Mapping daily evapotranspiration based on spatiotemp images over irrigated agricultural areas in the Heihe Riv

Agricultural and Forest Meteorology 244-245, 82-97 DOI: 10.1016/j.agrformet.2017.05.023

Citation Report

#	Article	IF	CITATIONS
1	Comparison of Two Satelliteâ€Based Evapotranspiration Models of the Nagqu River Basin of the Tibetan Plateau. Journal of Geophysical Research D: Atmospheres, 2018, 123, 3961-3975.	3.3	22
2	Spatial resolution enhancement of satellite image data using fusion approach. IOP Conference Series: Earth and Environmental Science, 2018, 118, 012047.	0.3	2
3	Modeling the Distributions of Brightness Temperatures of a Cropland Study Area Using a Model that Combines Fast Radiosity and Energy Budget Methods. Remote Sensing, 2018, 10, 736.	4.0	4
4	Continuous Daily Evapotranspiration Estimation at the Field-Scale over Heterogeneous Agricultural Areas by Fusing ASTER and MODIS Data. Remote Sensing, 2018, 10, 1694.	4.0	12
5	The Heihe Integrated Observatory Network: A Basinâ€5cale Land Surface Processes Observatory in China. Vadose Zone Journal, 2018, 17, 1-21.	2.2	258
6	Monitoring and validating spatially and temporally continuous daily evaporation and transpiration at river basin scale. Remote Sensing of Environment, 2018, 219, 72-88.	11.0	82
7	Mapping daily leaf area index at 30 m resolution over a meadow steppe area by fusing Landsat, Sentinel-2A and MODIS data. International Journal of Remote Sensing, 2018, 39, 9025-9053.	2.9	12
8	Improvement of Makkink model for reference evapotranspiration estimation using temperature data in Northwest China. Journal of Hydrology, 2018, 566, 264-273.	5.4	32
9	Spatiotemporal Fusion of Multisource Remote Sensing Data: Literature Survey, Taxonomy, Principles, Applications, and Future Directions. Remote Sensing, 2018, 10, 527.	4.0	293
10	Estimation of daily evapotranspiration and irrigation water efficiency at a Landsat-like scale for an arid irrigation area using multi-source remote sensing data. Remote Sensing of Environment, 2018, 216, 715-734.	11.0	120
11	Exploring evapotranspiration dynamics over Sub-Sahara Africa (2000–2014). Environmental Monitoring and Assessment, 2018, 190, 400.	2.7	27
12	Spatially Disaggregating Satellite Land Surface Temperature With a Nonlinear Model Across Agricultural Areas. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 3232-3251.	3.0	10
13	An Optimized Water Distribution Model of Irrigation District Based on the Genetic Backtracking Search Algorithm. IEEE Access, 2019, 7, 145692-145704.	4.2	5
14	Combining generalized complementary relationship models with the Bayesian Model Averaging method to estimate actual evapotranspiration over China. Agricultural and Forest Meteorology, 2019, 279, 107759.	4.8	13
15	Satellite-based analysis of regional evapotranspiration trends in a semi-arid area. International Journal of Remote Sensing, 2019, 40, 3267-3288.	2.9	7
16	Simultaneous measurement of multiple soil properties through proximal sensor data fusion: A case study. Geoderma, 2019, 341, 111-128.	5.1	73
17	Mapping daily evapotranspiration over a large irrigation district from MODIS data using a novel hybrid dual-source coupling model. Agricultural and Forest Meteorology, 2019, 276-277, 107612.	4.8	9
18	A Modeling Framework for Deriving Daily Time Series of Evapotranspiration Maps Using a Surface Energy Balance Model. Remote Sensing, 2019, 11, 508.	4.0	6

