SDSS IV MaNGA – metallicity and nitrogen abundanc

Monthly Notices of the Royal Astronomical Society 469, 151-170

DOI: 10.1093/mnras/stx789

Citation Report

#	Article	IF	CITATIONS
1	The evolution of the metallicity gradient and the star formation efficiency in disc galaxies. Monthly Notices of the Royal Astronomical Society, 2017, 472, 4404-4413.	1.6	24
2	Metallicity calibrations of galaxies with low star formation rates: the influence of a stochastic IMF. Monthly Notices of the Royal Astronomical Society, 2017, 470, 1612-1625.	1.6	11
3	SDSS-IV MaNGA-resolved Star Formation and Molecular Gas Properties of Green Valley Galaxies: A First Look with ALMA and MaNGA. Astrophysical Journal, 2017, 851, 18.	1.6	47
4	Breaks in surface brightness profiles and radial abundance gradients in the discs of spiral galaxies. Astronomy and Astrophysics, 2017, 608, A127.	2.1	12
5	M101: Spectral Observations of H ii Regions and Their Physical Properties. Astrophysical Journal, 2018, 854, 68.	1.6	13
6	The Effect of Galaxy Interactions on Molecular Gas Properties. Astrophysical Journal, 2018, 868, 132.	1.6	51
7	ALMACAL – III. A combined ALMA and MUSE survey for neutral, molecular, and ionized gas in an H i-absorption-selected system. Monthly Notices of the Royal Astronomical Society, 2018, 475, 492-507.	1.6	28
8	Influence of the Void Environment on Chemical Abundances in Dwarf Galaxies and Implications for Connecting Star Formation and Halo Mass. Astrophysical Journal, 2018, 864, 144.	1.6	9
9	Extragalactic archaeology with the C, N, and O chemical abundances. Astronomy and Astrophysics, 2018, 610, L16.	2.1	23
10	Azimuthal variations of gas-phase oxygen abundance in NGC 2997. Astronomy and Astrophysics, 2018, 618, A64.	2.1	32
11	Hunting for metals using XQ-100 Legacy Survey composite spectra. Monthly Notices of the Royal Astronomical Society, 2018, 481, 105-121.	1.6	12
12	The <i>Gaia</i> -ESO Survey: The N/O abundance ratio in the Milky Way. Astronomy and Astrophysics, 2018, 618, A102.	2.1	21
13	Metal-enriched galactic outflows shape the mass–metallicity relationship. Monthly Notices of the Royal Astronomical Society, 2018, 481, 1690-1706.	1.6	78
14	The shape of oxygen abundance profiles explored with MUSE: evidence for widespread deviations from single gradients. Astronomy and Astrophysics, 2018, 609, A119.	2.1	102
15	SDSS IV MaNGA – sSFR profiles and the slow quenching of discs in green valley galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 477, 3014-3029.	1.6	110
16	The SINS/zC-SINF Survey of zÂâ^¼Â2 Galaxy Kinematics: SINFONI Adaptive Optics–assisted Data and Kiloparsec-scale Emission-line Properties ^{â^—} . Astrophysical Journal, Supplement Series, 2018, 238, 21.	3.0	143
17	The SAMI Galaxy Survey: Spatially resolved metallicity and ionization mapping. Monthly Notices of the Royal Astronomical Society, 2018, 479, 5235-5265.	1.6	64
18	Nuclear versus integrated spectroscopy of galaxies in the <i>Herschel</i> Reference Survey. Astronomy and Astrophysics, 2018, 615, A104.	2.1	11

#	Article	IF	CITATIONS
19	A Malin 1 â€~cousin' with counter-rotation: internal dynamics and stellar content of the giant low surface brightness galaxy UGC 1922. Monthly Notices of the Royal Astronomical Society, 2018, 481, 3534-3547.	1.6	20
20	Revisiting the radial abundance gradients of nitrogen and oxygen of the Milky Way. Monthly Notices of the Royal Astronomical Society, 2018, 478, 2315-2336.	1.6	57
21	On the origin of N in galaxies with galaxy evolution models. Proceedings of the International Astronomical Union, 2018, 14, 330-333.	0.0	0
22	Metallicity gradients in nearby star forming galaxies. Proceedings of the International Astronomical Union, 2018, 14, 249-250.	0.0	0
