Interactions between gut bacteria and bile in health and

Molecular Aspects of Medicine 56, 54-65 DOI: 10.1016/j.mam.2017.06.002

Citation Report

#	Article	IF	CITATIONS
1	Does Modification of the Large Intestinal Microbiome Contribute to the Anti-inflammatory Activity of Fermentable Fiber?. Current Developments in Nutrition, 2017, 2, cdn.117.001180.	0.1	6
2	Gut–Liver Axis Derangement in Non-Alcoholic Fatty Liver Disease. Children, 2017, 4, 66.	0.6	85
3	Effects of Antidiabetic Drugs on Gut Microbiota Composition. Genes, 2017, 8, 250.	1.0	104
4	Interactions between Bacteria and Bile Salts in the Gastrointestinal and Hepatobiliary Tracts. Frontiers in Medicine, 2017, 4, 163.	1.2	289
5	The Role of the Gut Microbiota in Bile Acid Metabolism. Annals of Hepatology, 2017, 16, S21-S26.	0.6	210
6	Bile Acid Physiology. Annals of Hepatology, 2017, 16, S4-S14.	0.6	306
7	Bile Acids and Cancer: Direct and Environmental-Dependent Effects. Annals of Hepatology, 2017, 16, S87-S105.	0.6	76
8	Bile acid regulation: A novel therapeutic strategy in non-alcoholic fatty liver disease. , 2018, 190, 81-90.		36
9	Microbiome-mediated bile acid modification: Role in intestinal drug absorption and metabolism. Pharmacological Research, 2018, 133, 170-186.	3.1	66
10	Better living through chemistry: Addressing emerging antibiotic resistance. Experimental Biology and Medicine, 2018, 243, 538-553.	1.1	8
11	Flavonoids and the gastrointestinal tract: Local and systemic effects. Molecular Aspects of Medicine, 2018, 61, 41-49.	2.7	181
12	Cholecystectomy and risk of metabolic syndrome. European Journal of Internal Medicine, 2018, 53, 3-11.	1.0	39
13	Polymeric bile acid sequestrants: Review of design, inÂvitro binding activities, and hypocholesterolemic effects. European Journal of Medicinal Chemistry, 2018, 144, 300-317.	2.6	27
14	The long term effect of metabolic profile and microbiota status in early gastric cancer patients after subtotal gastrectomy. PLoS ONE, 2018, 13, e0206930.	1.1	19
15	Is It Time to Use Probiotics to Prevent or Treat Obesity?. Nutrients, 2018, 10, 1613.	1.7	72
16	Alterations of Gut Microbiota in Cholestatic Infants and Their Correlation With Hepatic Function. Frontiers in Microbiology, 2018, 9, 2682.	1.5	42
17	Gut Microbiota-Mediated Bile Acid Transformations Alter the Cellular Response to Multidrug Resistant Transporter Substrates <i>in Vitro</i> : Focus on P-glycoprotein. Molecular Pharmaceutics, 2018, 15, 5711-5727.	2.3	13
18	Nuclear receptors and liver disease: Summary of the 2017 basic research symposium. Hepatology Communications, 2018, 2, 765-777.	2.0	15

ARTICLE IF CITATIONS # Gut Microbiome and Metabolism., 2018, , 775-793. 3 19 New insights into bacterial bile resistance mechanisms: the role of bile salt hydrolase and its impact 101 on human health. Food Research International, 2018, 112, 250-262. Guts and Gall: Bile Acids in Regulation of Intestinal Epithelial Function in Health and Disease. 21 13.1 184 Physiological Reviews, 2018, 98, 1983-2023. Multifaceted Defense against Listeria monocytogenes in the Gastro-Intestinal Lumen. Pathogens, 2018, 1.2 7, 1. Bile salt hydrolases: Structure and function, substrate preference, and inhibitor development. 23 3.1 49 Protein Science, 2018, 27, 1742-1754. Connecting the immune system, systemic chronic inflammation and the gut microbiome: The role of sex. Journal of Autoimmunity, 2018, 92, 12-34. 3.0 Role of the gut microbiota in nutrition and health. BMJ: British Medical Journal, 2018, 361, k2179. 25 2.4 1,228 Bile Formation and the Enterohepatic Circulation., 2018, , 931-956. 26 21 Good or bad: gut bacteria in human health and diseases. Biotechnology and Biotechnological Equipment, 2018, 32, 1075-1080. 27 0.5 55 Bile acids and FXR in functional gastrointestinal disorders. Digestive and Liver Disease, 2018, 50, 0.4 795-803. The role of the gut microbiome in chronic liver disease: the clinical evidence revised. JHEP Reports, 29 2.6 96 2019, 1, 214-226. The human gut microbiome $\hat{a} \in \hat{a}$ a new and exciting avenue in cardiovascular drug discovery. Expert Opinion on Drug Discovery, 2019, 14, 1037-1052. 2.5 Metabolism, bioenergetics and thermal physiology: influences of the human intestinal microbiota. $\mathbf{31}$ 2.1 14 Nutrition Research Reviews, 2019, 32, 205-217. Metagenomic analysis of bile salt biotransformation in the human gut microbiome. BMC Genomics, 2019, 20, 517. 1.2 44 Metabolic and gut microbiome changes following GLP-1 or dual GLP-1/GLP-2 receptor agonist 33 1.6 64 treatment in diet-induced obese mice. Scientific Reports, 2019, 9, 15582. Why Bile Acids Are So Important in Non-Alcoholic Fatty Liver Disease (NAFLD) Progression. Cells, 2019, 1.8 89 8, 1358. The Cholesterol-Lowering Effect of Oats and Oat Beta Glucan: Modes of Action and Potential Role of 35 1.6 104 Bile Acids and the Microbiome. Frontiers in Nutrition, 2019, 6, 171. The complex structure of bile salt hydrolase from Lactobacillus salivarius reveals the structural basis of substrate specificity. Scientific Reports, 2019, 9, 12438.

