Iodine(III) Reagents in Radical Chemistry

Accounts of Chemical Research 50, 1712-1724

DOI: 10.1021/acs.accounts.7b00148

Citation Report

#	Article	IF	CITATIONS
1	An Intermolecular Azidoheteroarylation of Simple Alkenes via Free-Radical Multicomponent Cascade Reactions. Organic Letters, 2017, 19, 5649-5652.	2.4	74
2	1-Trifluoromethylisoquinolines from α-Benzylated Tosylmethyl Isocyanide Derivatives in a Modular Approach. Organic Letters, 2017, 19, 5701-5704.	2.4	30
3	Benziodoxole Triflate as a Versatile Reagent for Iodo(III)cyclization of Alkynes. Chemistry - an Asian Journal, 2017, 12, 3123-3127.	1.7	27
4	Iodosylbenzene-Pseudohalide-Based Initiators for Radical Polymerization. Journal of Organic Chemistry, 2017, 82, 11806-11815.	1.7	7
5	Organocatalytic β-Azidation of Enones Initiated by an Electron-Donor–Acceptor Complex. Organic Letters, 2017, 19, 5482-5485.	2.4	31
6	Atomâ€Transfer Radical Addition to Unactivated Alkenes by using Heterogeneous Visibleâ€Light Photocatalysis. ChemSusChem, 2017, 10, 4461-4464.	3.6	26
7	Metal-free intermolecular cyclopropanation between alkenes and iodonium ylides mediated by PhI(OAc) < sub>2 < /sub> \hat{A} ·Bu < sub>4 < /sub>NI. Chemical Communications, 2017, 53, 9004-9007.	2.2	39
8	Hypervalent Iodine Mediated Chemoselective Iodination of Alkynes. Journal of Organic Chemistry, 2017, 82, 11865-11871.	1.7	25
9	Iodobenzene-Catalyzed <i>Ortho-</i> Dearomatization and Aromatization-Triggered Rearrangement of 2-Allylanilines: Construction of Indolin-3-ylmethanols with High Diastereoselectivities. Organic Letters, 2017, 19, 6478-6481.	2.4	15
10	Regio―and Stereoselective Iron atalyzed Oxyazidation of Enamides Using a Hypervalent Iodine Reagent. Chemistry - A European Journal, 2017, 23, 17674-17677.	1.7	31
11	Photoredox Divergent 1,2-Difunctionalization of Alkenes with <i>gem</i> -Dibromides. Organic Letters, 2017, 19, 6452-6455.	2.4	39
12	Co(OAc) ₂ -Catalyzed Trifluoromethylation and C(3)-Selective Arylation of 2-(Propargylamino)pyridines via a 6- <i>Endo-Dig</i> Cyclization. Organic Letters, 2017, 19, 6052-6055.	2.4	34
13	A metal-free direct C (sp ³)–H cyanation reaction with cyanobenziodoxolones. Organic and Biomolecular Chemistry, 2018, 16, 1971-1975.	1.5	27
14	Site-selective synthesis of functionalized dibenzo[<i>f</i> , <i>h</i>]quinolines and their derivatives involving cyclic diaryliodonium salts <i>via</i> a decarboxylative annulation strategy. Chemical Communications, 2018, 54, 3239-3242.	2.2	40
15	Synthesis of Functionalized Triphenylenes via a Traceless Directing Group Strategy. Organic Letters, 2018, 20, 1491-1495.	2.4	49
16	Visible-Light Photoredox Decarboxylation of Perfluoroarene Iodine(III) Trifluoroacetates for C–H Trifluoromethylation of (Hetero)arenes. ACS Catalysis, 2018, 8, 2839-2843.	5.5	106
17	Catalytic, metal-free sulfonylcyanation of alkenes <i>via</i> visible light organophotoredox catalysis. Chemical Communications, 2018, 54, 3162-3165.	2.2	35
18	PhI(OAc) ₂ -mediated dearomative C–N coupling: facile construction of the spiro[indoline-3,2′-pyrrolidine] skeleton. Organic and Biomolecular Chemistry, 2018, 16, 2039-2042.	1.5	16

#	Article	IF	CITATIONS
20	Graphene Oxideâ€Supported Hypervalent Organoiodine (III): Recyclable Reagent for Selective and Metalâ€Free Oxidation of Alcohols. ChemistrySelect, 2018, 3, 3394-3399.	0.7	8
21	Sigmatropic Rearrangements of Hypervalentâ€lodineâ€Tethered Intermediates for the Synthesis of Biaryls. Angewandte Chemie - International Edition, 2018, 57, 4663-4667.	7.2	49
22	Sigmatropic Rearrangements of Hypervalent″odineâ€Tethered Intermediates for the Synthesis of Biaryls. Angewandte Chemie, 2018, 130, 4753-4757.	1.6	26
23	Metal-free remote oxidative benzylic Câ^'H amination of 4-methylanilides with N -fluorobenzenesulfonimide. Tetrahedron, 2018, 74, 1085-1091.	1.0	15
24	Palladium/Light Induced Radical Alkenylation and Allylation of Alkyl Iodides Using Alkenyl and Allylic Sulfones. Organic Letters, 2018, 20, 1078-1081.	2.4	51
25	Access to 2-substituted-2 <i>H</i> -indazoles <i>via</i> a copper-catalyzed regioselective cross-coupling reaction. Organic and Biomolecular Chemistry, 2018, 16, 1816-1822.	1.5	15
26	Perfluoroalkyl Cobaloximes: Preparation Using Hypervalent Iodine Reagents, Molecular Structures, Thermal and Photochemical Reactivity. Organometallics, 2018, 37, 570-583.	1.1	18
27	lodination and Oâ€Arylation of 2â€Arylquinolinâ€4(1H)â€one with PhI(OAc) ₂ Under Metalâ€free Conditions. ChemistrySelect, 2018, 3, 1655-1657.	0.7	8
28	Selective Pâ^'C(sp ³) Bond Cleavage and Radical Alkynylation of αâ€Phosphorus Alcohols by Photoredox Catalysis. Chemistry - A European Journal, 2018, 24, 3174-3177.	1.7	28
29	Radicalâ€Mediated Formal C(sp ²)–H Functionalization of Aldehydeâ€Derived <i>N</i> , <i>N</i> ,2018, 2378-2393.	1.2	19
30	A strategy for generating aryl radicals from arylborates through organic photoredox catalysis: photo-Meerwein type arylation of electron-deficient alkenes. Chemical Communications, 2018, 54, 1257-1260.	2.2	52
31	Dichloromethane as solvent and reagent: a case study of photoinduced reactions in mixed phosphoniumâ€iodonium ylide. Journal of Physical Organic Chemistry, 2018, 31, e3844.	0.9	11
32	Supramolecular Aggregation of Perfluoroorganyl Iodane Reagents in the Solid State and in Solution. European Journal of Organic Chemistry, 2018, 2018, 3771-3781.	1.2	13
33	Nickel(ii)-catalyzed enantioselective \hat{l} ±-alkylation of \hat{l} 2-ketoamides with phenyliodonium ylideviaa radical process. Chemical Communications, 2018, 54, 12254-12257.	2.2	17
34	Visible-Light-Enabled Oxidative Alkylation of Unactivated Alkenes with Dimethyl Sulfoxide through Concomitant 1,2-Aryl Migration. Organic Letters, 2018, 20, 7611-7615.	2.4	48
35	Combination of PhI(OAc) < sub > 2 < /sub > and 2-Nitropropane as the Source of Methyl Radical in Room-Temperature Metal-Free Oxidative Decarboxylation/Cyclization: Construction of 6-Methyl Phenanthridines and 1-Methyl Isoquinolines. Journal of Organic Chemistry, 2018, 83, 15415-15425.	1.7	24
36	Transitionâ€Metalâ€Free Threeâ€Component Radical 1,2â€Amidoalkynylation of Unactivated Alkenes. Chemistry - A European Journal, 2019, 25, 516-520.	1.7	46
38	A <i>para</i> –H Functionalization of Aniline Derivatives via In situ Generated Bulky Hypervalent Iodinium Reagents. European Journal of Organic Chemistry, 2018, 2018, 5972-5979.	1.2	49