23	Cosmological evolution of the nitrogen abundance. Monthly Notices of the Royal Astronomical Society, 2018, 477, 56-66.	1.6	13
24	Evolution of N/O ratios in galaxies from cosmological hydrodynamical simulations. Monthly Notices of the Royal Astronomical Society, 2018, 478, 155-166.	1.6	33
25	First gas-phase metallicity gradients of 0.1 ≲ z ≲ 0.8 galaxies with MUSE. Monthly Notices of the Royal Astronomical Society, 2018, 478, 4293-4316.	1.6	47
26	The RINGS Survey. III. Medium-resolution Hα Fabry–Pérot Kinematic Data Set. Astronomical Journal, 2018, 155, 123.	1.9	3
27	Validity of abundances derived from spaxel spectra of the MaNGA survey. Astronomy and Astrophysics, 2018, 613, A1.	2.1	22
28	SDSS-IV MaNGA: modelling the metallicity gradients of gas and stars – radially dependent metal outflow versus IMF. Monthly Notices of the Royal Astronomical Society, 2018, 476, 3883-3901.	1.6	43
29	O/H-N/O: the curious case of NGC 4670. Monthly Notices of the Royal Astronomical Society, 2018, 476, 3793-3815.	1.6	20
30	The Metallicity Dependence of the H i Shielding Layers in Nearby Galaxies. Astrophysical Journal, 2018, 862, 110.	1.6	21
31	The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the Extended Baryon Oscillation Spectroscopic Survey and from the Second Phase of the Apache Point Observatory Galactic Evolution Experiment. Astrophysical Journal, Supplement Series, 2018, 235, 42.	3.0	796
32	Relations between abundance characteristics and rotation velocity for star-forming MaNGA galaxies. Astronomy and Astrophysics, 2019, 623, A122.	2.1	20
33	Self-consistent Predictions for LIER-like Emission Lines from Post-AGB Stars. Astronomical Journal, 2019, 158, 2.	1.9	29
34	Synthetic nebular emission from massive galaxies – II. Ultraviolet-line diagnostics of dominant ionizing sources. Monthly Notices of the Royal Astronomical Society, 2019, 487, 333-353.	1.6	45
35	Resolved scaling relations and metallicity gradients on sub-kiloparsec scales at z â‰^ 1. Monthly Notices of the Royal Astronomical Society, 2019, 489, 224-240.	1.6	20
36	Spatially resolved signature of quenching in star-forming galaxies. Monthly Notices of the Royal Astronomical Society, 2019, 490, 2347-2366.	1.6	7

#	Article	IF	CITATIONS
37	The 50–100Âpc scale parent stellar populations of Type II supernovae and limitations of single star evolution models. Monthly Notices of the Royal Astronomical Society, 2019, 490, 4515-4535.	1.6	12
38	Discovery of Strongly Inverted Metallicity Gradients in Dwarf Galaxies at zÂâ^¼Â2. Astrophysical Journal, 2019, 882, 94.	1.6	42
39	SDSS-IV MaNGA: Evidence for Enriched Accretion onto Satellite Galaxies in Dense Environments. Astrophysical Journal, 2019, 884, 156.	1.6	19
40	Metallicity gradients in small and nearby spiral galaxies. Monthly Notices of the Royal Astronomical Society, 2019, 488, 3826-3843.	1.6	36
41	Rest-frame UV and optical emission line diagnostics of ionized gas properties: a test case in a star-forming knot of a lensed galaxy at zÂâ^¼Â1.7. Monthly Notices of the Royal Astronomical Society, 2019, 488, 5862-5886.	1.6	8
42	SDSS-IV MaNGA: environmental dependence of gas metallicity gradients in local star-forming galaxies. Monthly Notices of the Royal Astronomical Society, 2019, 489, 1436-1450.	1.6	18
43	Characterizing the Local Relation between Star Formation Rate and Gas-phase Metallicity in MaNGA Spiral Galaxies. Astrophysical Journal, 2019, 882, 9.	1.6	30
44	The influence of the distribution of cosmic star formation at different metallicities on the properties of merging double compact objects. Monthly Notices of the Royal Astronomical Society, 2019, 482, 5012-5017.	1.6	72