#	Article	IF	CITATIONS
19	A three-source satellite algorithm for retrieving all-sky evapotranspiration rate using combined optical and microwave vegetation index at twenty AsiaFlux sites. Remote Sensing of Environment, 2019, 235, 111463.	11.0	27
20	Mapping regional turbulent heat fluxes via variational assimilation of land surface temperature data from polar orbiting satellites. Remote Sensing of Environment, 2019, 221, 444-461.	11.0	59
21	Evaluating Soil Resistance Formulations in Thermalâ€Based Twoâ€Source Energy Balance (TSEB) Model: Implications for Heterogeneous Semiarid and Arid Regions. Water Resources Research, 2019, 55, 1059-1078.	4.2	29
22	Application of Cadastre Maps, Agricultural Database and MODIS Satellite Images for Monitoring Cultivated Areas. Iranian Journal of Science and Technology - Transactions of Civil Engineering, 2019, 43, 179-192.	1.9	3
23	A survey on intelligent agents and multi-agents for irrigation scheduling. Computers and Electronics in Agriculture, 2020, 176, 105474.	7.7	31
24	Assessing the Spatial Pattern of Irrigation Demand under Climate Change in Arid Area. ISPRS International Journal of Geo-Information, 2020, 9, 506.	2.9	5
25	A Data Fusion Modeling Framework for Retrieval of Land Surface Temperature from Landsat-8 and MODIS Data. Sensors, 2020, 20, 4337.	3.8	5
26	HISTIF: A New Spatiotemporal Image Fusion Method for High-Resolution Monitoring of Crops at the Subfield Level. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13, 4607-4626.	4.9	19
27	Evapotranspiration Partitioning at Field Scales Using TSEB and Multi-Satellite Data Fusion in The Middle Reaches of Heihe River Basin, Northwest China. Remote Sensing, 2020, 12, 3223.	4.0	7
28	Estimating surface heat and water vapor fluxes by combining two-source energy balance model and back-propagation neural network. Science of the Total Environment, 2020, 729, 138724.	8.0	16
29	BESS-STAIR: a framework to estimate daily, 30 m, and all-weather crop evapotranspiration using multi-source satellite data for the US Corn Belt. Hydrology and Earth System Sciences, 2020, 24, 1251-1273.	4.9	22
30	Wind Speed-Independent Two-Source Energy Balance Model Based on a Theoretical Trapezoidal Relationship between Land Surface Temperature and Fractional Vegetation Cover for Evapotranspiration Estimation. Advances in Meteorology, 2020, 2020, 1-22.	1.6	3
31	Seasonal Adaptation of the Thermal-Based Two-Source Energy Balance Model for Estimating Evapotranspiration in a Semiarid Tree-Grass Ecosystem. Remote Sensing, 2020, 12, 904.	4.0	20
32	Developing a Gap-Filling Algorithm Using DNN for the Ts-VI Triangle Model to Obtain Temporally Continuous Daily Actual Evapotranspiration in an Arid Area of China. Remote Sensing, 2020, 12, 1121.	4.0	14
33	Sensitivity of six typical spatiotemporal fusion methods to different influential factors: A comparative study for a normalized difference vegetation index time series reconstruction. Remote Sensing of Environment, 2021, 252, 112130.	11.0	76
34	Phenology-based classification of crop species and rotation types using fused MODIS and Landsat data: The comparison of a random-forest-based model and a decision-rule-based model. Soil and Tillage Research, 2021, 206, 104838.	5.6	38
35	Current and near-term advances in Earth observation for ecological applications. Ecological Processes, 2021, 10, 1.	3.9	113
36	Quantifying spatio-temporal variations of evapotranspiration over a heterogeneous terrain in the Arid regions of Northwestern China International Journal of Remote Sensing, 2021, 42, 3231-3254.	2.9	3

CITATION REPORT

#	Article	IF	CITATIONS
37	A Hybrid Deep Learning-Based Spatiotemporal Fusion Method for Combining Satellite Images with Different Resolutions. Remote Sensing, 2021, 13, 645.	4.0	31
38	Improving the Evapotranspiration Estimation under Cloudy Condition by Extending the Ts-VI Triangle Model. Remote Sensing, 2021, 13, 1516.	4.0	3
39	Estimation of Evapotranspiration in Sparse Vegetation Areas by Applying an Optimized Two-Source Model. Remote Sensing, 2021, 13, 1344.	4.0	3
40	Challenges and opportunities in precision irrigation decision-support systems for center pivots. Environmental Research Letters, 2021, 16, 053003.	5.2	31
41	Evaluating the SSEBop and RSPMPT Models for Irrigated Fields Daily Evapotranspiration Mapping with MODIS and CMADS Data. Agriculture (Switzerland), 2021, 11, 424.	3.1	3
42	The effect of pixel heterogeneity for remote sensing based retrievals of evapotranspiration in a semi-arid tree-grass ecosystem. Remote Sensing of Environment, 2021, 260, 112440.	11.0	27
43	Long time series of daily evapotranspiration in China based on the SEBAL model and multisource images and validation. Earth System Science Data, 2021, 13, 3995-4017.	9.9	28
44	A decadal (2008–2017) daily evapotranspiration data set of 1Âkm spatial resolution and spatial completeness across the North China Plain using TSEB and data fusion. Remote Sensing of Environment, 2021, 262, 112519.	11.0	39
45	Spatially Continuous and High-Resolution Land Surface Temperature Product Generation: A review of reconstruction and spatiotemporal fusion techniques. IEEE Geoscience and Remote Sensing Magazine, 2021, 9, 112-137.	9.6	61
46	Evaluating the role of remote sensing-based energy balance models in improving site-specific irrigation management for young walnut orchards. Agricultural Water Management, 2021, 256, 107132.	5.6	3
47	A physical-based two-source evapotranspiration model with Monin–Obukhov similarity theory. GIScience and Remote Sensing, 2021, 58, 88-119.	5.9	9
48	Performance assessment of ESTARFM with different similar-pixel identification schemes. Journal of Applied Remote Sensing, 2018, 12, 1.	1.3	6
49	Spatiotemporal variation of actual evapotranspiration and its response to changes of major meteorological factors over China using multi-source data. Journal of Water and Climate Change, 2021, 12, 325-338.	2.9	11
50	Mapping groundwater abstractions from irrigated agriculture: big data, inverse modeling, and a satellite–model fusion approach. Hydrology and Earth System Sciences, 2020, 24, 5251-5277.	4.9	19
51	Estimating Regional Evapotranspiration Using a Satellite-Based Wind Speed Avoiding Priestley–Taylor Approach. Water (Switzerland), 2021, 13, 3144.	2.7	1
52	SEBAL Model to Estimate Biophysics and Energy Flux Variable : Availability of Evapotranspiration Distribution Using Remote Sensing in Lore Lindu National Park. IOP Conference Series: Earth and Environmental Science, 2022, 950, 012022.	0.3	1
53	Deep Learning-Based Spatiotemporal Data Fusion Using a Patch-to-Pixel Mapping Strategy and Model Comparisons. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-18.	6.3	9
54	Operational daily evapotranspiration mapping at field scale based on SSEBop model and spatiotemporal fusion of multi-source remote sensing data. PLoS ONE, 2022, 17, e0264133.	2.5	2