3

#	ARTICLE	IF	CITATIONS
39	Nâ€Heterocycleâ€Stabilized Iodanes: From Structure to Reactivity. Chemistry - A European Journal, 2018, 24, 18653-18657.	1.7	44
40	Electrophilic chloro(ω-alkoxy)lation of alkenes employing 1-chloro-1,2-benziodoxol-3-one: facile synthesis of β-chloroethers. Organic and Biomolecular Chemistry, 2018, 16, 7203-7213.	1.5	5
41	Transition-Metal-Free Arylations of In-Situ Generated Sulfenates with Diaryliodonium Salts. Organic Letters, 2018, 20, 7104-7106.	2.4	41
42	Hypervalent lodine Compounds with Tetrazole Ligands. Journal of Organic Chemistry, 2018, 83, 12496-12506.	1.7	10
44	Synthesis of Five-Membered Iodine–Nitrogen Heterocycles from Benzimidazole-Based Iodonium Salts. Journal of Organic Chemistry, 2018, 83, 12056-12070.	1.7	22
45	Reactivity and properties of bis(chlorodifluoroacetyl) peroxide generated <i>in situ</i> from chlorodifluoroacetic anhydride for chlorodifluoromethylation reactions. Chemical Communications, 2018, 54, 11276-11279.	2.2	29
46	Chemoselective Preparation of 1-lodoalkynes, 1,2-Diiodoalkenes, and 1,1,2-Triiodoalkenes Based on the Oxidative Iodination of Terminal Alkynes. Journal of Visualized Experiments, 2018, , .	0.2	0
47	Visibleâ€Lightâ€Induced 3â€Component Synthesis of Sulfonylated Oxindoles by Fixation of Sulfur Dioxide. European Journal of Organic Chemistry, 2018, 2018, 5725-5734.	1.2	25
48	Preparation, structure, and reactivity of bicyclic benziodazole: a new hypervalent iodine heterocycle. Beilstein Journal of Organic Chemistry, 2018, 14, 1016-1020.	1.3	10
49	Remote Site-Specific Radical Alkynylation of Unactivated C–H Bonds. Organic Letters, 2018, 20, 5817-5820.	2.4	50
50	Visible Lightâ€Promoted Threeâ€Component Carboazidation of Unactivated Alkenes with TMSN ₃ and Acrylonitrile. Chinese Journal of Chemistry, 2018, 36, 1017-1023.	2.6	30
51	Palladiumâ€Catalyzed Cascade Cyclization/Alkynylation and Alkenylation of Alkynone <i>O</i> â€Methyloximes with Terminal Alkynes. Advanced Synthesis and Catalysis, 2018, 360, 2707-2719.	2.1	31
52	Palladium-Catalyzed Ring-Forming Alkene Aminoaroylation of Unsaturated Hydrazones and Sulfonamides. Organic Letters, 2018, 20, 3314-3318.	2.4	25
53	Oxidative <i>N</i> -Arylation for Carbazole Synthesis by C–C Bond Activation. Journal of Organic Chemistry, 2018, 83, 8127-8138.	1.7	24
54	Metal―and Baseâ€Free Direct Nâ€Arylation of Pyridazinones by Using Diaryliodonium Salts: An Anion Effect. Asian Journal of Organic Chemistry, 2018, 7, 1674-1680.	1.3	14
55	Hypervalent lodine Reagents by Anodic Oxidation: A Powerful Green Synthesis. Chemistry - A European Journal, 2018, 24, 13399-13407.	1.7	88
56	Metalâ€Free Halogen(I) Catalysts for the Oxidation of Aryl(heteroaryl)methanes to Ketones or Esters: Selectivity Control by Halogen Bonding. Chemistry - A European Journal, 2018, 24, 14171-14182.	1.7	36
57	Bromide-catalyzed electrochemical trifluoromethylation/cyclization of $\langle i \rangle N \langle i \rangle$ -arylacrylamides with low catalyst loading. Organic Chemistry Frontiers, 2018, 5, 2573-2577.	2.3	88

#	Article	IF	CITATIONS
58	Metal-free alkene oxy- and amino-perfluoroalkylations <i>via</i> carbocation formation by using perfluoro acid anhydrides: unique reactivity between styrenes and perfluoro diacyl peroxides. Chemical Science, 2018, 9, 7115-7121.	3.7	44
59	Uncovering Multifaceted Iodonium Ylides: Versatile Reactivity Enables Cyclization of Simple Arylamines. Synlett, 2018, 29, 2337-2341.	1.0	6
60	PIDAâ€Mediated Formal Olefinic C=C Bond Cleavage of αâ€Oxoâ€Ketene <i>N</i> , <i>N<!--</td--><td>1.7</td><td>9</td></i>	1.7	9
61	Metalâ€Free Direct Câ^'H Cyanation of Alkenes. Angewandte Chemie - International Edition, 2018, 57, 11792-11796.	7.2	28
62	A Nitrido-bridged Heterometallic Ruthenium(IV)/Iron(IV) Phthalocyanine Complex Supported by A Tripodal Oxygen Ligand, [Co(Î- ⁵ -C ₅ H ₅){P(O)(OEt) ₂ } ₃] ^{â^'} : Synthesis, Structure, and Its Oxidation to Give Phthalocyanine Cation Radical and	1.9	8
63	Hydroxyphthalocyanine Complexes. Inorganic Chemistry, 2018, 57, 9215-9222. Metalâ€Free Direct Câ^'H Cyanation of Alkenes. Angewandte Chemie, 2018, 130, 11966-11970.	1.6	9
64	Radical Câ^'Hâ€Amination of Heteroarenes using Dual Initiation by Visible Light and Iodine. Advanced Synthesis and Catalysis, 2018, 360, 3889-3893.	2.1	25
65	Transitionâ€Metalâ€Free Selective Iodoarylation of Pyrazoles via Heterocyclic Aryliodonium Ylides. European Journal of Organic Chemistry, 2018, 2018, 3437-3443.	1.2	11
66	Selective carboxylation of reactive benzylic Câ€"H bonds by a hypervalent iodine(III)/inorganic bromide oxidation system. Beilstein Journal of Organic Chemistry, 2018, 14, 1087-1094.	1.3	10
67	Metal-Free C(sp ³)–H Azidation in a Radical Strategy for the Synthesis of 3-Azido-2-oxindoles at Room Temperature. Journal of Organic Chemistry, 2018, 83, 11074-11079.	1.7	26
68	Promoting Intermolecular C–N Bond Formation under the Auspices of Iodine(III). Accounts of Chemical Research, 2018, 51, 1507-1519.	7.6	98
69	Surgical Cleavage of Unstrained C(sp 3)â^'C(sp 3) Bonds in General Alcohols for Heteroaryl Câ^'H Alkylation and Acylation. Advanced Synthesis and Catalysis, 2019, 361, 4568-4574.	2.1	24
70	Two birds with one stone: one-pot simultaneous synthesis of 2,2,2-trifluoroethylphenanthridines and benzochromenones featuring the utilization of the byproduct of Togni's reagent. Green Chemistry, 2019, 21, 5113-5117.	4.6	45
71	Four-Component Radical Dual Difunctionalization (RDD) of Two Different Alkenes with Aldehydes and <i>tert</i> -Butyl Hydroperoxide (TBHP): An Easy Access to \hat{l}^2 , \hat{l} -Functionalized Ketones. Organic Letters, 2019, 21, 6117-6121.	2.4	31
72	Metalâ€Free Synthesis of 4â€Arylâ€2â€quinolone Derivatives by Iodineâ€Mediated Intramolecular Câ^'H Amidatic Advanced Synthesis and Catalysis, 2019, 361, 4727-4738.	on 2.1	8
73	Co-Catalyzed decarbonylative alkylative esterification of styrenes with aliphatic aldehydes and hypervalent iodine(<scp>iii</scp>) reagents. Organic Chemistry Frontiers, 2019, 6, 3065-3070.	2.3	16
74	Visibleâ€Lightâ€Promoted Oxidative Alkylarylation of <i>N</i> â€Aryl/Benzoyl Acrylamides Through Direct Câ^'H Bond Functionalization. Advanced Synthesis and Catalysis, 2019, 361, 4237-4242.	2.1	24
75	Fluoroalkylation Methods for Synthesizing Versatile Building Blocks. Bulletin of the Chemical Society of Japan, 2019, 92, 1245-1262.	2.0	25