45	Metallicity and ionization state of the gas in polar-ring galaxies. Monthly Notices of the Royal Astronomical Society, 2019, 486, 4186-4197.	1.6	12
46	Osaka feedback model: isolated disc galaxy simulations. Monthly Notices of the Royal Astronomical Society, 2019, 484, 2632-2655.	1.6	26
47	The TNG50 Simulation of the IllustrisTNG Project: Bridging the Gap Between Large Cosmological Volumes and Resolved Galaxies. , 2019, , 5-20.		0
48	The effects of diffuse ionized gas and spatial resolution on metallicity gradients: TYPHOON two-dimensional spectrophotometry of M83. Monthly Notices of the Royal Astronomical Society, 2019, 487, 79-96.	1.6	46
49	From †bathtub' galaxy evolution models to metallicity gradients. Monthly Notices of the Royal Astronomical Society, 2019, 487, 456-474.	1.6	49
50	Characterizing circumgalactic gas around massive ellipticals at <i>z</i> â‰^ 0.4 – III. The galactic environment of a chemically pristine Lyman limit absorber. Monthly Notices of the Royal Astronomical Society, 2019, 484, 431-441.	1.6	16
51	Evidence for diffuse molecular gas and dust in the hearts of gamma-ray burst host galaxies. Astronomy and Astrophysics, 2019, 623, A43.	2.1	41
52	SDSS-IV MaNGA: local and global chemical abundance patterns in early-type galaxies. Monthly Notices of the Royal Astronomical Society, 2019, 483, 3420-3436.	1.6	32
53	The SAMI galaxy survey: exploring the gas-phase mass–metallicity relation. Monthly Notices of the Royal Astronomical Society, 2019, 484, 3042-3070.	1.6	70
54	Simulating an isolated dwarf galaxy with multichannel feedback and chemical yields from individual stars. Monthly Notices of the Royal Astronomical Society, 2019, 482, 1304-1329.	1.6	75

#	Article	IF	CITATIONS
55	The oxygen abundance gradients in the gas discs of galaxies in the EAGLE simulation. Monthly Notices of the Royal Astronomical Society, 2019, 482, 2208-2221.	1.6	49
56	The MUSE Atlas of Disks (MAD): resolving star formation rates and gas metallicities on <100 pc scalesâ€. Monthly Notices of the Royal Astronomical Society, 2019, 484, 5009-5027.	1.6	80
57	Small-scale chemical abundance analysis in a blue compact dwarf galaxy SBS 1415+437. Monthly Notices of the Royal Astronomical Society, 2019, 485, 1103-1120.	1.6	8
58	Anomalously Low-metallicity Regions in MaNGA Star-forming Galaxies: Accretion Caught in Action?. Astrophysical Journal, 2019, 872, 144.	1.6	35
59	SDSS-IV MaNGA: Inside-out versus Outside-in Quenching of Galaxies in Different Local Environments. Astrophysical Journal, 2019, 872, 50.	1.6	40
60	De re metallica: the cosmic chemical evolution of galaxies. Astronomy and Astrophysics Review, 2019, 27, 1.	9.1	372
61	AGN All the Way Down? AGN-like Line Ratios Are Common in the Lowest-mass Isolated Quiescent Galaxies. Astrophysical Journal, 2019, 884, 180.	1.6	37
62	Mapping Metallicity Variations across Nearby Galaxy Disks. Astrophysical Journal, 2019, 887, 80.	1.6	103
63	A systematic metallicity study of DustPedia galaxies reveals evolution in the dust-to-metal ratios. Astronomy and Astrophysics, 2019, 623, A5.	2.1	135
64	Characterizing the radial oxygen abundance distribution in disk galaxies. Astronomy and Astrophysics, 2019, 623, A7.	2.1	16
65	Carbon, nitrogen and oxygen abundance gradients in M101 and M31. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	25
66	Search for gas accretion imprints in voids – I. Sample selection and results for NGC 428. Monthly Notices of the Royal Astronomical Society, 2019, 482, 3403-3414.	1.6	4
67	The mass–metallicity and the fundamental metallicity relation revisited on a fully <i>T</i> e-based abundance scale for galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 491, 944-964.	1.6	173
