Phase separation drives heterochromatin domain forma

Nature 547, 241-245 DOI: 10.1038/nature22989

Citation Report

#	Article	IF	CITATIONS
2	Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin. Nature, 2017, 547, 236-240.	13.7	1,351
3	A liquid reservoir for silent chromatin. Nature, 2017, 547, 168-169.	13.7	20
4	Non-coding RNAs demystify constitutive heterochromatin as essential modulator of epigenotype. Nucleus (India), 2017, 60, 299-314.	0.9	8
5	De novo prediction of human chromosome structures: Epigenetic marking patterns encode genome architecture. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 12126-12131.	3.3	193
6	Cohesin Loss Eliminates All Loop Domains. Cell, 2017, 171, 305-320.e24.	13.5	1,454
7	Condensin II plays an essential role in reversible assembly of mitotic chromosomes in situ. Molecular Biology of the Cell, 2017, 28, 2875-2886.	0.9	29
8	Ki-67 and the Chromosome Periphery Compartment in Mitosis. Trends in Cell Biology, 2017, 27, 906-916.	3.6	57
9	Evolving Models of Heterochromatin: From Foci to Liquid Droplets. Molecular Cell, 2017, 67, 725-727.	4.5	23
10	All-Aqueous Assemblies via Interfacial Complexation: Toward Artificial Cell and Microniche Development. Langmuir, 2017, 33, 10107-10117.	1.6	37
11	Liquid phase condensation in cell physiology and disease. Science, 2017, 357, .	6.0	2,699
12	Disruption of an RNA-binding hinge region abolishes LHP1-mediated epigenetic repression. Genes and Development, 2017, 31, 2115-2120.	2.7	33
13	Genomic and Proteomic Resolution of Heterochromatin and Its Restriction of Alternate Fate Genes. Molecular Cell, 2017, 68, 1023-1037.e15.	4.5	159
14	Potential Role of Phase Separation of Repetitive DNA in Chromosomal Organization. Genes, 2017, 8, 279.	1.0	20
15	Single-molecule kinetic analysis of HP1-chromatin binding reveals a dynamic network of histone modification and DNA interactions. Nucleic Acids Research, 2017, 45, 10504-10517.	6.5	49
16	The multidimensional mechanisms of long noncoding RNA function. Genome Biology, 2017, 18, 206.	3.8	802
17	Chromatin organization changes during the establishment and maintenance of the postmitotic state		
	Epigenetics and Chromatin, 2017, 10, 53.	1.8	15
18	Epigenetics and Chromatin, 2017, 10, 53. Nuclear phosphatidylinositol 4,5-bisphosphate islets contribute to efficient RNA polymerase II-dependent transcription. Journal of Cell Science, 2018, 131, .	1.8	15 35

#	Article	IF	CITATIONS
20	TAR DNA-binding protein 43 (TDP-43) liquid–liquid phase separation is mediated by just a few aromatic residues. Journal of Biological Chemistry, 2018, 293, 6090-6098.	1.6	195
21	Local raster image correlation spectroscopy generates high-resolution intracellular diffusion maps. Communications Biology, 2018, 1, 10.	2.0	37
22	<scp>HP</scp> 1α targets the chromosomal passenger complex for activation at heterochromatin before mitotic entry. EMBO Journal, 2018, 37, .	3.5	36
23	Assessing sufficiency and necessity of enhancer activities for gene expression and the mechanisms of transcription activation. Genes and Development, 2018, 32, 202-223.	2.7	171
24	Fat nucleosome: Role of lipids on chromatin. Progress in Lipid Research, 2018, 70, 29-34.	5.3	16
25	Genome organization at different scales: nature, formation and function. Current Opinion in Cell Biology, 2018, 52, 145-153.	2.6	23
26	Formation of Chromatin Subcompartments byÂPhase Separation. Biophysical Journal, 2018, 114, 2262-2270.	0.2	295
27	Controlling compartmentalization by non-membrane-bound organelles. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170193.	1.8	132
28	The Role of Phase Separation in Heterochromatin Formation, Function, and Regulation. Biochemistry, 2018, 57, 2540-2548.	1.2	144
29	A Discontinuous Galerkin Model for Fluorescence Loss in Photobleaching. Scientific Reports, 2018, 8, 1387.	1.6	4
30	Pivotal roles of PCNA loading and unloading in heterochromatin function. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2030-E2039.	3.3	38
31	Epigenomics in 3D: importance of long-range spreading and specific interactions in epigenomic maintenance. Nucleic Acids Research, 2018, 46, 2252-2264.	6.5	65
32	Single-molecule FRET reveals multiscale chromatin dynamics modulated by HP1α. Nature Communications, 2018, 9, 235.	5.8	113
33	Function and Regulation of Phase-Separated Biological Condensates. Biochemistry, 2018, 57, 2452-2461.	1.2	41
34	Transcriptional and chromatin changes accompanying de novo formation of transgenic piRNA clusters. Rna, 2018, 24, 574-584.	1.6	24
35	The 10-nm chromatin fiber and its relationship to interphase chromosome organization. Biochemical Society Transactions, 2018, 46, 67-76.	1.6	55
36	Structural Basis of Heterochromatin Formation by Human HP1. Molecular Cell, 2018, 69, 385-397.e8.	4.5	196
37	Functional Implications of Intracellular Phase Transitions. Biochemistry, 2018, 57, 2415-2423.	1.2	189

#	Article	IF	CITATIONS
38	Ki-67: more than a proliferation marker. Chromosoma, 2018, 127, 175-186.	1.0	527
39	What do we know about the heterochromatin of capuchin monkeys (Cebus: Platyrrhini)?. Biological Journal of the Linnean Society, 2018, 123, 113-124.	0.7	4
40	<i>In Aqua Veritas</i> : The Indispensable yet Mostly Ignored Role of Water in Phase Separation and Membrane-less Organelles. Biochemistry, 2018, 57, 2437-2451.	1.2	59
41	Probing Conformational Exchange in Weakly Interacting, Slowly Exchanging Protein Systems via Off-Resonance <i>R</i> ₁ Experiments: Application to Studies of Protein Phase Separation. Journal of the American Chemical Society, 2018, 140, 2115-2126.	6.6	32
42	Why Do Disordered and Structured Proteins Behave Differently in Phase Separation?. Trends in Biochemical Sciences, 2018, 43, 499-516.	3.7	114
43	Super-resolution Imaging of Individual Human Subchromosomal Regions <i>in Situ</i> Reveals Nanoscopic Building Blocks of Higher-Order Structure. ACS Nano, 2018, 12, 4909-4918.	7.3	41
44	Molecular mechanisms driving transcriptional stress responses. Nature Reviews Genetics, 2018, 19, 385-397.	7.7	206
45	Introduction to the Virtual Issue Alcohol and Epigenetic Regulation: Do the Products of Alcohol Metabolism Drive Epigenetic Control of Gene Expression in Alcoholâ€Related Disorders?. Alcoholism: Clinical and Experimental Research, 2018, 42, 845-848.	1.4	12
46	Sequence charge decoration dictates coil-globule transition in intrinsically disordered proteins. Journal of Chemical Physics, 2018, 148, 123305.	1.2	73
47	Separate roles for chromatin and lamins in nuclear mechanics. Nucleus, 2018, 9, 119-124.	0.6	42
48	Phase Separation Behavior of Supercharged Proteins and Polyelectrolytes. Biochemistry, 2018, 57, 314-323.	1.2	62
49	Ten principles of heterochromatin formation and function. Nature Reviews Molecular Cell Biology, 2018, 19, 229-244.	16.1	523
50	Protein-Based Inheritance: Epigenetics beyond the Chromosome. Molecular Cell, 2018, 69, 195-202.	4.5	138
52	The <i>Drosophila</i> Dot Chromosome: Where Genes Flourish Amidst Repeats. Genetics, 2018, 210, 757-772.	1.2	47
53	Nuclear Actin Polymerized by mDia2 Confines Centromere Movement during CENP-A Loading. IScience, 2018, 9, 314-327.	1.9	17
54	Coordinated histone modifications and chromatin reorganization in a single cell revealed by FRET biosensors. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11681-E11690.	3.3	48
55	Bottom–up modeling of chromatin segregation due to epigenetic modifications. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12739-12744.	3.3	117
56	piRNA-Guided Genome Defense: From Biogenesis to Silencing. Annual Review of Genetics, 2018, 52, 131-157.	3.2	372

#	Article	IF	CITATIONS
57	Mapping Local and Global Liquid Phase Behavior in Living Cells Using Photo-Oligomerizable Seeds. Cell, 2018, 175, 1467-1480.e13.	13.5	330
58	Liquid Nuclear Condensates Mechanically Sense and Restructure the Genome. Cell, 2018, 175, 1481-1491.e13.	13.5	490
59	Phase Separation of Intrinsically Disordered Proteins. Methods in Enzymology, 2018, 611, 1-30.	0.4	141
60	Rigidity Rules in DNA Droplets: Nucleic Acid Flexibility Affects Model Membraneless Organelles. Biophysical Journal, 2018, 115, 1837-1839.	0.2	11
61	Regulation of Chromatin Structure During Neural Development. Frontiers in Neuroscience, 2018, 12, 874.	1.4	37
62	Visualization and Quantitation of Phase-Separated Droplet Formation by Human HP11±. Methods in Enzymology, 2018, 611, 51-66.	0.4	13
63	Probing RNA Structure in Liquid–Liquid Phase Separation Using SHAPE-MaP. Methods in Enzymology, 2018, 611, 67-79.	0.4	11
64	Volume-shrinking kinetics of transient gels as a consequence of dynamic interplay between phase separation and mechanical relaxation. Physical Review E, 2018, 98, .	0.8	7
65	Walking along chromosomes with super-resolution imaging, contact maps, and integrative modeling. PLoS Genetics, 2018, 14, e1007872.	1.5	209
66	Functional characterization of LIKE HETEROCHROMATIN PROTEIN 1 in the moss <i>Physcomitrella patens</i> : its conserved protein interactions in land plants. Plant Journal, 2019, 97, 221-239.	2.8	21
67	Migration through a small pore disrupts inactive chromatin organization in neutrophil-like cells. BMC Biology, 2018, 16, 142.	1.7	37
68	Chromatin conformation and transcriptional activity are permissive regulators of DNA replication in <i>Drosophila</i> . Genome Research, 2018, 28, 1688-1700.	2.4	29
69	X-Chromosome Inactivation: A Crossroads Between Chromosome Architecture and Gene Regulation. Annual Review of Genetics, 2018, 52, 535-566.	3.2	192
70	UPA-seq: prediction of functional IncRNAs using differential sensitivity to UV crosslinking. Rna, 2018, 24, 1785-1802.	1.6	4
71	Blank spots on the map: some current questions on nuclear organization and genome architecture. Histochemistry and Cell Biology, 2018, 150, 579-592.	0.8	24
72	Non-Fickian Molecular Transport in Protein–DNA Droplets. ACS Macro Letters, 2018, 7, 1220-1225.	2.3	28
73	Transcription-driven genome organization: a model for chromosome structure and the regulation of gene expression tested through simulations. Nucleic Acids Research, 2018, 46, 9895-9906.	6.5	92
74	Compressive force induces reversible chromatin condensation and cell geometry–dependent transcriptional response. Molecular Biology of the Cell, 2018, 29, 3039-3051.	0.9	106

	CITATION	CITATION REPORT	
#	ARTICLE The Birth of the 3D Genome during Early Embryonic Development, Trends in Genetics, 2018, 34, 903-914	IF 29	CITATIONS
73	4C and characterization of Drocombile REAE binding regions provides evidence for bight veriable	2.9	03
76	long-distance interactions between active chromatin. PLoS ONE, 2018, 13, e0203843.	1.1	11
77	Highly disordered histone H1â^'DNA model complexes and their condensates. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11964-11969.	3.3	161
78	Linker histones as liquid-like glue for chromatin. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11868-11870.	3.3	32
79	Drosophila <i>small ovary</i> gene is required for transposon silencing and heterochromatin organisation and ensures germline stem cell maintenance and differentiation. Development (Cambridge), 2018, 145, .	1.2	27
80	DNA Local-Flexibility-Dependent Assembly of Phase-Separated Liquid Droplets. Biophysical Journal, 2018, 115, 1840-1847.	0.2	73
81	Nuclear Actin: From Discovery to Function. Anatomical Record, 2018, 301, 1999-2013.	0.8	70
82	RNAs, Phase Separation, and Membraneâ€Less Organelles: Are Postâ€Transcriptional Modifications Modulating Organelle Dynamics?. BioEssays, 2018, 40, e1800085.	1.2	48
83	Molecular dissection of nuclear paraspeckles: towards understanding the emerging world of the RNP milieu. Open Biology, 2018, 8, .	1.5	73
84	Cancer Mutations of the Tumor Suppressor SPOP Disrupt the Formation of Active, Phase-Separated Compartments. Molecular Cell, 2018, 72, 19-36.e8.	4.5	286
85	A New Lens for RNA Localization: Liquid-Liquid Phase Separation. Annual Review of Microbiology, 2018, 72, 255-271.	2.9	108
86	Phase Separation in Biology and Disease. Journal of Molecular Biology, 2018, 430, 4603-4606.	2.0	68
87	Imaging dynamic and selective low-complexity domain interactions that control gene transcription. Science, 2018, 361, .	6.0	750
88	Coactivator condensation at super-enhancers links phase separation and gene control. Science, 2018, 361, .	6.0	1,687
89	Condensin II drives large-scale folding and spatial partitioning of interphase chromosomes in Drosophila nuclei. PLoS Genetics, 2018, 14, e1007393.	1.5	86
90	Gene regulation in the 3D genome. Human Molecular Genetics, 2018, 27, R228-R233.	1.4	61
91	Phase-separation mechanism forÂC-terminal hyperphosphorylation of RNA polymerase II. Nature, 2018, 558, 318-323.	13.7	428
92	Forces driving the threeâ€dimensional folding of eukaryotic genomes. Molecular Systems Biology, 2018, 14, e8214.	3.2	75

#	Article	IF	Citations
93	Epigenomes in Cardiovascular Disease. Circulation Research, 2018, 122, 1586-1607.	2.0	60
94	Eukaryotic core promoters and the functional basis of transcription initiation. Nature Reviews Molecular Cell Biology, 2018, 19, 621-637.	16.1	480
95	Nucleo-cytoplasmic transport of TDP-43 studied in real time: impaired microglia function leads to axonal spreading of TDP-43 in degenerating motor neurons. Acta Neuropathologica, 2018, 136, 445-459.	3.9	66
96	Histone H2A variants confer specific properties to nucleosomes and impact on chromatin accessibility. Nucleic Acids Research, 2018, 46, 7675-7685.	6.5	65
97	Systemic Loss and Gain of Chromatin Architecture throughout Zebrafish Development. Cell Reports, 2018, 24, 1-10.e4.	2.9	124
98	Nuclear microtubule filaments mediate non-linear directional motion of chromatin and promote DNA repair. Nature Communications, 2018, 9, 2567.	5.8	72
99	Chromatin organization by an interplay of loop extrusion and compartmental segregation. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E6697-E6706.	3.3	510
100	SUMO-Mediated Regulation of Nuclear Functions and Signaling Processes. Molecular Cell, 2018, 71, 409-418.	4.5	184
101	Histone methylation in DNA repair and clinical practice: new findings during the past 5-years. Journal of Cancer, 2018, 9, 2072-2081.	1.2	46
102	From 1D sequence to 3D chromatin dynamics and cellular functions: a phase separation perspective. Nucleic Acids Research, 2018, 46, 9367-9383.	6.5	51
103	A metallo-biopolymer conjugate of elastin-like polypeptide: photoluminescence enhancement in the coacervate microenvironment. Journal of Biological Inorganic Chemistry, 2018, 23, 1153-1157.	1.1	3
104	Distinct regions of the intrinsically disordered protein MUT-16 mediate assembly of a small RNA amplification complex and promote phase separation of Mutator foci. PLoS Genetics, 2018, 14, e1007542.	1.5	45
105	Heterochromatin: Guardian of the Genome. Annual Review of Cell and Developmental Biology, 2018, 34, 265-288.	4.0	335
106	Global DNA Compaction in Stationary-Phase Bacteria Does Not Affect Transcription. Cell, 2018, 174, 1188-1199.e14.	13.5	81
107	Methods for Physical Characterization of Phase-Separated Bodies and Membrane-less Organelles. Journal of Molecular Biology, 2018, 430, 4773-4805.	2.0	124
108	Dynamic condensates activate transcription. Science, 2018, 361, 329-330.	6.0	64
109	Transcription regulation enters a new phase. Nature, 2018, 558, 197-198.	13.7	4
110	DNA Supercoiling, Topoisomerases, and Cohesin: Partners in Regulating Chromatin Architecture?. International Journal of Molecular Sciences, 2018, 19, 884.	1.8	31

#	Article	IF	CITATIONS
111	A highâ€ŧhroughput method to identify transâ€activation domains within transcription factor sequences. EMBO Journal, 2018, 37, .	3.5	53
112	LRIF1 interacts with HP1 α to coordinate accurate chromosome segregation during mitosis. Journal of Molecular Cell Biology, 2018, 10, 527-538.	1.5	19
113	Fission yeast telosomes: non-canonical histone-containing chromatin structures dependent on shelterin and RNA. Nucleic Acids Research, 2018, 46, 8865-8875.	6.5	7
114	Sequence-dependent DNA condensation as a driving force of DNA phase separation. Nucleic Acids Research, 2018, 46, 9401-9413.	6.5	55
115	The tunable optical magneto-electric effect in patterned manganese oxide superlattices. Applied Physics Letters, 2018, 112, 192904.	1.5	2
116	Phasing in on the cell cycle. Cell Division, 2018, 13, 1.	1.1	33
117	Same-Sex Twin Pair Phenotypic Correlations are Consistent with Human Y Chromosome Promoting Phenotypic Heterogeneity. Evolutionary Biology, 2018, 45, 248-258.	0.5	2
118	Protein motion in the nucleus: from anomalous diffusion to weak interactions. Biochemical Society Transactions, 2018, 46, 945-956.	1.6	56
119	Remembering the past: Mitotic bookmarking in a developing embryo. Current Opinion in Systems Biology, 2018, 11, 41-49.	1.3	18
120	High-resolution visualization of H3 variants during replication reveals their controlled recycling. Nature Communications, 2018, 9, 3181.	5.8	74
121	Transcription Elongation Can Affect Genome 3D Structure. Cell, 2018, 174, 1522-1536.e22.	13.5	369
122	Modulating charge patterning and ionic strength as a strategy to induce conformational changes in intrinsically disordered proteins. Journal of Chemical Physics, 2018, 149, 085101.	1.2	36
123	Next-Generation Drugs and Probes for Chromatin Biology: From Targeted Protein Degradation to Phase Separation. Molecules, 2018, 23, 1958.	1.7	40
124	Liquid Droplet of Protein-Polyelectrolyte Complex for High-Concentration Formulations. Journal of Pharmaceutical Sciences, 2018, 107, 2713-2719.	1.6	24
125	SMCHD1 Merges Chromosome Compartments and Assists Formation of Super-Structures on the Inactive X. Cell, 2018, 174, 406-421.e25.	13.5	139
126	The <i>Caenorhabditis elegans</i> Ortholog of TDP-43 Regulates the Chromatin Localization of the Heterochromatin Protein 1 Homolog HPL-2. Molecular and Cellular Biology, 2018, 38, .	1.1	14
127	The solvent side of proteinaceous membrane-less organelles in light of aqueous two-phase systems. International Journal of Biological Macromolecules, 2018, 117, 1224-1251.	3.6	45
128	Phase separated microenvironments inside the cell nucleus are linked to disease and regulate epigenetic state, transcription and RNA processing. Seminars in Cell and Developmental Biology, 2019, 90, 94-103.	2.3	69