		CITATION REPORT	
# 37	ARTICLE Ozone-induced changes in the serum metabolome: Role of the microbiome. PLoS ONE, 2019, 14, e0221633.	IF 1.1	CITATIONS
38	In Vitro Replication of Human Norovirus. Viruses, 2019, 11, 547.	1.5	24
39	Metabolomics analysis of <i>Pulsatilla</i> decoction on treatment of wetnessâ€heatâ€induced diarrhea in rats based on UPLC–Q/TOF–MS/MS. Biomedical Chromatography, 2019, 33, e4629.	0.8	13
40	Impact of bile salts on coevolutionary dynamics between the gut bacterium Escherichia coli and its lytic phage PP01. Infection, Genetics and Evolution, 2019, 73, 425-432.	1.0	13
41	Analysis of Health Benefits Conferred by Lactobacillus Species from Kefir. Nutrients, 2019, 11, 1252.	1.7	109
42	Gut microbiota in ALS: possible role in pathogenesis?. Expert Review of Neurotherapeutics, 2019, 19, 785-805.	1.4	30
43	Isotopic dilution method for bile acid profiling reveals new sulfate glycine-conjugated dihydroxy bile acids and glucuronide bile acids in serum. Journal of Pharmaceutical and Biomedical Analysis, 2019, 173, 1-17.	1.4	14
44	Multi-Omic Analysis of the Microbiome and Metabolome in Healthy Subjects Reveals Microbiome-Dependent Relationships Between Diet and Metabolites. Frontiers in Genetics, 2019, 10, 454.	1.1	104
45	<i>In vitro</i> survival of <i>Bifidobacterium bifidum</i> microencapsulated in zein-coated alginate hydrogel microbeads. Journal of Microencapsulation, 2019, 36, 192-203.	1.2	59
46	Gut Reactions: Breaking Down Xenobiotic–Microbiome Interactions. Pharmacological Reviews, 2019, 71, 198-224.	7.1	211
47	Differential View on the Bile Acid Stress Response of Clostridioides difficile. Frontiers in Microbiology, 2019, 10, 258.	1.5	24
48	Intestinal Bacteria Interplay With Bile and Cholesterol Metabolism: Implications on Host Physiology. Frontiers in Physiology, 2019, 10, 185.	1.3	171
49	Fucoidan and galactooligosaccharides ameliorate high-fat diet–induced dyslipidemia in rats by modulating the gut microbiota and bile acid metabolism. Nutrition, 2019, 65, 50-59.	1.1	105
50	Review on Bile Acids: Effects of the Gut Microbiome, Interactions with Dietary Fiber, and Alterations in the Bioaccessibility of Bioactive Compounds. Journal of Agricultural and Food Chemistry, 2019, 67, 9124-9138.	2.4	106
51	Microbiome—Microbial Metabolome—Cancer Cell Interactions in Breast Cancer—Familiar, but Unexplored. Cells, 2019, 8, 293.	1.8	123
52	Lactobacillus mucosae DPC 6426 as a bile-modifying and immunomodulatory microbe. BMC Microbiology, 2019, 19, 33.	1.3	27
53	Enhancement of bile resistance by maltodextrin supplementation in <i>Lactobacillus plantarum</i> Lpâ€115. Journal of Applied Microbiology, 2019, 126, 1551-1557.	1.4	9
54	Enteric hyperoxaluria. Current Opinion in Nephrology and Hypertension, 2019, 28, 352-359.	1.0	21

#	Article	IF	CITATIONS
55	Gut microbiota and health: connecting actors across the metabolic system. Proceedings of the Nutrition Society, 2019, 78, 177-188.	0.4	49
56	Interaction of gut microbiota with dysregulation of bile acids in the pathogenesis of nonalcoholic fatty liver diseaseÂand potential therapeutic implications of probiotics. Journal of Cellular Biochemistry, 2019, 120, 2713-2720.	1.2	95
57	Comparative study of gut microbiota in wild and captive Malaysian Mahseer (<i>Tor tambroides</i>). MicrobiologyOpen, 2019, 8, e00734.	1.2	30
58	Potential mechanisms linking gut microbiota and portal hypertension. Liver International, 2019, 39, 598-609.	1.9	34
59	An insight into gut microbiota and its functionalities. Cellular and Molecular Life Sciences, 2019, 76, 473-493.	2.4	552
60	Analysis of metabolome changes in the bile acid pool in feces and plasma of antibiotic-treated rats. Toxicology and Applied Pharmacology, 2019, 363, 79-87.	1.3	43
61	Microbial impact on cholesterol and bile acid metabolism: current status and future prospects. Journal of Lipid Research, 2019, 60, 323-332.	2.0	149
62	Bioactivity of soy-based fermented foods: A review. Biotechnology Advances, 2019, 37, 223-238.	6.0	149
63	Xyloglucan affects gut-liver circulating bile acid metabolism to improve liver damage in mice fed with high-fat diet. Journal of Functional Foods, 2020, 64, 103651.	1.6	17
64	(-)-Epicatechin and NADPH oxidase inhibitors prevent bile acid-induced Caco-2 monolayer permeabilization through ERK1/2 modulation. Redox Biology, 2020, 28, 101360.	3.9	35
65	Metabolic Analysis of Regionally Distinct Gut Microbial Communities Using an <i>In Vitro</i> Platform. Journal of Agricultural and Food Chemistry, 2020, 68, 13056-13067.	2.4	10
66	Nigral overexpression of αâ€synuclein in a rat Parkinson's disease model indicates alterations in the enteric nervous system and the gut microbiome. Neurogastroenterology and Motility, 2020, 32, e13726.	1.6	61
67	Impact of Steviol Glycosides and Erythritol on the Human and <i>Cebus apella</i> Gut Microbiome. Journal of Agricultural and Food Chemistry, 2020, 68, 13093-13101.	2.4	32
68	Gut Microbial Metabolites and Biochemical Pathways Involved in Irritable Bowel Syndrome: Effects of Diet and Nutrition on the Microbiome. Journal of Nutrition, 2020, 150, 1012-1021.	1.3	22
69	Clostridium butyricum, a butyrate-producing probiotic, inhibits intestinal tumor development through modulating Wnt signaling and gut microbiota. Cancer Letters, 2020, 469, 456-467.	3.2	256
70	Coordinated transformation of the gut microbiome and lipidome of bowhead whales provides novel insights into digestion. ISME Journal, 2020, 14, 688-701.	4.4	18
71	Current and potential treatments for primary biliary cholangitis. The Lancet Gastroenterology and Hepatology, 2020, 5, 306-315.	3.7	66
72	Duodenal microbiome in patients with or without <i>Helicobacter pylori</i> infection. Helicobacter, 2020, 25, e12753.	1.6	7