68	Upper boundaries of active galactic nucleus regions in optical diagnostic diagrams. Monthly Notices of the Royal Astronomical Society, 2020, 496, 1262-1277.	1.6	12
69	Bar effect on gas-phase abundance gradients – II. Luminosity-dependent flattening. Monthly Notices of the Royal Astronomical Society, 2020, 500, 2380-2400.	1.6	19
70	SDSS IV MaNGA: Metallicity and ionisation parameter in local star-forming galaxies from Bayesian fitting to photoionisation models. Astronomy and Astrophysics, 2020, 636, A42.	2.1	53
71	The effect of gas accretion on the radial gas metallicity profile of simulated galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 495, 2827-2843.	1.6	25
72	Quantifying the effects of spatial resolution and noise on galaxy metallicity gradients. Monthly Notices of the Royal Astronomical Society, 2020, 495, 3819-3838.	1.6	16

	CITATION REL	PORT	
#	Article	IF	Citations
73	What drives galaxy quenching? Resolving molecular gas and star formation in the green valley. Monthly Notices of the Royal Astronomical Society: Letters, 2020, 498, L66-L71.	1.2	30
74	JINGLE – IV. Dust, H i gas, and metal scaling laws in the local Universe. Monthly Notices of the Royal Astronomical Society, 2020, 496, 3668-3687.	1.6	28
75	Inverted metallicity gradients in two Virgo cluster star-forming dwarf galaxies: evidence of recent merging?. Monthly Notices of the Royal Astronomical Society, 2020, 498, 1939-1950.	1.6	7
76	The Evolution of Gas-Phase Metallicity and Resolved Abundances in Star-forming Galaxies at z â‰^Â0.6–Â1.8. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	18
77	CHAOS IV: Gas-phase Abundance Trends from the First Four CHAOS Galaxies. Astrophysical Journal, 2020, 893, 96.	1.6	67
78	Exploring chemical homogeneity in dwarf galaxies: a VLT- <i>MUSE</i> study of JKBÂ18. Monthly Notices of the Royal Astronomical Society, 2020, 495, 2564-2581.	1.6	12
79	Spatially Resolved Spectroscopic Properties of Low-Redshift Star-Forming Galaxies. Annual Review of Astronomy and Astrophysics, 2020, 58, 99-155.	8.1	126
80	One star, two stars, or both? Investigating metallicity-dependent models for gamma-ray burst progenitors with the IllustrisTNG simulation. Monthly Notices of the Royal Astronomical Society, 2020, 495, 266-277.	1.6	8
81	Both starvation and outflows drive galaxy quenching. Monthly Notices of the Royal Astronomical Society, 2020, 491, 5406-5434.	1.6	90
82	The ALMaQUEST Survey – II. What drives central starbursts at z â^¼ 0?. Monthly Notices of the Royal Astronomical Society, 2020, 492, 6027-6041.	1.6	32
83	The Galactic radial abundance gradients of C, N, O, Ne, S, Cl, and Ar from deep spectra of H ii regions. Monthly Notices of the Royal Astronomical Society, 2020, 496, 1051-1076.	1.6	54
84	Arm–interarm gas abundance variations explored with MUSE: the role of spiral structure in the chemical enrichment of galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 492, 4149-4163.	1.6	17
85	Metallicity has followed local gravitational potential of galaxies since zÂ= 3. Monthly Notices of the Royal Astronomical Society, 2020, 492, 4805-4818.	1.6	15
86	Milky Way analogues in MaNGA: multiparameter homogeneity and comparison to the Milky Way. Monthly Notices of the Royal Astronomical Society, 2020, 491, 3672-3701.	1.6	20
87	CHILES VI: HÂ <scp>i</scp> and HÂα observations for <i>z</i> < 0.1 galaxies; probing HÂ <scp>i</scp> spin alignment with filaments in the cosmic web. Monthly Notices of the Royal Astronomical Society, 2020, 492, 153-176.	1.6	29
88	Properties of galaxies with an offset between the position angles of the major kinematic and photometric axes. Astronomy and Astrophysics, 2020, 634, A26.	2.1	6