#	Article	IF	CITATIONS
76	Hypervalent iodine reactions utilized in carbon–carbon bond formations. Organic and Biomolecular Chemistry, 2019, 17, 7822-7848.	1.5	91
77	Cu-Mediated arylselenylation of aryl halides with trifluoromethyl aryl selenonium ylides. Organic and Biomolecular Chemistry, 2019, 17, 7468-7473.	1.5	11
78	Synthesis of 4,4-Difluoroalkenes by Coupling of \hat{l}_{\pm} -Substituted \hat{l}_{\pm} , \hat{l}_{\pm} -Difluoromethyl Halides with Allyl Sulfones under Photoredox Catalyzed Conditions. Journal of Organic Chemistry, 2019, 84, 9330-9338.	1.7	25
79	λ ³ â€lodanes as Visible Light Photocatalyst in Thioacetalization of Aldehydes. European Journal of Organic Chemistry, 2019, 2019, 4822-4826.	1.2	8
80	The Role of Iodanyl Radicals as Critical Chain Carriers in Aerobic Hypervalent Iodine Chemistry. CheM, 2019, 5, 2388-2404.	5.8	26
81	Unified and practical access to ɤalkynylated carbonyl derivatives via streamlined assembly at room temperature. Communications Chemistry, 2019, 2, .	2.0	9
82	Silver-Catalyzed Trifluoromethylalkynylation of Unactivated Alkenes with Hypervalent Iodine Reagents. Organic Letters, 2019, 21, 8625-8629.	2.4	30
83	A Catalystâ€Free Minisciâ€Type Reaction: the C–H Alkylation of Quinoxalinones with Sodium Alkylsulfinates and Phenyliodine(III) Dicarboxylates. European Journal of Organic Chemistry, 2019, 2019, 6935-6944.	1.2	28
84	Copper-Catalyzed Amino-oxymethylation of Ynamides with $\langle i \rangle N \langle i \rangle$, $\langle i \rangle O \langle i \rangle$ -Acetals. Organic Letters, 2019, 21, 9076-9079.	2.4	18
85	Hypervalent Iodine(III) Reagent Mediated Regioselective Cycloaddition of Aldoximes with Enaminones. European Journal of Organic Chemistry, 2019, 2019, 6682-6689.	1.2	15
86	Cu/chiral phosphoric acid-catalyzed radical-initiated asymmetric aminosilylation of alkene with hydrosilane. Science China Chemistry, 2019, 62, 1529-1536.	4.2	26
87	Four-component radical-dual-difunctionalization (RDD) and decarbonylative alkylative peroxidation of two different alkenes with aliphatic aldehydes and TBHP. Chemical Communications, 2019, 55, 12080-12083.	2.2	14
88	Alkene Synthesis by Photocatalytic Chemoenzymatically Compatible Dehydrodecarboxylation of Carboxylic Acids and Biomass. ACS Catalysis, 2019, 9, 9485-9498.	5.5	74
89	Construction of Sulfonyl Phthalides via Copper-Catalyzed Oxysulfonylation of 2-Vinylbenzoic Acids with Sodium Sulfinates. Journal of Organic Chemistry, 2019, 84, 13465-13472.	1.7	29
90	Photoredox-Catalyzed Intermolecular Radical Arylthiocyanation/Arylselenocyanation of Alkenes: Access to Aryl-Substituted Alkylthiocyanates/Alkylselenocyanates. Journal of Organic Chemistry, 2019, 84, 3025-3035.	1.7	43
91	PhIO-mediated Synthesis of Ketones from Alkynes and Alkenes. Chemical Research in Chinese Universities, 2019, 35, 26-32.	1.3	2
92	Control of site selectivity in trifluoromethylation of alkenes bearing a pendant indolyl group: Synthesis of CF3-containing tetrahydrocarbazoles. Tetrahedron, 2019, 75, 1327-1335.	1.0	7
93	Solvent-tuned chemoselective carboazidation and diazidation of alkenes <i>via</i> iron catalysis. Organic Chemistry Frontiers, 2019, 6, 512-516.	2.3	35

#	Article	IF	CITATIONS
94	Hypercoordinate iodine for catalytic asymmetric diamination of styrene: insights into the mechanism, role of solvent, and stereoinduction. Chemical Science, 2019, 10, 7082-7090.	3.7	14
95	Nitrenium Ions from Amineâ€lodine(III) Combinations. Advanced Synthesis and Catalysis, 2019, 361, 4401-4425.	2.1	36
96	Recent Advances in Photoredox Catalysis Enabled Functionalization of α-Amino Acids and Peptides: Concepts, Strategies and Mechanisms. Synthesis, 2019, 51, 2759-2791.	1.2	61
97	Mediator and Additive Free Trifluoromethylâ€Fluorination of Terminal Alkenes by Persistent Perfluoroalkyl Radical. European Journal of Organic Chemistry, 2019, 2019, 4417-4421.	1.2	8
98	Practical, metal-free remote heteroarylation of amides <i>via</i> unactivated C(sp ³)–H bond functionalization. Chemical Science, 2019, 10, 6915-6919.	3.7	78
99	<i>N</i> -Phenoxyamides as Multitasking Reagents: Base-Controlled Selective Construction of Benzofurans or Dihydrobenzofuro[2,3- <i>d</i>)oxazoles. Journal of Organic Chemistry, 2019, 84, 8523-8530.	1.7	15
100	Copper-Catalyzed Regioselective Borylfluoromethylation of Alkenes. ACS Catalysis, 2019, 9, 5726-5731.	5 . 5	53
101	Direct Intermolecular Anti-Markovnikov Hydroazidation of Unactivated Olefins. Journal of the American Chemical Society, 2019, 141, 9415-9421.	6.6	41
102	A Tunable Trifluoromethyliodonium Reagent. Angewandte Chemie - International Edition, 2019, 58, 8585-8588.	7.2	8
103	Copper-catalyzed three-component reaction of <i>N</i> heteroaryl aldehydes, nitriles, and water. Organic and Biomolecular Chemistry, 2019, 17, 5021-5028.	1.5	12
104	Fe-Catalyzed decarbonylative cascade reaction of $\langle i \rangle N \langle i \rangle$ -aryl cinnamamides with aliphatic aldehydes to construct 3,4-dihydroquinolin-2(1 $\langle i \rangle H \langle i \rangle$)-ones. Organic and Biomolecular Chemistry, 2019, 17, 5262-5268.	1.5	21
105	Stereocontrolled Synthesis of Halovinylbenziodoxoles by Hydro―and Iodochlorination of Ethynylbenziodoxoles. Chemistry - A European Journal, 2019, 25, 7839-7842.	1.7	27
106	Ein abstimmbares Trifluormethyliodoniumâ€Reagenz. Angewandte Chemie, 2019, 131, 8675.	1.6	2
107	PhI(OAc)2-mediated alkoxyoxygenation of \hat{l}^2 , \hat{l}^3 -unsaturated ketoximes: Preparation of isoxazolines bearing two contiguous tetrasubstituted carbons. Tetrahedron Letters, 2019, 60, 1148-1152.	0.7	14
108	Visible-light promoted aerobic difunctionalization of alkenes with sulfonyl hydrazides for the synthesis of β-keto/hydroxyl sulfones. Organic and Biomolecular Chemistry, 2019, 17, 3507-3513.	1.5	53
109	lodineâ€promoted Intermolecular Dehydrogenation Diamination: Synthesis of Unsymmetrical α,βâ€Diamido Ketones. Chemistry - an Asian Journal, 2019, 14, 1477-1480.	1.7	6
110	4-HO-TEMPO-Catalyzed Redox Annulation of Cyclopropanols with Oxime Acetates toward Pyridine Derivatives. ACS Catalysis, 2019, 9, 4179-4188.	5 . 5	81
111	Ni-Mediated Generation of "CN―Unit from Formamide and Its Catalysis in the Cyanation Reactions. ACS Catalysis, 2019, 9, 3360-3365.	5.5	46

