Force-induced retro-click reaction of triazoles compete rupture

Chemical Science 8, 5567-5575 DOI: 10.1039/c7sc01562c

Citation Report

#	Article	IF	CITATIONS
1	Enzymatic control of cycloadduct conformation ensures reversible 1,3-dipolar cycloaddition in a prFMN-dependent decarboxylase. Nature Chemistry, 2019, 11, 1049-1057.	6.6	28
2	Implementing the mechanical force into the conceptual DFT framework: understanding and predicting molecular mechanochemical properties. Physical Chemistry Chemical Physics, 2019, 21, 7378-7388.	1.3	25
3	The hunt for reactive alkynes in bio-orthogonal click reactions: insights from mechanochemical and conceptual DFT calculations. Chemical Science, 2020, 11, 1431-1439.	3.7	21
4	The Mechanism of Flexâ€Activation in Mechanophores Revealed By Quantum Chemistry. ChemPhysChem, 2020, 21, 2402-2406.	1.0	7
5	Validation of the CoGEF Method as a Predictive Tool for Polymer Mechanochemistry. Journal of the American Chemical Society, 2020, 142, 16364-16381.	6.6	112
6	The "labile―chemical bond: A perspective on mechanochemistry in polymers. Polymer, 2020, 202, 122639.	1.8	34
7	Polymer mechanochemistry-enabled pericyclic reactions. Polymer Chemistry, 2020, 11, 2274-2299.	1.9	75
8	Strain visualization for strained macrocycles. Chemical Science, 2020, 11, 3923-3930.	3.7	62
9	Tuning the Mechanical Properties of Metallopolymers via Ligand Interactions: A Combined Experimental and Theoretical Study. Macromolecules, 2020, 53, 2021-2030.	2.2	18
10	Methods for Exerting and Sensing Force in Polymer Materials Using Mechanophores. ChemPlusChem, 2020, 85, 1095-1103.	1.3	72
11	Mechanochemically Triggered Topology Changes in Expanded Porphyrins. Chemistry - A European Journal, 2021, 27, 3397-3406.	1.7	14
12	Designing Force Probes Based on Reversible 6ï€-Electrocyclizations in Polyenes Using Quantum Chemical Calculations. Journal of Organic Chemistry, 2021, 86, 7477-7489.	1.7	5
13	Synthesis of Biologically Relevant 1,2,3- and 1,3,4-Triazoles: From Classical Pathway to Green Chemistry. Molecules, 2021, 26, 5667.	1.7	18
14	On the Electronic Structure Origin of Mechanochemically Induced Selectivity in Acid-Catalyzed Chitin Hydrolysis. Journal of Physical Chemistry A, 2021, 125, 187-197.	1.1	13
15	Triazole-Extended Anthracenes as Optical Force Probes. Synlett, 2022, 33, 875-878.	1.0	4
16	Controlling Chemical Reactivity with Optimally Oriented Electric Fields: A Generalization of the Newton Trajectory Method. Journal of Chemical Theory and Computation, 2022, 18, 935-952.	2.3	6
17	Regiochemical effects for the mechanochemical activation of <scp>9â€Ï€â€extended anthraceneâ€maleimide Diels–Alder</scp> adducts. Journal of Polymer Science, 2022, 60, 3128-3133.	2.0	8
18	Synthesis of 5,6-Dihydro-4H-pyrrolo[1,2-b]pyrazoles and Homologs from 5-Substituted 2-(Alkynyl)tetrazoles via Microwave-induced Intramolecular Nitrile Imine-Alkyne 1,3-Dipolar Cycloaddition. Synthesis, 0, , .	1.2	1

#	Article	IF	CITATIONS
19	Increasing the Mechanical Stability of Polymer–Gold Interfacial Connection: A Parallel Covalent Strategy. ACS Macro Letters, 2023, 12, 421-427.	2.3	0
20	Wandering through quantum-mechanochemistry: from concepts to reactivity and switches. Physical Chemistry Chemical Physics, 0, , .	1.3	Ο

CITATION REPORT