#	Article	IF	CITATIONS
129	The molecular language of membraneless organelles. Journal of Biological Chemistry, 2019, 294, 7115-7127.	1.6	515
130	Computational methods for analyzing and modeling genome structure and organization. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2019, 11, e1435.	6.6	27
131	Understanding the 3D genome: Emerging impacts on human disease. Seminars in Cell and Developmental Biology, 2019, 90, 62-77.	2.3	55
132	Phase separation of 53 <scp>BP</scp> 1 determines liquidâ€like behavior of <scp>DNA</scp> repair compartments. EMBO Journal, 2019, 38, e101379.	3.5	294
133	53BP1—DNA repair enters a new liquid phase. EMBO Journal, 2019, 38, e102871.	3.5	13
134	Enhancer Features that Drive Formation of Transcriptional Condensates. Molecular Cell, 2019, 75, 549-561.e7.	4.5	284
135	Modeling Single-Molecule Conformations of the HoxD Region in Mouse Embryonic Stem and Cortical Neuronal Cells. Cell Reports, 2019, 28, 1574-1583.e4.	2.9	21
136	The Capability of O-Acetyl-ADP-Ribose, an Epigenetic Metabolic Small Molecule, on Promoting the Further Spreading of Sir3 along the Telomeric Chromatin. Genes, 2019, 10, 577.	1.0	0
137	The synergic effect of water and biomolecules in intracellular phase separation. Nature Reviews Chemistry, 2019, 3, 552-561.	13.8	58
138	Liquid–Liquid Phase Separation in Disease. Annual Review of Genetics, 2019, 53, 171-194.	3.2	553
139	Transcription of Bacterial Chromatin. Journal of Molecular Biology, 2019, 431, 4040-4066.	2.0	51
140	Impact of genome architecture on the functional activation and repression of Hox regulatory landscapes. BMC Biology, 2019, 17, 55.	1.7	21
141	Actin' between phase separated domains for heterochromatin repair. DNA Repair, 2019, 81, 102646.	1.3	23
142	A New Portrait of Constitutive Heterochromatin: Lessons from Drosophila melanogaster. Trends in Genetics, 2019, 35, 615-631.	2.9	42
143	Implications of liquid–liquid phase separation in plant chromatin organization and transcriptional control. Current Opinion in Genetics and Development, 2019, 55, 59-65.	1.5	20
144	Visualizing transcription: key to understanding gene expression dynamics. Current Opinion in Chemical Biology, 2019, 51, 122-129.	2.8	51
145	Low-Affinity Binding Sites and the Transcription Factor Specificity Paradox in Eukaryotes. Annual Review of Cell and Developmental Biology, 2019, 35, 357-379.	4.0	144
146	MORC3 Forms Nuclear Condensates through Phase Separation. IScience, 2019, 17, 182-189.	1.9	26

ARTICLE IF CITATIONS # Fused in sarcoma silences HIV gene transcription and maintains viral latency through suppressing 147 0.9 16 AFF4 gene activation. Retrovirology, 2019, 16, 16. 148 Nuclear Phosphoinositidesâ€"Versatile Regulators of Genome Functions. Cells, 2019, 8, 649. 1.8 149 Nuclear Organization in Stress and Aging. Cells, 2019, 8, 664. 1.8 28 PRC1 collaborates with SMCHD1 to fold the X-chromosome and spread Xist RNA between chromosome 5.8 compartments. Nature Communications, 2019, 10, 2950. Finding Friends in the Crowd: Three-Dimensional Cliques of Topological Genomic Domains. Frontiers 151 1.1 17 in Genetics, 2019, 10, 602. Nucleation and Growth of Amino Acid and Peptide Supramolecular Polymers through Liquid–Liquid 7.2 241 Phase Separation. Angewandte Chemie - International Edition, 2019, 58, 18116-18123. The genome-wide multi-layered architecture of chromosome pairing in early Drosophila embryos. 153 5.8 38 Nature Communications, 2019, 10, 4486. Evaluating phase separation in live cells: diagnosis, caveats, and functional consequences. Genes and 154 2.7 424 Development, 2019, 33, 1619-1634. Chromatin topology, condensates and gene regulation: shifting paradigms or just a phase?. 155 1.2 93 Development (Cambridge), 2019, 146, . The multiscale effects of polycomb mechanisms on 3D chromatin folding. Critical Reviews in 2.3 Biochemistry and Molecular Biology, 2019, 54, 399-417. Chromatin Compaction, Auxeticity, and the Epigenetic Landscape of Stem Cells. Physical Review X, 2019, 157 7 2.8 9,. New insights into transcriptional reprogramming during cellular stress. Journal of Cell Science, 1.2 2019, 132, . Evidence for and against Liquid-Liquid Phase Separation in the Nucleus. Non-coding RNA, 2019, 5, 50. 159 1.3 114 Liquid–liquid phase separation is an intrinsic physicochemical property of chromatin. Nature Structural and Molecular Biology, 2019, 26, 1085-1086. 3.6 23 Nucleation and Growth of Amino Acid and Peptide Supramolecular Polymers through Liquid–Liquid 161 79 1.6 Phase Separation. Angewandte Chemie, 2019, 131, 18284-18291. The Trap in the FRAP: A Cautionary Tale about Transport Measurements in Biomolecular Condensates. Biophysical Journal, 2019, 117, 2041-2042. Phase separation-deficient TDP43 remains functional in splicing. Nature Communications, 2019, 10, 163 5.8 117 4890. 164 Probing the Functional Role of Physical Motion in Development. Developmental Cell, 2019, 51, 135-144. 3.1

		CITATION REPORT		
#	Article		IF	CITATIONS
165	Modes of phase separation affecting chromatin regulation. Open Biology, 2019, 9, 1901	67.	1.5	30
166	Heterochromatic hues of transcription—the diverse roles of noncoding transcripts fron constitutive heterochromatin. FEBS Journal, 2019, 286, 4626-4641.	n .	2.2	4
167	Biomolecular condensates in neurodegeneration and cancer. Traffic, 2019, 20, 890-911.		1.3	72
168	Software for lattice light-sheet imaging of FRET biosensors, illustrated with a new Rap1 b Journal of Cell Biology, 2019, 218, 3153-3160.	viosensor.	2.3	32
169	The Gene-Silencing Protein MORC-1 Topologically Entraps DNA and Forms Multimeric As Cause DNA Compaction. Molecular Cell, 2019, 75, 700-710.e6.	semblies to	4.5	34
170	Deciphering Melatonin-Stabilized Phase Separation in Phospholipid Bilayers. Langmuir, 2 12236-12245.	019, 35,	1.6	25
171	Molecular basis and biological function of variability in spatial genome organization. Scie 365, .	nce, 2019,	6.0	168
172	Olfactory receptor genes make the case for inter-chromosomal interactions. Current Op Genetics and Development, 2019, 55, 106-113.	nion in	1.5	49
173	Role of Fine Structural Dynamics in Recognition of Histone H3 by HP1Î ³ (CSD) Dimer and Fields to Describe Their Interaction Network. Journal of Chemical Theory and Computatio 5659-5673.	Ability of Force on, 2019, 15,	2.3	2
174	New Aspects of Magnesium Function: A Key Regulator in Nucleosome Self-Assembly, Ch and Phase Separation. International Journal of Molecular Sciences, 2019, 20, 4232.	romatin Folding	1.8	22
175	The inner centromere is a biomolecular condensate scaffolded by the chromosomal pass complex. Nature Cell Biology, 2019, 21, 1127-1137.	enger	4.6	66
176	Nuclear actin filaments in DNA repair dynamics. Nature Cell Biology, 2019, 21, 1068-107	7.	4.6	101
177	Mechanisms of Interplay between Transcription Factors and the 3D Genome. Molecular 306-319.	Cell, 2019, 76,	4.5	140
178	Transgenerational Self-Reconstruction of Disrupted Chromatin Organization After Expos Environmental Stressor in Mice. Scientific Reports, 2019, 9, 13057.	ure To An	1.6	25
179	Xist RNA in action: Past, present, and future. PLoS Genetics, 2019, 15, e1008333.		1.5	160
180	Organization of Chromatin by Intrinsic and Regulated Phase Separation. Cell, 2019, 179	470-484.e21.	13.5	707
181	Polymer Modeling Predicts Chromosome Reorganization in Senescence. Cell Reports, 20 3212-3223.e6.	19, 28,	2.9	60
183	Role of dynamic nuclear deformation on genomic architecture reorganization. PLoS Com Biology, 2019, 15, e1007289.	putational	1.5	17

#	Article	IF	CITATIONS
184	Quantifying Dynamics in Phase-Separated Condensates Using Fluorescence Recovery after Photobleaching. Biophysical Journal, 2019, 117, 1285-1300.	0.2	208
185	Mediator Condensates Localize Signaling Factors to Key Cell Identity Genes. Molecular Cell, 2019, 76, 753-766.e6.	4.5	188
186	Organization of Chromosomal DNA by SMC Complexes. Annual Review of Genetics, 2019, 53, 445-482.	3.2	236
187	Collisions on the Busy DNA Highway Set Up Barriers for Reprogramming. Cell Stem Cell, 2019, 25, 451-453.	5.2	1
188	Histone Modifications Regulate Chromatin Compartmentalization by Contributing to a Phase Separation Mechanism. Molecular Cell, 2019, 76, 646-659.e6.	4.5	250
189	Distinct functions and temporal regulation of methylated histone H3 during early embryogenesis. Development (Cambridge), 2019, 146, .	1.2	13
190	Balanced between order and disorder: a new phase in transcription elongation control and beyond. Transcription, 2019, 10, 157-163.	1.7	11
191	Open Chromatin, Epigenetic Plasticity, and Nuclear Organization in Pluripotency. Developmental Cell, 2019, 48, 135-150.	3.1	80
192	Aggregation of Respiratory Complex Subunits Marks the Onset of Proteotoxicity in Proteasome Inhibited Cells. Journal of Molecular Biology, 2019, 431, 996-1015.	2.0	16
193	Considerations and Challenges in Studying Liquid-Liquid Phase Separation and Biomolecular Condensates. Cell, 2019, 176, 419-434.	13.5	1,739
194	Intermingling of chromosome territories. Genes Chromosomes and Cancer, 2019, 58, 500-506.	1.5	17
195	Thermodynamically driven assemblies and liquid–liquid phase separations in biology. Soft Matter, 2019, 15, 1135-1154.	1.2	77
196	Two contrasting classes of nucleolus-associated domains in mouse fibroblast heterochromatin. Genome Research, 2019, 29, 1235-1249.	2.4	83
197	In search of a primitive signaling code. BioSystems, 2019, 183, 103984.	0.9	3
198	Specific Contributions of Cohesin-SA1 and Cohesin-SA2 to TADs and Polycomb Domains in Embryonic Stem Cells. Cell Reports, 2019, 27, 3500-3510.e4.	2.9	60
199	A Heat Shock Protein 48 (HSP48) Biomolecular Condensate Is Induced during Dictyostelium discoideum Development. MSphere, 2019, 4, .	1.3	1
200	Mitotic Chromosome Mechanics: How Cells Segregate Their Genome. Trends in Cell Biology, 2019, 29, 717-726.	3.6	92
201	Regulatory Landscaping: How Enhancer-Promoter Communication Is Sculpted in 3D. Molecular Cell, 2019, 74, 1110-1122.	4.5	147

#	Article	IF	CITATIONS
202	Chromosome dynamics near the sol-gel phase transition dictate the timing of remote genomic interactions. Nature Communications, 2019, 10, 2771.	5.8	94
203	IDPs and IDRs in biomolecular condensates. , 2019, , 209-255.		13
204	Phase separation of Polycomb-repressive complex 1 is governed by a charged disordered region of CBX2. Genes and Development, 2019, 33, 799-813.	2.7	264
205	Intrinsic Disorder-Based Emergence in Cellular Biology: Physiological and Pathological Liquid-Liquid Phase Transitions in Cells. Polymers, 2019, 11, 990.	2.0	54
206	The Impact of Centromeres on Spatial Genome Architecture. Trends in Genetics, 2019, 35, 565-578.	2.9	77
207	A multiscale analysis of DNA phase separation: from atomistic to mesoscale level. Nucleic Acids Research, 2019, 47, 5550-5562.	6.5	24
208	Phase Separation as a Melting Pot for DNA Repeats. Trends in Genetics, 2019, 35, 589-600.	2.9	21
209	Organizing Principles for the Spatial Folding of Chromosomes. , 2019, , 107-130.		0
210	Chromatin-associated RNAs as facilitators of functional genomic interactions. Nature Reviews Genetics, 2019, 20, 503-519.	7.7	151
211	Heterochromatin drives compartmentalization of inverted and conventional nuclei. Nature, 2019, 570, 395-399.	13.7	464
212	The role of 3D genome organization in development and cell differentiation. Nature Reviews Molecular Cell Biology, 2019, 20, 535-550.	16.1	451
213	Cellular consequences of arginine methylation. Cellular and Molecular Life Sciences, 2019, 76, 2933-2956.	2.4	99
214	Developing landscapes: genome architecture during early embryogenesis. Current Opinion in Genetics and Development, 2019, 55, 39-45.	1.5	10
215	Learning the Formation Mechanism of Domain-Level Chromatin States with Epigenomics Data. Biophysical Journal, 2019, 116, 2047-2056.	0.2	28
216	Transcription factors and 3D genome conformation in cell-fate decisions. Nature, 2019, 569, 345-354.	13.7	362
217	ATP, Mg2+, Nuclear Phase Separation, and Genome Accessibility. Trends in Biochemical Sciences, 2019, 44, 565-574.	3.7	37
218	Identification and characterization of â€~readers' for novel histone modifications. Current Opinion in Chemical Biology, 2019, 51, 57-65.	2.8	21
219	Role of H3K9me3 heterochromatin in cell identity establishment and maintenance. Current Opinion in Genetics and Development, 2019, 55, 1-10.	1.5	177

#	Article	IF	CITATIONS
220	Role of nuclear RNA in regulating chromatin structure and transcription. Current Opinion in Cell Biology, 2019, 58, 120-125.	2.6	47
221	Long-range interactions between topologically associating domains shape the four-dimensional genome during differentiation. Nature Genetics, 2019, 51, 835-843.	9.4	114
222	3D genome organization: a role for phase separation and loop extrusion?. Current Opinion in Plant Biology, 2019, 48, 36-46.	3.5	43
223	Cellular sensing by phase separation: Using the process, not just the products. Journal of Biological Chemistry, 2019, 294, 7151-7159.	1.6	152
224	Heterochromatin Protein HP1α Gelation Dynamics Revealed by Solidâ€State NMR Spectroscopy. Angewandte Chemie, 2019, 131, 6366-6371.	1.6	10
225	A Snapshot on the Cis Chromatin Response to DNA Double-Strand Breaks. Trends in Genetics, 2019, 35, 330-345.	2.9	83
226	Chromatin's physical properties shape the nucleus and its functions. Current Opinion in Cell Biology, 2019, 58, 76-84.	2.6	141
227	The role of transcription in shaping the spatial organization of the genome. Nature Reviews Molecular Cell Biology, 2019, 20, 327-337.	16.1	188
228	Bridging biophysics and neurology: aberrant phase transitions in neurodegenerative disease. Nature Reviews Neurology, 2019, 15, 272-286.	4.9	150
229	Perspective on Alternative Splicing and Proteome Complexity in Plants. Trends in Plant Science, 2019, 24, 496-506.	4.3	129
230	How the Genome Folds: The Biophysics of Four-Dimensional Chromatin Organization. Annual Review of Biophysics, 2019, 48, 231-253.	4.5	52
231	Heterochromatin Protein HP1α Gelation Dynamics Revealed by Solidâ€State NMR Spectroscopy. Angewandte Chemie - International Edition, 2019, 58, 6300-6305.	7.2	44
232	Transcriptional gene silencing requires dedicated interaction between HP1 protein Chp2 and chromatin remodeler Mit1. Genes and Development, 2019, 33, 565-577.	2.7	20
233	Emergent functions of proteins in non-stoichiometric supramolecular assemblies. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2019, 1867, 970-979.	1.1	49
234	Chemical and biophysical methods to explore dynamic mechanisms of chromatin silencing. Current Opinion in Chemical Biology, 2019, 51, 1-10.	2.8	6
235	United colours of chromatin? Developmental genome organisation in flies. Biochemical Society Transactions, 2019, 47, 691-700.	1.6	1
236	Unraveling the multiplex folding of nucleosome chains in higher order chromatin. Essays in Biochemistry, 2019, 63, 109-121.	2.1	14
237	Post-translational modifications and chromatin dynamics. Essays in Biochemistry, 2019, 63, 89-96.	2.1	64

#	Article	IF	Citations
238	Lamina Associated Domains and Gene Regulation in Development and Cancer. Cells, 2019, 8, 271.	1.8	55
239	Measuring Mobility in Chromatin by Intensity-Sorted FCS. Biophysical Journal, 2019, 116, 987-999.	0.2	37
240	CBP/p300 in brain development and plasticity: disentangling the KAT's cradle. Current Opinion in Neurobiology, 2019, 59, 1-8.	2.0	26
241	Changes in long-range rDNA-genomic interactions associate with altered RNA polymerase II gene programs during malignant transformation. Communications Biology, 2019, 2, 39.	2.0	33
242	Principles of genome folding into topologically associating domains. Science Advances, 2019, 5, eaaw1668.	4.7	415
243	Time-Resolved Observations of Liquid–Liquid Phase Separation at the Nanoscale Using <i>in Situ</i> Liquid Transmission Electron Microscopy. Journal of the American Chemical Society, 2019, 141, 7202-7210.	6.6	69
244	Histone Methylation and Memory of Environmental Stress. Cells, 2019, 8, 339.	1.8	63
245	Dynamic chromatin organization in the cell. Essays in Biochemistry, 2019, 63, 133-145.	2.1	16
246	Physical principles and functional consequences of nuclear compartmentalization in budding yeast. Current Opinion in Cell Biology, 2019, 58, 105-113.	2.6	22
247	Phasing in heterochromatin during development. Genes and Development, 2019, 33, 379-381.	2.7	7
248	Histone variant macroH2A: from chromatin deposition to molecular function. Essays in Biochemistry, 2019, 63, 59-74.	2.1	40
249	Disordered domains in chromatin-binding proteins. Essays in Biochemistry, 2019, 63, 147-156.	2.1	36
250	Mechanism of DNAâ€Induced Phase Separation for Transcriptional Repressor VRN1. Angewandte Chemie, 2019, 131, 4912-4916.	1.6	13
251	H3K9 Promotes Under-Replication of Pericentromeric Heterochromatin in Drosophila Salivary Gland Polytene Chromosomes. Genes, 2019, 10, 93.	1.0	11
252	Heterochromatic foci and transcriptional repression by an unstructured MET-2/SETDB1 co-factor LIN-65. Journal of Cell Biology, 2019, 218, 820-838.	2.3	21
253	The C-Terminal Domain of RNA Polymerase II Is a Multivalent Targeting Sequence that Supports Drosophila Development with Only Consensus Heptads. Molecular Cell, 2019, 73, 1232-1242.e4.	4.5	46
254	Mechanism of DNAâ€Induced Phase Separation for Transcriptional Repressor VRN1. Angewandte Chemie - International Edition, 2019, 58, 4858-4862.	7.2	69
255	Rapid embryonic cell cycles defer the establishment of heterochromatin by Eggless/SetDB1 in <i>Drosophila</i> . Genes and Development, 2019, 33, 403-417.	2.7	64

#	ARTICLE	IF	CITATIONS
256	Attenuated chromatin compartmentalization in meiosis and its maturation in sperm development. Nature Structural and Molecular Biology, 2019, 26, 175-184.	3.6	92
257	Dynamics of transcriptional enhancers and chromosome topology in gene regulation. Development Growth and Differentiation, 2019, 61, 343-352.	0.6	13
258	The Nuclear Lamina as an Organizer of Chromosome Architecture. Cells, 2019, 8, 136.	1.8	72
259	Heterochromatin anomalies and double-stranded RNA accumulation underlie <i>C9orf72</i> poly(PR) toxicity. Science, 2019, 363, .	6.0	181
260	Biophysical Properties of HP1-Mediated Heterochromatin. Cold Spring Harbor Symposia on Quantitative Biology, 2019, 84, 217-225.	2.0	11
261	Liquid-liquid phase transitions and amyloid aggregation in proteins related to cancer and neurodegenerative diseases. Advances in Protein Chemistry and Structural Biology, 2019, 118, 289-331.	1.0	50
262	Hidden Aspects of Valency in Immune System Regulation. Trends in Immunology, 2019, 40, 1082-1094.	2.9	13
263	Protamines from liverwort are produced by post-translational cleavage and C-terminal di-aminopropanelation of several male germ-specific H1 histones. Journal of Biological Chemistry, 2019, 294, 16364-16373.	1.6	17
264	Common Features of the Pericentromere and Nucleolus. Genes, 2019, 10, 1029.	1.0	20
265	Epigenetics and the dynamics of chromatin during adenovirus infections. FEBS Letters, 2019, 593, 3551-3570.	1.3	25
266	The liquid nucleome $\hat{a} \in $ phase transitions in the nucleus at a glance. Journal of Cell Science, 2019, 132, .	1.2	181
267	Phase separation of YAP reorganizes genome topology for long-term YAP target gene expression. Nature Cell Biology, 2019, 21, 1578-1589.	4.6	237
268	Probing and engineering liquid-phase organelles. Nature Biotechnology, 2019, 37, 1435-1445.	9.4	225
269	Exploring Mammalian Genome within Phase-Separated Nuclear Bodies: Experimental Methods and Implications for Gene Expression. Genes, 2019, 10, 1049.	1.0	15
270	Expression and phase separation potential ofÂheterochromatin proteins during early mouseÂdevelopment. EMBO Reports, 2019, 20, e47952.	2.0	12
271	Chromosome-associated RNA–protein complexes promote pairing of homologous chromosomes during meiosis in Schizosaccharomyces pombe. Nature Communications, 2019, 10, 5598.	5.8	47
272	Functional transcription promoters at DNA double-strand breaks mediate RNA-driven phase separation of damage-response factors. Nature Cell Biology, 2019, 21, 1286-1299.	4.6	233
273	HP1 reshapes nucleosome core to promote phase separation of heterochromatin. Nature, 2019, 575, 390-394.	13.7	358