#	Article	IF	CITATIONS
112	Photogenerated Neutral Nitrogen Radical Catalyzed Bifunctionalization of Alkenes. Chemistry - A European Journal, 2019, 25, 8024-8029.	1.7	20
113	I ₂ O ₅ -Mediated Iodocyclization Cascade of <i>N</i> -(1-Arylallyl)pyridine-2-amines with Concomitant Câ•C Bond Cleavage: A Synthesis of 3-lodoimidazo[1,2- <i>a</i>)pyridines. Journal of Organic Chemistry, 2019, 84, 5773-5782.	1.7	13
114	Computational I(III)â€"X BDEs for Benziodoxol(on)eâ€based Hypervalent Iodine Reagents: Implications for Their Functional Group Transfer Abilities. Chinese Journal of Chemistry, 2019, 37, 359-363.	2.6	24
115	On the activation of hypercoordinate iodine(<scp>iii</scp>) compounds for reactions of current interest. Dalton Transactions, 2019, 48, 4086-4093.	1.6	10
116	The literature of heterocyclic chemistry, part XVII, 2017. Advances in Heterocyclic Chemistry, 2019, 129, 337-418.	0.9	5
117	Pd-Catalyzed decarboxylative alkynylation of alkynyl carboxylic acids with arylsulfonyl hydrazides <i>via</i> a desulfinative process. New Journal of Chemistry, 2019, 43, 5357-5362.	1.4	10
118	Visible-Light-Enabled Oxidative Coupling of Alkenes with Dialkylformamides To Access Unsaturated Amides. Organic Letters, 2019, 21, 9929-9933.	2.4	10
119	lodine-catalyzed sulfonylation of sulfonyl hydrazides with tert-amines: a green and efficient protocol for the synthesis of sulfonamides. RSC Advances, 2019, 9, 31212-31216.	1.7	12
120	Site-Selective C–H Functionalization of (Hetero)Arenes via Transient, Non-symmetric Iodanes. CheM, 2019, 5, 417-428.	5.8	80
121	Taming Radical Intermediates for the Construction of Enantioenriched Trifluoromethylated Quaternary Carbon Centers. Angewandte Chemie - International Edition, 2019, 58, 1447-1452.	7.2	50
122	Solvent Controlled Transformation between Sulfonyl Hydrazides and Alkynes: Divergent Synthesis of Benzo[⟨i⟩b⟨/i⟩]thiopheneâ€1,1â€dioxides and (E)â€Î²â€iodo Vinylsulfones. Advanced Synthesis and Catalysis, 20361, 597-602.) <u>1</u> 91,	33
123	Synthesis of 4-lodoisoquinolin-1(2H)-ones by a Dirhodium(II)-Catalyzed 1,4-Bisfunctionalization of Isoquinolinium Iodide Salts. Organic Letters, 2019, 21, 434-438.	2.4	18
124	Fe-Catalyzed decarbonylative alkylation–peroxidation of alkenes with aliphatic aldehydes and hydroperoxide under mild conditions. Green Chemistry, 2019, 21, 269-274.	4.6	34
125	Rapid Synthesis of \hat{I}^3 -Arylated Carbonyls Enabled by the Merge of Copper- and Photocatalytic Radical Relay Alkylarylation of Alkenes. Organic Letters, 2019, 21, 56-59.	2.4	63
126	Gold-Catalyzed 1,2-Oxyalkynylation of $\langle i \rangle N \langle i \rangle$ -Allenamides with Ethylnylbenziodoxolones. Organic Letters, 2019, 21, 180-184.	2.4	45
127	Access to CF ₃ â€Containing Cyclopentaquinolinone Derivatives from Indolylâ€ynones via Silverâ€Catalyzed Oneâ€pot Reaction. Advanced Synthesis and Catalysis, 2019, 361, 678-682.	2.1	16
128	Mechanism of Hypervalent Iodine Promoted Fluorocyclization of Unsaturated Alcohols: Metathesis via Double Acids Activation. Journal of Organic Chemistry, 2019, 84, 458-462.	1.7	32
129	Taming Radical Intermediates for the Construction of Enantioenriched Trifluoromethylated Quaternary Carbon Centers. Angewandte Chemie, 2019, 131, 1461-1466.	1.6	20

#	Article	IF	CITATIONS
130	TEMPO and its derivatives mediated reactions under transition-metal-free conditions. Chinese Chemical Letters, 2020, 31, 39-48.	4.8	25
131	Evolution of <i>N</i> à€Heterocycleâ€Substituted Iodoarenes (NHIAs) to Efficient Organocatalysts in Iodine(I/III)â€Mediated Oxidative Transformations. Advanced Synthesis and Catalysis, 2020, 362, 184-191.	2.1	21
132	Pyridinium Salts as Redoxâ€Active Functional Group Transfer Reagents. Angewandte Chemie - International Edition, 2020, 59, 9264-9280.	7.2	192
133	Pyridiniumsalze als redoxaktive Reagenzien zur Übertragung funktioneller Gruppen. Angewandte Chemie, 2020, 132, 9350-9366.	1.6	27
134	Metal-free late-stage C(sp2)–H functionalization ofN-aryl amines with various sodium salts. Organic and Biomolecular Chemistry, 2020, 18, 450-464.	1.5	12
135	Copper-catalyzed enantioselective arylalkynylation of alkenes. Chemical Science, 2020, 11, 1623-1628.	3.7	31
136	Visible-light-induced C-C bond cleavage of lignin model compounds with cyanobenziodoxolone. Tetrahedron Letters, 2020, 61, 152420.	0.7	7
137	Zinc-catalyzed asymmetric nitrooxylation of \hat{l}^2 -keto esters/amides with a benziodoxole-derived nitrooxy transfer reagent. Organic Chemistry Frontiers, 2020, 7, 3509-3514.	2.3	10
138	Rh(<scp>i</scp>)-Catalyzed regioselective arylcarboxylation of acrylamides with arylboronic acids and CO ₂ . Green Chemistry, 2020, 22, 7328-7332.	4.6	11
139	Development of New Radicalâ€Mediated Selective Reactions Promoted by Hypervalent Iodine(III) Reagents. Chemical Record, 2021, 21, 1342-1357.	2.9	9
140	BI-OAc-Accelerated C3–H Alkylation of Quinoxalin-2(1 <i>H</i>)-ones under Visible-Light Irradiation. Organic Letters, 2020, 22, 5984-5989.	2.4	101
141	Fluorination and Fluoroalkylation Reactions Mediated by Hypervalent Iodine Reagents. Advanced Synthesis and Catalysis, 2020, 362, 4256-4292.	2.1	70
142	Transition-metal-free highly regioselective Câ€"H acetoxylation of pyrrolo[2,3- <i>d</i>)pyrimidine derivatives. Organic Chemistry Frontiers, 2020, 7, 2696-2702.	2.3	11
143	Vinylbenziodoxol(on)es: Synthetic Methods and Applications. Helvetica Chimica Acta, 2020, 103, e2000191.	1.0	31
144	Iminoâ€î» 3 â€iodane and Catalytic Amount of I 2 â€Mediated Synthesis of N â€Allylsulfenamides via [2,3]â€Sigmatropic Rearrangement. European Journal of Organic Chemistry, 2020, 2020, 6433-6439.	1.2	4
145	lodolopyrazolium Salts: Synthesis, Derivatizations, and Applications. Organic Letters, 2020, 22, 7261-7266.	2.4	28
146	Recent Synthetic Applications of the Hypervalent Iodine(III) Reagents in Visible-Light-Induced Photoredox Catalysis. Frontiers in Chemistry, 2020, 8, 551159.	1.8	20
147	Oxidative alkylation of alkenes with carbonyl compounds through concomitant 1,2-aryl migration by photoredox catalysis. New Journal of Chemistry, 2020, 44, 16031-16035.	1.4	9

