Automated Quantum Mechanical Predictions of Enantie Asymmetric Hydrogenation

Angewandte Chemie - International Edition 56, 9101-9105 DOI: 10.1002/anie.201704663

Citation Report

#	Article	IF	CITATIONS
1	Rational Optimization of Supramolecular Catalysts for the Rhodium atalyzed Asymmetric Hydrogenation Reaction. Angewandte Chemie, 2017, 129, 13236-13240.	1.6	6
2	Rational Optimization of Supramolecular Catalysts for the Rhodiumâ€Catalyzed Asymmetric Hydrogenation Reaction. Angewandte Chemie - International Edition, 2017, 56, 13056-13060.	7.2	30
3	Enantioselectivity in CPA-catalyzed Friedel–Crafts reaction of indole and <i>N</i> -tosylimines: a challenge for guiding models. Organic and Biomolecular Chemistry, 2018, 16, 2225-2238.	1.5	11
4	The True Catalyst Revealed: The Intervention of Chiral Ca and Mg Phosphates in BrÃ,nsted Acid Promoted Asymmetric Mannich Reactions. Journal of the American Chemical Society, 2018, 140, 5412-5420.	6.6	21
5	Mechanistically Guided Design of Ligands That Significantly Improve the Efficiency of CuH-Catalyzed Hydroamination Reactions. Journal of the American Chemical Society, 2018, 140, 13976-13984.	6.6	101
6	Comparing quantitative prediction methods for the discovery of small-molecule chiral catalysts. Nature Reviews Chemistry, 2018, 2, 290-305.	13.8	100
7	Computationally Assisted Mechanistic Investigation and Development of Pd-Catalyzed Asymmetric Suzuki–Miyaura and Negishi Cross-Coupling Reactions for Tetra- <i>ortho</i> -Substituted Biaryl Synthesis. ACS Catalysis, 2018, 8, 10190-10209.	5.5	70
8	Rhodium-catalyzed asymmetric hydrogenation of β-branched enamides for the synthesis of β-stereogenic amines. Chemical Communications, 2018, 54, 6024-6027.	2.2	38
9	Expedited Screening of Active and Regioselective Catalysts for the Hydroformylation Reaction. Helvetica Chimica Acta, 2018, 101, e1800107.	1.0	19
10	AARON: An Automated Reaction Optimizer for New Catalysts. Journal of Chemical Theory and Computation, 2018, 14, 5249-5261.	2.3	103
11	Computational design of high-performance ligand for enantioselective Markovnikov hydroboration of aliphatic terminal alkenes. Nature Communications, 2018, 9, 2290.	5.8	64
12	Questions in natural products synthesis research that can (and cannot) be answered using computational chemistry. Chemical Society Reviews, 2018, 47, 7845-7850.	18.7	28
13	Origin of the Selectivity and Activity in the Rhodium-Catalyzed Asymmetric Hydrogenation Using Supramolecular Ligands. ACS Catalysis, 2019, 9, 7535-7547.	5.5	18
15	Conformational Effects on Physical-Organic Descriptors: The Case of Sterimol Steric Parameters. ACS Catalysis, 2019, 9, 2313-2323.	5.5	96
16	Activity-Based Screening of Homogeneous Catalysts through the Rapid Assessment of Theoretically Derived Turnover Frequencies. ACS Catalysis, 2019, 9, 5716-5725.	5.5	48
17	Catalytic Homogeneous Asymmetric Hydrogenation: Successes and Opportunities. Organometallics, 2019, 38, 47-65.	1.1	184
18	The importance of synthetic chemistry in the pharmaceutical industry. Science, 2019, 363, .	6.0	312
20	A Predictive Tool for Electrophilic Aromatic Substitutions Using Machine Learning. Journal of Organic Chemistry 2019 84 4695-4703	1.7	70

#	Article	IF	CITATIONS
21	Practical and efficient preparation of the chiral 4-bromotryptophan derivative by Rh-catalyzed hydrogenation. Tetrahedron Letters, 2020, 61, 151498.	0.7	2
22	Applications of Quantum Chemistry in Pharmaceutical Process Development: Current State and Opportunities. Organic Process Research and Development, 2020, 24, 1496-1507.	1.3	25
24	New Directions in the Modeling of Organometallic Reactions. Topics in Organometallic Chemistry, 2020, , .	0.7	1
25	Revealing the Strong Relationships between Ligand Conformers and Activation Barriers: A Case Study of Bisphosphine Reductive Elimination. ACS Catalysis, 2020, 10, 7136-7145.	5.5	25
26	Ligand Design for Asymmetric Catalysis: Combining Mechanistic and Chemoinformatics Approaches. Topics in Organometallic Chemistry, 2020, , 153-189.	0.7	1
27	Automated in Silico Design of Homogeneous Catalysts. ACS Catalysis, 2020, 10, 2354-2377.	5.5	119
28	<scp>QChASM</scp> : Quantum chemistry automation and structure manipulation. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2021, 11, e1510.	6.2	28
29	Scaffoldâ€Directed Face Selectivity Machineâ€Learned from Vectors of Nonâ€covalent Interactions. Angewandte Chemie, 2021, 133, 15358-15363.	1.6	7
30	Scaffoldâ€Directed Face Selectivity Machineâ€Learned from Vectors of Nonâ€covalent Interactions. Angewandte Chemie - International Edition, 2021, 60, 15230-15235.	7.2	19
31	Computational Discovery of Transition-metal Complexes: From High-throughput Screening to Machine Learning. Chemical Reviews, 2021, 121, 9927-10000.	23.0	110
32	Automated Construction and Optimization Combined with Machine Learning to Generate Pt(II) Methane C–H Activation Transition States. Topics in Catalysis, 2022, 65, 312-324.	1.3	11
33	Automated exploration of the low-energy chemical space with fast quantum chemical methods. Physical Chemistry Chemical Physics, 2020, 22, 7169-7192.	1.3	966
34	Generating transition states of isomerization reactions with deep learning. Physical Chemistry Chemical Physics, 2020, 22, 23618-23626.	1.3	35
35	Computational insights into metal-catalyzed asymmetric hydrogenation. Advances in Catalysis, 2021, 68, 385-426.	0.1	1
36	Is the polarization of the Cî€C bond imperative for bifunctional outer-sphere Cî€C hydrogenation?. Organic Chemistry Frontiers, 2023, 10, 1301-1308.	2.3	3
37	Highly chemoselective ligands for Suzuki–Miyaura cross-coupling reaction based on virtual ligand-assisted screening. Organic and Biomolecular Chemistry, 2023, 21, 3132-3142.	1.5	2
38	Virtual Ligand Strategy in Transition Metal Catalysis Toward Highly Efficient Elucidation of Reaction Mechanisms and Computational Catalyst Design. ACS Catalysis, 2023, 13, 5697-5711.	5.5	3