#	Article	IF	CITATIONS
73	The Gut Microbiota and Oxidative Stress in Autism Spectrum Disorders (ASD). Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-13.	1.9	29
74	Xyloglucan compounded inulin or arabinoxylan against glycometabolism disorder via different metabolic pathways: Gut microbiota and bile acid receptor effects. Journal of Functional Foods, 2020, 74, 104162.	1.6	8
75	The Gut Microbiota and Inflammation: An Overview. International Journal of Environmental Research and Public Health, 2020, 17, 7618.	1.2	296
76	The Gut Microbiota-Produced Indole-3-Propionic Acid Confers the Antihyperlipidemic Effect of Mulberry-Derived 1-Deoxynojirimycin. MSystems, 2020, 5, .	1.7	36
77	Lifestyle related changes with partially hydrolyzed guar gum dietary fiber in healthy athlete individuals – A randomized, double-blind, crossover, placebo-controlled gut microbiome clinical study. Journal of Functional Foods, 2020, 72, 104067.	1.6	14
78	Correlation of fecal metabolomics and gut microbiota in mice with endometriosis. American Journal of Reproductive Immunology, 2020, 84, e13307.	1.2	35
79	Gut Microbiota-Bile Acid Crosstalk in Diarrhea-Irritable Bowel Syndrome. BioMed Research International, 2020, 2020, 1-16.	0.9	42
80	Microbial Metabolites as Molecular Mediators of Host-Microbe Symbiosis in Colorectal Cancer. Results and Problems in Cell Differentiation, 2020, 69, 581-603.	0.2	2
81	A commercial grain-free diet does not decrease plasma amino acids and taurine status but increases bile acid excretion when fed to Labrador Retrievers. Translational Animal Science, 2020, 4, txaa141.	0.4	16
82	Oatmeal induced gut microbiota alteration and its relationship with improved lipid profiles: a secondary analysis of a randomized clinical trial. Nutrition and Metabolism, 2020, 17, 85.	1.3	10
83	Relationship between intestinal microbiota, diet and biological systems: an integrated view. Critical Reviews in Food Science and Nutrition, 2022, 62, 1166-1186.	5.4	16
84	<i>Sargassum fusiforme</i> Fucoidan Alleviates High-Fat Diet-Induced Obesity and Insulin Resistance Associated with the Improvement of Hepatic Oxidative Stress and Gut Microbiota Profile. Journal of Agricultural and Food Chemistry, 2020, 68, 10626-10638.	2.4	61
85	Understanding the effects of dietary components on the gut microbiome and human health. Food Science and Biotechnology, 2020, 29, 1463-1474.	1.2	10
86	The Fecal Microbiome in Infants With Biliary Atresia Associates With Bile Flow After Kasai Portoenterostomy. Journal of Pediatric Gastroenterology and Nutrition, 2020, 70, 789-795.	0.9	12
87	Dual role of sirtuin 1 in inflammatory bowel disease. Immunopharmacology and Immunotoxicology, 2020, 42, 385-391.	1.1	15
88	Fucose Ameliorate Intestinal Inflammation Through Modulating the Crosstalk Between Bile Acids and Gut Microbiota in a Chronic Colitis Murine Model. Inflammatory Bowel Diseases, 2020, 26, 863-873.	0.9	34
89	Association of gut microbiota composition and copy number variation with Kasai procedure outcomes in infants with biliary atresia. Pediatrics and Neonatology, 2020, 61, 238-240.	0.3	3
90	Dysbiosis-Induced Secondary Bile Acid Deficiency Promotes Intestinal Inflammation. Cell Host and Microbe, 2020, 27, 659-670.e5.	5.1	404

#	Article	IF	CITATIONS
92	Microbe–microbe interactions during Clostridioides difficile infection. Current Opinion in Microbiology, 2020, 53, 19-25.	2.3	32
93	Beneficial bile acid metabolism from Lactobacillus plantarum of food origin. Scientific Reports, 2020, 10, 1165.	1.6	81
94	Effects of different carbohydrate sources on taurine status in healthy Beagle dogs. Journal of Animal Science, 2020, 98, .	0.2	22
95	The mutual interplay of gut microbiota, diet and human disease. FEBS Journal, 2020, 287, 833-855.	2.2	176
96	Gut microbiota in reintroduction of giant panda. Ecology and Evolution, 2020, 10, 1012-1028.	0.8	18
97	Oncobiosis and Microbial Metabolite Signaling in Pancreatic Adenocarcinoma. Cancers, 2020, 12, 1068.	1.7	32
98	Role of Gut Microbiota in Neuroendocrine Regulation of Carbohydrate and Lipid Metabolism via the Microbiota-Gut-Brain-Liver Axis. Microorganisms, 2020, 8, 527.	1.6	101
99	DEHP induce cholesterol imbalance via disturbing bile acid metabolism by altering the composition of gut microbiota in rats. Chemosphere, 2021, 263, 127959.	4.2	31
100	Bile acids modulate colonic MAdCAM-1 expression in a murine model of combined cholestasis and colitis. Mucosal Immunology, 2021, 14, 479-490.	2.7	16
101	Therapeutic mechanisms of traditional Chinese medicine to improve metabolic diseases via the gut microbiota. Biomedicine and Pharmacotherapy, 2021, 133, 110857.	2.5	67
102	Bile Acid Signaling in Inflammatory Bowel Diseases. Digestive Diseases and Sciences, 2021, 66, 674-693.	1.1	102
103	Investigational drugs in early phase development for primary biliary cholangitis. Expert Opinion on Investigational Drugs, 2021, 30, 131-141.	1.9	7
104	Developmental Patterns of Fecal Bile Acids in Healthy Neonates and Children. Medical Science Monitor, 2021, 27, e928214.	0.5	2
105	Bile Acids and Microbiota: Multifaceted and Versatile Regulators of the Liver–Gut Axis. International Journal of Molecular Sciences, 2021, 22, 1397.	1.8	59
106	A high-fat diet and high-fat and high-cholesterol diet may affect glucose and lipid metabolism differentially through gut microbiota in mice. Experimental Animals, 2021, 70, 73-83.	0.7	35
107	Behavior of Nonâ€Digestible Polysaccharides in Gastrointestinal Tract: A Mechanistic Review of its Antiâ€Obesity Effect. EFood, 2021, 2, 59-72.	1.7	35
108	Personalized nutrition for colorectal cancer. Advances in Cancer Research, 2021, 151, 109-136.	1.9	3
109	The Role of Intestinal Bacteria and Gut–Brain Axis in Hepatic Encephalopathy. Frontiers in Cellular and Infection Microbiology, 2020, 10, 595759.	1.8	42