#	ARTICLE	IF	CITATIONS
148	Rhenium-catalyzed alkylarylation of alkenes with PhI(O ₂ CR) ₂ <i>via</i> decarboxylation to access indolinones and dihydroquinolinones. Organic Chemistry Frontiers, 2020, 7, 3234-3241.	2.3	20
149	Synthesis of Fluorine-Containing Polymers by Functionalization of <i>cis</i> -1,4-Polyisoprene with Hypervalent Iodine Compounds. Macromolecules, 2020, 53, 8020-8031.	2.2	15
150	The Diaryliodonium(III) Salts Reaction With Free-Radicals Enables One-Pot Double Arylation of Naphthols. Frontiers in Chemistry, 2020, 8, 563470.	1.8	12
151	Radical-Dual-Difunctionalization and Trifluoromethylative Decarboxylation of Two Different Alkenes. Organic Letters, 2020, 22, 6776-6779.	2.4	17
152	Divergent Synthesis of α-Aroyloxy Ketones and Indenones: A Controlled Domino Radical Reaction for Di- and Trifunctionalization of Alkynes. Journal of Organic Chemistry, 2020, 85, 8287-8294.	1.7	12
153	Synthese, Charakterisierung und Reaktivit $\tilde{A}^{\mathbf{g}}$ eines Nitrooxylierungsreagenzes basierend auf einer hypervalenten lodverbindung. Angewandte Chemie, 2020, 132, 17312-17319.	1.6	5
154	Copper(<scp>i</scp>)-catalyzed intermolecular cyanoarylation of alkenes: convenient access to α-alkylated arylacetonitriles. Organic and Biomolecular Chemistry, 2020, 18, 5234-5237.	1.5	11
155	Fluorobenziodoxoleâ^BF 3 Reagent for Iodo(III)etherification of Alkynes in Ethereal Solvent. Chemistry - an Asian Journal, 2020, 15, 2166-2169.	1.7	21
156	Synthesis, Characterization, and Reactivity of a Hypervalent″odineâ€Based Nitrooxylating Reagent. Angewandte Chemie - International Edition, 2020, 59, 17162-17168.	7.2	17
157	DFT Study on Oxidative Cyclization of o―Alkynylbenzoates Mediated by Hypervalent Iodine Reagent: Mechanism and Substituent Effect. ChemistrySelect, 2020, 5, 3113-3118.	0.7	3
158	Practical Synthesis of $\hat{l}\pm,\hat{l}^2$ -Alkynyl Ketones by Oxidative Alkynylation of Aldehydes with Hypervalent Alkynyliodine Reagents. Chemistry Letters, 2020, 49, 633-636.	0.7	5
159	Mechanism of Iodine(III)â€Promoted Oxidative Dearomatizing Hydroxylation of Phenols: Evidence for a Radicalâ€Chain Pathway. Chemistry - A European Journal, 2020, 26, 11584-11592.	1.7	15
160	Can Plasmon Change Reaction Path? Decomposition of Unsymmetrical Iodonium Salts as an Organic Probe. Journal of Physical Chemistry Letters, 2020, 11, 5770-5776.	2.1	27
161	Metal-Free Synthesis of Indolopyrans and 2,3-Dihydrofurans Based on Tandem Oxidative Cycloaddition. Organic Letters, 2020, 22, 5528-5534.	2.4	10
162	Gold and hypervalent iodine(<scp>iii</scp>): liaisons over a decade for electrophilic functional group transfer reactions. Chemical Communications, 2020, 56, 2677-2690.	2.2	75
163	Highly Selective Synthesis of 2- <i>tert</i> -Butoxy-1-Arylethanones via Copper(I)-Catalyzed Oxidation/ <i>tert</i> -Butoxylation of Aryl Olefins with TBHP. Journal of Organic Chemistry, 2020, 85, 3929-3935.	1.7	15
164	Photoredoxâ∈Mediated Netâ∈Neutral Radical/Polar Crossover Reactions. Israel Journal of Chemistry, 2020, 60, 281-293.	1.0	108
165	Palladium-Catalyzed Four-Component Carbonylative Cyclization Reaction of Trifluoroacetimidoyl Chlorides, Propargyl Amines, and Diaryliodonium Salts: Access to Trifluoromethyl-Containing Trisubstituted Imidazoles. Organic Letters, 2020, 22, 1980-1984.	2.4	46