89	The H IX galaxy survey. Astronomy and Astrophysics, 2020, 635, A69.	2.1	3
91	MUSE-ALMA haloes V: physical properties and environment of z ≤.4 H i quasar absorbers. Monthly Notices of the Royal Astronomical Society, 2020, 492, 2347-2368.	1.6	35

#	Article	IF	CITATIONS
92	<scp>Nearâ€infrared</scp> photometry of superthin edgeâ€on galaxies. Astronomische Nachrichten, 2020, 341, 314-323.	0.6	2
93	The KLEVER Survey: spatially resolved metallicity maps and gradients in a sample of 1.2 < <i>z</i> < 2.5 lensed galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 492, 821-842.	1.6	44
94	The physics of gas phase metallicity gradients in galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 502, 5935-5961.	1.6	36
95	Metal-THINGS: On the Metallicity and Ionization of ULX Sources in NGC 925. Astrophysical Journal, 2021, 906, 42.	1.6	10
96	The properties and environment of very young galaxies in the local Universe. Monthly Notices of the Royal Astronomical Society, 2021, 502, 4815-4841.	1.6	4
97	Evidence for the Accretion of Gas in Star-forming Galaxies: High N/O Abundances in Regions of Anomalously Low Metallicity. Astrophysical Journal, 2021, 908, 183.	1.6	12
98	SDSS-IV/MaNGA: Can Impulsive Gaseous Inflows Explain Steep Oxygen Abundance Profiles and Anomalously Low-Metallicity Regions?. Astrophysical Journal, 2021, 908, 165.	1.6	2
99	Far-Infrared Line Diagnostics: Improving N/O Abundance Estimates for Dusty Galaxies. Astrophysical Journal, 2021, 908, 166.	1.6	10
100	Extremely Low Molecular Gas Content in the Vicinity of a Red Nugget Galaxy at z = 1.91. Astrophysical Journal, 2021, 908, 163.	1.6	4
101	<scp>L-GALAXIES</scp> 2020: The evolution of radial metallicity profiles and global metallicities in disc galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 503, 4474-4495.	1.6	33
102	On the origin of the mass–metallicity gradient relation in the local Universe. Monthly Notices of the Royal Astronomical Society, 2021, 504, 53-64.	1.6	22
103	Light Elements in the Universe. Frontiers in Astronomy and Space Sciences, 2021, 8, .	1.1	28
104	Gas-phase Metallicity as a Diagnostic of the Drivers of Star Formation on Different Spatial Scales. Astrophysical Journal, 2021, 910, 137.	1.6	15
105	Evolution of the chemical enrichment and the mass–metallicity relation in CALIFA galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 504, 3478-3493.	1.6	16
106	Star formation quenching stages of active and non-active galaxies. Astronomy and Astrophysics, 2021, 648, A64.	2.1	18
107	A novel approach to investigate chemical inhomogeneities in GRB host galaxies: the <i>Z</i> abs– <i>Z</i> emiss relation. Monthly Notices of the Royal Astronomical Society, 2021, 504, 5992-6007.	1.6	5
108	xCOLD GASS and xGASS: Radial metallicity gradients and global properties on the star-forming main sequence. Astronomy and Astrophysics, 2021, 649, A39.	2.1	6
109	Detection of metallicity correlations in 100 nearby galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 504, 5496-5511.	1.6	15

<u> </u>	 	Deese	_
	$1 \cap N$	REDUD	
<u> </u>		NEFOR	

#	Article	IF	CITATIONS
110	J-PLUS: The star formation main sequence and rate density at <i>d</i> ≲  75 Mpc. Astronomy and Astrophysics, 2021, 650, A68.	2.1	9
111	3D gas-phase elemental abundances across the formation histories of Milky Way-mass galaxies in the FIRE simulations: initial conditions for chemical tagging. Monthly Notices of the Royal Astronomical Society, 2021, 505, 4586-4607.	1.6	23
112	Gas-phase metallicity gradients of TNG50 star-forming galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 506, 3024-3048.	1.6	40
113	The role of gas kinematics in setting metallicity gradients at high redshift. Monthly Notices of the Royal Astronomical Society, 2021, 506, 1295-1308.	1.6	7
