The U6 snRNA m 6 A Methyltransferase METTL16 Regul

Cell 169, 824-835.e14 DOI: 10.1016/j.cell.2017.05.003

Citation Report

#	Article	IF	CITATIONS
1	Dynamic RNA Modifications in Gene Expression Regulation. Cell, 2017, 169, 1187-1200.	13.5	2,222
2	Shrinking maps of RNA modifications. Nature, 2017, 551, 174-176.	13.7	29
3	Human METTL16 is a <i>N</i> ⁶ â€methyladenosine (m ⁶ A) methyltransferase that targets preâ€mRNAs and various nonâ€coding RNAs. EMBO Reports, 2017, 18, 2004-2014.	2.0	481
4	Mettl3-/Mettl14-mediated mRNA N6-methyladenosine modulates murine spermatogenesis. Cell Research, 2017, 27, 1216-1230.	5.7	298
5	Rethinking m ⁶ A Readers, Writers, and Erasers. Annual Review of Cell and Developmental Biology, 2017, 33, 319-342.	4.0	833
6	A Conserved Splicing Silencer Dynamically Regulates O-GlcNAc Transferase Intron Retention and O-GlcNAc Homeostasis. Cell Reports, 2017, 20, 1088-1099.	2.9	88
7	Promoter-bound METTL3 maintains myeloid leukaemia by m6A-dependent translation control. Nature, 2017, 552, 126-131.	13.7	833
8	50 & 100 Years Ago. Nature, 2017, 551, 176-176.	13.7	42
9	S-Adenosylmethionine Synthesis Is Regulated by Selective N6-Adenosine Methylation and mRNA Degradation Involving METTL16 and YTHDC1. Cell Reports, 2017, 21, 3354-3363.	2.9	240
10	The Dark Side of the Epitranscriptome: Chemical Modifications in Long Non-Coding RNAs. International Journal of Molecular Sciences, 2017, 18, 2387.	1.8	101
11	Epitranscriptomic influences on development and disease. Genome Biology, 2017, 18, 197.	3.8	97
12	Structural insights into the RNA methyltransferase domain of METTL16. Scientific Reports, 2018, 8, 5311.	1.6	80
13	N6-methyladenosine links RNA metabolism to cancer progression. Cell Death and Disease, 2018, 9, 124.	2.7	381
14	We skip to work: alternative splicing in normal and malignant myelopoiesis. Leukemia, 2018, 32, 1081-1093.	3.3	33
15	The life of U6 small nuclear RNA, from cradle to grave. Rna, 2018, 24, 437-460.	1.6	92
16	Mechanism of N6-methyladenosine modification and its emerging role in cancer. , 2018, 189, 173-183.		31
17	Structural Insights into N 6 -methyladenosine (m 6 A) Modification in the Transcriptome. Genomics, Proteomics and Bioinformatics, 2018, 16, 85-98.	3.0	56
18	The m ⁶ A Reader ECT2 Controls Trichome Morphology by Affecting mRNA Stability in Arabidopsis. Plant Cell, 2018, 30, 968-985.	3.1	232