#	Article	IF	CITATIONS
274	Chromatin state switching in a polymer model with mark-conformation coupling. Physical Review E, 2019, 100, 060401.	0.8	9
275	Timely double-strand break repair and pathway choice in pericentromeric heterochromatin depend on the histone demethylase dKDM4A. Genes and Development, 2019, 33, 103-115.	2.7	45
276	Rapid reversible changes in compartments and local chromatin organization revealed by hyperosmotic shock. Genome Research, 2019, 29, 18-28.	2.4	40
277	Mechanical regulation of genome architecture and cell-fate decisions. Current Opinion in Cell Biology, 2019, 56, 115-121.	2.6	37
278	Multiple Roles for Mono- and Poly(ADP-Ribose) in Regulating Stress Responses. Trends in Genetics, 2019, 35, 159-172.	2.9	26
279	Mechanisms regulating zygotic genome activation. Nature Reviews Genetics, 2019, 20, 221-234.	7.7	324
280	Models of polymer physics for the architecture of the cell nucleus. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2019, 11, e1444.	6.6	14
281	LAP2 Proteins Chaperone GLI1 Movement between the Lamina and Chromatin to Regulate Transcription. Cell, 2019, 176, 198-212.e15.	13.5	52
282	Plant HP1 protein ADCP1 links multivalent H3K9 methylation readout to heterochromatin formation. Cell Research, 2019, 29, 54-66.	5.7	83
283	The Role of Maternal HP1a in Early Drosophila Embryogenesis via Regulation of Maternal Transcript Production. Genetics, 2019, 211, 201-217.	1.2	8
284	Heat Shock Factor 1 Drives Intergenic Association of Its Target Gene Loci upon Heat Shock. Cell Reports, 2019, 26, 18-28.e5.	2.9	55
285	More than just a phase: the search for membraneless organelles in the bacterial cytoplasm. Current Genetics, 2019, 65, 691-694.	0.8	58
286	LHX2- and LDB1-mediated trans interactions regulate olfactory receptor choice. Nature, 2019, 565, 448-453.	13.7	215
287	Coaching from the sidelines: the nuclear periphery in genome regulation. Nature Reviews Genetics, 2019, 20, 39-50.	7.7	147
288	Membraneless nuclear organelles and the search for phases within phases. Wiley Interdisciplinary Reviews RNA, 2019, 10, e1514.	3.2	111
289	ADCP1: a novel plant H3K9me2 reader. Cell Research, 2019, 29, 6-7.	5.7	4
290	Nuclear condensates of the Polycomb protein chromobox 2 (CBX2) assemble through phase separation. Journal of Biological Chemistry, 2019, 294, 1451-1463.	1.6	261
291	Histone supply: Multitiered regulation ensures chromatin dynamics throughout the cell cycle. Journal of Cell Biology, 2019, 218, 39-54.	2.3	69

		CITATION REPORT		
#	Article		IF	CITATIONS
292	Advancements in mapping 3D genome architecture. Methods, 2020, 170, 75-81.		1.9	3
293	Protein aggregation in cell biology: An aggregomics perspective of health and disease. Ser Cell and Developmental Biology, 2020, 99, 40-54.	ninars in	2.3	36
294	The Secret Life of Chromosome Loops upon DNA Double-Strand Break. Journal of Molecula 2020, 432, 724-736.	ar Biology,	2.0	28
295	PhaSepDB: a database of liquid–liquid phase separation related proteins. Nucleic Acids I 48, D354-D359.	Research, 2020,	6.5	157
296	Binding to m6A RNA promotes YTHDF2-mediated phase separation. Protein and Cell, 2020), 11, 304-307.	4.8	52
297	Inference of chromosome 3D structures from GAM data by a physics computational appro Methods, 2020, 181-182, 70-79.	oach.	1.9	12
298	Phase Separation in Regulation of Aggrephagy. Journal of Molecular Biology, 2020, 432, 1	60-169.	2.0	37
299	Irregular Chromatin: Packing Density, Fiber Width, and Occurrence of Heterogeneous Clus Biophysical Journal, 2020, 118, 207-218.	sters.	0.2	21
300	The Nuclear Matrix Protein SAFB Cooperates with Major Satellite RNAs to Stabilize Hetero Architecture Partially through Phase Separation. Molecular Cell, 2020, 77, 368-383.e7.	chromatin	4.5	104
301	Three-dimensional chromosome organization in flowering plants. Briefings in Functional G 2020, 19, 83-91.	enomics,	1.3	12
302	Local Chromatin Motion and Transcription. Journal of Molecular Biology, 2020, 432, 694-7	700.	2.0	29
303	Genome organization via loop extrusion, insights from polymer physics models. Briefings i Functional Genomics, 2020, 19, 119-127.	n	1.3	11
304	Mesoscale Liquid Model of Chromatin Recapitulates Nuclear Order of Eukaryotes. Biophys Journal, 2020, 118, 2130-2140.	ical	0.2	29
305	Phase Separation in Asymmetric Cell Division. Biochemistry, 2020, 59, 47-56.		1.2	12
306	The genomics of oxidative DNA damage, repair, and resulting mutagenesis. Computationa Structural Biotechnology Journal, 2020, 18, 207-219.	ıl and	1.9	206
307	Liquid-Liquid Phase Separation of Histone Proteins in Cells: Role in Chromatin Organizatio Biophysical Journal, 2020, 118, 753-764.	n.	0.2	105
308	Positioning Heterochromatin at the Nuclear Periphery Suppresses Histone Turnover to Pro Epigenetic Inheritance. Cell, 2020, 180, 150-164.e15.	omote	13.5	78
309	TADs and Their Borders: Free Movement or Building a Wall?. Journal of Molecular Biology, 643-652.	2020, 432,	2.0	70

#	ARTICLE	IF	CITATIONS
310	Higher-order Chromosome Structures Investigated by Polymer Physics in Cellular Morphogenesis and Differentiation. Journal of Molecular Biology, 2020, 432, 701-711.	2.0	10
311	Direct visualization of degradation microcompartments at the ER membrane. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 1069-1080.	3.3	68
312	The SUMO Ligase Su(var)2-10 Controls Hetero- and Euchromatic Gene Expression via Establishing H3K9 Trimethylation and Negative Feedback Regulation. Molecular Cell, 2020, 77, 571-585.e4.	4.5	36
313	A Non-amyloid Prion Particle that Activates a Heritable Gene Expression Program. Molecular Cell, 2020, 77, 251-265.e9.	4.5	69
314	Chromatin structure changes during various processes from a DNA sequence view. Current Opinion in Structural Biology, 2020, 62, 1-8.	2.6	16
315	Maximum Entropy Optimized Force Field for Intrinsically Disordered Proteins. Journal of Chemical Theory and Computation, 2020, 16, 773-781.	2.3	64
316	TADs or no TADS: Lessons From Single-cell Imaging of Chromosome Architecture. Journal of Molecular Biology, 2020, 432, 682-693.	2.0	9
317	Methods for mapping 3DÂchromosome architecture. Nature Reviews Genetics, 2020, 21, 207-226.	7.7	362
318	Gain-of-Function MN1 Truncation Variants Cause a Recognizable Syndrome with Craniofacial and Brain Abnormalities. American Journal of Human Genetics, 2020, 106, 13-25.	2.6	25
319	Mitotic Implantation of the Transcription Factor Prospero via Phase Separation Drives Terminal Neuronal Differentiation. Developmental Cell, 2020, 52, 277-293.e8.	3.1	62
320	Molecular structure in biomolecular condensates. Current Opinion in Structural Biology, 2020, 60, 17-26.	2.6	91
321	Native Chromatin Proteomics Reveals a Role for Specific Nucleoporins in Heterochromatin Organization and Maintenance. Molecular Cell, 2020, 77, 51-66.e8.	4.5	75
322	Genome-Scale Imaging of the 3D Organization and Transcriptional Activity of Chromatin. Cell, 2020, 182, 1641-1659.e26.	13.5	309
323	The Self-Organizing Genome: Principles of Genome Architecture and Function. Cell, 2020, 183, 28-45.	13.5	342
324	Three-dimensional deconvolution processing for STEM cryotomography. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27374-27380.	3.3	20
325	PML nuclear bodies and chromatin dynamics: catch me if you can!. Nucleic Acids Research, 2020, 48, 11890-11912.	6.5	100
326	Regulation and Roles of the Nucleolus in Embryonic Stem Cells: From Ribosome Biogenesis to Genome Organization. Stem Cell Reports, 2020, 15, 1206-1219.	2.3	37
327	Characterizing chromatin folding coordinate and landscape with deep learning. PLoS Computational Biology, 2020, 16, e1008262.	1.5	23

		CITATION REPORT		
#	Article		IF	CITATIONS
328	Host Gene Regulation by Transposable Elements: The New, the Old and the Ugly. Viruse	es, 2020, 12, 1089.	1.5	25
329	MeCP2 links heterochromatin condensates and neurodevelopmental disease. Nature, 2 440-444.	.020, 586,	13.7	112
330	From start to end: Phase separation and transcriptional regulation. Biochimica Et Bioph Gene Regulatory Mechanisms, 2020, 1863, 194641.	iysica Acta -	0.9	48
331	Biomolecular Condensates and Gene Activation in Development and Disease. Developn 55, 84-96.	nental Cell, 2020,	3.1	40
332	Emerging Roles for Phase Separation in Plants. Developmental Cell, 2020, 55, 69-83.		3.1	84
333	TASOR is a pseudo-PARP that directs HUSH complex assembly and epigenetic transpos Nature Communications, 2020, 11, 4940.	on control.	5.8	59
334	DrLLPS: a data resource of liquid–liquid phase separation in eukaryotes. Nucleic Acids 48, D288-D295.	s Research, 2020,	6.5	112
335	ATP-Driven Separation of Liquid Phase Condensates in Bacteria. Molecular Cell, 2020, 7	'9, 293-303.e4.	4.5	107
336	The Interplay between Phase Separation and Gene-Enhancer Communication: A Theore Biophysical Journal, 2020, 119, 873-883.	tical Study.	0.2	12
337	Biomolecular Condensates in the Nucleus. Trends in Biochemical Sciences, 2020, 45, 9	61-977.	3.7	259
338	Recent advances in computational-based approaches in epigenetics studies. , 2020, , 5	69-590.		1
339	Navigating the crowd: visualizing coordination between genome dynamics, structure, a transcription. Genome Biology, 2020, 21, 278.	ind	3.8	20
340	Chromatin-Associated Membraneless Organelles in Regulation of Cellular Differentiatio Reports, 2020, 15, 1220-1232.	n. Stem Cell	2.3	17
341	Diabetes Mellitus Is a Chronic Disease that Can Benefit from Therapy with Induced Plur Cells. International Journal of Molecular Sciences, 2020, 21, 8685.	ipotent Stem	1.8	13
342	Divide and Rule: Phase Separation in Eukaryotic Genome Functioning. Cells, 2020, 9, 24	480.	1.8	15
343	Reevaluating the roles of histone-modifying enzymes and their associated chromatin m transcriptional regulation. Nature Genetics, 2020, 52, 1271-1281.	odifications in	9.4	209
344	Epigenetic conflict on a degenerating Y chromosome increases mutational burden in D males. Nature Communications, 2020, 11, 5537.	rosophila	5.8	26
345	Unraveling the 3D Genome Architecture in Plants: Present and Future. Molecular Plant, 1676-1693.	2020, 13,	3.9	48

ARTICLE IF CITATIONS # Phase separation by the polyhomeotic sterile alpha motif compartmentalizes Polycomb Group proteins 346 5.8 79 and enhances their activity. Nature Communications, 2020, 11, 5609. Advances in Chromatin and Chromosome Research: Perspectives from Multiple Fields. Molecular Cell, 347 4.5 2020, 79, 881-901. Physical modeling of the heritability and maintenance of epigenetic modifications. Proceedings of the 348 3.3 41 National Academy of Sciences of the United States of America, 2020, 117, 20423-20429. Nuclear actin: The new normal. Mutation Research - Fundamental and Molecular Mechanisms of 349 Mutagenesis, 2020, 821, 111714. Implications of the Evolutionary Trajectory of Centromeres in the Fungal Kingdom. Annual Review of 350 2.9 22 Microbiology, 2020, 74, 835-853. The Paramecium histone chaperone Spt16-1 is required for Pgm endonuclease function in programmed genome rearrangements. PLoS Genetics, 2020, 16, e1008949. 1.5 Phase separation of Arabidopsis EMB1579 controls transcription, mRNA splicing, and development. 352 2.6 32 PLoS Biology, 2020, 18, e3000782. Interactions With Histone H3 & amp; Tools to Study Them. Frontiers in Cell and Developmental Biology, 1.8 2020, 8, 701. Phase separation drives decision making in cell division. Journal of Biological Chemistry, 2020, 295, 354 1.6 41 13419-13431. Nucleosome positioning and chromatin organization. Current Opinion in Structural Biology, 2020, 2.6 28 64, 111-118. The rich inner life of the cell nucleus: dynamic organization, active flows, and emergent rheology. 356 1.5 45 Biophysical Reviews, 2020, 12, 1093-1106. Phase-Separated Transcriptional Condensates Accelerate Target-Search Process Revealed by Live-Cell 357 88 Single-Molecule Imaging. Cell Reports, 2020, 33, 108248. Pioneer Transcription Factors Initiating Gene Network Changes. Annual Review of Genetics, 2020, 54, 358 3.2 247 367-385. Examining histone modification crosstalk using immobilized libraries established from ligation-ready nucleosomes. Chemical Science, 2020, 11, 9218-9225. Large-Scale Topological Changes Restrain Malignant Progression in Colorectal Cancer. Cell, 2020, 182, 360 13.5 126 1474-1489.e23. Revisiting 3D chromatin architecture in cancer development and progression. Nucleic Acids Research, 2020, 48, 10632-10647. Single-molecule imaging reveals control of parental histone recycling by free histones during DNA 362 4.7 43 replication. Science Advances, 2020, 6, . Heterochromatin as an Important Driver of Genome Organization. Frontiers in Cell and 1.8 48 Developmental Biology, 2020, 8, 579137.

		CITATION RE	PORT	
#	Article		IF	CITATIONS
364	Functions of Polycomb Proteins on Active Targets. Epigenomes, 2020, 4, 17.		0.8	13
365	Structural Polymorphism of Single pDNA Condensates Elicited by Cationic Block Polyeled Polymers, 2020, 12, 1603.	trolytes.	2.0	8
366	Effects of Non-Electrostatic Intermolecular Interactions on the Phase Behavior of pH-Sen Polyelectrolyte Complexes. Macromolecules, 2020, 53, 7835-7844.	sitive	2.2	54
367	Editorial overview: Genome architecture and expression. Current Opinion in Genetics and Development, 2020, 61, iii-vi.		1.5	0
368	Complex Chromatin Motions for DNA Repair. Frontiers in Genetics, 2020, 11, 800.		1.1	24
369	The evolving metabolic landscape of chromatin biology and epigenetics. Nature Reviews 2020, 21, 737-753.	Genetics,	7.7	255
370	Insights into HP1a-Chromatin Interactions. Cells, 2020, 9, 1866.		1.8	11
371	Identifying proteins bound to native mitotic ESC chromosomes reveals chromatin repres important for compaction. Nature Communications, 2020, 11, 4118.	sors are	5.8	26
372	Enzymatic Noncovalent Synthesis. Chemical Reviews, 2020, 120, 9994-10078.		23.0	143
373	Charge pattern affects the structure and dynamics of polyampholyte condensates. Physi Chemical Physics, 2020, 22, 19368-19375.	cal Chemistry	1.3	51
374	What Is Lost in the Weismann Barrier?. Journal of Developmental Biology, 2020, 8, 35.		0.9	14
375	Condensed Chromatin Behaves like a Solid on the Mesoscale InÂVitro and in Living Cells. 1772-1784.e13.	Cell, 2020, 183,	13.5	186
376	Chromatin: Liquid or Solid?. Cell, 2020, 183, 1737-1739.		13.5	21
377	Phase Separation as a Missing Mechanism for Interpretation of Disease Mutations. Cell, 2 1742-1756.	2020, 183,	13.5	147
378	Protein condensates as aging Maxwell fluids. Science, 2020, 370, 1317-1323.		6.0	247
379	Simultaneous epigenetic perturbation and genome imaging reveal distinct roles of H3K9 chromatin architecture and transcription. Genome Biology, 2020, 21, 296.	me3 in	3.8	37
380	A Prion-like Domain in Transcription Factor EBF1 Promotes Phase Separation and Enables Programming of Progenitor Chromatin. Immunity, 2020, 53, 1151-1167.e6.	B Cell	6.6	47
381	Expansion of Intrinsically Disordered Proteins Increases the Range of Stability of Liquidâ€ Separation. Molecules, 2020, 25, 4705.	"Liquid Phase	1.7	42

#	Article	IF	CITATIONS
382	RNA phase separation–mediated direction of molecular trafficking under conditions of molecular crowding. Biophysical Reviews, 2020, 12, 669-676.	1.5	12
383	Histone H3K9 methylation promotes formation of genome compartments in <i>Caenorhabditis elegans</i> via chromosome compaction and perinuclear anchoring. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 11459-11470.	3.3	47
384	Oncogenic super-enhancer formation in tumorigenesis and its molecular mechanisms. Experimental and Molecular Medicine, 2020, 52, 713-723.	3.2	44
385	Liquid phase condensation directs nucleosome epigenetic modifications. Signal Transduction and Targeted Therapy, 2020, 5, 64.	7.1	3
386	Large DNA Methylation Nadirs Anchor Chromatin Loops Maintaining Hematopoietic Stem Cell Identity. Molecular Cell, 2020, 78, 506-521.e6.	4.5	72
387	Biophysical mechanisms of chromatin patterning. Current Opinion in Genetics and Development, 2020, 61, 62-68.	1.5	23
388	Polymer perspective of genome mobilization. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2020, 821, 111706.	0.4	4
389	Nuclear filaments: role in chromosomal positioning and gene expression. Nucleus, 2020, 11, 99-110.	0.6	12
390	Extreme disruption of heterochromatin is required for accelerated hematopoietic aging. Blood, 2020, 135, 2049-2058.	0.6	22
391	Multiplexed imaging of nucleome architectures in single cells of mammalian tissue. Nature Communications, 2020, 11, 2907.	5.8	69
392	How HP1 Post-Translational Modifications Regulate Heterochromatin Formation and Maintenance. Cells, 2020, 9, 1460.	1.8	16
303			
070	The self-stirred genome: large-scale chromatin dynamics, its biophysical origins and implications. Current Opinion in Genetics and Development, 2020, 61, 83-90.	1.5	28
394	The self-stirred genome: large-scale chromatin dynamics, its biophysical origins and implications. Current Opinion in Genetics and Development, 2020, 61, 83-90. Biological and catalytic functions of sirtuin 6 as targets for small-molecule modulators. Journal of Biological Chemistry, 2020, 295, 11021-11041.	1.5 1.6	28 43
394 395	The self-stirred genome: large-scale chromatin dynamics, its biophysical origins and implications. Current Opinion in Genetics and Development, 2020, 61, 83-90.Biological and catalytic functions of sirtuin 6 as targets for small-molecule modulators. Journal of Biological Chemistry, 2020, 295, 11021-11041.Unraveling the molecular interactions involved in phase separation of glucocorticoid receptor. BMC Biology, 2020, 18, 59.	1.5 1.6 1.7	28 43 45
394 395 396	The self-stirred genome: large-scale chromatin dynamics, its biophysical origins and implications. Current Opinion in Cenetics and Development, 2020, 61, 83-90.Biological and catalytic functions of sirtuin 6 as targets for small-molecule modulators. Journal of Biological Chemistry, 2020, 295, 11021-11041.Unraveling the molecular interactions involved in phase separation of glucocorticoid receptor. BMC Biology, 2020, 18, 59.Various modes of HP1a interactions with the euchromatic chromosome arms in Drosophila ovarian somatic cells. Chromosoma, 2020, 129, 201-214.	1.5 1.6 1.7 1.0	28 43 45 6
394 395 396 397	The self-stirred genome: large-scale chromatin dynamics, its biophysical origins and implications. Current Opinion in Genetics and Development, 2020, 61, 83-90. Biological and catalytic functions of sirtuin 6 as targets for small-molecule modulators. Journal of Biological Chemistry, 2020, 295, 11021-11041. Unraveling the molecular interactions involved in phase separation of glucocorticoid receptor. BMC Biology, 2020, 18, 59. Various modes of HP1a interactions with the euchromatic chromosome arms in Drosophila ovarian somatic cells. Chromosoma, 2020, 129, 201-214. Epigenetic Switch–Induced Viral Mimicry Evasion in Chemotherapy-Resistant Breast Cancer. Cancer Discovery, 2020, 10, 1312-1329.	1.5 1.6 1.7 1.0 7.7	28 43 45 6 84
394 395 396 397 398	The self-stirred genome: large-scale chromatin dynamics, its biophysical origins and implications. Current Opinion in Genetics and Development, 2020, 61, 83-90.Biological and catalytic functions of sirtuin 6 as targets for small-molecule modulators. Journal of Biological Chemistry, 2020, 295, 11021-11041.Unraveling the molecular interactions involved in phase separation of glucocorticoid receptor. BMC Biology, 2020, 18, 59.Various modes of HP1a interactions with the euchromatic chromosome arms in Drosophila ovarian somatic cells. Chromosoma, 2020, 129, 201-214.Epigenetic SwitchâC"Induced Viral Mimicry Evasion in Chemotherapy-Resistant Breast Cancer. Cancer Discovery, 2020, 10, 1312-1329.Liquid-liquid phase separation in biology: mechanisms, physiological functions and human diseases. Science China Life Sciences, 2020, 63, 953-985.	1.5 1.6 1.7 1.0 7.7 2.3	28 43 45 6 84 164