114	Spatial Variation in Strong Line Ratios and Physical Conditions in Two Strongly Lensed Galaxies at zÂâ^¼Â1.4. Astrophysical Journal, 2021, 916, 50.	1.6	8
115	Conversions between gas-phase metallicities in MaNGA. Monthly Notices of the Royal Astronomical Society, 2021, 507, 2468-2487.	1.6	4
116	A geostatistical analysis of multiscale metallicity variations in galaxies – I. Introduction and comparison of high-resolution metallicity maps to an analytical metal transport model. Monthly Notices of the Royal Astronomical Society, 2021, 508, 489-507.	1.6	11
117	MaNGA galaxies with off-centered spots of enhanced gas velocity dispersion. Astronomy and Astrophysics, 2021, 653, A11.	2.1	6
118	The dependence of the gradients of oxygen and nitrogen-to-oxygen on stellar age in MaNGA galaxies. Astronomy and Astrophysics, 0, , .	2.1	7
119	The SAMI Galaxy Survey: reconciling strong emission line metallicity diagnostics using metallicity gradients. Monthly Notices of the Royal Astronomical Society, 2021, 502, 3357-3373.	1.6	15
120	The 3D non-LTE solar nitrogen abundance from atomic lines. Astronomy and Astrophysics, 2020, 636, A120.	2.1	15
121	Spectroscopic study of the HII regions in the NGC 1232 galaxy. Astronomy and Astrophysics, 2020, 642, A203.	2.1	4
122	Physical Properties of H ii Regions in M51 from Spectroscopic Observations. Publications of the Astronomical Society of the Pacific, 2020, 132, 094101.	1.0	3
123	Constraining photoionization models with a reprojected optical diagnostic diagram. Monthly Notices of the Royal Astronomical Society, 2020, 499, 5749-5764.	1.6	10
124	The COS Absorption Survey of Baryon Harbors: unveiling the physical conditions of circumgalactic gas through multiphase Bayesian ionization modelling. Monthly Notices of the Royal Astronomical Society, 2021, 502, 4993-5037.	1.6	29
125	Spatially resolved direct method metallicity in a high-redshift analogue local galaxy: temperature structure impact on metallicity gradients. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	2
126	SDSS-IV MaNGA: galaxy gas-phase metallicity gradients vary across the mass–size plane. Monthly Notices of the Royal Astronomical Society, 2020, 501, 948-953.	1.6	12
127	Probing Structure in Cold Gas at zÂ≲Â1 with Gravitationally Lensed Quasar Sight Lines. Astrophysical Journal, 2019, 886, 83.	1.6	13

#	Article	IF	CITATIONS
128	A Comparison of UV and Optical Metallicities in Star-forming Galaxies. Astrophysical Journal, 2020, 893, 1.	1.6	21
129	A Census of Sub-kiloparsec Resolution Metallicity Gradients in Star-forming Galaxies at Cosmic Noon from HST Slitless Spectroscopy. Astrophysical Journal, 2020, 900, 183.	1.6	26
130	Local and Global Gas Metallicity versus Stellar Age Relation in MaNGA Galaxies. Astrophysical Journal, 2020, 903, 52.	1.6	10
131	The breakBRD Breakdown: Using IllustrisTNG to Track the Quenching of an Observationally Motivated Sample of Centrally Star-forming Galaxies. Astrophysical Journal, 2020, 903, 143.	1.6	2
132	Mapping Electron Temperature Variations across a Spiral Arm in NGC 1672. Astrophysical Journal Letters, 2019, 885, L31.	3.0	17
133	SDSS-IV MaNGA: Variations in the N/O–O/H Relation Bias Metallicity Gradient Measurements. Astrophysical Journal Letters, 2020, 890, L3.	3.0	24
134	Subaru/FOCAS IFU revealed the metallicity gradient of a local extremely metal-poor galaxy. Publication of the Astronomical Society of Japan, 2021, 73, 1631-1637.	1.0	2
135	SDSS-IV MaNGA: drivers of stellar metallicity in nearby galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 508, 4844-4857.	1.6	12