#	ARTICLE Balance between MAT2A intron detention and splicing is determined cotranscriptionally. Rna, 2018, 24,	IF 1.6	CITATIONS
20	778-786. Reading m6A in the Transcriptome: m6A-Binding Proteins. Trends in Cell Biology, 2018, 28, 113-127.	3.6	445
21	Mammalian Sulfur Amino Acid Metabolism: A Nexus Between Redox Regulation, Nutrition, Epigenetics, and Detoxification. Antioxidants and Redox Signaling, 2018, 29, 408-452.	2.5	26
22	Our views of dynamic <i>N</i> ⁶ -methyladenosine RNA methylation. Rna, 2018, 24, 268-272.	1.6	41
23	Preâ€nRNA modifications and their role in nuclear processing. Quantitative Biology, 2018, 6, 210-227.	0.3	22
24	<i>N</i> ⁶ â€Methyladenosineâ€Sensitive RNAâ€Cleaving Deoxyribozymes. Angewandte Chemie - International Edition, 2018, 57, 15117-15121.	7.2	39
25	N 6 â€Methyladenosineâ€Sensitive RNA leaving Deoxyribozymes. Angewandte Chemie, 2018, 130, 15337-15	3416	11
26	Structural Basis for Regulation of METTL16, an S-Adenosylmethionine Homeostasis Factor. Molecular Cell, 2018, 71, 1001-1011.e4.	4.5	146
27	Methylation of Structured RNA by the m6A Writer METTL16 Is Essential for Mouse Embryonic Development. Molecular Cell, 2018, 71, 986-1000.e11.	4.5	250
28	The RNA Epitranscriptome of DNA Viruses. Journal of Virology, 2018, 92, .	1.5	31
29	Chemical Modifications in the Life of an mRNA Transcript. Annual Review of Genetics, 2018, 52, 349-372.	3.2	147
30	Adenosine methylation as a molecular imprint defining the fate of <scp>RNA</scp> . FEBS Letters, 2018, 592, 2845-2859.	1.3	41
31	Dynamic transcriptomic m6A decoration: writers, erasers, readers and functions in RNA metabolism. Cell Research, 2018, 28, 616-624.	5.7	1,045
32	Regulation of alternative <scp>mRNA</scp> splicing: old players and new perspectives. FEBS Letters, 2018, 592, 2987-3006.	1.3	71
33	The m ⁶ A reader protein YTHDC2 interacts with the small ribosomal subunit and the 5′–3′ exoribonuclease XRN1. Rna, 2018, 24, 1339-1350.	1.6	171
34	An important class of intron retention events in human erythroblasts is regulated by cryptic exons proposed to function as splicing decoys. Rna, 2018, 24, 1255-1265.	1.6	27
35	Suppression of m6A reader Ythdf2 promotes hematopoietic stem cell expansion. Cell Research, 2018, 28, 904-917.	5.7	203
36	METTL3 regulates WTAP protein homeostasis. Cell Death and Disease, 2018, 9, 796.	2.7	108

#	Article	IF	CITATIONS
37	The dual role of N6â€methyladenosine modification of RNAs is involved in human cancers. Journal of Cellular and Molecular Medicine, 2018, 22, 4630-4639.	1.6	72
38	Neurodevelopmental Genetic Diseases Associated With Microdeletions and Microduplications of Chromosome 17p13.3. Frontiers in Genetics, 2018, 9, 80.	1.1	51
39	Impact of DNA and RNA Methylation on Radiobiology and Cancer Progression. International Journal of Molecular Sciences, 2018, 19, 555.	1.8	26
40	RNA m6A modification and its function in diseases. Frontiers of Medicine, 2018, 12, 481-489.	1.5	181
41	N6-Methyladenosine Role in Acute Myeloid Leukaemia. International Journal of Molecular Sciences, 2018, 19, 2345.	1.8	34
42	Methylthioadenosine Suppresses Salmonella Virulence. Infection and Immunity, 2018, 86, .	1.0	14
43	Modifications in small nuclear RNAs and their roles in spliceosome assembly and function. Biological Chemistry, 2018, 399, 1265-1276.	1.2	92
44	RNA methylation in nuclear preâ€mRNA processing. Wiley Interdisciplinary Reviews RNA, 2018, 9, e1489.	3.2	37
45	Epigenetics in Neurodevelopment: Emerging Role of Circular RNA. Frontiers in Cellular Neuroscience, 2019, 13, 327.	1.8	60
46	Small changes, big implications: The impact of m6A RNA methylation on gene expression in pluripotency and development. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2019, 1862, 194402.	0.9	37
47	Elevated Nâ€methyltransferase expression induced by hepatic stellate cells contributes to the metastasis of hepatocellular carcinoma via regulation of the CD44v3 isoform. Molecular Oncology, 2019, 13, 1993-2009.	2.1	36
48	Nutrigenomics and RNA methylation: Role of micronutrients. Biochimie, 2019, 164, 53-59.	1.3	13
49	Regulation of Viral Infection by the RNA Modification <i>N6</i> -Methyladenosine. Annual Review of Virology, 2019, 6, 235-253.	3.0	111
50	Leukemia Stem Cells in Hematologic Malignancies. Advances in Experimental Medicine and Biology, 2019, , .	0.8	1
51	The human 18S rRNA m6A methyltransferase METTL5 is stabilized by TRMT112. Nucleic Acids Research, 2019, 47, 7719-7733.	6.5	312
52	Marking RNA: m6A writers, readers, and functions in Arabidopsis. Journal of Molecular Cell Biology, 2019, 11, 899-910.	1.5	73
53	m6A modification of a $3\hat{a} \in 2$ UTR site reduces RME1 mRNA levels to promote meiosis. Nature Communications, 2019, 10, 3414.	5.8	53
54	Sequence-specific m ⁶ A demethylation in RNA by FTO fused to RCas9. Rna, 2019, 25, 1311-1323.	1.6	34