#	Article	IF	CITATIONS
110	Probiotics and MicroRNA: Their Roles in the Host–Microbe Interactions. Frontiers in Microbiology, 2020, 11, 604462.	1.5	33
111	<i>Sargassum fusiforme</i> fucoidan modifies gut microbiota and intestinal metabolites during alleviation of hyperglycemia in type 2 diabetic mice. Food and Function, 2021, 12, 3572-3585.	2.1	38
112	Pharmacological and Metabolic Significance of Bile Acids in Retinal Diseases. Biomolecules, 2021, 11, 292.	1.8	8
113	The Absence of Gut Microbiota Alters the Development of the Apicomplexan Parasite Eimeria tenella. Frontiers in Cellular and Infection Microbiology, 2020, 10, 632556.	1.8	17
114	Gut Dysbiosis and Abnormal Bile Acid Metabolism in Colitis-Associated Cancer. Gastroenterology Research and Practice, 2021, 2021, 1-12.	0.7	18
115	Development of a novel model of cholecystectomy in subsequently ovariectomized mice and characterization of metabolic and gastrointestinal phenotypes: a pilot study. BMC Gastroenterology, 2021, 21, 62.	0.8	1
116	Health-Promoting Role of Lactiplantibacillus plantarum Isolated from Fermented Foods. Microorganisms, 2021, 9, 349.	1.6	72
117	Multiple Selection Criteria for Probiotic Strains with High Potential for Obesity Management. Nutrients, 2021, 13, 713.	1.7	19
118	Gut microbiota-derived metabolites in the regulation of host immune responses and immune-related inflammatory diseases. Cellular and Molecular Immunology, 2021, 18, 866-877.	4.8	175
119	Gut–Liver Axis in Nonalcoholic Fatty Liver Disease: the Impact of the Metagenome, End Products, and the Epithelial and Vascular Barriers. Seminars in Liver Disease, 2021, 41, 191-205.	1.8	10
120	Functional and Phylogenetic Diversity of BSH and PVA Enzymes. Microorganisms, 2021, 9, 732.	1.6	21
121	Combined LC–MS/MS and 16S rDNA analysis on mice under high temperature and humidity and Herb Yinchen protection mechanism. Scientific Reports, 2021, 11, 5099.	1.6	3
122	The Life-Long Role of Nutrition on the Gut Microbiome and Gastrointestinal Disease. Gastroenterology Clinics of North America, 2021, 50, 77-100.	1.0	5
124	Isomaltulose Exhibits Prebiotic Activity, and Modulates Gut Microbiota, the Production of Short Chain Fatty Acids, and Secondary Bile Acids in Rats. Molecules, 2021, 26, 2464.	1.7	17
125	Phosphate, Microbiota and CKD. Nutrients, 2021, 13, 1273.	1.7	18
126	Role of the gut microbiota in type 2 diabetes and related diseases. Metabolism: Clinical and Experimental, 2021, 117, 154712.	1.5	152
127	A Combination of Lactoplantibacillus plantarum Strains CECT7527, CECT7528, and CECT7529 Plus Monacolin K Reduces Blood Cholesterol: Results from a Randomized, Double-Blind, Placebo-Controlled Study. Nutrients, 2021, 13, 1206.	1.7	10
128	Bile acids and their receptors in metabolic disorders. Progress in Lipid Research, 2021, 82, 101094.	5.3	112

	Ста	CITATION REPORT	
#	ARTICLE	IF	CITATIONS
129	Circulating bile acids as a link between the gut microbiota and cardiovascular health: impact of prebiotics, probiotics and polyphenol-rich foods. Nutrition Research Reviews, 2022, 35, 161-180.	2.1	50
130	Impact of Bacterial Metabolites on Gut Barrier Function and Host Immunity: A Focus on Bacterial Metabolism and Its Relevance for Intestinal Inflammation. Frontiers in Immunology, 2021, 12, 658354.	2.2	171
131	Programming gene expression in multicellular organisms for physiology modulation through engineered bacteria. Nature Communications, 2021, 12, 2689.	5.8	6
132	The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nature Reviews Gastroenterology and Hepatology, 2021, 18, 649-667.	8.2	701
133	Shortâ€chain fatty acids and bile acids in human faeces are associated with the intestinal cholesterol conversion status. British Journal of Pharmacology, 2021, 178, 3342-3353.	2.7	11
134	<i>Lactobacillus acidophilus</i> LA14 Alleviates Liver Injury. MSystems, 2021, 6, e0038421.	1.7	30
135	Integrative Analysis of Colonic Biopsies from Inflammatory Bowel Disease Patients Identifies an Interaction Between Microbial Bile Acid-inducible Gene Abundance and Human Angiopoietin-like 4 Gene Expression. Journal of Crohn's and Colitis, 2021, 15, 2078-2087.	2 0.6	10
136	Characteristics of Gut Microbiota in Children With Biliary Atresia After Liver Transplantation. Frontiers in Physiology, 2021, 12, 704313.	1.3	8
137	Altered profiles of fecal bile acids correlate with gut microbiota and inflammatory responses in patients with ulcerative colitis. World Journal of Gastroenterology, 2021, 27, 3609-3629.	1.4	56
138	Alphaâ€linolenic acid regulates the gut microbiota and the inflammatory environment in a mouse mode of endometriosis. American Journal of Reproductive Immunology, 2021, 86, e13471.		14
139	Mining microbes for mental health: Determining the role of microbial metabolic pathways in human brain health and disease. Neuroscience and Biobehavioral Reviews, 2021, 125, 698-761.	2.9	80
140	Probiotics Lactobacillus rhamnosus GG ATCC53103 and Lactobacillus plantarum JL01 induce cytokine alterations by the production of TCDA, DHA, and succinic and palmitic acids, and enhance immunity of weaned piglets. Research in Veterinary Science, 2021, 137, 56-67.	0.9	15
141	Impact of supplementary Lactobacillus casei K17 on growth and gut health of largemouth bass Micropterus salmoides. Aquaculture Reports, 2021, 20, 100734.	0.7	3
142	Prebiotic inulin as a treatment of obesity related nonalcoholic fatty liver disease through gut microbiota: a critical review. Critical Reviews in Food Science and Nutrition, 2023, 63, 862-872.	5.4	10
143	Invited review: Characterization of new probiotics from dairy and nondairy products—Insights into acid tolerance, bile metabolism and tolerance, and adhesion capability. Journal of Dairy Science, 2021, 104, 8363-8379.	1.4	60
144	The pathogenesis, models and therapeutic advances of primary biliary cholangitis. Biomedicine and Pharmacotherapy, 2021, 140, 111754.	2.5	21
145	Protective Property of Scutellarin Against Liver Injury Induced by Carbon Tetrachloride in Mice. Frontiers in Pharmacology, 2021, 12, 710692.	1.6	14
146	Purification, characterization, and bioactivity of Liupao tea polysaccharides before and after fermentation. Food Chemistry, 2021, 353, 129419.	4.2	48