#	Article	IF	CITATIONS
400	Tidying-up the plant nuclear space: domains, functions, and dynamics. Journal of Experimental Botany, 2020, 71, 5160-5178.	2.4	20
401	The Role of Liquid–Liquid Phase Separation in the Compartmentalization of Cell Nucleus and Spatial Genome Organization. Biochemistry (Moscow), 2020, 85, 643-650.	0.7	30
402	Divergence, Convergence, and Therapeutic Implications: A Cell Biology Perspective of C9ORF72-ALS/FTD. Molecular Neurodegeneration, 2020, 15, 34.	4.4	32
403	1Q12 Loci Movement in the Interphase Nucleus Under the Action of ROS Is an Important Component of the Mechanism That Determines Copy Number Variation of Satellite III (1q12) in Health and Schizophrenia. Frontiers in Cell and Developmental Biology, 2020, 8, 386.	1.8	12
404	Roles of the BRD4 short isoform in phase separation and active gene transcription. Nature Structural and Molecular Biology, 2020, 27, 333-341.	3.6	85
405	A multi-layered structure of the interphase chromocenter revealed by proximity-based biotinylation. Nucleic Acids Research, 2020, 48, 4161-4178.	6.5	11
406	Imaging of DNA and RNA in Living Eukaryotic Cells to Reveal Spatiotemporal Dynamics of Gene Expression. Annual Review of Biochemistry, 2020, 89, 159-187.	5.0	43
407	Biological phase separation: cell biology meets biophysics. Biophysical Reviews, 2020, 12, 519-539.	1.5	125
408	Dissipative Self-Assembly of Dynamic Multicompartmentalized Microsystems with Light-Responsive Behaviors. CheM, 2020, 6, 1160-1171.	5.8	37
409	Emergent properties of mitotic chromosomes. Current Opinion in Cell Biology, 2020, 64, 43-49.	2.6	11
410	Heterochromatin protein 1 (HP1): interactions with itself and chromatin components. Biophysical Reviews, 2020, 12, 387-400.	1.5	52
411	Who Rules the Cell? An Epi-Tale of Histone, DNA, RNA, and the Metabolic Deep State. Frontiers in Plant Science, 2020, 11, 181.	1.7	13
412	Pericentromeric heterochromatin is hierarchically organized and spatially contacts H3K9me2 islands in euchromatin. PLoS Genetics, 2020, 16, e1008673.	1.5	32
413	4D Genome Rewiring during Oncogene-Induced and Replicative Senescence. Molecular Cell, 2020, 78, 522-538.e9.	4.5	107
414	Ultrastructural Details of Mammalian Chromosome Architecture. Molecular Cell, 2020, 78, 554-565.e7.	4.5	359
415	Distinct features of nucleolus-associated domains in mouse embryonic stem cells. Chromosoma, 2020, 129, 121-139.	1.0	23
416	pH-Controlled Coacervate–Membrane Interactions within Liposomes. ACS Nano, 2020, 14, 4487-4498.	7.3	94
417	Nonspecific characteristics of macromolecules create specific effects in living cells. Biophysical Reviews, 2020, 12, 425-434.	1.5	10

#	Article	IF	CITATIONS
418	Liquid-liquid phase separation and extracellular multivalent interactions in the tale of galectin-3. Nature Communications, 2020, 11, 1229.	5.8	66
419	Emerging roles of cytoskeletal proteins in regulating gene expression and genome organization during differentiation. Nucleus, 2020, 11, 53-65.	0.6	11
420	Effects of Mutations in the Drosophila melanogaster Rif1 Gene on the Replication and Underreplication of Pericentromeric Heterochromatin in Salivary Gland Polytene Chromosomes. Cells, 2020, 9, 1501.	1.8	5
421	CDK-Regulated Phase Separation Seeded by Histone Genes Ensures Precise Growth and Function of Histone Locus Bodies. Developmental Cell, 2020, 54, 379-394.e6.	3.1	55
422	Polymer physics indicates chromatin folding variability across single-cells results from state degeneracy in phase separation. Nature Communications, 2020, 11, 3289.	5.8	79
423	Heterochromatin Morphodynamics in Late Oogenesis and Early Embryogenesis of Mammals. Cells, 2020, 9, 1497.	1.8	16
424	Specialization of nuclear membrane in eukaryotes. Journal of Cell Science, 2020, 133, .	1.2	10
425	Valence and patterning of aromatic residues determine the phase behavior of prion-like domains. Science, 2020, 367, 694-699.	6.0	675
426	Mouse Heterochromatin Adopts Digital Compaction States without Showing Hallmarks of HP1-Driven Liquid-Liquid Phase Separation. Molecular Cell, 2020, 78, 236-249.e7.	4.5	214
427	Nuclear bodies formed by polyQ-ataxin-1 protein are liquid RNA/protein droplets with tunable dynamics. Scientific Reports, 2020, 10, 1557.	1.6	15
428	Rett syndrome-causing mutations compromise MeCP2-mediated liquid–liquid phase separation of chromatin. Cell Research, 2020, 30, 393-407.	5.7	80
429	Nucleolar Organization and Functions in Health and Disease. Cells, 2020, 9, 526.	1.8	21
430	Phase separation in a two-dimensional binary colloidal mixture by quorum sensing activity. Physical Review E, 2020, 101, 022606.	0.8	5
431	Two genomes, one cell: Mitochondrial-nuclear coordination via epigenetic pathways. Molecular Metabolism, 2020, 38, 100942.	3.0	55
432	Mechanisms and Functions of Chromosome Compartmentalization. Trends in Biochemical Sciences, 2020, 45, 385-396.	3.7	159
433	Lamina-Dependent Stretching and Unconventional Chromosome Compartments in Early C.Âelegans Embryos. Molecular Cell, 2020, 78, 96-111.e6.	4.5	43
434	Prospero Phase-Separating the Way to Neuronal Differentiation. Developmental Cell, 2020, 52, 251-252.	3.1	1
435	Role of Chain Flexibility in Asymmetric Polyelectrolyte Complexation in Salt Solutions. Macromolecules, 2020, 53, 1258-1269.	2.2	25

#	Article	IF	CITATIONS
436	Beads on a string—nucleosome array arrangements and folding of the chromatin fiber. Nature Structural and Molecular Biology, 2020, 27, 109-118.	3.6	86
437	RNA Droplets. Annual Review of Biophysics, 2020, 49, 247-265.	4.5	102
438	Computational approaches from polymer physics to investigate chromatin folding. Current Opinion in Cell Biology, 2020, 64, 10-17.	2.6	31
439	The CBX family of proteins in transcriptional repression and memory. Journal of Biosciences, 2020, 45, 1.	0.5	32
440	Regulation of epigenetic state by non-histone chromatin proteins and transcription factors: Implications in disease. Journal of Biosciences, 2020, 45, 1.	0.5	4
441	Phase-separation in chromatin organization. Journal of Biosciences, 2020, 45, 1.	0.5	50
442	Co-opted transposons help perpetuate conserved higher-order chromosomal structures. Genome Biology, 2020, 21, 16.	3.8	57
443	Recent advances in the spatial organization of the mammalian genome. Journal of Biosciences, 2020, 45, 1.	0.5	12
444	Viewing Nuclear Architecture through the Eyes of Nocturnal Mammals. Trends in Cell Biology, 2020, 30, 276-289.	3.6	30
445	The Interchromatin Compartment Participates in the Structural and Functional Organization of the Cell Nucleus. BioEssays, 2020, 42, e1900132.	1.2	65
446	Chromosome Conformation Capture and Beyond: Toward an Integrative View of Chromosome Structure and Function. Molecular Cell, 2020, 77, 688-708.	4.5	151
447	Physical Principles Underlying the Complex Biology of Intracellular Phase Transitions. Annual Review of Biophysics, 2020, 49, 107-133.	4.5	544
448	Bridging-induced microphase separation: photobleaching experiments, chromatin domains and the need for active reactions. Briefings in Functional Genomics, 2020, 19, 111-118.	1.3	28
449	Phase-Separated Multienzyme Biosynthesis. Biomacromolecules, 2020, 21, 2391-2399.	2.6	24
450	MeCP2 and Chromatin Compartmentalization. Cells, 2020, 9, 878.	1.8	22
451	Three-dimensional nuclear organization in Arabidopsis thaliana. Journal of Plant Research, 2020, 133, 479-488.	1.2	18
452	Architectural proteins for the formation and maintenance of the 3D genome. Science China Life Sciences, 2020, 63, 795-810.	2.3	11
453	Centromeric RNA and Its Function at and Beyond Centromeric Chromatin. Journal of Molecular Biology, 2020, 432, 4257-4269.	2.0	25

#	Article	IF	CITATIONS
454	Chromatin Hyperacetylation Impacts Chromosome Folding by Forming a Nuclear Subcompartment. Molecular Cell, 2020, 78, 112-126.e12.	4.5	62
455	On the relations of phase separation and Hi-C maps to epigenetics. Royal Society Open Science, 2020, 7, 191976.	1.1	18
456	Writing and Reading Histone H3 Lysine 9 Methylation in Arabidopsis. Frontiers in Plant Science, 2020, 11, 452.	1.7	32
457	Cytosine Methylation Enhances DNA Condensation Revealed by Equilibrium Measurements Using Magnetic Tweezers. Journal of the American Chemical Society, 2020, 142, 9203-9209.	6.6	24
458	An analytical theory to describe sequence-specific inter-residue distance profiles for polyampholytes and intrinsically disordered proteins. Journal of Chemical Physics, 2020, 152, 161102.	1.2	31
459	Molecular effects of dADD1 misexpression in chromatin organization and transcription. BMC Molecular and Cell Biology, 2020, 21, 17.	1.0	6
460	Protein assembly systems in natural and synthetic biology. BMC Biology, 2020, 18, 35.	1.7	44
461	Repetitive RNAs as Regulators of Chromatin-Associated Subcompartment Formation by Phase Separation. Journal of Molecular Biology, 2020, 432, 4270-4286.	2.0	53
462	Hi-D: nanoscale mapping of nuclear dynamics in single living cells. Genome Biology, 2020, 21, 95.	3.8	69
463	Competing Protein-RNA Interaction Networks Control Multiphase Intracellular Organization. Cell, 2020, 181, 306-324.e28.	13.5	543
464	A chromatin perspective on metabolic and genotoxic impacts on hematopoietic stem and progenitor cells. Cellular and Molecular Life Sciences, 2020, 77, 4031-4047.	2.4	7
465	How to maintain the genome in nuclear space. Current Opinion in Cell Biology, 2020, 64, 58-66.	2.6	30
466	Mesoscale organization of the chromatin fiber. Current Opinion in Genetics and Development, 2020, 61, 32-36.	1.5	27
467	Just Took a DNA Test, Turns Out 100% Not That Phase. Molecular Cell, 2020, 78, 193-194.	4.5	10
468	Weak interactions in higher-order chromatin organization. Nucleic Acids Research, 2020, 48, 4614-4626.	6.5	50
469	Lamina-associated domains: peripheral matters and internal affairs. Genome Biology, 2020, 21, 85.	3.8	162
470	Single cell analysis pushes the boundaries of TAD formation and function. Current Opinion in Genetics and Development, 2020, 61, 25-31.	1.5	14
471	Genome organization: Tag it, move it, place it. Current Opinion in Cell Biology, 2021, 68, 90-97.	2.6	4

#	Article	IF	CITATIONS
472	A framework for understanding the functions of biomolecular condensates across scales. Nature Reviews Molecular Cell Biology, 2021, 22, 215-235.	16.1	450
473	In Pursuit of Designing Multicellular Engineered Living Systems: A Fluid Mechanical Perspective. Annual Review of Fluid Mechanics, 2021, 53, 411-437.	10.8	6
474	Nuclear Envelope and Nuclear Pore Complexes in Neurodegenerative Diseases—New Perspectives for Therapeutic Interventions. Molecular Neurobiology, 2021, 58, 983-995.	1.9	16
475	Volumetric Compression Induces Intracellular Crowding to Control Intestinal Organoid Growth via Wnt/β-Catenin Signaling. Cell Stem Cell, 2021, 28, 63-78.e7.	5.2	62
476	Towards Decoding the Sequence-Based Grammar Governing the Functions of Intrinsically Disordered Protein Regions. Journal of Molecular Biology, 2021, 433, 166724.	2.0	29
477	Three-dimensional chromatin organization in cardiac development and disease. Journal of Molecular and Cellular Cardiology, 2021, 151, 89-105.	0.9	13
478	Regulatory mechanisms governing chromatin organization and function. Current Opinion in Cell Biology, 2021, 70, 10-17.	2.6	27
479	The emergence of phase separation as an organizing principle in bacteria. Biophysical Journal, 2021, 120, 1123-1138.	0.2	108
480	Enhancer-promoter communication: hubs or loops?. Current Opinion in Genetics and Development, 2021, 67, 5-9.	1.5	85
481	Comparative nuclear matrix proteome analysis of skeletal muscle cells in different cellular states. Cell Biology International, 2021, 45, 580-598.	1.4	2
482	RNA nucleation by MSL2 induces selective X chromosome compartmentalization. Nature, 2021, 589, 137-142.	13.7	34
483	Real-Time Study of Protein Phase Separation with Spatiotemporal Analysis of Single-Nanoparticle Trajectories. ACS Nano, 2021, 15, 539-549.	7.3	18
484	Nuclear Condensates of p300 Formed Though the Structured Catalytic Core Can Act as a Storage Pool of p300 with Reduced HAT Activity. SSRN Electronic Journal, 0, , .	0.4	0
485	Nuclear organization and regulation of the differentiated state. Cellular and Molecular Life Sciences, 2021, 78, 3141-3158.	2.4	20
486	Anomalous patterns of Saffman–Taylor fingering instability during a metastable phase separation. Physical Chemistry Chemical Physics, 2021, 23, 10926-10935.	1.3	6
488	The Changes of the Nuclear Landscape Upon Stimulation of Neuronal Cells are Dependent on the Histone Deacetylase HSAC1. SSRN Electronic Journal, 0, , .	0.4	0
490	m ⁶ A deposition is regulated by PRMT1â€mediated arginine methylation of METTL14 in its disordered Câ€terminal region. EMBO Journal, 2021, 40, e106309.	3.5	30
491	Coacervate formation studied by explicit solvent coarse-grain molecular dynamics with the Martini model. Chemical Science, 2021, 12, 8521-8530.	3.7	37

# 492	ARTICLE Modeling the 3D genome of plants. Nucleus, 2021, 12, 65-81.	lF 0.6	Citations
495	Formation and Function of Liquid-Like Viral Factories in Negative-Sense Single-Stranded RNA Virus Infections. Viruses, 2021, 13, 126.	1.5	27
497	RNA architecture influences plant biology. Journal of Experimental Botany, 2021, 72, 4144-4160.	2.4	12
498	RNA-seeded membraneless bodies: Role of tandemly repeated RNA. Advances in Protein Chemistry and Structural Biology, 2021, 126, 151-193.	1.0	9
499	Concepts No Membrane, No Problem: Cellular Organization by Biomolecular Condensates. , 2021, , 113-133.		0
500	Self-sorting in supramolecular assemblies. Soft Matter, 2021, 17, 3902-3912.	1.2	14
501	Nanobody-mediated control of gene expression and epigenetic memory. Nature Communications, 2021, 12, 537.	5.8	25
503	Structures of monomeric and dimeric PRC2:EZH1 reveal flexible modules involved in chromatin compaction. Nature Communications, 2021, 12, 714.	5.8	54
504	DNA structure Chromosome Organization and Structure, Overview. , 2021, , 18-28.		0
505	The human origin recognition complex is essential for pre-RC assembly, mitosis, and maintenance of nuclear structure. ELife, 2021, 10, .	2.8	14
506	Phase separation and histone epigenetics in genome regulation. Current Opinion in Solid State and Materials Science, 2021, 25, 100892.	5.6	6
508	Sir3 mediates long-range chromosome interactions in budding yeast. Genome Research, 2021, 31, 411-425.	2.4	16
511	Engineering 3D genome organization. Nature Reviews Genetics, 2021, 22, 343-360.	7.7	38
513	Fundamental Challenges and Outlook in Simulating Liquid–Liquid Phase Separation of Intrinsically Disordered Proteins. Journal of Physical Chemistry Letters, 2021, 12, 1644-1656.	2.1	20
514	Physical mechanisms of chromatin spatial organization. FEBS Journal, 2022, 289, 1180-1190.	2.2	10
515	Characterization of functional disordered regions within chromatin-associated proteins. IScience, 2021, 24, 102070.	1.9	27
516	Interplay of folded domains and the disordered low-complexity domain in mediating hnRNPA1 phase separation. Nucleic Acids Research, 2021, 49, 2931-2945.	6.5	81
517	Bridging-induced phase separation induced by cohesin SMC protein complexes. Science Advances, 2021, 7, .	4.7	95

~			<u> </u>	
C	ΙΤΑΤΙ	ON	REPC	DRT

#	Article	IF	CITATIONS
518	Selfâ€assembly of multiâ€component mitochondrial nucleoids via phase separation. EMBO Journal, 2021, 40, e107165.	3.5	36
519	The 20S proteasome activator PA28Î ³ controls the compaction of chromatin. Journal of Cell Science, 2021, 134, .	1.2	4
520	Heterochromatin protein 1 beta regulates neural and neural crest development by repressing pluripotencyâ€associated gene pou5f3.2/oct25 in Xenopus. Developmental Dynamics, 2021, 250, 1113-1124.	0.8	3
521	Histone modifications form a cell-type-specific chromosomal bar code that persists through the cell cycle. Scientific Reports, 2021, 11, 3009.	1.6	11
523	Signalingâ€ŧo hromatin pathways in the immune system. Immunological Reviews, 2021, 300, 37-53.	2.8	10
524	1,6-hexanediol rapidly immobilizes and condenses chromatin in living human cells. Life Science Alliance, 2021, 4, e202001005.	1.3	59
525	Functional mechanisms and abnormalities of the nuclear lamina. Nature Cell Biology, 2021, 23, 116-126.	4.6	52
526	Biomolecular Condensates and Cancer. Cancer Cell, 2021, 39, 174-192.	7.7	157
527	Single molecule microscopy reveals key physical features of repair foci in living cells. ELife, 2021, 10, .	2.8	55
529	Biophysics of Phase Separation of Disordered Proteins Is Governed by Balance between Short- And Long-Range Interactions. Journal of Physical Chemistry B, 2021, 125, 2202-2211.	1.2	42
530	Computational Screening of Phase-separating Proteins. Genomics, Proteomics and Bioinformatics, 2021, 19, 13-24.	3.0	36
533	Dri1 mediates heterochromatin assembly via RNAi and histone deacetylation. Genetics, 2021, 218, .	1.2	4
534	HP1 proteins compact DNA into mechanically and positionally stable phase separated domains. ELife, 2021, 10, .	2.8	119
535	Transcription organizes euchromatin via microphase separation. Nature Communications, 2021, 12, 1360.	5.8	83
536	In search of lost time: Enhancers as modulators of timing in lymphocyte development and differentiation. Immunological Reviews, 2021, 300, 134-151.	2.8	5
537	Histone chaperone CAFâ€l promotes HIVâ€l latency by leading the formation of phaseâ€separated suppressive nuclear bodies. EMBO Journal, 2021, 40, e106632.	3.5	27
538	Properties of repression condensates in living Ciona embryos. Nature Communications, 2021, 12, 1561.	5.8	20
539	Spatial Organization of Chromatin: Transcriptional Control of Adaptive Immune Cell Development. Frontiers in Immunology, 2021, 12, 633825.	2.2	12