#	Article	IF	CITATIONS
166	Photoredox Catalyst Free, Visible Lightâ€Promoted C3â^'H Acylation of Quinoxalinâ€2(1 <i>H</i>)â€ones in Water. Advanced Synthesis and Catalysis, 2020, 362, 2178-2182.	2.1	76
167	Generation of Aryl Radicals from Aryl Hydrazines via Catalytic Iodine in Air: Arylation of Substituted 1,4-Naphthoquinones. ACS Omega, 2020, 5, 4213-4222.	1.6	7
168	Synthesis of NHâ€Sulfoximines by Using Recyclable Hypervalent Iodine(III) Reagents under Aqueous Micellar Conditions. ChemSusChem, 2020, 13, 922-928.	3.6	22
169	Free-radical reactions in the synthesis of organofluorine compounds. , 2020, , 75-101.		0
170	Aryl radical-induced desulfonylative (i>ipso (li>-substitution of diaryliodonium salts: an efficient route to sterically hindered biarylamines. Chemical Communications, 2020, 56, 5697-5700.	2.2	12
171	Visible-Light-Driven Reductive Carboarylation of Styrenes with CO ₂ and Aryl Halides. Journal of the American Chemical Society, 2020, 142, 8122-8129.	6.6	171
172	Oxidative ability of organic iodine(<scp>iii</scp>) reagents: a theoretical assessment. New Journal of Chemistry, 2020, 44, 7051-7057.	1.4	17
173	Hypervalent iodine compounds: reagents of the future. Arkivoc, 2021, 2020, 1-11.	0.3	23
174	Synthesis of Diverse Aryliodine(<scp>III</scp>) Reagents by Anodic Oxidation ^{â€} . Chinese Journal of Chemistry, 2021, 39, 627-632.	2.6	27
175	5- <i>Endo</i> Trig Oxidative Radical Cyclizations of Ugi-3CR Products toward 1,4-Imidazolidinones. Organic Letters, 2021, 23, 107-112.	2.4	13
176	Contemporary methods for generation of aryl radicals. Chemical Society Reviews, 2021, 50, 2244-2259.	18.7	96
177	Synthesis, Characterization of Spirocyclic λ 3 â€lodanes and Their Application to Prepare 4,1â€Benzoxazepineâ€2,5â€diones and 1,3â€Diynes. Chemistry - A European Journal, 2021, 27, 4312-4316.	1.7	11
178	Radical coupling of arylthiodifluoroacetic acids and ethynylbenziodoxolone (EBX) reagents to access arylthiodifluoromethylated alkynes. Journal of Fluorine Chemistry, 2021, 242, 109715.	0.9	5
179	A non-conjugated photothermal polymer complex absorbing light in visible and infrared windows. Polymer Chemistry, 2021, 12, 3233-3239.	1.9	4
180	Generation of aryl radicals by redox processes. Recent progress in the arylation methodology. Russian Chemical Reviews, 2021, 90, 116-170.	2.5	11
181	Regioselective Synthesis of 2,3â€Dihydrobenzo[<i>f</i>]isoindolones via Agâ€Catalyzed Sequential Ugi 4CR/Cascade Radical Cyclization Reaction. Advanced Synthesis and Catalysis, 2021, 363, 1038-1043.	2.1	3
182	Synthesis of N-alkoxyphthalimide derivatives via PIDA-promoted cross dehydrogenative coupling reaction. RSC Advances, 2021, 11, 8051-8054.	1.7	4
183	Reactions promoted by hypervalent iodine reagents and boron Lewis acids. Organic and Biomolecular Chemistry, 2021, 19, 4852-4865.	1.5	29

#	Article	IF	CITATIONS
184	Modular metal-free catalytic radical annulation of cyclic diaryliodoniums to access π-extended arenes. Green Chemistry, 2021, 23, 1972-1977.	4.6	12
185	Anilineâ€Type Hypervalent Iodine(III) for Intramolecular Cyclization via Câ°'H Bond Abstraction of Hydrocarbons Containing N―and Oâ€Nucleophiles. Advanced Synthesis and Catalysis, 2021, 363, 3354-3358.	2.1	5
186	PhI(OAc) ₂ -Mediated Dihalogenative Cyclization of 1,6-Enyne with Lithium Halide. Organic Letters, 2021, 23, 3588-3592.	2.4	15
187	Zefirov's reagent and related hypervalent iodine triflates. Mendeleev Communications, 2021, 31, 282-287.	0.6	8
188	Cross-Dehydrogenative N–N Coupling of Aromatic and Aliphatic Methoxyamides with Benzotriazoles. Organic Letters, 2021, 23, 3902-3907.	2.4	23
189	Cyclic Diaryl λ ³ â€Bromanes as Original Aryne Precursors. Angewandte Chemie - International Edition, 2021, 60, 14852-14857.	7.2	30
190	Zefirov's reagent and related hypervalent iodine triflates. Mendeleev Communications, 2021, 31, 282-287.	0.6	0
191	Cyclic Diaryl λ 3 â€Bromanes as Original Aryne Precursors. Angewandte Chemie, 2021, 133, 14978-14983.	1.6	O
192	$\langle i \rangle N \langle i \rangle$ -Heterocyclic Carbene-Catalyzed Cyclization of Aldehydes with $\hat{l}\pm$ -Diazo Iodonium Triflate: Facile Access to 2,5-Disubstituted 1,3,4-Oxadiazoles. Organic Letters, 2021, 23, 4185-4190.	2.4	10
193	Molecular iodine enabled generation of iminyl radicals from oximes: A facile route to imidazo[1,2-a]pyridines and its regioselective C-3 sulfenylated products from simple pyridines. Tetrahedron, 2021, 88, 132125.	1.0	8
194	Preparation, Structure, and Reactivity of Pseudocyclic βâ€Trifluorosulfonyloxy Vinylbenziodoxolone Derivatives. Advanced Synthesis and Catalysis, 2021, 363, 3365-3371.	2.1	9
195	Radical Perfluoroalkylation of Arenes via Carbanion Intermediates. Journal of Organic Chemistry, 2021, 86, 10903-10913.	1.7	4
196	Deciphering the Keys for High Enantioselectivity in Hypervalent Iodine-Catalyzed 1,2-Difunctionalization: Improved Synthesis of Ishihara–Muñiz Precatalysts. Organic Letters, 2021, 23, 6429-6434.	2.4	13
197	Photoinduced intermolecular hydrogen atom transfer reactions in organic synthesis. Chem Catalysis, 2021, 1, 523-598.	2.9	191
198	Copper atalysed Electrophilic Amination of Aryl(alkenyl) Boronic Acids with Nitrogen ontaining Hypervalent Iodine (III) Reagent. Advanced Synthesis and Catalysis, 2021, 363, 4701.	2.1	6
199	Hypervalent iodine mediated C-H amination of quinoxalinones with heteroaromatic amines under metal-free conditions. Chinese Chemical Letters, 2021, 32, 2559-2561.	4.8	22
200	<scp>Togniâ€N</scp> Reagent Mediated Selective Hydrotrifluoromethylation and Hydrothiolation of Alkenes ^{â€} . Chinese Journal of Chemistry, 2021, 39, 3429-3434.	2.6	6
201	Ring Expansion Fluorination of Unactivated Cyclopropanes Mediated by a New Monofluoroiodane(III) Reagent. Angewandte Chemie - International Edition, 2021, 60, 24171-24178.	7.2	19

