4	2
118	Integral Field Spectroscopy of 13 Tidal Disruption Event Hosts from the Zwicky Transient Facility Survey. Astrophysical Journal, 2023, 957, 86.	4.5	1
119	Exploring the Origin of Stars on Bound and Unbound Orbits Causing Tidal Disruption Events. Astrophysical Journal, 2023, 959, 19.	4.5	0
120	Coronal line emitters are tidal disruption events in gas-rich environments. Monthly Notices of the Royal Astronomical Society, 2024, 528, 4775-4784.	4.4	2
121	Stream–disk shocks as the origins of peak light in tidal disruption events. Nature, 2024, 625, 463-467.	27.8	2
122	Tidal Disruption Events through the Lens of the Cooling Envelope Model. Astrophysical Journal Letters, 2024, 961, L19.	8.3	0
123	Probing the Subparsec Dust of a Supermassive Black Hole with the Tidal Disruption Event AT 2020mot. Astrophysical Journal, 2024, 961, 239.	4.5	0
124	ULTRASAT: A Wide-field Time-domain UV Space Telescope. Astrophysical Journal, 2024, 964, 74.	4.5	0