#	Article	IF	CITATIONS
541	Regulation of HP1 protein by phosphorylation during transcriptional repression and cell cycle. Journal of Biochemistry, 2021, 169, 629-632.	0.9	1
542	Interplay between genome organization and epigenomic alterations of pericentromeric DNA in cancer. Journal of Genetics and Genomics, 2021, 48, 184-197.	1.7	7
544	Tunable, division-independent control of gene activation timing by a polycomb switch. Cell Reports, 2021, 34, 108888.	2.9	19
545	Integration of Data from Liquid–Liquid Phase Separation Databases Highlights Concentration and Dosage Sensitivity of LLPS Drivers. International Journal of Molecular Sciences, 2021, 22, 3017.	1.8	29
546	Regulation of Nuclear Mechanics and the Impact on DNA Damage. International Journal of Molecular Sciences, 2021, 22, 3178.	1.8	28
547	Chemical Insights into Liquid-Liquid Phase Separation in Molecular Biology. Bulletin of the Chemical Society of Japan, 2021, 94, 1045-1058.	2.0	24
548	Parameter-free molecular super-structures quantification in single-molecule localization microscopy. Journal of Cell Biology, 2021, 220, .	2.3	14
549	Membraneless organelles restructured and built by pandemic viruses: HIV-1 and SARS-CoV-2. Journal of Molecular Cell Biology, 2021, 13, 259-268.	1.5	28
550	Beyond the Nucleosome: Nucleosome-Protein Interactions and Higher Order Chromatin Structure. Journal of Molecular Biology, 2021, 433, 166827.	2.0	12
551	Chemical Dimerization-Induced Protein Condensates on Telomeres. Journal of Visualized Experiments, 2021, , .	0.2	2
552	Reflections on the organization and the physical state of chromatin in eukaryotic cells. Genome, 2021, 64, 311-325.	0.9	10
554	HP1 drives de novo 3D genome reorganization in early Drosophila embryos. Nature, 2021, 593, 289-293.	13.7	76
555	Microscopic Dynamics of Liquid-Liquid Phase Separation and Domain Coarsening in a Protein Solution Revealed by X-Ray Photon Correlation Spectroscopy. Physical Review Letters, 2021, 126, 138004.	2.9	38
558	The Stochastic Genome and Its Role in Gene Expression. Cold Spring Harbor Perspectives in Biology, 2021, 13, a040386.	2.3	18
559	Unfolding of the chromatin fiber driven by overexpression of noninteracting bridging factors. Biophysical Journal, 2021, 120, 1247-1256.	0.2	8
560	The key role of solvent in condensation: Mapping water in liquid-liquid phase-separated FUS. Biophysical Journal, 2021, 120, 1266-1275.	0.2	71
561	The shifting shape of genomes: dynamics of heterochromatin interactions at the nuclear lamina. Current Opinion in Genetics and Development, 2021, 67, 163-173.	1.5	25
562	Phase separation of DNA: From past to present. Biophysical Journal, 2021, 120, 1139-1149.	0.2	36

#	Article	IF	CITATIONS
563	Suppression of liquid–liquid phase separation by 1,6-hexanediol partially compromises the 3D genome organization in living cells. Nucleic Acids Research, 2021, 49, 10524-10541.	6.5	68
569	Consistent Force Field Captures Homologue-Resolved HP1 Phase Separation. Journal of Chemical Theory and Computation, 2021, 17, 3134-3144.	2.3	51
571	Establishment of heterochromatin in domain-size-dependent bursts. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	16
572	Studying phase separation in confinement. Current Opinion in Colloid and Interface Science, 2021, 52, 101419.	3.4	18
573	Modern optical microscopy methods to study biomolecular condensates. Current Opinion in Colloid and Interface Science, 2021, 52, 101421.	3.4	6
574	Get closer and make hotspots: liquid–liquid phase separation in plants. EMBO Reports, 2021, 22, e51656.	2.0	33
575	Phase Separation during Germline Development. Trends in Cell Biology, 2021, 31, 254-268.	3.6	41
576	Epigenetic memory of cell fate commitment. Current Opinion in Cell Biology, 2021, 69, 80-87.	2.6	18
577	Spatiotemporal organization of coacervate microdroplets. Current Opinion in Colloid and Interface Science, 2021, 52, 101420.	3.4	21
578	Physical Nature of Chromatin in the Nucleus. Cold Spring Harbor Perspectives in Biology, 2021, 13, a040675.	2.3	34
579	The HSV-1 Transcription Factor ICP4 Confers Liquid-Like Properties to Viral Replication Compartments. International Journal of Molecular Sciences, 2021, 22, 4447.	1.8	31
582	Mechanisms and regulation underlying membraneless organelle plasticity control. Journal of Molecular Cell Biology, 2021, 13, 239-258.	1.5	14
583	A Data-Driven Hydrophobicity Scale for Predicting Liquid–Liquid Phase Separation of Proteins. Journal of Physical Chemistry B, 2021, 125, 4046-4056.	1.2	71
584	Single-molecule tracking of transcription protein dynamics in living cells: seeing is believing, but what are we seeing?. Current Opinion in Genetics and Development, 2021, 67, 94-102.	1.5	40
585	The language of chromatin modification in human cancers. Nature Reviews Cancer, 2021, 21, 413-430.	12.8	179
586	Generation and Biochemical Characterization of Phaseâ€Separated Droplets Formed by Nucleic Acid Binding Proteins: Using HP1 as a Model System. Current Protocols, 2021, 1, e109.	1.3	6
588	Loss of EZH2-like or SU(VAR)3–9-like proteins causes simultaneous perturbations in H3K27 and H3K9 tri-methylation and associated developmental defects in the fungus Podospora anserina. Epigenetics and Chromatin, 2021, 14, 22.	1.8	18
589	Mitochondrial cytochrome <i>c</i> shot towards histone chaperone condensates in the nucleus. FEBS Open Bio, 2021, 11, 2418-2440.	1.0	13

			0
#	ARTICLE	IF	CITATIONS
590	multivalent nucleosome interactions. Nature Communications, 2021, 12, 2883.	5.8	75
591	Discovery of Plasma Membrane-Associated RNAs through APEX-seq. Cell Biochemistry and Biophysics, 2021, 79, 905-917.	0.9	8
592	Advances in higher-order chromatin architecture: the move towards 4D genome. BMB Reports, 2021, 54, 233-245.	1.1	10
593	Transcription Factor Dynamics. Cold Spring Harbor Perspectives in Biology, 2021, 13, a040949.	2.3	37
594	3D genomics across the tree of life reveals condensin II as a determinant of architecture type. Science, 2021, 372, 984-989.	6.0	132
596	m6A RNA methylation of major satellite repeat transcripts facilitates chromatin association and RNA:DNA hybrid formation in mouse heterochromatin. Nucleic Acids Research, 2021, 49, 5568-5587.	6.5	21
598	Cooperative DNA looping by PRC2 complexes. Nucleic Acids Research, 2021, 49, 6238-6248.	6.5	19
599	Rapid nucleus-scale reorganization of chromatin in neurons enables transcriptional adaptation for memory consolidation. PLoS ONE, 2021, 16, e0244038.	1.1	9
600	Mesoscale phase separation of chromatin in the nucleus. ELife, 2021, 10, .	2.8	53
602	Single-molecule imaging of epigenetic complexes in living cells: insights from studies on Polycomb group proteins. Nucleic Acids Research, 2021, 49, 6621-6637.	6.5	8
603	Low complexity domains, condensates, and stem cell pluripotency. World Journal of Stem Cells, 2021, 13, 416-438.	1.3	6
604	Mutations inhibiting KDM4B drive ALT activation in ATRX-mutated glioblastomas. Nature Communications, 2021, 12, 2584.	5.8	23
605	Attach and stretch: Emerging roles for genome–lamina contacts in shaping the 3D genome. Current Opinion in Cell Biology, 2021, 70, 51-57.	2.6	18
606	Molecular Complexes at Euchromatin, Heterochromatin and Centromeric Chromatin. International Journal of Molecular Sciences, 2021, 22, 6922.	1.8	35
607	Transcriptionally inactive hepatitis B virus episome DNA preferentially resides in the vicinity of chromosome 19 in 3D host genome upon infection. Cell Reports, 2021, 35, 109288.	2.9	24
608	Chromosome compartments on the inactive X guide TAD formation independently of transcription during X-reactivation. Nature Communications, 2021, 12, 3499.	5.8	29
609	Physical theory of biological noise buffering by multicomponent phase separation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	43
610	Biochemical Timekeeping Via Reentrant Phase Transitions. Journal of Molecular Biology, 2021, 433, 166794.	2.0	22

#		IF	CITATIONS
611	Unravelling HP1 functions: post-transcriptional regulation of stem cell fate. Chromosoma, 2021, 130, 103-111.	1.0	5
612	Transcriptomic and Epigenomic Landscape in Rett Syndrome. Biomolecules, 2021, 11, 967.	1.8	10
613	Tet1 regulates epigenetic remodeling of the pericentromeric heterochromatin and chromocenter organization in DNA hypomethylated cells. PLoS Genetics, 2021, 17, e1009646.	1.5	6
616	Interphase Chromatin Undergoes a Local Sol-Gel Transition upon Cell Differentiation. Physical Review Letters, 2021, 126, 228101.	2.9	37
617	Principles of 3D compartmentalization of the human genome. Cell Reports, 2021, 35, 109330.	2.9	60
618	Establishment of H3K9me3-dependent heterochromatin during embryogenesis in Drosophila miranda. ELife, 2021, 10, .	2.8	22
619	Site-specific ubiquitylation acts as a regulator of linker histone H1. Nature Communications, 2021, 12, 3497.	5.8	17
620	Solvent Exposure and Ionic Condensation Drive Fuzzy Dimerization of Disordered Heterochromatin Protein Sequence. Biomolecules, 2021, 11, 915.	1.8	4
621	HP1 $\hat{1}$ ± is a chromatin crosslinker that controls nuclear and mitotic chromosome mechanics. ELife, 2021, 10, .	2.8	69
622	Pressure and Temperature Phase Diagram for Liquid–Liquid Phase Separation of the RNA-Binding Protein Fused in Sarcoma. Journal of Physical Chemistry B, 2021, 125, 6821-6829.	1.2	30
624	Probing Chromatin Compaction and Its Epigenetic States in situ With Single-Molecule Localization-Based Super-Resolution Microscopy. Frontiers in Cell and Developmental Biology, 2021, 9, 653077.	1.8	5
625	Dynamic asymmetry and why chromatin defies simple physical definitions. Current Opinion in Cell Biology, 2021, 70, 116-122.	2.6	3
626	The zinc finger protein CLAMP promotes long-range chromatin interactions that mediate dosage compensation of the Drosophila male X-chromosome. Epigenetics and Chromatin, 2021, 14, 29.	1.8	8
628	Single-Molecule Tracking of Chromatin-Associated Proteins in the <i>C.Âelegans</i> Gonad. Journal of Physical Chemistry B, 2021, 125, 6162-6170.	1.2	4
629	Molecular Epigenetics: Chemical Biology Tools Come of Age. Annual Review of Biochemistry, 2021, 90, 287-320.	5.0	9
630	RNA and liquid-liquid phase separation. Non-coding RNA Research, 2021, 6, 92-99.	2.4	52
631	Phase separation drives aberrant chromatin looping and cancer development. Nature, 2021, 595, 591-595.	13.7	197
632	Liquid–Liquid Phase Separation in Chromatin. Cold Spring Harbor Perspectives in Biology, 2022, 14, a040683.	2.3	80

#	Article	IF	CITATIONS
633	Sequence determinants of in cell condensate morphology, dynamics, and oligomerization as measured by number and brightness analysis. Cell Communication and Signaling, 2021, 19, 65.	2.7	12
634	Protein phase separation and its role in chromatin organization and diseases. Biomedicine and Pharmacotherapy, 2021, 138, 111520.	2.5	9
635	Live imaging and biophysical modeling support a button-based mechanism of somatic homolog pairing in Drosophila. ELife, 2021, 10, .	2.8	21
636	Quadruplex Folding Promotes the Condensation of Linker Histones and DNAs via Liquid–Liquid Phase Separation. Journal of the American Chemical Society, 2021, 143, 9849-9857.	6.6	36
637	Liquid–Liquid Phase Separation in the Presence of Macromolecular Crowding and State-dependent Kinetics. International Journal of Molecular Sciences, 2021, 22, 6675.	1.8	9
638	Insights into gene regulation: From regulatory genomic elements to DNA-protein and protein-protein interactions. Current Opinion in Cell Biology, 2021, 70, 58-66.	2.6	19
639	Histone acylations and chromatin dynamics: concepts, challenges, and links to metabolism. EMBO Reports, 2021, 22, e52774.	2.0	63
640	The roles of inducible chromatin and transcriptional memory in cellular defense system responses to redox-active pollutants. Free Radical Biology and Medicine, 2021, 170, 85-108.	1.3	3
642	TAD cliques predict key features of chromatin organization. BMC Genomics, 2021, 22, 499.	1.2	8
643	Nuclear condensates of p300 formed though the structured catalytic core can act as a storage pool of p300 with reduced HAT activity. Nature Communications, 2021, 12, 4618.	5.8	22
644	PRC2 activity, recruitment, and silencing: a comparative perspective. Trends in Plant Science, 2021, 26, 1186-1198.	4.3	42
645	Polymer models are a versatile tool to study chromatin 3D organization. Biochemical Society Transactions, 2021, 49, 1675-1684.	1.6	8
646	A Tale of Two States: Pluripotency Regulation of Telomeres. Frontiers in Cell and Developmental Biology, 2021, 9, 703466.	1.8	4
647	Single-molecule imaging of chromatin remodelers reveals role of ATPase in promoting fast kinetics of target search and dissociation from chromatin. ELife, 2021, 10, .	2.8	39
648	New Family Members of FG Repeat Proteins and Their Unexplored Roles During Phase Separation. Frontiers in Cell and Developmental Biology, 2021, 9, 708702.	1.8	7
649	Size conservation emerges spontaneously in biomolecular condensates formed by scaffolds and surfactant clients. Scientific Reports, 2021, 11, 15241.	1.6	33
650	Induction and Monitoring of DNA Phase Separation in Living Cells by a Light-Switching Ruthenium Complex. Journal of the American Chemical Society, 2021, 143, 11370-11381.	6.6	19
651	Heterochromatin-dependent transcription of satellite DNAs in the Drosophila melanogaster female germline. ELife, 2021, 10, .	2.8	26

ARTICLE IF CITATIONS # Phosphorylation of the HP1^{î2} hinge region sequesters KAP1 in heterochromatin and promotes the exit 652 6.5 9 from naà ve pluripotency. Nucleic Acids Research, 2021, 49, 7406-7423. Nuclear Protein Condensates and Their Properties in Regulation of Gene Expression. Journal of Molecular Biology, 2022, 434, 167151. Salt-Dependent Conformational Changes of Intrinsically Disordered Proteins. Journal of Physical 654 2.1 32 Chemistry Letters, 2021, 12, 6684-6691. 3D or Not 3D: Shaping the Genome during Development. Cold Spring Harbor Perspectives in Biology, 2022, 14, a040188. Epigenetic rewriting at centromeric DNA repeats leads to increased chromatin accessibility and 656 1.8 6 chromosomal instability. Epigenetics and Chromatin, 2021, 14, 35. The Drosophila HP1 family is associated with active gene expression across chromatin contexts. Genetics, 2021, 219, . 1.2 Complete loss of H3K9 methylation dissolves mouse heterochromatin organization. Nature 658 5.8 41 Communications, 2021, 12, 4359. Multiscale modeling of genome organization with maximum entropy optimization. Journal of Chemical 1.2 38 Physics, 2021, 155, 010901. Spatial Organization of Chromatin: Emergence of Chromatin Structure During Development. Annual 660 4.0 27 Review of Cell and Developmental Biology, 2021, 37, 199-232. In vivo analysis reveals that ATP-hydrolysis couples remodeling to SWI/SNF release from chromatin. 2.8 ELife, 2021, 10, . Condensation of pericentrin proteins in human cells illuminates phase separation in centrosome 662 1.2 29 assembly. Journal of Cell Science, 2021, 134, . HP1Î³ binding preâ€mRNA intronic repeatsÂmodulates RNA splicing decisions. EMBO Reports, 2021, 22, e52320. 2.0 How Hierarchical Interactions Make Membraneless Organelles Tick Like Clockwork. Trends in 664 3.7 35 Biochemical Sciences, 2021, 46, 525-534. SS18 regulates pluripotent-somatic transition through phase separation. Nature Communications, 5.8 14 2021, 12, 4090 Interrogation of the dynamic properties of higher-order heterochromatin using CRISPR-dCas9. 666 4.5 21 Molecular Cell, 2021, 81, 4287-4299.e5. RNA impacts formation of biomolecular condensates in the nucleus. Biomedical Research, 2021, 42, 153-160. Modulating α-Synuclein Liquid–Liquid Phase Separation. Biochemistry, 2021, 60, 3676-3696. 668 1.2 67 Nuclear Compartments: An Incomplete Primer to Nuclear Compartments, Bodies, and Genome 670 Organization Relative to Nuclear Architecture. Cold Spring Harbor Perspectives in Biology, 2022, 14, 2.3 38 a041268.