#	Article	IF	CITATIONS
202	Ring Expansion Fluorination of Unactivated Cyclopropanes Mediated by a New Monofluoroiodane (III) Reagent. Angewandte Chemie, 2021, 133, 24373.	1.6	1
203	Metalâ€Free, PhI(OAc) < sub > 2 < /sub > â€Promoted Oxidative C(<i>sp</i> < sup > <i>2 < /i>)â^'H Difunctionalization: Synthesis of Thioaminated Naphthoquinones. Advanced Synthesis and Catalysis, 2021, 363, 5300-5309.</i>	2.1	25
204	N yanation of Primary and Secondary Amines with Cyanobenzioâ€doxolone (CBX) Reagent. Chemistry - A European Journal, 2021, 27, 14836-14840.	1.7	4
205	Selective Azidooxygenation of Alkenes Enabled by Photo-induced Radical Transfer Using Aryl-λ < sup > 3 < / sup > -azidoiodane Species. ACS Omega, 2021, 6, 26623-26639.	1.6	9
206	2-lodosylbenzoic acid activated by trifluoromethanesulfonic anhydride: efficient oxidant and electrophilic reagent for preparation of iodonium salts. New Journal of Chemistry, 2021, 45, 16434-16437.	1.4	1
207	Regioselective, copper(<scp>i</scp>)-catalyzed, tandem sulfonylation-cyclization of 1,5-dienes with sulfonyl chlorides. Organic Chemistry Frontiers, 2021, 8, 3123-3127.	2.3	14
208	Organo-redox-catalysis for the difunctionalization of alkenes and oxidative Ritter reactions by C–H functionalization. Organic Chemistry Frontiers, 2021, 8, 2932-2938.	2.3	11
209	A benzene-bridged divanadium complex-early transition metal catalyst for alkene alkylarylation with PhI(O2CR)2via decarboxylation. Dalton Transactions, 2021, 50, 3201-3206.	1.6	7
210	Palladiumâ€Catalyzed Trifluoroethylation of Benzo[h]quinoline Derivatives by Mesityl(2,2,2â€ŧrifluoroethyl)iodonium Triflate. Asian Journal of Organic Chemistry, 2019, 8, 665-670.	1.3	10
211	Hypervalent iodine mediated radical cyclization of o-(allyloxy)arylaldehydes and N-hydroxyphthalimide (NHPI) under metal-free conditions. Tetrahedron Letters, 2020, 61, 152482.	0.7	9
212	Synthesis of Oxazoline and Oxazole Derivatives by Hypervalent-Iodine-Mediated Oxidative Cycloaddition Reactions. Synthesis, 2020, 52, 2299-2310.	1.2	33
213	Benzylic Oxidation and Functionalizations of Xanthenes by Ligand Trasfer Reactions of Hypervalent lodine Reagents. Heterocycles, 2020, 100, 85.	0.4	2
214	Cross-dehydrogenative N–N couplings. Chemical Science, 2021, 12, 14343-14352.	3.7	20
215	Hypervalent Iodineâ€Mediated Lateâ€Stage Peptide and Protein Functionalization. Angewandte Chemie - International Edition, 2022, 61, .	7.2	28
216	Hypervalent Iodineâ€Mediated Lateâ€Stage Peptide and Protein Functionalization. Angewandte Chemie, 0, , .	1.6	4
217	Recent advances in the synthesis of indolizine and its derivatives by radical cyclization/cross-coupling. Organic and Biomolecular Chemistry, 2021, 19, 10245-10258.	1.5	35
219	Stereoselective Synthesis of Cyclobutanes by Contraction of Pyrrolidines. Journal of the American Chemical Society, 2021, 143, 18864-18870.	6.6	60
220	An Expanded SET Model Associated with the Functional Hindrance Dominates the Amide-Directed Distal sp ³ C–H Functionalization. Journal of the American Chemical Society, 2021, 143, 19406-19416.	6.6	11

#	Article	IF	CITATIONS
221	Progress in Visible-Light Catalyzed Câ€"F Bond Functionalization of <i>gem </i> Journal of Organic Chemistry, 2021, 41, 4192.	0.6	8
222	Updates on hypervalent-iodine reagents: metal-free functionalisation of alkenes, alkynes and heterocycles. Organic and Biomolecular Chemistry, 2022, 20, 2005-2027.	1.5	22
223	Photoinduced remote regioselective radical alkynylation of unactivated C–H bonds. Chemical Communications, 2022, 58, 2295-2298.	2.2	4
225	Hypervalent iodine promoted the synthesis of cycloheptatrienes and cyclopropanes. Chemical Science, 2022, 13, 478-485.	3.7	6
226	Cu-catalyzed $[2+2+1]$ cascade annulation of vinyl iodonium salts with elemental sulfur/selenium for the modular synthesis of thiophenes and selenophenes. New Journal of Chemistry, 2022, 46, 945-949.	1.4	7
227	Progress in Catalytic Decarboxylative Oxidative C-H Alkynylation. Current Catalysis, 2022, 11, .	0.5	0
228	Diradical Generation via Relayed Proton-Coupled Electron Transfer. Journal of the American Chemical Society, 2022, 144, 3137-3145.	6.6	29
229	Unexpected ester and phosphonate radical generation by hypervalent iodine compounds for synthesizing 6-phenanthridine derivatives. New Journal of Chemistry, 2022, 46, 6856-6859.	1.4	5
230	Photoredox Catalyzed Trifluoromethyl Radicalâ€Triggered Trifunctionalization of 5â€Hexenenitriles <i>via</i> cyano Migration. Advanced Synthesis and Catalysis, 2022, 364, 1388-1393.	2.1	13
231	Synthesis of Fe ^{III} and Fe ^{IV} Cyanide Complexes Using Hypervalent Iodine Reagents as Cyanoâ€Transfer Oneâ€Electron Oxidants. Angewandte Chemie, 0, , .	1.6	0
232	Copperâ€Catalyzed <i>N</i> à€Alkyl Formamide Activation: Tandem Oxidative Coupling Approach for the Construction of Câ^N and Câ^O Bonds to Synthesize 3â€Alkylâ€1,3â€Benzoxazineâ€2,4â€Dione and 4â€Methyleneâ€3â€Alkylâ€1,3â€Benzoxazineâ€2â€One Derivatives. Advanced Synthesis and Catalysis, 2022, 3	2.1 64, 1415-	3 1421.
233	Synthesis of Fe ^{III} and Fe ^{IV} Cyanide Complexes Using Hypervalent Iodine Reagents as Cyanoâ€Transfer Oneâ€Electron Oxidants. Angewandte Chemie - International Edition, 2022, , .	7.2	6
234	Decarboxylative alkylarylation of alkenes with PhI(O2CR)2 to access benzimidazo[2,1-a]isoquinolin-6(5H)-ones catalyzed by a low-valent divanadium complex. Molecular Catalysis, 2022, 522, 112200.	1.0	1
235	Decarboxylative Ritter-Type Amination by Cooperative Iodine (I/III)─Boron Lewis Acid Catalysis. ACS Catalysis, 2022, 12, 809-817.	5.5	28
236	Recent Updates on Electrogenerated Hypervalent Iodine Derivatives and Their Applications as Mediators in Organic Electrosynthesis. Frontiers in Chemistry, 2022, 10, 883474.	1.8	9
237	Photoinduced Trifluoromethylation with CF ₃ Br as a Trifluoromethyl Source: Synthesis of α-CF ₃ -Substituted Ketones. ACS Omega, 2022, 7, 14357-14362.	1.6	10
238	Divergent Thio/Selenolactionization of Styrene-type Carboxylic Acids and Amides: Synthesis of Chalcogenated Isobenzofuran-1(3H)-ones and Isochroman-1-ones. Synlett, 0, 0, .	1.0	2
240	Rapid access to polycyclic N-heteroarenes from unactivated, simple azines via a base-promoted Minisci-type annulation. Nature Communications, 2022, 13, 2421.	5.8	6

