Synthesis and characterization of ZnO micro- and nano ZnO from spent alkaline batteries

Journal of Environmental Chemical Engineering 5, 2903-2911

DOI: 10.1016/j.jece.2017.05.052

Citation Report

#	Article	IF	CITATIONS
1	Luminescence and gas-sensing properties of ZnO obtained from the recycling of alkaline batteries. Journal of Materials Science, 2018, 53, 2026-2033.	3.7	4
2	Preparation and characterization of CuxZn1-xS nanodisks for the efficient visible light photocatalytic activity. Journal of Environmental Chemical Engineering, 2018, 6, 9-18.	6.7	29
3	From spent alkaline batteries to Zn _x Mn _{3â^'x} O ₄ by a hydrometallurgical route: synthesis and characterization. RSC Advances, 2018, 8, 33496-33505.	3.6	15
4	New photocatalytic materials obtained from the recycling of alkaline and Zn/C spent batteries. Journal of Materials Research and Technology, 2019, 8, 2809-2818.	5.8	17
5	Photocatalytic Activity of ZnxMn3â^'xO4 Oxides and ZnO Prepared From Spent Alkaline Batteries. Frontiers in Chemistry, 2020, 8, 661.	3.6	5
6	New Manufacturing Process of Composites Reinforced with ZnO Nanoparticles Recycled from Alkaline Batteries. Polymers, 2020, 12, 1619.	4.5	10
8	Industrial Waste Residue Converted into Value-Added ZnO for Optoelectronic Applications. ACS Applied Electronic Materials, 2020, 2, 1960-1969.	4.3	12
9	Optimizing Performance of ZnO Nanorod and Activated Carbon as a Composite Anode for Lithium-lon Batteries. Materials Science Forum, 0, 1000, 31-40.	0.3	1
10	Zn/ZnO heterostructures photocatalyst obtained by sustainable processes from alkaline batteries waste: Synthesis, characterization and application. Materials Chemistry and Physics, 2022, 284, 126058.	4.0	4
11	Separation Iron(III)-Manganese(II) via Supported Liquid Membrane Technology in the Treatment of Spent Alkaline Batteries. Membranes, 2021, 11, 991.	3.0	2
12	Epoxy Composites Reinforced with ZnO from Waste Alkaline Batteries. Materials, 2022, 15, 2842.	2.9	1
13	Synergy of indium doping and hydrogenation for good-performance and high-mobility ZnO electrode films. Journal of Science: Advanced Materials and Devices, 2023, 8, 100569.	3.1	0
14	Selectively oxygen reduction reaction and strongly suppressed CO poisoning on PtZn nanoalloys decorated on N-doped carbon sphere. Journal of Alloys and Compounds, 2023, 968, 171812.	5.5	0