#	Article	IF	CITATIONS
672	Liquid–liquid phase separation in human health and diseases. Signal Transduction and Targeted Therapy, 2021, 6, 290.	7.1	231
673	Phase separation in genome organization across evolution. Trends in Cell Biology, 2021, 31, 671-685.	3.6	62
674	Nuclear compartmentalization as a mechanism of quantitative control of gene expression. Nature Reviews Molecular Cell Biology, 2021, 22, 653-670.	16.1	131
675	Loss of grand histone H3 lysine 27 trimethylation domains mediated transcriptional activation in esophageal squamous cell carcinoma. Npj Genomic Medicine, 2021, 6, 65.	1.7	7
676	The intrinsically disorderly story of Ki-67. Open Biology, 2021, 11, 210120.	1.5	33
679	Integration host factor bends and bridges DNA in a multiplicity of binding modes with varying specificity. Nucleic Acids Research, 2021, 49, 8684-8698.	6.5	18
680	Chromatin Conformation in Development and Disease. Frontiers in Cell and Developmental Biology, 2021, 9, 723859.	1.8	25
681	The Nuclear Lamina. Cold Spring Harbor Perspectives in Biology, 2022, 14, a040113.	2.3	28
682	Topological Constraints with Optimal Length Promote the Formation of Chromosomal Territories at Weakened Degree of Phase Separation. Journal of Physical Chemistry B, 2021, 125, 9092-9101.	1.2	4
683	A Hypothesis: Linking Phase Separation to Meiotic Sex Chromosome Inactivation and Sex-Body Formation. Frontiers in Cell and Developmental Biology, 2021, 9, 674203.	1.8	9
684	Uncovering the Principles of Genome Folding by 3D Chromatin Modeling. Cold Spring Harbor Perspectives in Biology, 2022, 14, a039693.	2.3	12
685	Quantifying the phase separation property of chromatin-associated proteins under physiological conditions using an anti-1,6-hexanediol index. Genome Biology, 2021, 22, 229.	3.8	24
687	Targeted modulation of protein liquid–liquid phase separation by evolution of amino-acid sequence. PLoS Computational Biology, 2021, 17, e1009328.	1.5	21
688	Merging Established Mechanisms with New Insights: Condensates, Hubs, and the Regulation of RNA Polymerase II Transcription. Journal of Molecular Biology, 2022, 434, 167216.	2.0	44
689	Time-dependent effect of 1,6-hexanediol on biomolecular condensates and 3D chromatin organization. Genome Biology, 2021, 22, 230.	3.8	33
690	The nucleolus from a liquid droplet perspective. Journal of Biochemistry, 2021, 170, 153-162.	0.9	14
691	Three-dimensional chromatin organization in brain function and dysfunction. Current Opinion in Neurobiology, 2021, 69, 214-221.	2.0	10
692	Uncharged Components of Single-Stranded DNA Modulate Liquid–Liquid Phase Separation With Cationic Linker Histone H1. Frontiers in Cell and Developmental Biology, 2021, 9, 710729.	1.8	6

#	Article	IF	CITATIONS
693	Chromatin Alterations in Neurological Disorders and Strategies of (Epi)Genome Rescue. Pharmaceuticals, 2021, 14, 765.	1.7	3
694	Polymer Modeling of 3D Epigenome Folding: Application to Drosophila. Methods in Molecular Biology, 2022, 2301, 293-305.	0.4	5
696	Chromatin Organization and Function in Drosophila. Cells, 2021, 10, 2362.	1.8	7
697	Genome Maintenance Mechanisms at the Chromatin Level. International Journal of Molecular Sciences, 2021, 22, 10384.	1.8	3
698	Characterization of Opalescence in low Volume Monoclonal Antibody Solutions Enabled by Microscale Nephelometry. Journal of Pharmaceutical Sciences, 2021, 110, 3176-3182.	1.6	1
699	Persistent mRNA localization defects and cell death in ALS neurons caused by transient cellular stress. Cell Reports, 2021, 36, 109685.	2.9	18
700	Salt dependent phase behavior of intrinsically disordered proteins from a coarse-grained model with explicit water and ions. Journal of Chemical Physics, 2021, 155, 125103.	1.2	29
701	Liquid condensation of reprogramming factor KLF4 with DNA provides a mechanism for chromatin organization. Nature Communications, 2021, 12, 5579.	5.8	45
703	The evolving complexity of DNA damage foci: RNA, condensates and chromatin in DNA double-strand break repair. DNA Repair, 2021, 105, 103170.	1.3	25
704	The Paramount Role of Drosophila melanogaster in the Study of Epigenetics: From Simple Phenotypes to Molecular Dissection and Higher-Order Genome Organization. Insects, 2021, 12, 884.	1.0	7
705	The Role of Human Satellite III (1q12) Copy Number Variation in the Adaptive Response during Aging, Stress, and Pathology: A Pendulum Model. Genes, 2021, 12, 1524.	1.0	10
706	β-actin dependent chromatin remodeling mediates compartment level changes in 3D genome architecture. Nature Communications, 2021, 12, 5240.	5.8	31
707	The Sound of Silence: How Silenced Chromatin Orchestrates the Repair of Double-Strand Breaks. Genes, 2021, 12, 1415.	1.0	6
709	Plant 3D Chromatin Organization: Important Insights from Chromosome Conformation Capture Analyses of the Last 10 Years. Plant and Cell Physiology, 2021, 62, 1648-1661.	1.5	9
710	Chromosomal Differentiation of Deschampsia (Poaceae) Based on Four Satellite DNA Families. Frontiers in Genetics, 2021, 12, 728664.	1.1	1
711	Histone H1 Mutations in Lymphoma: A Link(er) between Chromatin Organization, Developmental Reprogramming, and Cancer. Cancer Research, 2021, 81, 6061-6070.	0.4	11
712	Liquid-liquid phase separation as a common organizing principle of intracellular space and biomembranes providing dynamic adaptive responses. Biochimica Et Biophysica Acta - Molecular Cell Research, 2021, 1868, 119102.	1.9	55
713	Pioneer factors in development and cancer. IScience, 2021, 24, 103132.	1.9	15

#	Δρτιςι ε	IF	CITATIONS
" 714	M33 condenses chromatin through nuclear body formation and methylation of both histone H3 lysine 9 and lysine 27. Biochimica Et Biophysica Acta - Molecular Cell Research, 2021, 1868, 119100.	1.9	0
715	Biomolecular condensates at sites of DNA damage: More than just a phase. DNA Repair, 2021, 106, 103179.	1.3	51
716	Phase separation in transcription factor dynamics and chromatin organization. Current Opinion in Structural Biology, 2021, 71, 148-155.	2.6	30
717	Liquid-like chromatin in the cell: What can we learn from imaging and computational modeling?. Current Opinion in Structural Biology, 2021, 71, 123-135.	2.6	26
718	A nervous system-specific subnuclear organelle in <i>Caenorhabditis elegans</i> . Genetics, 2021, 217, 1-17.	1.2	6
719	Phasing the intranuclear organization of steroid hormone receptors. Biochemical Journal, 2021, 478, 443-461.	1.7	20
720	HP1β carries an acidic linker domain and requires H3K9me3 for phase separation. Nucleus, 2021, 12, 44-57.	0.6	14
721	Drosophila Satellite Repeats at the Intersection of Chromatin, Gene Regulation and Evolution. Progress in Molecular and Subcellular Biology, 2021, 60, 1-26.	0.9	5
722	Polymer modelling unveils the roles of heterochromatin and nucleolar organizing regions in shaping 3D genome organization in <i>Arabidopsis thaliana</i> . Nucleic Acids Research, 2021, 49, 1840-1858.	6.5	34
723	Predicting Genome Architecture: Challenges and Solutions. Frontiers in Genetics, 2020, 11, 617202.	1.1	29
724	Orc4 spatiotemporally stabilizes centromeric chromatin. Genome Research, 2021, 31, 607-621.	2.4	5
725	1,6-Hexanediol, commonly used to dissolve liquid–liquid phase separated condensates, directly impairs kinase and phosphatase activities. Journal of Biological Chemistry, 2021, 296, 100260.	1.6	84
726	Formation of a multiâ€layered 3â€dimensional structure of the heterochromatin compartment during early mammalian development. Development Growth and Differentiation, 2021, 63, 5-17.	0.6	4
727	Harnessing the power of fluorescence to characterize biomolecular condensates. Methods in Microbiology, 2021, , 1-47.	0.4	1
728	Spatial modeling of biological patterns shows multiscale organization of Arabidopsis thaliana heterochromatin. Scientific Reports, 2021, 11, 323.	1.6	16
729	A Polycomb repressive complex is required for RNAi-mediated heterochromatin formation and dynamic distribution of nuclear bodies. Nucleic Acids Research, 2021, 49, 5407-5425.	6.5	27
730	Biomolecular condensates at the nexus of cellular stress, protein aggregation disease and ageing. Nature Reviews Molecular Cell Biology, 2021, 22, 196-213.	16.1	535
731	Homotypic clustering of L1 and B1/Alu repeats compartmentalizes the 3D genome. Cell Research, 2021, 31, 613-630.	5.7	105

#	Article	IF	CITATIONS
732	Cellâ€Inspired Allâ€Aqueous Microfluidics: From Intracellular Liquid–Liquid Phase Separation toward Advanced Biomaterials. Advanced Science, 2020, 7, 1903359.	5.6	111
733	Walking Along a Protein Phase Diagram to Determine Coexistence Points by Static Light Scattering. Methods in Molecular Biology, 2020, 2141, 715-730.	0.4	14
734	Non-coding RNAs: ever-expanding diversity of types and functions. , 2020, , 5-57.		12
735	Liquid-like interactions in heterochromatin: Implications for mechanism and regulation. Current Opinion in Cell Biology, 2020, 64, 90-96.	2.6	29
736	Mammalian HP1 Isoforms Have Specific Roles in Heterochromatin Structure and Organization. Cell Reports, 2017, 21, 2048-2057.	2.9	63
737	Capturing the Onset of PRC2-Mediated Repressive Domain Formation. Molecular Cell, 2018, 70, 1149-1162.e5.	4.5	222
738	Genome-in-a-Box: Building a Chromosome from the Bottom Up. ACS Nano, 2021, 15, 111-124.	7.3	16
739	Tracking intracellular forces and mechanical property changes in mouse one-cell embryo development. Nature Materials, 2020, 19, 1114-1123.	13.3	16
740	Biomolecular condensates as arbiters of biochemical reactions inside the nucleus. Communications Biology, 2020, 3, 773.	2.0	59
741	Equilibrium size distribution and phase separation of multivalent, molecular assemblies in dilute solution. Soft Matter, 2020, 16, 5458-5469.	1.2	13
742	Three-dimensional genome rewiring during the development of antibody-secreting cells. Biochemical Society Transactions, 2020, 48, 1109-1119.	1.6	1
743	Architectural RNA in chromatin organization. Biochemical Society Transactions, 2020, 48, 1967-1978.	1.6	36
744	Dissecting the complexity of biomolecular condensates. Biochemical Society Transactions, 2020, 48, 2591-2602.	1.6	9
745	Granule regulation by phase separation during <i>Drosophila</i> oogenesis. Emerging Topics in Life Sciences, 2020, 4, 355-364.	1.1	9
746	Arginine-rich dipeptide-repeat proteins as phase disruptors in C9-ALS/FTD. Emerging Topics in Life Sciences, 2020, 4, 293-305.	1.1	26
747	Therapeutics—how to treat phase separation-associated diseases. Emerging Topics in Life Sciences, 2020, 4, 331-342.	1.1	65
748	Membraneless organelles: phasing out of equilibrium. Emerging Topics in Life Sciences, 2020, 4, 343-354.	1.1	48
749	Loss of CBX2 induces genome instability and senescence-associated chromosomal rearrangements. Journal of Cell Biology, 2020, 219, .	2.3	15

#	ARTICLE	IF	CITATIONS
750	Genome anchoring to nuclear landmarks drives functional compartmentalization of the nuclear space. Briefings in Functional Genomics, 2020, 19, 101-110.	1.3	12
751	Discovery and Evolution of New Domains in Yeast Heterochromatin Factor Sir4 and Its Partner Esc1. Genome Biology and Evolution, 2019, 11, 572-585.	1.1	7
828	Establishment and evolution of heterochromatin. Annals of the New York Academy of Sciences, 2020, 1476, 59-77.	1.8	39
829	Of numbers and movement $\hat{a} \in ``$ understanding transcription factor pathogenesis by advanced microscopy. DMM Disease Models and Mechanisms, 2020, 13, .	1.2	8
830	The PRR14 heterochromatin tether encodes modular domains that mediate and regulate nuclear lamina targeting. Journal of Cell Science, 2020, 133, .	1.2	17
831	Role of phase partitioning in coordinating DNA damage response: focus on the Apurinic Apyrimidinic Endonuclease 1 interactome. Biomolecular Concepts, 2020, 11, 209-220.	1.0	15
832	Trnp1 organizes diverse nuclear membraneâ€less compartments in neural stem cells. EMBO Journal, 2020, 39, e103373.	3.5	16
833	Ewing sarcoma protein promotes dissociation of poly(<scp>ADP</scp> â€ribose) polymerase 1 from chromatin. EMBO Reports, 2020, 21, e48676.	2.0	16
834	Tales from topographic oceans: topologically associated domains and cancer. Endocrine-Related Cancer, 2019, 26, R611-R626.	1.6	6
835	90 YEARS OF PROGESTERONE: Molecular mechanisms of progesterone receptor action on the breast cancer genome. Journal of Molecular Endocrinology, 2020, 65, T65-T79.	1.1	9
836	A Non-Amyloid Prion Particle that Activates a Heritable Gene Expression Program. SSRN Electronic Journal, O, , .	0.4	2
837	Liquid–Liquid Phase Separation: Undergraduate Labs on a New Paradigm for Intracellular Organization. The Biophysicist, 2020, 1, .	0.1	2
838	A stochastic epigenetic switch controls the dynamics of T-cell lineage commitment. ELife, 2018, 7, .	2.8	70
839	Dynamic multifactor hubs interact transiently with sites of active transcription in Drosophila embryos. ELife, 2018, 7, .	2.8	149
840	A combination of transcription factors mediates inducible interchromosomal contacts. ELife, 2019, 8, .	2.8	16
841	The modular mechanism of chromocenter formation in Drosophila. ELife, 2019, 8, .	2.8	44
842	A new class of disordered elements controls DNA replication through initiator self-assembly. ELife, 2019, 8, .	2.8	92
843	RNA from a simple-tandem repeat is required for sperm maturation and male fertility in Drosophila melanogaster. ELife, 2019, 8, .	2.8	37

#	Article	IF	CITATIONS
844	An H3K9 methylation-dependent protein interaction regulates the non-enzymatic functions of a putative histone demethylase. ELife, 2020, 9, .	2.8	23
845	A quantitative inventory of yeast P body proteins reveals principles of composition and specificity. ELife, 2020, 9, .	2.8	90
846	Protein phase separation and its role in tumorigenesis. ELife, 2020, 9, .	2.8	63
847	Exploring chromosomal structural heterogeneity across multiple cell lines. ELife, 2020, 9, .	2.8	43
848	Dimerisation of the PICTS complex via LC8/Cut-up drives co-transcriptional transposon silencing in Drosophila. ELife, 2021, 10, .	2.8	28
849	Nde1 is Required for Heterochromatin Compaction and Stability in Neocortical Neurons. SSRN Electronic Journal, 0, , .	0.4	0
850	Epigenetic regulation of nuclear lamina-associated heterochromatin by HAT1 and the acetylation of newly synthesized histones. Nucleic Acids Research, 2021, 49, 12136-12151.	6.5	14
851	RPS: a comprehensive database of RNAs involved in liquid–liquid phase separation. Nucleic Acids Research, 2022, 50, D347-D355.	6.5	15
854	SARS-CoV-2 nucleocapsid protein forms condensates with viral genomic RNA. PLoS Biology, 2021, 19, e3001425.	2.6	71
855	Noncoding RNAs link metabolic reprogramming to immune microenvironment in cancers. Journal of Hematology and Oncology, 2021, 14, 169.	6.9	42
856	Polycomb condensates can promote epigenetic marks but are not required for sustained chromatin compaction. Nature Communications, 2021, 12, 5888.	5.8	47
857	Encounters in Three Dimensions: How Nuclear Topology Shapes Genome Integrity. Frontiers in Genetics, 2021, 12, 746380.	1.1	4
858	Incorporation and Assembly of a Light-Emitting Enzymatic Reaction into Model Protein Condensates. Biochemistry, 2021, 60, 3137-3151.	1.2	6
860	A Polycomb domain found in committed cells impairs differentiation when introduced into PRC1 in pluripotent cells. Molecular Cell, 2021, 81, 4677-4691.e8.	4.5	20
864	Physical observables to determine the nature of membrane-less cellular sub-compartments. ELife, 2021, 10, .	2.8	14
865	Liquid-Liquid Phase Separation: Unraveling the Enigma of Biomolecular Condensates in Microbial Cells. Frontiers in Microbiology, 2021, 12, 751880.	1.5	26
866	Phase separating cell fate. Cell Stem Cell, 2021, 28, 1677-1678.	5.2	0
868	Current Understanding of Molecular Phase Separation in Chromosomes. International Journal of Molecular Sciences, 2021, 22, 10736.	1.8	13

		CITATION REPO	RT	
#	Article	IF	-	Citations
869	Effects of forces on chromatin. APL Bioengineering, 2021, 5, 041503.	3	.3	17
872	Mapping Local and Clobal Liquid-liquid Phase Behavior in Living Cells Using Light-activated Multivalent Seeds. SSRN Electronic Journal, 0, , .	0	.4	0
888	Specific Contributions of Cohesin-SA1 and Cohesin-SA2 to TADs and Polycomb Domains in Emb Stem Cells. SSRN Electronic Journal, 0, , .	ryonic o	.4	0
890	Evolving Methods in Defining the Role of RNA in RNP Assembly. Biological and Medical Physics S 2019, , 39-55.	eries, 0	.3	0
897	Biological Condensates. Materials and Methods, 0, 9, .	0	.0	0
907	Laser Targeted Oligo Ligation (LTOL) to Identify DNA Sequences in the Vicinity of a Single Subnu Structure in a Single Cell. Methods in Molecular Biology, 2020, 2175, 11-21.	iclear O	.4	0
918	Phase separation drives the self-assembly of mitochondrial nucleoids for transcriptional modulation. Nature Structural and Molecular Biology, 2021, 28, 900-908.	3	.6	24
920	The solid and liquid states of chromatin. Epigenetics and Chromatin, 2021, 14, 50.	1	.8	55
921	Inner nuclear protein Matrin-3 coordinates cell differentiation by stabilizing chromatin architectu Nature Communications, 2021, 12, 6241.	Jre. 5	.8	25
922	Multi-scale dynamics of heterochromatin repair. Current Opinion in Genetics and Development, 71, 206-215.	2021, 1	.5	14
925	Predictive Polymer Models for 3D Chromosome Organization. Methods in Molecular Biology, 20 2301, 267-291.	22, 0	.4	1
930	Modeling and simulation of cell nuclear architecture reorganization process. Journal of Computational Physics, 2022, 449, 110808.	1	.9	2
932	â€~RNA modulation of transport properties and stability in phase-separated condensates. Biophy Journal, 2021, 120, 5169-5186.	/sical 0	.2	38
933	An explainable artificial intelligence approach for decoding the enhancer histone modifications c and identification of novel enhancers in Drosophila. Genome Biology, 2021, 22, 308.	ode 3	.8	10
934	Inherent genomic properties underlie the epigenomic heterogeneity of human induced pluripote stem cells. Cell Reports, 2021, 37, 109909.	nt 2	.9	14
935	Leaving histone unturned for epigenetic inheritance. FEBS Journal, 2021, , .	2	.2	5
936	rRNA biogenesis regulates mouse 2C-like state by 3D structure reorganization of peri-nucleolar heterochromatin. Nature Communications, 2021, 12, 6365.	5	.8	24
942	Role of liquid-liquid phase separation in cell physiology and diseases. World Chinese Journal of Digestology, 2020, 28, 884-890.	О	.0	0

#	Article	IF	CITATIONS
946	Liquid-liquid phase separation (LLPS) in cellular physiology and tumor biology. American Journal of Cancer Research, 2021, 11, 3766-3776.	1.4	4
947	Current methods for studying intracellular liquid-liquid phase separation. Current Topics in Membranes, 2021, 88, 55-73.	0.5	Ο
948	Pluripotency transcription factors at the focus: the phase separation paradigm in stem cells. Biochemical Society Transactions, 2021, 49, 2871-2878.	1.6	4
949	Control of Chromatin Organization and Chromosome Behavior during the Cell Cycle through Phase Separation. International Journal of Molecular Sciences, 2021, 22, 12271.	1.8	5
950	Chromatin network retards nucleoli coalescence. Nature Communications, 2021, 12, 6824.	5.8	35
951	A Shift in Paradigms: Spatial Genomics Approaches to Reveal Single-Cell Principles of Genome Organization. Frontiers in Genetics, 2021, 12, 780822.	1.1	12
952	Capsule-like DNA Hydrogels with Patterns Formed by Lateral Phase Separation of DNA Nanostructures. Jacs Au, 2022, 2, 159-168.	3.6	26
954	Sir3 heterochromatin protein promotes nonâ€homologous end joining by direct inhibition of Sae2. EMBO Journal, 2021, , e108813.	3.5	5
955	Three-dimensional genome organization via triplex-forming RNAs. Nature Structural and Molecular Biology, 2021, 28, 945-954.	3.6	18
956	Molecular interactions contributing to FUS SYGQ LC-RGG phase separation and co-partitioning with RNA polymerase II heptads. Nature Structural and Molecular Biology, 2021, 28, 923-935.	3.6	75
957	Transcription Regulators and Membraneless Organelles Challenges to Investigate Them. International Journal of Molecular Sciences, 2021, 22, 12758.	1.8	4
958	ZMYND8 mediated liquid condensates spatiotemporally decommission the latent super-enhancers during macrophage polarization. Nature Communications, 2021, 12, 6535.	5.8	13
961	Lamin C is required to establish genome organization after mitosis. Genome Biology, 2021, 22, 305.	3.8	24
962	TAZ exhibits phase separation properties and interacts with Smad7 and \hat{I}^2 -catenin to repress skeletal myogenesis. Journal of Cell Science, 2022, 135, .	1.2	5
963	Direct evaluation of cohesin-mediated sister kinetochore associations at meiosis I in fission yeast. Journal of Cell Science, 2022, 135, .	1.2	3
964	Building the genome architecture during the maternal to zygotic transition. Current Opinion in Genetics and Development, 2022, 72, 91-100.	1.5	8
965	NAD+ bioavailability mediates PARG inhibition-induced replication arrest, intra S-phase checkpoint and apoptosis in glioma stem cells. NAR Cancer, 2021, 3, zcab044.	1.6	8
966	Review on Gene regulation: DNA-protein and protein-protein interactions and their regulatory elements. Journal of Chemistry and Nutritional Biochemistry, 2021, 2, 35-45.	0.3	4