#	Article	IF	CITATIONS
241	Molecular Iodine atalysed Reductive Alkylation of Indoles: Late tage Diversification for Bioactive Molecules. European Journal of Organic Chemistry, 2022, 2022, .	1.2	5
242	"Cut and Paste―Processes in the Search of Bioactive Products: One-Pot, Metal-free O-Radical Scission-Oxidation-Addition of C, N or P-Nucleophiles. Frontiers in Chemistry, 2022, 10, .	1.8	0
243	An Expedient Method for the Umpolung Coupling of Enols with Heteronucleophiles**. Chemistry - A European Journal, 2022, 28, .	1.7	4
244	Baseâ€Promoted Reaction of Phenols with Spirocylic λ ³ â€lodanes: Access to Both 2â€lodovinyl Aryl Ethers and Diaryl Ethers. European Journal of Organic Chemistry, 2022, 2022, .	1.2	5
245	lodonitrene: a direct metal-free electrophilic aminating reagent. Organic Chemistry Frontiers, 2022, 9, 3897-3907.	2.3	4
246	Metal- and base-free regioselective cascade sulfonylation-cyclization of 1,5-dienes <i>via</i> the insertion of sulfur dioxide: access to pyrrolinones. New Journal of Chemistry, 2022, 46, 12901-12904.	1.4	4
247	Straightforward Synthesis of Alkyl Fluorides via Visible-Light-Induced Hydromono- and Difluoroalkylations of Alkenes with \hat{l}_{\pm} -Fluoro Carboxylic Acids. Journal of Organic Chemistry, 2022, 87, 9232-9241.	1.7	14
248	Acetic Acid-Promoted Photoredox Catalyzed Trifluoromethylation of Aldehyde Hydrazones. Journal of Fluorine Chemistry, 2022, , 110003.	0.9	0
250	Decatungstate-catalyzed radical disulfuration through direct C-H functionalization for the preparation of unsymmetrical disulfides. Nature Communications, 2022, 13, .	5.8	22
251	PIFA Induced Regioselective Câ€H Chalcogenylation of Benzo[<i>d</i>]imidazo[5,1â€ <i>b</i>]thiazoles under Mild Conditions. Asian Journal of Organic Chemistry, 2022, 11, .	1.3	6
252	Palladium catalyzed radical relay for the oxidative cross-coupling of quinolines. Nature Communications, 2022, 13 , .	5.8	7
253	$1,\!2$ -Amino oxygenation of alkenes with hydrogen evolution reaction. Nature Communications, 2022, $13,$	5.8	19
254	Iodine–Iodine Cooperation Enables Metal-Free C–N Bond-Forming Electrocatalysis via Isolable Iodanyl Radicals. Journal of the American Chemical Society, 2022, 144, 13913-13919.	6.6	14
255	Hypervalent Iodineâ€Mediated Azidation Reactions. European Journal of Organic Chemistry, 2022, 2022, .	1.2	14
256	Quaternization of azido-N-heteroarenes with Meerwein reagent: A straightforward synthesis of 2-azido(benzo)imidazolium and related azido-N-heteroarenium tetrafluoroborates. Tetrahedron Letters, 2022, , 154063.	0.7	0
257	Visible Light-Induced 4-Chromanones Synthesis: Radical Cascade Cyclization of $\langle i \rangle \hat{l} \pm \langle j \rangle$ -Oxocarboxylic Acids with $\langle i \rangle \circ \langle j \rangle$ -(Allyloxy)arylaldehydes Promoted by Phenyliodine(III) Diacetate. Chinese Journal of Organic Chemistry, 2022, 42, 2488.	0.6	6
258	Sustainable Wackerâ€Type Oxidations. Angewandte Chemie - International Edition, 2022, 61, .	7.2	11
259	Sustainable Wackerâ€Type Oxidations. Angewandte Chemie, 2022, 134, .	1.6	0

#	Article	IF	CITATIONS
261	Hypervalent iodine(<scp>iii</scp>)-mediated oxidative dearomatization of 2 <i>H</i> -indazoles towards indazolyl indazolones. Organic and Biomolecular Chemistry, 2022, 20, 8893-8897.	1.5	7
262	The polymerization of carvacrol catalyzed by Mn-porphyrins: obtaining the desired product guided by the choice of solvent, oxidant, and catalyst. New Journal of Chemistry, 2022, 46, 21136-21147.	1.4	1
263	Mechanistic Insight into Phenol Dearomatization by Hypervalent Iodine: Direct Detection of a Phenoxenium Cation. Journal of Organic Chemistry, 2022, 87, 14274-14283.	1.7	4
264	Iodobenzene-catalyzed photochemical heteroarylation of alcohols by rupture of inert C–H and C–C bonds. , 2022, 4, 100031.		1
265	Photoactive Copper Complexes: Properties and Applications. Chemical Reviews, 2022, 122, 16365-16609.	23.0	81
266	Organocatalytic synthesis of β-enaminyl radicals as single-electron donors for phenyliodine(<scp>iii</scp>) dicarboxylates: direct one-pot alkylation–aminoxidation of styrenes. Organic and Biomolecular Chemistry, 2023, 21, 761-767.	1.5	2
267	Cyclic Diaryl λ ³ -Chloranes: Reagents and Their C–C and C–O Couplings with Phenols <i>via</i> Aryne Intermediates. Journal of the American Chemical Society, 2023, 145, 345-358.	6.6	15
268	Hypervalent iodine mediated Pd(II)â€catalyzed <i>ortho</i> â€C(<i>sp</i> ² â~H) functionalization of azoles deciphering Hantzsch ester and malononitrile as the functional group surrogates. ChemistrySelect, 2022, 7, .	0.7	0
269	Visible Light Promotes Cascade Trifluoromethylation/Cyclization, Leading to Trifluoromethylated Polycyclic Quinazolinones, Benzimidazoles and Indoles. Molecules, 2022, 27, 8389.	1.7	5
270	Mn(III)-Mediated Radical Addition/Cyclization of Isocyanides with Aryl Boronic Acids/Diarylphosphine Oxides: Access to 11-Functionalized Dibenzodiazepines. Journal of Organic Chemistry, 2023, 88, 198-210.	1.7	6
271	C–H Diselenation and Monoselenation of Electron-Deficient Alkenes via Radical Coupling at Room Temperature. Journal of Organic Chemistry, 2022, 87, 16175-16187.	1.7	3
272	lodine(III)-Based Hypervalent Iodine Electrophiles in Organic Synthesis. Current Organic Chemistry, 2022, 26, 1917-1934.	0.9	2
273	Visible-Light Photoredox Catalysis for the Synthesis of Fluorinated Aromatic Compounds. Catalysts, 2023, 13, 94.	1.6	6
274	Oxidative Chlorination: A Sustainable Alternative for the Preparation of Chloroarenes. Current Green Chemistry, 2023, 10, .	0.7	0
275	Merging Copper(I) Photoredox Catalysis and Iodine(III) Chemistry for the Oxyâ€monofluoromethylation of Alkenes. Angewandte Chemie, 2023, 135, .	1.6	0
276	Merging Copper(I) Photoredox Catalysis and Iodine(III) Chemistry for the Oxyâ€monofluoromethylation of Alkenes. Angewandte Chemie - International Edition, 2023, 62, .	7.2	8
277	Transformations based on direct excitation of hypervalent iodine(<scp>iii</scp>) reagents. Organic Chemistry Frontiers, 2023, 10, 1577-1586.	2.3	2
278	Cyclic Diaryliodonium Salts: Ecoâ€Friendly and Versatile Building Blocks for Organic Synthesis. Advanced Synthesis and Catalysis, 2023, 365, 1112-1139.	2.1	9

#	Article	lF	Citations
279	Photoinitiated Deaminative Alkylation of Quinoxalinâ€2(1 <i>H</i>)â€ones via Electron Catalysis. Advanced Synthesis and Catalysis, 2023, 365, 865-870.	2.1	3
280	Copper-catalyzed radical trifluoromethylalkynylation of unactivated alkenes with terminal alkynes. Journal of Fluorine Chemistry, 2023, 267, 110107.	0.9	2
281	Selective multi-electron aggregation at a hypervalent iodine center by sequential disproportionation. Chemical Communications, 2023, 59, 4308-4311.	2.2	3
282	Ironâ€Catalyzed Trifluoromethylation of Indoleâ€Tethered Alkene Enables Synthesis of CF ₃ â€Containing Spiroindolenines and Tetrahydrocarbazoles. European Journal of Organic Chemistry, 2023, 26, .	1.2	0
283	Recent Progress in Synthetic Applications of Cyclic Hypervalent Iodine(III) Reagents. Advanced Synthesis and Catalysis, 2023, 365, 2653-2675.	2.1	10
290	Radical bicyclization of 1,6-enynes with sulfonyl hydrazides by the use of TBAI/TBHP in the aqueous phase. Chemical Communications, 2023, 59, 6391-6394.	2.2	10
293	Recent advances in synthetic application and functionalization of organohypervalent iodine reagents. AIP Conference Proceedings, 2023, , .	0.3	0
309	Organic radicals: formation, classification, and environmental application. , 2024, , 393-412.		O