136	Photoionisation modelling of the H II regions surrounding star-forming regions within the metallicity range Z=0.003-0.012. Advances in Astronomy and Space Physics, 2020, 10, 21-27.	0.2	0
137	GASP XXXV: Characteristics of the Diffuse Ionised Gas in Gas-stripped Galaxies. Astrophysical Journal, 2021, 922, 131.	1.6	8
138	Investigating the origin of observed central dips in radial metallicity profiles. Monthly Notices of the Royal Astronomical Society, 2022, 511, 371-392.	1.6	2
139	The PHANGS-MUSE survey. Astronomy and Astrophysics, 2022, 659, A191.	2.1	96
140	GASP and MaNGA Surveys Shed Light on the Enigma of the Gas Metallicity Gradients in Disk Galaxies. Astrophysical Journal, 2021, 923, 28.	1.6	13
141	The Fornax3D project: The environmental impact on gas metallicity gradients in Fornax cluster galaxies. Astronomy and Astrophysics, 2022, 660, A105.	2.1	7
142	H <scp>ii</scp> regions in CALIFA survey: II. The relation between their physical properties and galaxy evolution. Monthly Notices of the Royal Astronomical Society, 2022, 512, 3436-3463.	1.6	10
143	The resolved chemical abundance properties within the interstellar medium of star-forming galaxies at <i>z</i> â‰^ 1.5. Monthly Notices of the Royal Astronomical Society, 2022, 512, 3480-3499.	1.6	7
144	Gas-phase metallicity determinations in nearby AGNs with SDSS-IV MaNGA: evidence of metal-poor accretion. Monthly Notices of the Royal Astronomical Society, 2022, 513, 807-821.	1.6	11
145	What drives the scatter of local star-forming galaxies in the BPT diagrams? A Machine Learning based analysis. Monthly Notices of the Royal Astronomical Society, 2022, 512, 4136-4163.	1.6	14

#	Article	IF	CITATIONS
146	The KLEVER survey: nitrogen abundances at <i>z</i> â ¹ /4 2 and probing the existence of a fundamental nitrogen relation. Monthly Notices of the Royal Astronomical Society, 2022, 512, 2867-2889.	1.6	26
147	New calibrations for estimating the N/O ratio in H <scp>ii</scp> regions. Monthly Notices of the Royal Astronomical Society, 2022, 513, 2006-2018.	1.6	2
148	Spatially resolved mass–metallicity relation at <i>z</i> â^¼â€" 0.26 from the MUSE-Wide Survey. Ast and Astrophysics, 2022, 661, A112.	ronomy 2.1	3
149	The evolution of the oxygen abundance gradients in star-forming galaxies in the <scp>eagle</scp> simulations. Monthly Notices of the Royal Astronomical Society, 2022, 511, 1667-1684.	1.6	12
150	CLEAR: The Gas-phase Metallicity Gradients of Star-forming Galaxies at 0.6 < z < 2.6. Astrophysical Journal, 2021, 923, 203.	1.6	30
151	<scp>L-Galaxies 2020</scp> : the formation and chemical evolution of stellar haloes in Milky Way analogues and galaxy clusters. Monthly Notices of the Royal Astronomical Society, 2021, 510, 1945-1963.	1.6	1
152	Metallicity, Ionization Parameter, and Pressure Variations of H ii Regions in the TYPHOON Spiral Galaxies: NGC 1566, NGC 2835, NGC 3521, NGC 5068, NGC 5236, and NGC 7793. Astrophysical Journal, 2022, 929, 118.	1.6	15
153	SDSS-IV MaNGA: Exploring the Local Scaling Relations for N/O. Astrophysical Journal, 2022, 930, 160.	1.6	5
154	Nebular abundance gradient in the Cartwheel galaxy using MUSE data. Monthly Notices of the Royal Astronomical Society, 2022, 514, 1689-1705.	1.6	4
155	How well do local relations predict gas-phase metallicity gradients? Results from SDSS-IV MaNGA. Monthly Notices of the Royal Astronomical Society, 2022, 514, 2298-2314.	1.6	9
156	A Spectroscopic Study of Blue Supergiant Stars in Local Group Spiral Galaxies: Andromeda and Triangulum. Astrophysical Journal, 2022, 932, 29.	1.6	9
157	Spatially resolved gas-phase metallicity in FIRE-2 dwarfs: late-time evolution of metallicity relations in simulations with feedback and mergers. Monthly Notices of the Royal Astronomical Society, 2022, 515, 3555-3576.	1.6	5
