Black carbon emissions in Russia: A critical review

Atmospheric Environment 163, 9-21 DOI: 10.1016/j.atmosenv.2017.05.026

Citation Report

#	Article	IF	CITATIONS
1	Global anthropogenic emissions of particulate matter including black carbon. Atmospheric Chemistry and Physics, 2017, 17, 8681-8723.	4.9	496
2	Temporally delineated sources of major chemical species in high Arctic snow. Atmospheric Chemistry and Physics, 2018, 18, 3485-3503.	4.9	13
3	Recognizing Women Leaders in Fire Science: Revisited. Fire, 2018, 1, 45.	2.8	4
4	Local Arctic Air Pollution: A Neglected but Serious Problem. Earth's Future, 2018, 6, 1385-1412.	6.3	96
6	A missing component of Arctic warming: black carbon from gas flaring. Environmental Research Letters, 2019, 14, 094011.	5.2	11
7	Global Research on Carbon Emissions: A Scientometric Review. Sustainability, 2019, 11, 3972.	3.2	111
8	Sources and sink of black carbon in Arctic Ocean sediments. Science of the Total Environment, 2019, 689, 912-920.	8.0	18
9	High Arctic aircraft measurements characterising black carbon vertical variability in spring and summer. Atmospheric Chemistry and Physics, 2019, 19, 2361-2384.	4.9	42
10	Source apportionment of circum-Arctic atmospheric black carbon from isotopes and modeling. Science Advances, 2019, 5, eaau8052.	10.3	68
11	A Mixed Method Inquiry of Gas Flaring Consequences, Mitigation Strategies and Policy Implication for Environmental Sustainability in Nigeria. , 2019, , .		0
12	Diesel Soot and Amine-Containing Organic Sulfate Aerosols in an Arctic Oil Field. Environmental Science & Technology, 2020, 54, 92-101.	10.0	7
13	Black Carbon Aerosols in Urban Air: Sources, Concentrations, and Climate Change. Environmental Science and Engineering, 2019, , 187-199.	0.2	2
14	Recycling and Reuse Approaches for Better Sustainability. Environmental Science and Engineering, 2019, , .	0.2	6
15	Exploring large-scale blackâ€'carbon air pollution over Northern Eurasia in summer 2016 using MERRA-2 reanalysis data. Atmospheric Research, 2020, 235, 104763.	4.1	24
16	Environmental toxicology: air. , 2020, , 279-320.		0
17	Two-Stage Thermal Conversion of Straw and Sugarcane Bagasse with the Production of Synthesis Gas. Solid Fuel Chemistry, 2020, 54, 115-119.	0.7	5
18	Source identification and global implications of black carbon. Geoscience Frontiers, 2022, 13, 101149.	8.4	21
19	Late-spring and summertime tropospheric ozone and NO ₂ in western Siberia and the Russian Arctic: regional model evaluation and sensitivities. Atmospheric Chemistry and Physics, 2021, 21, 4677-4697.	4.9	11

#	ARTICLE MABI - A multi-wavelength absorption black carbon instrument for the measurement of fine light	IF	CITATIONS
20	absorbing carbon particles. Atmospheric Pollution Research, 2021, 12, 133-140. Black carbon emissions from flaring in Russia in the period 2012–2017. Atmospheric Environment, 2021, 254, 118390.	4.1	17
22	Black carbon and its impact on air quality in two semi-rural sites in Southern Italy near an oil pre-treatment plant. Atmospheric Environment, 2020, 233, 117532.	4.1	5
23	THE PROBABILITY OF TRANSFER TO THE ARCTIC OF SHORT-LIVED CLIMATE-FORMING AEROSOLS FROM MODEL FOREST FIRES IN RUSSIA AND THEIR POSSIBLE IMPACT ON CLIMATE. Fundamental and Applied Climatology, 2020, 1, 21-41.	0.4	3
24	Review of Black Carbon in the Arctic—Origin, Measurement Methods, and Observations. Open Journal of Air Pollution, 2018, 07, 181-213.	1.4	10
25	An Input-Output augmented Kaya Identity and Application: Quantile regression approach. Social Sciences & Humanities Open, 2021, 4, 100214.	2.2	6
26	Spring fires in Russia: results from participatory burned area mapping with Sentinel-2 imagery. Environmental Research Letters, 2021, 16, 125005.	5.2	11
27	A Review of Progress in Constraining Global Black Carbon Climate Effects. Earth Systems and Environment, 2022, 6, 771-785.	6.2	2
28	Effect of COVID-19 epidemic-led lockdowns on aerosol black carbon concentration, sources and its radiation effect in northeast India. Journal of Earth System Science, 2022, 131, .	1.3	2
29	Transport of biomass burning products from Siberian wildfires into the Arctic. IOP Conference Series: Earth and Environmental Science, 2022, 1040, 012005.	0.3	1
30	The Potential Impact of a Clean Energy Society on Air Quality. Earth's Future, 2022, 10, .	6.3	7
31	Quantification of organic carbon and black carbon emissions, distribution, and carbon variation in diverse vegetative ecosystems across India. Environmental Pollution, 2022, 309, 119790.	7.5	4
32	Features of the Extreme Fire Season of 2021 in Yakutia (Eastern Siberia) and Heavy Air Pollution Caused by Biomass Burning. Remote Sensing, 2022, 14, 4980.	4.0	6
33	Current Trends of Inter-year Variability of Fire Risk in Eastern Siberia, and Ice and Surface Salinity of Its Seas During the Summer Months. Springer Geology, 2023, , 583-599.	0.3	0
34	Estimated Black Carbon Emissions from Priority Source Categories in Russia. Russian Meteorology and Hydrology, 2022, 47, 781-790.	1.3	1
35	Model Estimates of Black Carbon Transfer Probabilities from Russian Forest Fires to Arctic and Its Possible Impact on Climate. Izvestiya - Atmospheric and Oceanic Physics, 2022, 58, 635-644.	0.9	0
36	Brown carbon absorptivity in fresh wildfire smoke: associations with volatility and chemical compound groups. Environmental Science Atmospheres, 0, , .	2.4	0
37	Reducing arctic black carbon emissions: Features of national regulatory systems as a key factor. Polar Science, 2024, , 101065.	1.2	0

CITATION REPORT