CITATION REPORT

#	Article	IF	CITATIONS
55	Evaluation of Landsat 8-like Land Surface Temperature by Fusing Landsat 8 and MODIS Land Surface Temperature Product. Processes, 2021, 9, 2262.	2.8	11
56	Estimation of Landsat-like daily evapotranspiration for crop water consumption monitoring using TSEB model and data fusion. PLoS ONE, 2022, 17, e0267811.	2.5	1
57	Effect of aggregation and disaggregation of land surface temperature imagery on evapotranspiration estimation. Remote Sensing Applications: Society and Environment, 2022, 27, 100805.	1.5	0
58	Estimation of evapotranspiration using all-weather land surface temperature and variational trends with warming temperatures for the River Source Region in Southwest China. Journal of Hydrology, 2022, 613, 128346.	5.4	4
59	Application of Spatially Distributed Calibrated Hydrological Model in Evapotranspiration Simulation of Three Gorges Reservoir Area of China: A Case Study in the Madu River Basin. Chinese Geographical Science, 2022, 32, 1083-1098.	3.0	1
60	Regime Shifts in the Hexi Oases over the Past Three Decades: The Case of the Linze Oasis in the Middle Reaches of the Heihe River. Sustainability, 2022, 14, 16309.	3.2	0
61	Assessment of water demands for irrigation using energy balance and satellite data fusion models in cloud computing: A study in the Brazilian semiarid region. Agricultural Water Management, 2023, 281, 108260.	5.6	2
62	Evapotranspiration of Winter Wheat in the Semi-Arid Southeastern Loess Plateau Based on Multi-Source Satellite Data. Remote Sensing, 2023, 15, 2095.	4.0	1
63	Estimating the Actual Evapotranspiration Using Remote Sensing and SEBAL Model in an Arid Environment of Northwest China. Water (Switzerland), 2023, 15, 1555.	2.7	1
64	Spatial enhanced spatiotemporal reflectance fusion model for heterogeneous regions with land cover change. Geocarto International, 2023, 38, .	3.5	0
65	The effect of pixel heterogeneity on surface heat and water vapor flux estimated by the remote sensing-based model coupled with deep learning. Journal of Hydrology, 2023, 625, 130036.	5.4	1
66	Evaluating the performance of the TSEB model for sorghum evapotranspiration estimation using time series UAV imagery. Irrigation Science, 0, , .	2.8	1
67	Simple yet efficient downscaling of land surface temperatures by suitably integrating kernel- and fusion-based methods. ISPRS Journal of Photogrammetry and Remote Sensing, 2023, 205, 317-333.	11.1	1
68	Automated actual evapotranspiration estimation: Hybrid model of a novel attention based U-Net and metaheuristic optimization algorithms. Atmospheric Research, 2024, 297, 107107.	4.1	0
69	Evaluating the ability of deep learning on actual daily evapotranspiration estimation over the heterogeneous surfaces. Agricultural Water Management, 2024, 291, 108627.	5.6	0