158	Chemical abundance of LINER galaxies – metallicity calibrations based on SDSS-IV MaNGA. Monthly Notices of the Royal Astronomical Society, 2022, 515, 6093-6108.	1.6	4
159	ISM metallicity variations across spiral arms in disk galaxies. Astronomy and Astrophysics, 2023, 671, A56.	2.1	3
160	Spatially resolved properties of early-type group-dominant galaxies with MUSE: gas content, ionization mechanisms, and metallicity gradients. Monthly Notices of the Royal Astronomical Society, 2022, 516, 5487-5506.	1.6	4
161	SDSS-IV MaNGA: pyPipe3D Analysis Release for 10,000 Galaxies. Astrophysical Journal, Supplement Series, 2022, 262, 36.	3.0	42
162	Calibration-based abundances in the interstellar gas of galaxies from slit and IFU spectra. Astronomy and Astrophysics, 2022, 668, A5.	2.1	2
163	The resolved scaling relations in DustPedia: Zooming in on the local Universe. Astronomy and Astrophysics, 2022, 668, A130.	2.1	13

#	Article	IF	CITATIONS
164	Early Results from GLASS-JWST. IV. Spatially Resolved Metallicity in a Low-mass z â^¼ 3 Galaxy with NIRISS*. Astrophysical Journal Letters, 2022, 938, L16.	3.0	18
165	Spatial metallicity distribution statistics at ≲100Âpc scales in the AMUSING++Ânearby galaxy sample. Monthly Notices of the Royal Astronomical Society, 2022, 518, 286-304.	1.6	6
166	Metal-THINGS: Association and optical characterization of supernova remnants with H I holes in NGC 6946. Astronomy and Astrophysics, 2023, 669, A25.	2.1	4
167	High-resolution Hubble Space Telescope Imaging Survey of Local Star-forming Galaxies. I. Spatially Resolved Obscured Star Formation with Hα and Paschen-β Recombination Lines. Astrophysical Journal, Supplement Series, 2022, 263, 17.	3.0	5
168	MUSE-ALMA Haloes – VIII. Statistical study of circumgalactic medium gas. Monthly Notices of the Royal Astronomical Society, 2022, 519, 931-947.	1.6	7
169	MASCOT: molecular gas depletion times and metallicity gradients – evidence for feedback in quenching active galaxies. Monthly Notices of the Royal Astronomical Society, 2022, 518, 5500-5521.	1.6	1
170	The need for multicomponent dust attenuation in modeling nebular emission: Constraints from SDSS-IV MaNGA. Astronomy and Astrophysics, 2023, 670, A125.	2.1	2
171	Metallicity gradient of barred galaxies with TYPHOON. Monthly Notices of the Royal Astronomical Society, 2023, 519, 4801-4817.	1.6	7
172	The PHANGS–MUSE nebular catalogue. Monthly Notices of the Royal Astronomical Society, 2023, 520, 4902-4952.	1.6	22
173	The Relationship between Age, Metallicity, and Abundances for Disk Stars in a Simulated Milky Way. Astrophysical Journal, 2023, 942, 35.	1.6	5
174	The internal metallicity distributions of simulated galaxies from EAGLE, Illustris, and IllustrisTNG at <i>z</i> Â=Â1.8–4 as probed by gamma-ray burst hosts. Monthly Notices of the Royal Astronomical Society, 2023, 520, 879-896.	1.6	2
175	Empirical constraints on the nucleosynthesis of nitrogen. Monthly Notices of the Royal Astronomical Society, 2023, 520, 782-803.	1.6	5
176	Gas metallicity distributions in SDSS-IV MaNGA galaxies: what drives gradients and local trends?. Monthly Notices of the Royal Astronomical Society, 2023, 520, 4301-4314.	1.6	6
177	Spiral arms are metal freeways: azimuthal gas-phase metallicity variations in flocculent discs in the FIRE-2 cosmological zoom-in simulations. Monthly Notices of the Royal Astronomical Society, 2023, 521, 3708-3726.	1.6	4
178	Extended MCDHF Calculations of Energy Levels and Transition Data for N i. Astrophysical Journal, Supplement Series, 2023, 265, 26.	3.0	1
179	The Chocolate Chip Cookie Model: Dust-to-metal Ratio of H ii Regions. Astrophysical Journal Letters, 2023, 946, L7.	3.0	1