<i>SUPERMAN</i> prevents class B gene expression an the fourth whorl of <i>Arabidopsis thaliana</i> flowers

Proceedings of the National Academy of Sciences of the Unite 114, 7166-7171

DOI: 10.1073/pnas.1705977114

Citation Report

#	Article	IF	CITATIONS
1	Regulation of floral meristem activity through the interaction of AGAMOUS, SUPERMAN, and CLAVATA3 in Arabidopsis. Plant Reproduction, 2018, 31, 89-105.	2.2	33
2	Characterization of a SUPERMAN-like Gene, MdSUP11, in apple (Malus × domestica Borkh.). Plant Physiology and Biochemistry, 2018, 125, 136-142.	5.8	5
3	Characterization of somatic embryogenesis initiated from the Arabidopsis shoot apex. Developmental Biology, 2018, 442, 13-27.	2.0	33
4	Cys2/His2 Zinc-Finger Proteins in Transcriptional Regulation of Flower Development. International Journal of Molecular Sciences, 2018, 19, 2589.	4.1	44
5	<scp>SUPERMAN</scp> regulates floral whorl boundaries through control of auxin biosynthesis. EMBO Journal, 2018, 37, .	7.8	85
6	Evolution and genetic control of the floral ground plan. New Phytologist, 2018, 220, 70-86.	7.3	38
7	Arabidopsis Cys2/His2 zinc-finger protein MAZ1 is essential for intine formation and exine pattern. Biochemical and Biophysical Research Communications, 2019, 518, 299-305.	2.1	14
8	The Roles of Plant Hormones and Their Interactions with Regulatory Genes in Determining Meristem Activity. International Journal of Molecular Sciences, 2019, 20, 4065.	4.1	67
9	CRABS CLAW and SUPERMAN Coordinate Hormone-, Stress-, and Metabolic-Related Gene Expression During Arabidopsis Stamen Development. Frontiers in Ecology and Evolution, 2019, 7, .	2.2	5
10	Control of floral stem cell activity in Arabidopsis. Plant Signaling and Behavior, 2019, 14, 1659706.	2.4	17
11	Developmental mechanisms involved in the diversification of flowers. Nature Plants, 2019, 5, 917-923.	9.3	46
12	The Roles of Arabidopsis C1-2i Subclass of C2H2-type Zinc-Finger Transcription Factors. Genes, 2019, 10, 653.	2.4	59
13	Epigenetic aspects of floral homeotic genes in relation to sexual dimorphism in the dioecious plant Mercurialis annua. Journal of Experimental Botany, 2019, 70, 6245-6259.	4.8	10
14	Comprehensive genomic survey, structural classification and expression analysis of C2H2 zinc finger protein gene family in Brassica rapa L. PLoS ONE, 2019, 14, e0216071.	2.5	28
15	Brassicaceae flowers: diversity amid uniformity. Journal of Experimental Botany, 2019, 70, 2623-2635.	4.8	21
16	A Growing Reputation for <i>FRUITFULL</i> Genes. Plant Cell, 2019, 31, 1220-1221.	6.6	0
17	Regulation of meristem maintenance and organ identity during rice reproductive development. Journal of Experimental Botany, 2019, 70, 1719-1736.	4.8	26
18	Molecular regulation of flower development. Current Topics in Developmental Biology, 2019, 131, 185-210.	2.2	75

#	Article	IF	CITATIONS
19	My favourite flowering image: an Arabidopsis inflorescence expressing fluorescent reporters for the APETALA3 and SUPERMAN genes. Journal of Experimental Botany, 2019, 70, e6499-e6501.	4.8	3
20	Visualization of Protein Coding, Long Noncoding, and Nuclear RNAs by Fluorescence in Situ Hybridization in Sections of Shoot Apical Meristems and Developing Flowers. Plant Physiology, 2020, 182, 147-158.	4.8	13
21	Molecular characterization and expression analysis reveal the roles of Cys2/His2 zinc-finger transcription factors during flower development of Brassica rapa subsp. chinensis. Plant Molecular Biology, 2020, 102, 123-141.	3.9	12
22	The genetic framework of shoot regeneration in Arabidopsis comprises master regulators and conditional fine-tuning factors. Communications Biology, 2020, 3, 549.	4.4	30
23	The VvSUPERMAN-like Gene Is Differentially Expressed between Bicarpellate and Tricarpellate Florets of Vitis vinifera L. Cv. â€~Xiangfei' and Its Heterologous Expression Reduces Carpel Number in Tomato. Plant and Cell Physiology, 2020, 61, 1760-1774.	3.1	4
24	Natural epialleles of Arabidopsis SUPERMAN display superwoman phenotypes. Communications Biology, 2020, 3, 772.	4.4	11
25	Molecular Mechanisms of the Floral Biology of Jatropha curcas: Opportunities and Challenges as an Energy Crop. Frontiers in Plant Science, 2020, 11, 609.	3.6	8
26	Imaging flowers: a guide to current microscopy and tomography techniques to study flower development. Journal of Experimental Botany, 2020, 71, 2898-2909.	4.8	25
27	Can the French flag and reaction–diffusion models explain flower patterning? Celebrating the 50th anniversary of the French flag model. Journal of Experimental Botany, 2020, 71, 2886-2897.	4.8	9
28	Floral organ development goes live. Journal of Experimental Botany, 2020, 71, 2472-2478.	4.8	15
29	MtSUPERMAN plays a key role in compound inflorescence and flower development in Medicago truncatula. Plant Journal, 2021, 105, 816-830.	5.7	17
30	Whole-transcriptome analysis of differentially expressed genes in the mutant and normal capitula of Chrysanthemum morifolium. BMC Genomic Data, 2021, 22, 2.	1.7	15
31	A multiscale analysis of early flower development in Arabidopsis provides an integrated view of molecular regulation and growth control. Developmental Cell, 2021, 56, 540-556.e8.	7.0	37
32	Molecular Control of Carpel Development in the Grass Family. Frontiers in Plant Science, 2021, 12, 635500.	3.6	11
33	Expression of KNUCKLES in the Stem Cell Domain Is Required for Its Function in the Control of Floral Meristem Activity in Arabidopsis. Frontiers in Plant Science, 2021, 12, 704351.	3.6	7
34	The de novo transcriptome identifies important zinc finger signatures associated with flowering in the orchid Arundina graminifolia. Scientia Horticulturae, 2022, 291, 110572.	3.6	6
35	Auxin and Flower Development: A Blossoming Field. Cold Spring Harbor Perspectives in Biology, 2021, 13, a039974.	5.5	34
36	Ovule identity mediated by pre-mRNA processing in Arabidopsis. PLoS Genetics, 2018, 14, e1007182.	3.5	17

