Collision cross section predictions using 2-dimensional

Chemical Communications 53, 7624-7627

DOI: 10.1039/c7cc04257d

Citation Report

#	Article	IF	CITATIONS
1	Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry. Journal of Chromatography A, 2018, 1542, 82-88.	1.8	67
2	Advancing the large-scale CCS database for metabolomics and lipidomics at the machine-learning era. Current Opinion in Chemical Biology, 2018, 42, 34-41.	2.8	64
3	The potential of Ion Mobility Mass Spectrometry for high-throughput and high-resolution lipidomics. Current Opinion in Chemical Biology, 2018, 42, 42-50.	2.8	81
4	Comparison of Peptide Ion Conformers Arising from Non-Helical and Helical Peptides Using Ion Mobility Spectrometry and Gas-Phase Hydrogen/Deuterium Exchange. Journal of the American Society for Mass Spectrometry, 2018, 29, 2402-2412.	1.2	8
5	Flow Injection–Traveling-Wave Ion Mobility–Mass Spectrometry for Prostate-Cancer Metabolomics. Analytical Chemistry, 2018, 90, 13767-13774.	3.2	22
6	A Quantitative Structure-Property Relationship Model Based on Chaos-Enhanced Accelerated Particle Swarm Optimization Algorithm and Back Propagation Artificial Neural Network. Applied Sciences (Switzerland), 2018, 8, 1121.	1.3	7
7	lon Mobility Spectrometry: Fundamental Concepts, Instrumentation, Applications, and the Road Ahead. Journal of the American Society for Mass Spectrometry, 2019, 30, 2185-2195.	1.2	244
8	New mass spectrometry technologies contributing towards comprehensive and high throughput omics analyses of single cells. Analyst, The, 2019, 144, 794-807.	1.7	67
9	lon mobility spectrometry and the omics: Distinguishing isomers, molecular classes and contaminant ions in complex samples. TrAC - Trends in Analytical Chemistry, 2019, 116, 292-299.	5.8	71
10	The emerging role of ion mobility-mass spectrometry in lipidomics to facilitate lipid separation and identification. TrAC - Trends in Analytical Chemistry, 2019, 116, 332-339.	5.8	53
11	Challenges in Identifying the Dark Molecules of Life. Annual Review of Analytical Chemistry, 2019, 12, 177-199.	2.8	55
12	New frontiers in lipidomics analyses using structurally selective ion mobility-mass spectrometry. TrAC - Trends in Analytical Chemistry, 2019, 116, 316-323.	5.8	37
13	lon mobility conformational lipid atlas for high confidence lipidomics. Nature Communications, 2019, 10, 985.	5.8	121
14	Ion Mobility-Mass Spectrometry in Metabolomic, Lipidomic, and Proteomic Analyses. Comprehensive Analytical Chemistry, 2019, , 123-159.	0.7	15
15	Toward data-enabled process optimization of deformable electronic polymer-based devices. Current Opinion in Chemical Engineering, 2020, 27, 72-80.	3.8	8
16	Development of a combined strategy for accurate lipid structural identification and quantification in ion-mobility mass spectrometry based untargeted lipidomics. Analytica Chimica Acta, 2020, 1136, 115-124.	2.6	23
17	Small Data Machine Learning: Classification and Prediction of Poly(ethylene terephthalate) Stabilizers Using Molecular Descriptors. ACS Applied Polymer Materials, 2020, 2, 5592-5601.	2.0	13
18	LiPydomics: A Python Package for Comprehensive Prediction of Lipid Collision Cross Sections and Retention Times and Analysis of Ion Mobility-Mass Spectrometry-Based Lipidomics Data. Analytical Chemistry, 2020, 92, 14967-14975.	3.2	40

#	Article	IF	CITATIONS
19	Metabolite collision cross section prediction without energy-minimized structures. Analyst, The, 2020, 145, 5414-5418.	1.7	16
20	Breaking Down Structural Diversity for Comprehensive Prediction of Ion-Neutral Collision Cross Sections. Analytical Chemistry, 2020, 92, 4548-4557.	3.2	88
21	Trapped ion mobility spectrometry and PASEF enable in-depth lipidomics from minimal sample amounts. Nature Communications, 2020, 11, 331.	5.8	138
22	In situ antioxidation-assisted matrix solid-phase dispersion microextraction and discrimination of chiral flavonoids from citrus fruit via ion mobility quadrupole time-of-flight high-resolution mass spectrometry. Food Chemistry, 2021, 343, 128422.	4.2	19
23	Ion mobility mass spectrometry in the omics era: Challenges and opportunities for metabolomics and lipidomics. Mass Spectrometry Reviews, 2022, 41, 722-765.	2.8	87
24	Determination of drugs and drug metabolites by ion mobility-mass spectrometry: A review. Analytica Chimica Acta, 2021, 1154, 338270.	2.6	32
26	Transfer learning for small molecule retention predictions. Journal of Chromatography A, 2021, 1644, 462119.	1.8	9
27	Single Cell Metabolite Detection Using Inertial Microfluidics-Assisted Ion Mobility Mass Spectrometry. Analytical Chemistry, 2021, 93, 10462-10468.	3.2	30
28	Effect of Sampling Rate and Data Pretreatment for Targeted and Nontargeted Analysis by Means of Liquid Chromatography Coupled to Drift Time Ion Mobility Quadruple Time-of-Flight Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2021, 32, 2592-2603.	1.2	7
29	Utilizing Drift Tube Ion Mobility Spectrometry for the Evaluation of Metabolites and Xenobiotics. Methods in Molecular Biology, 2020, 2084, 35-54.	0.4	10
32	The effect of temperature on the kinetics of enhanced amide bond formation from lactic acid and valine driven by deep eutectic solvents. Physical Chemistry Chemical Physics, 2021, 23, 27498-27507.	1.3	1
33	Prediction of Collision Cross Section Values: Application to Non-Intentionally Added Substance Identification in Food Contact Materials. Journal of Agricultural and Food Chemistry, 2022, 70, 1272-1281.	2.4	9
34	Least absolute shrinkage and selection operator-based prediction of collision cross section values for ion mobility mass spectrometric analysis of lipids. Analyst, The, 2022, 147, 1236-1244.	1.7	2
35	Chemical and biological assessments of environmental mixtures: A review of current trends, advances, and future perspectives. Journal of Hazardous Materials, 2022, 432, 128658.	6.5	14
36	High-Throughput Measurement and Machine Learning-Based Prediction of Collision Cross Sections for Drugs and Drug Metabolites. Journal of the American Society for Mass Spectrometry, 2022, 33, 1061-1072.	1.2	13
37	Recent developments in data acquisition, treatment and analysis with ion mobilityâ€mass spectrometry for lipidomics. Proteomics, 2022, 22, .	1.3	10
38	Uncovering PFAS and Other Xenobiotics in the Dark Metabolome Using Ion Mobility Spectrometry, Mass Defect Analysis, and Machine Learning. Environmental Science & Environmental Science & 2022, 56, 9133-9143.	4.6	34
39	Applications of ion mobility-mass spectrometry in the chemical analysis in traditional Chinese medicines. Chinese Journal of Chromatography (Se Pu), 2022, 40, 782-787.	0.1	0

Article IF Citations