#	Article	IF	Citations
967	Modulation of cellular processes by histone and non-histone protein acetylation. Nature Reviews Molecular Cell Biology, 2022, 23, 329-349.	16.1	239
968	Compartmentalization of telomeres through DNA-scaffolded phase separation. Developmental Cell, 2022, 57, 277-290.e9.	3.1	38
969	APC7 mediates ubiquitin signaling in constitutive heterochromatin in the developing mammalian brain. Molecular Cell, 2022, 82, 90-105.e13.	4.5	4
970	SETDB1-like MET-2 promotes transcriptional silencing and development independently of its H3K9me-associated catalytic activity. Nature Structural and Molecular Biology, 2022, 29, 85-96.	3.6	11
971	Rich Phase Separation Behavior of Biomolecules. Molecules and Cells, 2022, 45, 6-15.	1.0	12
972	Shining Light on the Dark Side of the Genome. Cells, 2022, 11, 330.	1.8	6
973	Integrative approaches in genome structure analysis. Structure, 2022, 30, 24-36.	1.6	8
974	The regional sequestration of heterochromatin structural proteins is critical to form and maintain silent chromatin. Epigenetics and Chromatin, 2022, 15, 5.	1.8	11
976	53BP1 regulates heterochromatin through liquid phase separation. Nature Communications, 2022, 13, 360.	5.8	46
977	A natural product targets BRD4 to inhibit phase separation and gene transcription. IScience, 2022, 25, 103719.	1.9	5
978	Uncovering the Quantitative Relationships Among Chromosome Fluctuations, Epigenetics, and Gene Expressions of Transdifferentiation on Waddington Landscape. Advanced Science, 2022, , 2103617.	5.6	1
979	Emerging mechanisms and dynamics of three-dimensional genome organisation at zygotic genome activation. Current Opinion in Cell Biology, 2022, 74, 37-46.	2.6	10
980	RNA length has a non-trivial effect in the stability of biomolecular condensates formed by RNA-binding proteins. PLoS Computational Biology, 2022, 18, e1009810.	1.5	25
981	Histone H3 and H4 tails play an important role in nucleosome phase separation. Biophysical Chemistry, 2022, 283, 106767.	1.5	3
982	On the role of phase separation in the biogenesis of membraneless compartments. EMBO Journal, 2022, 41, e109952.	3.5	100
983	OUP accepted manuscript. Nucleic Acids Research, 2022, , .	6.5	6
984	Looking at the Pretty "Phase―of Membraneless Organelles: A View From Drosophila Glia. Frontiers in Cell and Developmental Biology, 2022, 10, 801953.	1.8	3
985	Extracellular Adhesive Cues Physically Define Nucleolar Structure and Function. Advanced Science, 2022, 9, e2105545.	5.6	8

#	Article	IF	CITATIONS
986	Principles and functions of pericentromeric satellite DNA clustering into chromocenters. Seminars in Cell and Developmental Biology, 2022, 128, 26-39.	2.3	22
987	A Mediator-cohesin axis controls heterochromatin domain formation. Nature Communications, 2022, 13, 754.	5.8	17
989	Distinct structural bases for sequence-specific DNA binding by mammalian BEN domain proteins. Genes and Development, 2022, 36, 225-240.	2.7	13
990	Molecular architecture of enhancer–promoter interaction. Current Opinion in Cell Biology, 2022, 74, 62-70.	2.6	17
991	Sequence-dependent surface condensation of a pioneer transcription factor on DNA. Nature Physics, 2022, 18, 271-276.	6.5	73
992	MeCP2-induced heterochromatin organization is driven by oligomerization-based liquid–liquid phase separation and restricted by DNA methylation. Nucleus, 2022, 13, 1-34.	0.6	14
993	Spatial Features and Functional Implications of Plant 3D Genome Organization. Annual Review of Plant Biology, 2022, 73, 173-200.	8.6	13
994	Liquid–liquid phase separation drives cellular function and dysfunction in cancer. Nature Reviews Cancer, 2022, 22, 239-252.	12.8	115
995	Molecular determinants of phase separation for Drosophila DNA replication licensing factors. ELife, 2021, 10, .	2.8	11
996	Phase-separation in chromatin organization. Journal of Biosciences, 2020, 45, .	0.5	12
996 997	Phase-separation in chromatin organization. Journal of Biosciences, 2020, 45, . Regulation of epigenetic state by non-histone chromatin proteins and transcription factors: Implications in disease. Journal of Biosciences, 2020, 45, .	0.5	12
996 997 998	Phase-separation in chromatin organization. Journal of Biosciences, 2020, 45, . Regulation of epigenetic state by non-histone chromatin proteins and transcription factors: Implications in disease. Journal of Biosciences, 2020, 45, . The CBX family of proteins in transcriptional repression and memory. Journal of Biosciences, 2020, 45, .	0.5 0.5 0.5	12 2 8
996 997 998 999	Phase-separation in chromatin organization. Journal of Biosciences, 2020, 45, . Regulation of epigenetic state by non-histone chromatin proteins and transcription factors: Implications in disease. Journal of Biosciences, 2020, 45, . The CBX family of proteins in transcriptional repression and memory. Journal of Biosciences, 2020, 45, . Recent advances in the spatial organization of the mammalian genome. Journal of Biosciences, 2020, 45, .	0.5 0.5 0.5 0.5	12 2 8 4
9996 9997 9998 9999	 Phase-separation in chromatin organization. Journal of Biosciences, 2020, 45, . Regulation of epigenetic state by non-histone chromatin proteins and transcription factors: Implications in disease. Journal of Biosciences, 2020, 45, . The CBX family of proteins in transcriptional repression and memory. Journal of Biosciences, 2020, 45, . Recent advances in the spatial organization of the mammalian genome. Journal of Biosciences, 2020, 45, . Connecting the Dots: PHF13 and Cohesin Promote Polymer-Polymer Phase Separation of Chromatin Into Chromosomes. SSRN Electronic Journal, 0, . 	0.5 0.5 0.5 0.5	12 2 8 4 0
 996 997 998 999 1000 1001 	Phase-separation in chromatin organization. Journal of Biosciences, 2020, 45, . Regulation of epigenetic state by non-histone chromatin proteins and transcription factors: Implications in disease. Journal of Biosciences, 2020, 45, . The CBX family of proteins in transcriptional repression and memory. Journal of Biosciences, 2020, 45, . Recent advances in the spatial organization of the mammalian genome. Journal of Biosciences, 2020, 45, . Connecting the Dots: PHF13 and Cohesin Promote Polymer-Polymer Phase Separation of Chromatin Into Chromosomes. SSRN Electronic Journal, 0, . ERK signaling dissolves ERF repression condensates in living embryos. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	0.5 0.5 0.5 0.4 3.3	12 2 8 4 0 7
 996 997 998 999 1000 1001 1002 	Phase-separation in chromatin organization. Journal of Biosciences, 2020, 45, . Regulation of epigenetic state by non-histone chromatin proteins and transcription factors: Implications in disease. Journal of Biosciences, 2020, 45, . The CBX family of proteins in transcriptional repression and memory. Journal of Biosciences, 2020, 45, . Recent advances in the spatial organization of the mammalian genome. Journal of Biosciences, 2020, 45, . Connecting the Dots: PHF13 and Cohesin Promote Polymer-Polymer Phase Separation of Chromatin Into Chromosomes. SSRN Electronic Journal, 0, ERK signaling dissolves ERF repression condensates in living embryos. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, . HP1 maintains protein stability of H3K9 methyltransferases and demethylases. EMBO Reports, 2022, 23, e53581.	0.5 0.5 0.5 0.4 3.3	12 2 8 4 0 7
 996 997 998 999 1000 1001 1002 1003 	Phase-separation in chromatin organization. Journal of Biosciences, 2020, 45, . Regulation of epigenetic state by non-histone chromatin proteins and transcription factors: Implications in disease. Journal of Biosciences, 2020, 45, . The CBX family of proteins in transcriptional repression and memory. Journal of Biosciences, 2020, 45, . Recent advances in the spatial organization of the mammalian genome. Journal of Biosciences, 2020, 45, . Connecting the Dots: PHF13 and Cohesin Promote Polymer-Polymer Phase Separation of Chromatin Into Chromosomes. SSRN Electronic Journal, 0, . ERK signaling dissolves ERF repression condensates in living embryos. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, . HP1 maintains protein stability of H3K9 methyltransferases and demethylases. EMBO Reports, 2022, 23, e53581. Activation-induced chromatin reorganization in neurons depends on HDAC1 activity. Cell Reports, 2022, 38, 110352.	0.5 0.5 0.5 0.4 3.3 2.0	12 2 8 4 0 7 21 7

ARTICLE IF CITATIONS Conformational Dynamics of Intrinsically Disordered Proteins Regulate Biomolecular Condensate 1008 23.0 55 Chemistry. Chemical Reviews, 2022, 122, 6719-6748. An Expanding Toolkit for Heterochromatin Repair Studies. Genes, 2022, 13, 529. 1.0 Uncovering Regulators of Heterochromatin Mediated Silencing Using a Zebrafish Transgenic 1011 0 1.8 Reporter. Frontiers in Cell and Developmental Biology, 2022, 10, 832461. Xist spatially amplifies SHARP/SPEN recruitment to balance chromosome-wide silencing and specificity to the X chromosome. Nature Structural and Molecular Biology, 2022, 29, 239-249. Nuclear envelope assembly and dynamics during development. Seminars in Cell and Developmental 1016 2.3 5 Biology, 2023, 133, 96-106. Co-condensation of proteins with single- and double-stranded DNA. Proceedings of the National 3.3 Academy of Sciences of the United States of America, 2022, 119, e2107871119. On the stability and layered organization of protein-DNA condensates. Biophysical Journal, 2022, 121, 1018 0.2 20 1727-1737. Tuning Formation of Protein–DNA Coacervates by Sequence and Environment. Journal of Physical 1020 1.2 10 Chemistry B, 2022, 126, 2407-2419. Kinetic interplay between droplet maturation and coalescence modulates shape of aged protein 1022 20 1.6 condensates. Scientific Reports, 2022, 12, 4390. Loops, topologically associating domains, compartments, and territories are elastic and robust to 1.6 dramatic nuclear volume swelling. Scientific Reports, 2022, 12, 4721. Function moves biomolecular condensates in phase space. BioEssays, 2022, 44, e2200001. 1025 1.2 6 Histone post-translational modifications $\hat{a} \in \mathbb{C}$ cause and consequence of genome function. Nature Reviews Genetics, 2022, 23, 563-580. Nucleic Acids Modulate Liquidity and Dynamics of Artificial Membraneless Organelles. ACS Macro 1027 2.3 20 Letters, 2022, 11, 562-567. Multiscale modelling of chromatin organisation: Resolving nucleosomes at near-atomistic 1028 2.6 resolution inside genes. Current Opinion in Cell Biology, 2022, 75, 102067. Quantifying cell-cycle-dependent chromatin dynamics during interphase by live 3D tracking. IScience, 1029 2 1.9 2022, 25, 104197. Nucleic acid actions on abnormal protein aggregation, phase transitions and phase separation. Current Opinion in Structural Biology, 2022, 73, 102346. Nanofiller dispersing, drawn orientation, and mechanical properties of polymerâ€based composites via 1031 organoâ€modification of singleâ€walled carbon nanotubes obtained by twoâ€types of manufacturing 2.34 processes. Polymer Composites, 2022, 43, 3457-3470. Spatial organization of chromosomes leads to heterogeneous chromatin motion and drives the 2.4 liquid- or gel-like dynamical behavior of chromatin. Genome Research, 2022, 32, 28-43.

#	Article	IF	CITATIONS
1034	Complex Genetic Interactions between Piwi and HP1a in the Repression of Transposable Elements and Tissue-Specific Genes in the Ovarian Germline. International Journal of Molecular Sciences, 2021, 22, 13430.	1.8	3
1035	Meiotic sex chromosome inactivation and the XY body: a phase separation hypothesis. Cellular and Molecular Life Sciences, 2022, 79, 18.	2.4	21
1037	Polyphosphate drives bacterial heterochromatin formation. Science Advances, 2021, 7, eabk0233.	4.7	27
1038	Modulation of Phase Separation by RNA: A Glimpse on N6-Methyladenosine Modification. Frontiers in Cell and Developmental Biology, 2021, 9, 786454.	1.8	16
1039	Dynamics and Pathways of Chromosome Structural Organizations during Cell Transdifferentiation. Jacs Au, 2022, 2, 116-127.	3.6	3
1042	Histone H3.3 phosphorylation promotes heterochromatin formation by inhibiting H3K9/K36 histone demethylase. Nucleic Acids Research, 2022, 50, 4500-4514.	6.5	12
1043	Heterochromatic repeat clustering imposes a physical barrier on homologous recombination to prevent chromosomal translocations. Molecular Cell, 2022, 82, 2132-2147.e6.	4.5	8
1044	Liquid–liquid phase separation as an organizing principle of intracellular space: overview of the evolution of the cell compartmentalization concept. Cellular and Molecular Life Sciences, 2022, 79, 251.	2.4	42
1045	Extensive Chromatin Structure-Function Associations Revealed by Accurate 3D Compartmentalization Characterization. Frontiers in Cell and Developmental Biology, 2022, 10, 845118.	1.8	5
1046	Kinetic Analysis of the Effect of <i>N</i> -Terminal Acetylation on Thymine DNA Glycosylase. Biochemistry, 2022, 61, 895-908.	1.2	0
1047	Membrane surfaces regulate assembly of ribonucleoprotein condensates. Nature Cell Biology, 2022, 24, 461-470.	4.6	68
1048	Arabidopsis HOPS subunit VPS41 carries out plant-specific roles in vacuolar transport and vegetative growth. Plant Physiology, 2022, 189, 1416-1434.	2.3	14
1054	Can aggressive cancers be identified by the "aggressiveness―of their chromatin?. BioEssays, 2022, , 2100212.	1.2	2
1055	Multivalent Peptide Ligands To Probe the Chromocenter Microenvironment in Living Cells. ACS Chemical Biology, 2023, 18, 1066-1075.	1.6	10
1056	General Reading and Bibliography. , 2022, , 192-208.		0
1059	NANOG prion-like assembly mediates DNA bridging to facilitate chromatin reorganization and activation of pluripotency. Nature Cell Biology, 2022, 24, 737-747.	4.6	19
1060	Post-translational modifications in liquid-liquid phase separation: a comprehensive review. Molecular Biomedicine, 2022, 3, 13.	1.7	42
1061	The Physics of DNA Folding: Polymer Models and Phase-Separation. Polymers, 2022, 14, 1918.	2.0	5

#	Article	IF	CITATIONS
1062	Long-Distance Repression by Human Silencers: Chromatin Interactions and Phase Separation in Silencers. Cells, 2022, 11, 1560.	1.8	8
1063	Phase Separation: "The Master Key―to Deciphering the Physiological and Pathological Functions of Cells. Advanced Biology, 2022, , 2200006.	1.4	6
1064	Hsp70 exhibits a liquid-liquid phase separation ability and chaperones condensed FUS against amyloid aggregation. IScience, 2022, 25, 104356.	1.9	14
1065	Functions of HP1 proteins in transcriptional regulation. Epigenetics and Chromatin, 2022, 15, 14.	1.8	15
1066	Nde1 is required for heterochromatin compaction and stability in neocortical neurons. IScience, 2022, 25, 104354.	1.9	3
1067	The mechanobiology of nuclear phase separation. APL Bioengineering, 2022, 6, 021503.	3.3	15
1069	Generation of dynamic three-dimensional genome structure through phase separation of chromatin. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	30
1071	Phase Separation in the Nucleus and at the Nuclear Periphery during Post-Mitotic Nuclear Envelope Reformation. Cells, 2022, 11, 1749.	1.8	2
1074	Differences in interaction lead to the formation of different types of insulin amyloid. Scientific Reports, 2022, 12, .	1.6	4
1075	Simulating the chromatin-mediated phase separation of model proteins with multiple domains. Biophysical Journal, 2022, 121, 2600-2612.	0.2	13
1078	Polymer-Assisted Condensation: A Mechanism for Hetero-Chromatin Formation and Epigenetic Memory. Macromolecules, 2022, 55, 4841-4851.	2.2	9
1079	Production of nascent ribosome precursors within the nucleolar microenvironment of <i>Saccharomyces cerevisiae</i> . Genetics, 2022, 221, .	1.2	4
1080	CBX4 contributes to HIVâ€1 latency by forming phaseâ€separated nuclear bodies and SUMOylating EZH2. EMBO Reports, 2022, 23, .	2.0	12
1082	Position Effect Variegation: Role of the Local Chromatin Context in Gene Expression Regulation. Molecular Biology, 2022, 56, 307-338.	0.4	1
1083	Nonclassical Crystallization Pathways in Biomolecular Self-Assembly. ACS Symposium Series, 0, , 89-103.	0.5	0
1084	Phase separation in controlling meiotic chromosome dynamics. Current Topics in Developmental Biology, 2023, , 69-90.	1.0	3
1085	Super-Enhancers, Phase-Separated Condensates, and 3D Genome Organization in Cancer. Cancers, 2022, 14, 2866.	1.7	16
1086	Satellite repeat transcripts modulate heterochromatin condensates and safeguard chromosome stability in mouse embryonic stem cells. Nature Communications, 2022, 13, .	5.8	16

#	Article	IF	CITATIONS
1087	Epigenetics, cell cycle and stem cell metabolism. Formation of insulin-producing cells. Mìžnarodnij EndokrinologìÄnij Žurnal, 2022, 18, 169-179.	0.1	0
1089	Aging can transform single-component protein condensates into multiphase architectures. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	44
1090	Live analysis of position-effect variegation in <i>Drosophila</i> reveals different modes of action for HP1a and Su(var)3-9. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	1
1091	Shelterin Components Modulate Nucleic Acids Condensation and Phase Separation in the Context of Telomeric DNA. Journal of Molecular Biology, 2022, 434, 167685.	2.0	6
1092	Interplay between regulatory elements and chromatin topology in cellular lineage determination. Trends in Genetics, 2022, 38, 1048-1061.	2.9	9
1094	Premature transcription termination at the expanded GAA repeats and aberrant alternative polyadenylation contributes to the <i>Frataxin</i> transcriptional deficit in Friedreich's ataxia. Human Molecular Genetics, 2022, 31, 3539-3557.	1.4	6
1095	A simulation model of heterochromatin formation at submolecular detail. IScience, 2022, 25, 104590.	1.9	3
1096	Physiological functions and roles in cancer of the proliferation marker Ki-67. Journal of Cell Science, 2022, 135, .	1.2	18
1097	Rheology and Viscoelasticity of Proteins and Nucleic Acids Condensates. Jacs Au, 2022, 2, 1506-1521.	3.6	19
1098	HP1-Driven Micro-Phase Separation of Heterochromatin-Like Domains/Complexes. Epigenetics Insights, 2022, 15, 251686572211097.	0.6	2
1099	Multi-scale phase separation by explosive percolation with single-chromatin loop resolution. Computational and Structural Biotechnology Journal, 2022, 20, 3591-3603.	1.9	3
1100	Chromatin Hubs: A biological and computational outlook. Computational and Structural Biotechnology Journal, 2022, 20, 3796-3813.	1.9	6
1101	Structural variations in cancer and the 3D genome. Nature Reviews Cancer, 2022, 22, 533-546.	12.8	27
1103	HP1 oligomerization compensates for low-affinity H3K9me recognition and provides a tunable mechanism for heterochromatin-specific localization. Science Advances, 2022, 8, .	4.7	9
1104	Senescence: An Identity Crisis Originating from Deep Within the Nucleus. Annual Review of Cell and Developmental Biology, 2022, 38, 219-239.	4.0	8
1105	DNA damage reduces heterogeneity and coherence of chromatin motions. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	6
1106	JmjC Family of Histone Demethylases Form Nuclear Condensates. International Journal of Molecular Sciences, 2022, 23, 7664.	1.8	5
1107	Liquid–liquid phase separation in tumor biology. Signal Transduction and Targeted Therapy, 2022, 7, .	7.1	52