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
38	Petal Cellular Identities. Frontiers in Plant Science, 2021, 12, 745507.	3.6	10
41	Comparison of chrysanthemum flowers grown under hydroponic and soil-based systems: yield and transcriptome analysis. BMC Plant Biology, 2021, 21, 517.	3.6	7
42	In Silico Functional Prediction and Expression Analysis of C2H2 Zinc-Finger Family Transcription Factor Revealed Regulatory Role of ZmZFP126 in Maize Growth. Frontiers in Genetics, 2021, 12, 770427.	2.3	6
43	SMALL REPRODUCTIVE ORGANS, a SUPERMANâ€like transcription factor, regulates stamen and pistil growth in rice. New Phytologist, 2022, 233, 1701-1718.	7.3	11
44	The Genetic and Hormonal Inducers of Continuous Flowering in Orchids: An Emerging View. Cells, 2022, 11, 657.	4.1	12
45	Quantitative live imaging of floral organ initiation and floral meristem termination in <i>Aquilegia</i> . Development (Cambridge), 2022, 149, .	2.5	5
46	An Integrated Analysis of Transcriptome and miRNA Sequencing Provides Insights into the Dynamic Regulations during Flower Morphogenesis in Petunia. Horticulturae, 2022, 8, 284.	2.8	5
47	Genotype-independent plant transformation. Horticulture Research, 2022, 9, uhac047.	6.3	21
56	Meristem Initiation and de novo Stem Cell Formation. Frontiers in Plant Science, 2022, 13, 891228.	3.6	8
57	Whole-transcriptome analysis of differentially expressed genes between ray and disc florets and identification of flowering regulatory genes in Chrysanthemum morifolium. Frontiers in Plant Science, 0, 13, .	3.6	2
58	The origin and evolution of carpels and fruits from an evoâ€devo perspective. Journal of Integrative Plant Biology, 2023, 65, 283-298.	8.5	3
59	Cys2/His2-Type Zinc Finger Proteins Regulate Plant Growth and Development. Critical Reviews in Plant Sciences, 2022, 41, 351-363.	5.7	6
60	All's well that ends well: the timing of floral meristem termination. New Phytologist, 2023, 238, 500-505.	7.3	1
61	SUPERMAN strikes again in legumes. Frontiers in Plant Science, 0, 14, .	3.6	1
62	LEAFY and APETALA1 down-regulate ZINC FINGER PROTEIN 1 and 8 to release their repression on class B and C floral homeotic genes. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	5
63	Genome-wide identification of the C2H2-Zinc finger gene family and functional validation of CsZFP7 in citrus nucellar embryogenesis. Plant Reproduction, 2023, 36, 287-300.	2.2	3
64	How flower development genes were identified using forward genetic screens in <i>Arabidopsis thaliana</i> . Genetics, 2023, 224, .	2.9	4
65	Genetic robustness control of auxin output in priming organ initiation. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	3

CITATION REPORT

#	Article	IF	CITATIONS
66	One pattern analysis (OPA) for the quantitative determination of protein interactions in plant cells. Plant Methods, 2023, 19, .	4.3	0
67	Flower Development in Arabidopsis. Methods in Molecular Biology, 2023, , 3-38.	0.9	1
68	A SUPERMAN-like Gene Controls the Locule Number of Tomato Fruit. Plants, 2023, 12, 3341.	3.5	0
69	MADS8 is indispensable for female reproductive development at high ambient temperatures in cereal crops. Plant Cell, 0, , .	6.6	0
70	The ABC of Flower Development in Monocots: The Model of Rice Spikelet. Methods in Molecular Biology, 2023, , 59-82.	0.9	2
71	Small RNA sequencing provides insights into molecular mechanism of flower development in Rhododendron pulchrum Sweet. Scientific Reports, 2023, 13, .	3.3	0
72	Genome-wide identification and expression analysis of the C2H2-zinc finger transcription factor gene family and screening of candidate genes involved in floral development in Coptis teeta Wall. (Ranunculaceae). Frontiers in Genetics, 0, 15, .	2.3	0
73	Reflections on the ABC model of flower development. Plant Cell, 2024, 36, 1334-1357.	6.6	0
74	QTL analysis of femaleness in monoecious spinach and fine mapping of a major QTL using an updated version of chromosome-scale pseudomolecules. PLoS ONE, 2024, 19, e0296675.	2.5	0