#	Article	IF	CITATIONS
147	The impact of pelvic radiotherapy on the gut microbiome and its role in radiation-induced diarrhoea: a systematic review. Radiation Oncology, 2021, 16, 187.	1.2	20
148	Gut Microbiota-Derived Metabolites in Irritable Bowel Syndrome. Frontiers in Cellular and Infection Microbiology, 2021, 11, 729346.	1.8	65
149	A review on enzyme-producing lactobacilli associated with the human digestive process: From metabolism to application. Enzyme and Microbial Technology, 2021, 149, 109836.	1.6	21
150	Bile Acid–Gut Microbiota Axis in Inflammatory Bowel Disease: From Bench to Bedside. Nutrients, 2021, 13, 3143.	1.7	67
151	Effects of Previous Kasai Surgery on Gut Microbiota and Bile Acid in Biliary Atresia With End-Stage Liver Disease. Frontiers in Medicine, 2021, 8, 704328.	1.2	2
152	Microbiome Assisted Tumor Microenvironment: Emerging Target of Breast Cancer. Clinical Breast Cancer, 2022, 22, 200-211.	1.1	10
153	Effects of sublethal concentration of metamifop on hepatic lipid metabolism in adult zebrafish (Danio) Tj ETQq0 (0 0 rgBT /0 1.9	Overlock 10 T
154	Association of Gut Microbiota and Metabolites With Disease Progression in Children With Biliary Atresia. Frontiers in Immunology, 2021, 12, 698900.	2.2	14
155	Effect of microbiota metabolites on the progression of chronic hepatitis B virus infection. Hepatology International, 2021, 15, 1053-1067.	1.9	7
156	Recent advances, novel targets and treatments for cholelithiasis; a narrative review. European Journal of Pharmacology, 2021, 908, 174376.	1.7	8
157	Assessment of Lactobacillus casei rhamnosus (LGG) therapy in children with biliary atresia – Randomized placebo controlled trial. Clinics and Research in Hepatology and Gastroenterology, 2021, 45, 101753.	0.7	5
158	Microbiome Management of Neurological Disorders. , 2022, , 342-357.		0
159	Gut Microbiota Interactions With Dietary Terpenoids and Nitrogen-Containing Phytochemicals. , 2021, , 124-124.		1
160	Gut Microbiota and Cancer of the Host: Colliding Interests. Advances in Experimental Medicine and Biology, 2020, 1219, 93-107.	0.8	21
161	A combination of three plasma bile acids as a putative biomarker for schizophrenia. Acta Neuropsychiatrica, 2021, 33, 51-54.	1.0	14
162	Dysbiosis-Induced Secondary Bile Acid Deficiency Promotes Intestinal Inflammation. SSRN Electronic Journal, 0, , .	0.4	1
163	Gut Microbiota, Obesity and Bariatric Surgery: Current Knowledge and Future Perspectives. Current Pharmaceutical Design, 2019, 25, 2038-2050.	0.9	19
164	Survival of Beneficial Vaginal Lactobacilli (BVL) to Different Gastrointestinal Tract Conditions. Current Pharmaceutical Design, 2020, 26, 3608-3618.	0.9	6

#	Article	IF	CITATIONS
165	Gallstone Disease, Obesity and the Firmicutes/Bacteroidetes Ratio as a Possible Biomarker of Gut Dysbiosis. Journal of Personalized Medicine, 2021, 11, 13.	1.1	121
166	Regulation of the intestinal microbiota: An emerging therapeutic strategy for inflammatory bowel disease. World Journal of Gastroenterology, 2020, 26, 4378-4393.	1.4	15
167	Altered metabolism of bile acids correlates with clinical parameters and the gut microbiota in patients with diarrhea-predominant irritable bowel syndrome. World Journal of Gastroenterology, 2020, 26, 7153-7172.	1.4	42
168	Role of Gut Microbiota in Bile-Acid Metabolism. , 0, , .		0
169	Interactions between gut microbiota and berberine, a necessary procedure to understand the mechanisms of berberine. Journal of Pharmaceutical Analysis, 2022, 12, 541-555.	2.4	55
170	Examining the Effects of Diet Composition, Soluble Fiber, and Species on Total Fecal Excretion of Bile Acids: A Meta-Analysis. Frontiers in Veterinary Science, 2021, 8, 748803.	0.9	11
171	Advanced Progression in the Mechanism of Bile Acid Metabolism Targeting FXR. Hans Journal of Biomedicine, 2018, 08, 62-68.	0.0	0
172	COLONIC MICROBIOTA AND CHRONIC KIDNEY DISEASE. MESSAGE ONE. Nephrology (Saint-Petersburg), 2018, 22, 57-73.	0.1	8
173	Clinical efficacy of drugs based on probiotic strains of Saccharomyces boulardii. Meditsinskiy Sovet, 2020, , 104-112.	0.1	0
175	The probiotic potential of Lactobacillus plantarum strain RW1 isolated from canine faeces. Journal of Applied Microbiology, 2022, 132, 2306-2322.	1.4	4
176	Gut Microbiota, Glucose, Lipid, and Water-Electrolyte Metabolism in Children With Nonalcoholic Fatty Liver Disease. Frontiers in Cellular and Infection Microbiology, 2021, 11, 683743.	1.8	30
177	The Microbiota-Gut-Liver Axis: Implications for the Pathophysiology of Liver Disease. , 2020, , 125-137.		0
178	1-Deoxynojirimycin (DNJ) Exerts Female-Prefered Anti-Hyperlipidemic Effect <i>via</i> Gender-Specifically Modulation of the Gut Microbiota and Promoted Indole-3-Propionic Acid (IPA) Production. SSRN Electronic Journal, 0, , .	0.4	0
179	Effects of Diet on Human Gut Microbiome and Subsequent Influence on Host Physiology and Metabolism. , 2020, , 63-84.		1
180	Treating chronic diseases by regulating the gut microbiota. Engineering, 2021, , .	3.2	1
181	Prevotella copri ameliorates cholestasis and liver fibrosis in primary sclerosing cholangitis by enhancing the FXR signalling pathway. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2022, 1868, 166320.	1.8	14
182	Sex-related deposition and metabolism of vanisulfane, a novel vanillin-derived pesticide, in rats and its hepatotoxic and gonadal effects. Science of the Total Environment, 2022, 813, 152545.	3.9	7
183	The Role of FGF19 and MALRD1 in Enterohepatic Bile Acid Signaling. Frontiers in Endocrinology, 2021, 12, 799648.	1.5	9