	Сітатіо	n Report	
#	Article	IF	Citations
1108	Principles Governing the Phase Separation of Multidomain Proteins. Biochemistry, 2022, 61, 2443-2455.	1.2	40
1110	Can the Concentration of a Transcription Factor Affect Gene Expression?. , 0, 2, .		6
1111	Genetic variation associated with condensate dysregulation in disease. Developmental Cell, 2022, 57, 1776-1788.e8.	3.1	41
1112	Linking transcriptional silencing with chromatin remodeling, folding, and positioning in the nucleus. Current Opinion in Plant Biology, 2022, 69, 102261.	3.5	2
1113	The Growth Rate of DNA Condensate Droplets Increases with the Size of Participating Subunits. ACS Nano, 2022, 16, 11842-11851.	7.3	12
1114	Phase Separation-Mediated Chromatin Organization and Dynamics: From Imaging-Based Quantitative Characterizations to Functional Implications. International Journal of Molecular Sciences, 2022, 23, 8039.	1.8	7
1115	3D genome, on repeat: Higher-order folding principles of the heterochromatinized repetitive genome. Cell, 2022, 185, 2690-2707.	13.5	18
1116	Phase Separation and Correlated Motions in Motorized Genome. Journal of Physical Chemistry B, 2022, 126, 5619-5628.	1.2	12
1119	<i>Drosophila</i> insulator proteins exhibit in vivo liquid–liquid phase separation properties. Life Science Alliance, 2022, 5, e202201536.	1.3	7
1120	Modulating biomolecular condensates: a novel approach to drug discovery. Nature Reviews Drug Discovery, 2022, 21, 841-862.	21.5	88
1121	Mechanisms governing the accessibility of DNA damage proteins to constitutive heterochromatin. Frontiers in Genetics, 0, 13, .	1,1	2
1122	Characterizing the variation in chromosome structure ensembles in the context of the nuclear microenvironment. PLoS Computational Biology, 2022, 18, e1010392.	1.5	3
1124	Painters in chromatin: a unified quantitative framework to systematically characterize epigenome regulation and memory. Nucleic Acids Research, 2022, 50, 9083-9104.	6.5	12
1125	The 3D genome landscape: Diverse chromosomal interactions and their functional implications. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	1
1126	Tau liquid–liquid phase separation: At the crossroads of tau physiology and tauopathy. Journal of Cellular Physiology, 0, , .	2.0	4
1127	Role of pyroptosis in inflammation and cancer. , 2022, 19, 971-992.		155
1128	Long-distance association of topological boundaries through nuclear condensates. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	10
1129	Phase separation in epigenetics and cancer stem cells. Frontiers in Oncology, 0, 12, .	1.3	3

#	Article	IF	CITATIONS
1130	Quantifying Chromosome Structural Reorganizations during Differentiation, Reprogramming, and Transdifferentiation. Physical Review Letters, 2022, 129, .	2.9	8
1131	Salt-Induced Transitions in the Conformational Ensembles of Intrinsically Disordered Proteins. Journal of Physical Chemistry B, 2022, 126, 5959-5971.	1.2	17
1132	The state of water molecules induces changes in the topologies and interactions of G-quadruplex DNA aptamers in hydrated ionic liquid. Journal of Molecular Liquids, 2022, 366, 120175.	2.3	5
1134	CTCF DNA-binding domain undergoes dynamic and selective protein–protein interactions. IScience, 2022, 25, 105011.	1.9	6
1135	Molecular organization of the early stages of nucleosome phase separation visualized by cryo-electron tomography. Molecular Cell, 2022, 82, 3000-3014.e9.	4.5	16
1136	Aberrant chromatin reorganization in cells from diseased fibrous connective tissue in response to altered chemomechanical cues. Nature Biomedical Engineering, 2023, 7, 177-191.	11.6	23
1137	Phase-separation antagonists potently inhibit transcription and broadly increase nucleosome density. Journal of Biological Chemistry, 2022, 298, 102365.	1.6	5
1138	Aberrant liquid-liquid phase separation and amyloid aggregation of proteins related to neurodegenerative diseases. International Journal of Biological Macromolecules, 2022, 220, 703-720.	3.6	15
1139	<i>Su(var)2-10</i> - and <i>Su(var)205</i> -dependent upregulation of the heterochromatic gene <i>neverland</i> is required for developmental transition in <i>Drosophila</i> . Genetics, 2022, 222, .	1.2	2
1140	MeCP2 heterochromatin organization is modulated by arginine methylation and serine phosphorylation. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	2
1141	Affinity and Valence Impact the Extent and Symmetry of Phase Separation of Multivalent Proteins. Physical Review Letters, 2022, 129, .	2.9	8
1142	Drosophila Epigenetics. , 2023, , 215-247.		1
1143	CEBPA Phase Separation Links Transcriptional Activity and 3D Chromatin Hubs. SSRN Electronic Journal, 0, , .	0.4	0
1144	Phase separation in Cancer: From the Impacts and Mechanisms to Treatment potentials. International Journal of Biological Sciences, 2022, 18, 5103-5122.	2.6	18
1145	Microfluidics for multiscale studies of biomolecular condensates. Lab on A Chip, 2022, 23, 9-24.	3.1	4
1146	Nonequilibrium Physics of Molecules and Cells. Graduate Texts in Physics, 2022, , 1-59.	0.1	0
1147	Cytoplasmic forces functionally reorganize nuclear condensates in oocytes. Nature Communications, 2022, 13, .	5.8	17
1148	Decoding histone ubiquitylation. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	8

		CITATION REPORT		
#	Article		IF	Citations
1149	Capillary forces generated by biomolecular condensates. Nature, 2022, 609, 255-264.		13.7	92
1150	Human centromere repositioning activates transcription and opens chromatin fibre str Communications, 2022, 13, .	ructure. Nature	5.8	11
1151	Three-dimensional genome organization in immune cell fate and function. Nature Revi Immunology, 2023, 23, 206-221.	ews	10.6	20
1152	Biomaterial design inspired by membraneless organelles. Matter, 2022, 5, 2787-2812.		5.0	19
1155	Emerging Implications of Phase Separation in Cancer. Advanced Science, 2022, 9, .		5.6	9
1157	Biological colloids: Unique properties of membraneless organelles in the cell. Advances and Interface Science, 2022, 310, 102777.	in Colloid	7.0	6
1160	Mesoscale structure–function relationships in mitochondrial transcriptional condens Proceedings of the National Academy of Sciences of the United States of America, 202	sates. 22, 119, .	3.3	22
1161	Nuclear position modulates long-range chromatin interactions. PLoS Genetics, 2022, 1	.8, e1010451.	1.5	3
1162	Characterizing Properties of Biomolecular Condensates Below the Diffraction Limit In V in Molecular Biology, 2023, , 425-445.	Jivo. Methods	0.4	2
1163	Unusual Mathematical Approaches Untangle Nervous Dynamics. Biomedicines, 2022,	10, 2581.	1.4	1
1164	Single-Molecule Imaging of the Phase Separation-Modulated DNA Compaction to Stuc Repression. Methods in Molecular Biology, 2023, , 215-223.	y Transcriptional	0.4	0
1165	Assessing the Phase Separation Propensity of Proteins in Living Cells Through Optodro Methods in Molecular Biology, 2023, , 395-411.	plet Formation.	0.4	3
1166	An Optogenetic Toolkit for the Control of Phase Separation in Living Cells. Methods in Biology, 2023, , 383-394.	Molecular	0.4	3
1167	Repair Foci as Liquid Phase Separation: Evidence and Limitations. Genes, 2022, 13, 18-	46.	1.0	9
1168	TGM2-mediated histone transglutamination is dictated by steric accessibility. Proceedi National Academy of Sciences of the United States of America, 2022, 119, .	ngs of the	3.3	9
1169	Cryo-Electron Tomography of Reconstituted Biomolecular Condensates. Methods in N Biology, 2023, , 297-324.	olecular	0.4	4
1170	An Introduction to the Stickers-and-Spacers Framework as Applied to Biomolecular Co Methods in Molecular Biology, 2023, , 95-116.	ndensates.	0.4	14
1172	Multiscale Modeling of Protein-RNA Condensation in and Out of Equilibrium. Methods Biology, 2023, , 117-133.	in Molecular	0.4	0

#	Article	IF	CITATIONS
1173	Computer simulations of chromatin phase separation. Biophysical Journal, 2022, , .	0.2	0
1175	2-Cell-like Cells: An Avenue for Improving SCNT Efficiency. Biomolecules, 2022, 12, 1611.	1.8	1
1176	Histone H2B.8 compacts flowering plant sperm through chromatin phase separation. Nature, 2022, 611, 614-622.	13.7	28
1177	CENP-A: A Histone H3 Variant with Key Roles in Centromere Architecture in Healthy and Diseased States. Results and Problems in Cell Differentiation, 2022, , 221-261.	0.2	1
1178	Nuclear Architecture in the Nervous System. Results and Problems in Cell Differentiation, 2022, , 419-442.	0.2	0
1179	Biochemical and structural biology aspects of liquid–liquid phase separation: protein side of liquid–liquid phase separation, membrane-less organelles, and biomolecular condensates. , 2023, , 101-132.		0
1180	Guidelines for experimental characterization of liquid–liquid phase separation inÂvitro. , 2023, , 233-249.		0
1181	Phase separation in chromatin-based intranuclear processes. , 2023, , 461-483.		0
1182	Spatial and Temporal Organization of Chromatin at Small and Large Scales. Annual Review of Condensed Matter Physics, 2023, 14, 193-210.	5.2	2
1183	Different states and the associated fates of biomolecular condensates. Essays in Biochemistry, 2022, 66, 849-862.	2.1	2
1184	Enhanced DNA repair through droplet formation and p53 oscillations. Cell, 2022, 185, 4394-4408.e10.	13.5	9
1187	Mesoscience in cell biology and cancer research. , 2022, 1, 271-284.		0
1188	The Chromatin Regulator HMGA1a Undergoes Phase Separation in the Nucleus**. ChemBioChem, 2023, 24, .	1.3	5
1189	Phase separation drives the formation of biomolecular condensates in the immune system. Frontiers in Immunology, 0, 13, .	2.2	3
1190	Dynamic structures of intrinsically disordered proteins related to the general transcription factor TFIIH, nucleosomes, and histone chaperones. Biophysical Reviews, 2022, 14, 1449-1472.	1.5	4
1194	Chromatin accessibility: methods, mechanisms, and biological insights. Nucleus, 2022, 13, 238-278.	0.6	16
1195	dSCOPE: a software to detect sequences critical for liquid–liquid phase separation. Briefings in Bioinformatics, 2023, 24, .	3.2	8
1196	Euchromatin Activity Enhances Segregation and Compaction of Heterochromatin in the Cell Nucleus. Physical Review X, 2022, 12, .	2.8	8

#	Article	IF	CITATIONS
1197	Direct imaging of intracellular RNA, DNA, and liquid–liquid phase separated membraneless organelles with Raman microspectroscopy. Communications Biology, 2022, 5, .	2.0	3
1198	Engineering inducible biomolecular assemblies for genome imaging and manipulation in living cells. Nature Communications, 2022, 13, .	5.8	6
1199	Molecular interactions underlying the phase separation of HP1α: role of phosphorylation, ligandÂand nucleic acid binding. Nucleic Acids Research, 2022, 50, 12702-12722.	6.5	17
1200	Metabolic modulation of transcription: The role of one-carbon metabolism. Cell Chemical Biology, 2022, 29, 1664-1679.	2.5	7
1201	Recruitment of <scp>TRIM33</scp> to cell ontext specific <scp>PML</scp> nuclear bodies regulates nodal signaling in <scp>mESCs</scp> . EMBO Journal, 2023, 42, .	3.5	5
1202	Molecular determinants for the layering and coarsening of biological condensates. Aggregate, 2022, 3, .	5.2	7
1203	Protein Phase Separation: New Insights into Carcinogenesis. Cancers, 2022, 14, 5971.	1.7	0
1205	How enzymatic activity is involved in chromatin organization. ELife, 0, 11, .	2.8	4
1206	Structural insights into p300 regulation and acetylation-dependent genome organisation. Nature Communications, 2022, 13, .	5.8	21
1207	HP1 proteins regulate nucleolar structure and function by secluding pericentromeric constitutive heterochromatin. Nucleic Acids Research, 2023, 51, 117-143.	6.5	4
1208	Controlling the Formation of Polyelectrolyte Complex Nanoparticles Using Programmable pH Reactions. Macromolecules, 2023, 56, 226-233.	2.2	4
1209	Targets of histone H3 lysine 9 methyltransferases. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	3
1211	Diverse silent chromatin states modulate genome compartmentalization and loop extrusion barriers. Nature Structural and Molecular Biology, 2023, 30, 38-51.	3.6	30
1212	The dynamics of three-dimensional chromatin organization and phase separation in cell fate transitions and diseases. Cell Regeneration, 2022, 11, .	1.1	4
1215	Functional partitioning of transcriptional regulators by patterned charge blocks. Cell, 2023, 186, 327-345.e28.	13.5	77
1216	Long non-coding RNAs: definitions, functions, challenges and recommendations. Nature Reviews Molecular Cell Biology, 2023, 24, 430-447.	16.1	313
1218	Progressive transformation of the HIV-1 reservoir cell profile over two decades of antiviral therapy. Cell Host and Microbe, 2023, 31, 83-96.e5.	5.1	34
1219	Liquid-liquid Phase Separation in Viral Function. Journal of Molecular Biology, 2023, 435, 167955.	2.0	7

#	Article	IF	CITATIONS
1220	A call to order: Examining structured domains in biomolecular condensates. Journal of Magnetic Resonance, 2023, 346, 107318.	1.2	3
1222	Genome modeling: From chromatin fibers to genes. Current Opinion in Structural Biology, 2023, 78, 102506.	2.6	6
1223	HOXA9 forms a repressive complex with nuclear matrix–associated protein SAFB to maintain acute myeloid leukemia. Blood, 2023, 141, 1737-1754.	0.6	5
1225	Epigenetic regulation of cis-regulatory elements and transcription factors during development. , 2023, , 71-113.		1
1226	Condensate biology of synaptic vesicle clusters. Trends in Neurosciences, 2023, 46, 293-306.	4.2	22
1227	Mapping nucleolus-associated chromatin interactions using nucleolus Hi-C reveals pattern of heterochromatin interactions. Nature Communications, 2023, 14, .	5.8	10
1228	Heterochromatin organization and phase separation. Nucleus, 2023, 14, .	0.6	9
1229	Thermodynamic origins of two-component multiphase condensates of proteins. Chemical Science, 2023, 14, 1820-1836.	3.7	12
1231	Consistencies and contradictions in different polymer models of chromatin architecture. Computational and Structural Biotechnology Journal, 2023, 21, 1084-1091.	1.9	3
1232	A hybrid positive unlabeled learning framework for uncovering scaffolds across human proteome by measuring the propensity to drive phase separation. Briefings in Bioinformatics, 0, , .	3.2	0
1233	Nuclear condensates in YAP1-driven ependymoma. Nature Cell Biology, 0, , .	4.6	0
1234	DNA curtains for studying phase separation mechanisms of DNA-organizing proteins. Methods in Cell Biology, 2024, , 95-108.	0.5	0
1235	Nuclear architecture and the structural basis of mitotic memory. Chromosome Research, 2023, 31, .	1.0	2
1236	Toward the Development of Epigenome Editing-Based Therapeutics: Potentials and Challenges. International Journal of Molecular Sciences, 2023, 24, 4778.	1.8	10
1237	Interaction modules that impart specificity to disordered protein. Trends in Biochemical Sciences, 2023, 48, 477-490.	3.7	22
1238	Sequenceâ€dependent clustering properties of nucleotides fragments in an ionic solution. Journal of the Chinese Chemical Society, 2023, 70, 297-316.	0.8	0
1239	Size distributions of intracellular condensates reflect competition between coalescence and nucleation. Nature Physics, 2023, 19, 586-596.	6.5	22
1240	Intracellular Organization of Proteins and Nucleic Acids via Biomolecular Condensates in Human Health and Diseases. Biochem, 2023, 3, 31-46.	0.5	0

#	Article	IF	CITATIONS
1241	Liquid–Liquid Phase Separation? Ask the Water!. Journal of Physical Chemistry Letters, 2023, 14, 1556-1563.	2.1	23
1242	Protein Diffusion Along Protein and DNA Lattices: Role of Electrostatics and Disordered Regions. Annual Review of Biophysics, 2023, 52, 463-486.	4.5	5
1245	Unveiling the Machinery behind Chromosome Folding by Polymer Physics Modeling. International Journal of Molecular Sciences, 2023, 24, 3660.	1.8	1
1246	Phase separation in fungi. Nature Microbiology, 2023, 8, 375-386.	5.9	7
1247	The HP1α protein is mandatory to repress the circadian clock and its output genes during the 12 h period of transcriptional repression. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	1
1248	Phase Separation: Direct and Indirect Driving Force for High-Order Chromatin Organization. Genes, 2023, 14, 499.	1.0	4
1251	<scp>RNA</scp> â€mediated heterochromatin formation at repetitive elements in mammals. EMBO Journal, 2023, 42, .	3.5	2
1252	The p-Arms of Human Acrocentric Chromosomes Play by a Different Set of Rules. Annual Review of Genomics and Human Genetics, 2023, 24, 63-83.	2.5	6
1253	Biomolecular condensates: Formation mechanisms, biological functions, and therapeutic targets. MedComm, 2023, 4, .	3.1	3
1254	Adaptive partitioning of a gene locus to the nuclear envelope in Saccharomyces cerevisiae is driven by polymer-polymer phase separation. Nature Communications, 2023, 14, .	5.8	2
1256	Dynamic compartmentalization of the pro-invasive transcription factor NHR-67 reveals a role for Groucho in regulating a proliferative-invasive cellular switch in C. elegans. ELife, 0, 12, .	2.8	1
1258	Surfactants or scaffolds? RNAs of varying lengths control the thermodynamic stability of condensates differently. Biophysical Journal, 2023, 122, 2973-2987.	0.2	1
1259	4D epigenomics: deciphering the coupling between genome folding and epigenomic regulation with biophysical modeling. Current Opinion in Genetics and Development, 2023, 79, 102033.	1.5	10
1263	HNRNPU facilitates antibody class-switch recombination through C-NHEJ promotion and R-loop suppression. Cell Reports, 2023, 42, 112284.	2.9	9
1265	Dynamics of nuclear architecture during early embryonic development and lessons from liveimaging. Developmental Cell, 2023, 58, 435-449.	3.1	5
1270	Developmentally programmed histone H3 expression regulates cellular plasticity at the parental-to-early embryo transition. Science Advances, 2023, 9, .	4.7	4
1271	1,6-Hexanediol regulates angiogenesis via suppression of cyclin A1-mediated endothelial function. BMC Biology, 2023, 21, .	1.7	5
1272	Lipid droplets are intracellular mechanical stressors that impair hepatocyte function. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	15

~	_	
CITATI		эт
CHAH	NLPU	C I -

#	Article	IF	CITATIONS
1273	Optimizing the Martini 3 Force Field Reveals the Effects of the Intricate Balance between Protein–Water Interaction Strength and Salt Concentration on Biomolecular Condensate Formation. Journal of Chemical Theory and Computation, 2024, 20, 1646-1655.	2.3	5
1274	The role of heterochromatin in 3D genome organization during preimplantation development. Cell Reports, 2023, 42, 112248.	2.9	0
1275	Membrane curvature sensing by model biomolecular condensates. Soft Matter, 2023, 19, 3723-3732.	1.2	4
1276	A change in biophysical properties accompanies heterochromatin formation in mouse embryos. Genes and Development, 2023, 37, 336-350.	2.7	4
1277	Epigenetic switching with asymmetric bridging interactions. Biophysical Journal, 2023, , .	0.2	0
1278	Evidence for low nanocompaction of heterochromatin in living embryonic stem cells. EMBO Journal, 2023, 42, .	3.5	7
1285	HP1 in Liquid–Liquid Phase Separation and its Regulation by 53BP1. SpringerBriefs in Biochemistry and Molecular Biology, 2023, , 37-43.	0.3	0
1302	Biomolecule-Based Coacervates with Modulated Physiological Functions. Langmuir, 2023, 39, 8941-8951.	1.6	3
1306	Recent advances in chromosome capture techniques unraveling 3D genome architecture in germ cells, health, and disease. Functional and Integrative Genomics, 2023, 23, .	1.4	0
1312	Liquid-Liquid Phase Separation and Nucleic Acids. , 2023, , 1-40.		0
1336	Liquid-Liquid Phase Separation and Nucleic Acids. , 2023, , 2685-2724.		0
1416	The Information Theory of Aging. Nature Aging, 2023, 3, 1486-1499.	5.3	5
1426	Liquid–liquid phase separation in Alzheimer's disease. Journal of Molecular Medicine, 2024, 102, 167-181.	1.7	0
1442	Transcriptional condensates: a blessing or a curse for gene regulation?. Communications Biology, 2024, 7, .	2.0	0