#	Article	IF	CITATIONS
184	Cholesterol-lowering effect of bile salt hydrolase from a <i>Lactobacillus johnsonii</i> strain mediated by FXR pathway regulation. Food and Function, 2022, 13, 725-736.	2.1	7
185	The Role of the Microbiota in Regeneration-Associated Processes. Frontiers in Cell and Developmental Biology, 2021, 9, 768783.	1.8	3
187	猪è,é " 微生物ä,Žæœºä½"è,,,è [~] ïa»£è°¢ç"究进展. Scientia Sinica Vitae, 2022, , .	0.1	0
188	How Gut Microbes Nurture Intestinal Stem Cells: A Drosophila Perspective. Metabolites, 2022, 12, 169.	1.3	7
189	Billroth II anastomosis maintains SMI and BMI better than Roux-en-Y anastomosis following totally laparoscopic distal gastrectomy: a propensity score-matched study. Langenbeck's Archives of Surgery, 2022, , 1.	0.8	1
190	Modern biological connotation of diarrhea with kidney-Yang deficiency syndrome. World Chinese Journal of Digestology, 2022, 30, 119-127.	0.0	0
191	Bidirectional regulation of bile acid on colorectal cancer through bile acid-gut microbiota interaction. American Journal of Translational Research (discontinued), 2021, 13, 10994-11003.	0.0	1
192	Role of Microbiota-Gut-Brain Axis in Regulating Dopaminergic Signaling. Biomedicines, 2022, 10, 436.	1.4	71
193	Bile Acids: Key Players in Inflammatory Bowel Diseases?. Cells, 2022, 11, 901.	1.8	19
194	Drug Metabolism for the Identification of Clinical Biomarkers in Breast Cancer. International Journal of Molecular Sciences, 2022, 23, 3181.	1.8	4
195	Bile acid–gut microbiota crosstalk in irritable bowel syndrome. Critical Reviews in Microbiology, 2023, 49, 350-369.	2.7	10
196	Intestinal secretory mechanisms and diarrhea. American Journal of Physiology - Renal Physiology, 2022, 322, G405-G420.	1.6	12
197	Modulating of food glycemic response by lactic acid bacteria. Food Bioscience, 2022, 47, 101685.	2.0	1
198	Interplay between gut microbiota and bile acids in diarrhoea-predominant irritable bowel syndrome: a review. Critical Reviews in Microbiology, 2022, 48, 696-713.	2.7	10
199	The role of bile acids in carcinogenesis. Cellular and Molecular Life Sciences, 2022, 79, 243.	2.4	73
200	Bile acids, bioactive signalling molecules in interoceptive gutâ€ŧoâ€brain communication. Journal of Physiology, 2022, 600, 2565-2578.	1.3	3
210	Alterations of mucosa-attached microbiome and epithelial cell numbers in the cystic fibrosis small intestine with implications for intestinal disease. Scientific Reports, 2022, 12, 6593.	1.6	10
211	The Role of Depletion of Gut Microbiota in Osteoporosis and Osteoarthritis: A Narrative Review. Frontiers in Endocrinology, 2022, 13, 847401.	1.5	13

#	Article	IF	Citations
212	Evaluation of bile sterility in patients undergoing liver resection. Polski Przeglad Chirurgiczny, 2022, 94, 1-5.	0.2	0
213	Domestic Environment and Gut Microbiota: Lessons from Pet Dogs. Microorganisms, 2022, 10, 949.	1.6	7
214	Gut Microbiota and Bone Diseases: A Growing Partnership. Frontiers in Microbiology, 2022, 13, .	1.5	12
215	Production of New Microbially Conjugated Bile Acids by Human Gut Microbiota. Biomolecules, 2022, 12, 687.	1.8	19
216	Recent Trends of Microbiota-Based Microbial Metabolites Metabolism in Liver Disease. Frontiers in Medicine, 2022, 9, .	1.2	13
217	Antimicrobial activity, molecular typing and in vitro safety assessment of Lactococcus garvieae isolates from healthy cultured rainbow trout (Oncorhynchus mykiss, Walbaum) and rearing environment. LWT - Food Science and Technology, 2022, 162, 113496.	2.5	6
218	Molecular Mechanism of Polysaccharides Extracted from Chinese Medicine Targeting Gut Microbiota for Promoting Health. Chinese Journal of Integrative Medicine, 2024, 30, 171-180.	0.7	2
219	The Fungicide Prothioconazole and its Metabolite Prothioconazole-Desthio Disturbed the Liver-Gut Axis in Mice. SSRN Electronic Journal, 0, , .	0.4	0
220	Mucosa-Colonizing Microbiota Correlate With Host Autophagy Signaling in Patients With Inflammatory Bowel Disease. Frontiers in Microbiology, 2022, 13, .	1.5	5
221	Qing-Xin-Jie-Yu Granule alleviates atherosclerosis by reshaping gut microbiota and metabolic homeostasis of ApoE-/- mice. Phytomedicine, 2022, 103, 154220.	2.3	15
222	Probiotics and bioactive metabolite production. , 2022, , 171-198.		0
223	Antarctic krill peptide alleviates liver fibrosis <i>via</i> downregulating the secondary bile acid mediated NLRP3 signaling pathway. Food and Function, 2022, 13, 7740-7749.	2.1	2
224	Ring Trial on Quantitative Assessment of Bile Acids Reveals a Method- and Analyte-Specific Accuracy and Reproducibility. Metabolites, 2022, 12, 583.	1.3	5
225	Comprehensive Analysis of Gut Microbiota and Fecal Bile Acid Profiles in Children With Biliary Atresia. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	6
226	Influence of high-fat diet on host animal health via bile acid metabolism and benefits of oral-fed <i>Streptococcus thermophilus</i> MN-ZLW-002. Experimental Animals, 2022, 71, 468-480.	0.7	1
227	<i>Codonopsis pilosula</i> oligosaccharides modulate the gut microbiota and change serum metabolomic profiles in high-fat diet-induced obese mice. Food and Function, 2022, 13, 8143-8157.	2.1	10
229	Role of gut microbiota in primary biliary cholangitis. Hepatobiliary and Pancreatic Diseases International, 2022, 21, 597-599.	0.6	1
230	Dysregulation of Bile Acids, Lipids, and Nucleotides in Psoriatic Arthritis Revealed by Unbiased Profiling of Serum Metabolites. Arthritis and Rheumatology, 2023, 75, 53-63.	2.9	13

#	Article	IF	CITATIONS
231	Farnesoid X Receptor, Bile Acid Metabolism, and Gut Microbiota. Metabolites, 2022, 12, 647.	1.3	20
232	Changes of intestinal microbiota and microbiota-based treatments in IBD. Archives of Microbiology, 2022, 204, .	1.0	3
233	Natural products derived from medicinal plants and microbes might act as a game-changer in breast cancer: a comprehensive review of preclinical and clinical studies. Critical Reviews in Food Science and Nutrition, 2023, 63, 11880-11924.	5.4	8
234	Dietary compounds in modulation of gut microbiota-derived metabolites. Frontiers in Nutrition, 0, 9, .	1.6	11
235	Deletion of luxS gene mediated by λRed gene recombination technology reduces biofilm formation and stress resistance of Lactobacillus fermentum. Food Bioscience, 2022, 49, 101892.	2.0	8
236	The Gut Bacterial Community Potentiates Clostridioides difficile Infection Severity. MBio, 2022, 13, .	1.8	18
237	Sargassum fusiforme fucoidan ameliorates diet-induced obesity through enhancing thermogenesis of adipose tissues and modulating gut microbiota. International Journal of Biological Macromolecules, 2022, 216, 728-740.	3.6	10
238	Recent advances in metabolism and toxicity of tyrosine kinase inhibitors. , 2022, 237, 108256.		19
239	Farnesoid X receptor activation by the novel agonist TC-100 (3α, 7α, 11β-Trihydroxy-6α-ethyl-5β-cholan-24-oic model of obstructed bile acid flow. Biomedicine and Pharmacotherapy, 2022, 153, 113380.) Tj ETQq0 2.5	0 0 rgBT /Ov 8
240	Probiotics Administration in Cystic Fibrosis: What Is the Evidence?. Nutrients, 2022, 14, 3160.	1.7	9
241	Abnormal bile acid metabolism is an important feature of gut microbiota and fecal metabolites in patients with slow transit constipation. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	5
242	Metabolic control by the microbiome. Genome Medicine, 2022, 14, .	3.6	30
243	Interactive Relationships between Intestinal Flora and Bile Acids. International Journal of Molecular Sciences, 2022, 23, 8343.	1.8	29
244	<i>Bacillus</i> sp. <scp>DU</scp> â€106 ameliorates type 2 diabetes by modulating gut microbiota in highâ€fatâ€fed and streptozotocinâ€induced mice. Journal of Applied Microbiology, 0, , .	1.4	3
245	Bile acids, gut microbiota and metabolic surgery. Frontiers in Endocrinology, 0, 13, .	1.5	11
246	Administration of the probiotic Lactiplantibacillus paraplantarum is effective in controlling hyperphosphatemia in 5/6 nephrectomy rat model. Life Sciences, 2022, 306, 120856.	2.0	3
247	The fungicide prothioconazole and its metabolite prothioconazole-desthio disturbed the liver-gut axis in mice. Chemosphere, 2022, 307, 136141.	4.2	8
248	Effects of black soldier fly larvae oil on growth performance, immunity and antioxidant capacity, and intestinal function and microbiota of broilers. Journal of Applied Poultry Research, 2022, 31, 100292.	0.6	7

#	Article	IF	CITATIONS
249	Dietary astaxanthin-rich extract ameliorates atherosclerosis/retinopathy and restructures gut microbiome in apolipoprotein E-deficient mice fed on a high-fat diet. Food and Function, 2022, 13, 10461-10475.	2.1	3
250	Impact of the CYP7A1 single nucleotide polymorphism rs3808607 on postprandial lipids and gut hormones in response to functional interventions -findings from the CABALA study. Proceedings of the Nutrition Society, 2022, 81, .	0.4	0
251	The gut microbiota–bile acid axis: A potential therapeutic target for liver fibrosis. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	11
252	Regulation of gut microbiota-bile acids axis by probiotics in inflammatory bowel disease. Frontiers in Immunology, 0, 13, .	2.2	5
253	Gut and obesity/metabolic disease: Focus on microbiota metabolites. MedComm, 2022, 3, .	3.1	15
254	Alterations of Serum Bile Acid Profile in Patients with Crohn's Disease. Gastroenterology Research and Practice, 2022, 2022, 1-9.	0.7	0
255	Topic: Nutrition and the Gut-Liver-Brain Axis. Current Hepatology Reports, 2022, 21, 99-110.	0.4	1
256	New insights into the interplay between intestinal flora and bile acids in inflammatory bowel disease. World Journal of Clinical Cases, 0, 10, 10823-10839.	0.3	3
257	Bile acids-gut microbiota crosstalk contributes to the improvement of type 2 diabetes mellitus. Frontiers in Pharmacology, 0, 13, .	1.6	15
258	The role of the gut microbiota in health and cardiovascular diseases. Molecular Biomedicine, 2022, 3, .	1.7	22
259	Emerging insights between gut microbiome dysbiosis and Parkinson's disease: Pathogenic and clinical relevance. Ageing Research Reviews, 2022, 82, 101759.	5.0	10
260	Use of bentonite-coated activated carbon for improving the sensitivity of RT-qPCR detection of norovirus from vegetables and fruits: The ISO 15216-1:2017 standard method extension. Food Microbiology, 2023, 110, 104165.	2.1	4
261	Plasma Markers of Cholestasis in Critical Illness. Biomarkers in Disease, 2022, , 1-23.	0.0	0
262	Disulfiram ameliorates nonalcoholic steatohepatitis by modulating the gut microbiota and bile acid metabolism. Nature Communications, 2022, 13, .	5.8	19
263	Anthocyanin actions at the gastrointestinal tract: Relevance to their health benefits. Molecular Aspects of Medicine, 2023, 89, 101156.	2.7	8
264	Diosgenin alleviates nonalcoholic steatohepatitis through affecting liver-gut circulation. Pharmacological Research, 2023, 187, 106621.	3.1	3
265	Understanding and harnessing triple-negative breast cancer-related microbiota in oncology. Frontiers in Oncology, 0, 12, .	1.3	9
266	Recent Advances in the Digestive, Metabolic and Therapeutic Effects of Farnesoid X Receptor and Fibroblast Growth Factor 19: From Cholesterol to Bile Acid Signaling, Nutrients, 2022, 14, 4950.	1.7	17

#	Article	IF	CITATIONS
267	Microbial bile salt hydrolase activity influences gene expression profiles and gastrointestinal maturation in infant mice. Gut Microbes, 2022, 14, .	4.3	4
268	Diet as a modifiable factor in tumorigenesis: Focus on microbiome-derived bile acid metabolites and short-chain fatty acids. Food Chemistry, 2023, 410, 135320.	4.2	3
269	Gut microbiota and fecal metabolic signatures in rat models of disuse-induced osteoporosis. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	5
270	Integrated multi-omics analyses reveal effects of empagliflozin on intestinal homeostasis in high-fat-diet mice. IScience, 2023, 26, 105816.	1.9	1
271	Drinking alkaline mineral water confers diarrhea resistance in maternally separated piglets by maintaining intestinal epithelial regeneration via the brain-microbe-gut axis. Journal of Advanced Research, 2023, 52, 29-43.	4.4	7
272	The correlation of the fecal microbiome with the biochemical profile during menopause: a Brazilian cohort study. BMC Women's Health, 2022, 22, .	0.8	1
273	Kuhuang alleviates liver fibrosis by modulating gut microbiota-mediated hepatic IFN signaling and bile acid synthesis. Frontiers in Pharmacology, 0, 13, .	1.6	1
274	Bile acids and their receptors in regulation of gut health and diseases. Progress in Lipid Research, 2023, 89, 101210.	5.3	18
275	Treatment of Dyslipidemia through Targeted Therapy of Gut Microbiota. Nutrients, 2023, 15, 228.	1.7	10
276	The probiotic and immunomodulation effects of Limosilactobacillus reuteri RGW1 isolated from calf feces. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	6
277	Akkermansia and its metabolites play key roles in the treatment of campylobacteriosis in mice. Frontiers in Immunology, 0, 13, .	2.2	2
278	Role of natural products and intestinal flora on type 2 diabetes mellitus treatment. World Journal of Clinical Cases, 0, 11, 65-72.	0.3	2
279	Dietary-Induced Bacterial Metabolites Reduce Inflammation and Inflammation-Associated Cancer via Vitamin D Pathway. International Journal of Molecular Sciences, 2023, 24, 1864.	1.8	4
280	Gut microbiota and bile acids partially mediate the improvement of fibroblast growth factor 21 on methionine-choline-deficient diet-induced non-alcoholic fatty liver disease mice. Free Radical Biology and Medicine, 2023, 195, 199-218.	1.3	7
281	Gut microbiome interventions in regenerative medicine. , 2023, , 477-506.		0
282	Creep Feeding and Weaning Influence the Postnatal Evolution of the Plasma Metabolome in Neonatal Piglets. Metabolites, 2023, 13, 214.	1.3	2
283	â€~Biotic' potential of the red yeast Rhodotorula mucilaginosa strain JM-01 on the growth, shell pigmentation, and immune defense attributes of the shrimp, Penaeus vannamei. Aquaculture, 2023, 572, 739543.	1.7	3
284	Interactions between structure and function of resistant glucans for alleviating type 2 diabetes mellitus (T2DM) and its complications in mice. International Journal of Biological Macromolecules, 2023, 231, 123405.	3.6	1

#	Article	IF	CITATIONS
285	Gut microbiota-mediated secondary bile acid alleviates Staphylococcus aureus-induced mastitis through the TGR5-cAMP-PKA-NF-κB/NLRP3 pathways in mice. Npj Biofilms and Microbiomes, 2023, 9, .	2.9	16
286	Microbiota–Liver Diseases Interactions. International Journal of Molecular Sciences, 2023, 24, 3883.	1.8	6
288	Cholestasis: exploring the triangular relationship of gut microbiota-bile acid-cholestasis and the potential probiotic strategies. Gut Microbes, 2023, 15, .	4.3	11
289	Polymerizable rotaxane hydrogels for three-dimensional printing fabrication of wearable sensors. Nature Communications, 2023, 14, .	5.8	26
290	Synthetic microbial communities (SynComs) of the human gut: design, assembly, and applications. FEMS Microbiology Reviews, 2023, 47, .	3.9	10
291	Plasma Markers of Cholestasis in Critical Illness. Biomarkers in Disease, 2023, , 175-197.	0.0	0
292	The Combined Use of SCD Probiotics and Tauroursodeoksikolik Asit (TUDCA) is More Effective in Controlling Anxiety-Like Behavior in Aged Rats. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 2023, 12, 242-246.	0.1	0
293	Parabacteroides distasonis ameliorates hepatic fibrosis potentially via modulating intestinal bile acid metabolism and hepatocyte pyroptosis in male mice. Nature Communications, 2023, 14, .	5.8	22
294	The associations of gut microbiota, endocrine system and bone metabolism. Frontiers in Microbiology, 0, 14, .	1.5	4
304	Antibiotics and Probiotics for Irritable Bowel Syndrome. Drugs, 2023, 83, 687-699.	4.9	2
311	Dietary polyphenols maintain homeostasis <i>via</i> regulating bile acid metabolism: a review of possible mechanisms. Food and Function, 2023, 14, 9486-9505.	2.1	2
328	Microbial metabolites as modulators of host physiology. Advances in Microbial Physiology, 2024, , .	1.0	0
333	Nutritional Care for Cancer with Sustainable Diets: A Practical Guide. World Sustainability Series, 2024, , 147-165.	0.3	0
336	Microbiota to brain communication. , 2024, , 63-82.		Ο