#	Article	IF	CITATIONS
55	The roles of DNA, RNA and histone methylation in ageing and cancer. Nature Reviews Molecular Cell Biology, 2019, 20, 573-589.	16.1	359
56	N6-methyladenosine mRNA marking promotes selective translation of regulons required for human erythropoiesis. Nature Communications, 2019, 10, 4596.	5.8	42
57	Are Small Nucleolar RNAs "CRISPRable� A Report on Box C/D Small Nucleolar RNA Editing in Human Cells. Frontiers in Pharmacology, 2019, 10, 1246.	1.6	13
58	Regulation of CHD2 expression by the Chaserr long noncoding RNA gene is essential for viability. Nature Communications, 2019, 10, 5092.	5.8	71
59	Structure and regulation of ZCCHC4 in m6A-methylation of 28S rRNA. Nature Communications, 2019, 10, 5042.	5.8	72
60	Methionine metabolism in health and cancer: a nexus of diet and precision medicine. Nature Reviews Cancer, 2019, 19, 625-637.	12.8	278
61	Reading, writing and erasing mRNA methylation. Nature Reviews Molecular Cell Biology, 2019, 20, 608-624.	16.1	1,403
62	Predict Epitranscriptome Targets and Regulatory Functions of N6-Methyladenosine (m6A) Writers and Erasers. Evolutionary Bioinformatics, 2019, 15, 117693431987129.	0.6	19
63	RNA-modifying enzymes and their function in a chromatin context. Nature Structural and Molecular Biology, 2019, 26, 858-862.	3.6	24
64	m6A mRNA Destiny: Chained to the rhYTHm by the YTH-Containing Proteins. Genes, 2019, 10, 49.	1.0	44
65	Epitranscriptomic Signatures in IncRNAs and Their Possible Roles in Cancer. Genes, 2019, 10, 52.	1.0	74
66	Metabolic Regulation of the Epitranscriptome. ACS Chemical Biology, 2019, 14, 316-324.	1.6	19
67	Transforming activity of an oncoprotein-encoding circular RNA from human papillomavirus. Nature Communications, 2019, 10, 2300.	5.8	218
68	Interplay Between N6-Methyladenosine (m6A) and Non-coding RNAs in Cell Development and Cancer. Frontiers in Cell and Developmental Biology, 2019, 7, 116.	1.8	97
69	Sulfur metabolism and its contribution to malignancy. International Review of Cell and Molecular Biology, 2019, 347, 39-103.	1.6	40
70	Chemical Modifications and Their Role in Long Non-coding RNAs. , 2019, , 35-63.		0
71	The role of m6A RNA methylation in human cancer. Molecular Cancer, 2019, 18, 103.	7.9	714
73	N6-methyladenosine modifications: interactions with novel RNA-binding proteins and roles in signal transduction. RNA Biology, 2019, 16, 991-1000.	1.5	49

#	Article	IF	CITATIONS
74	Identification of a DNA N6-Adenine Methyltransferase Complex and Its Impact on Chromatin Organization. Cell, 2019, 177, 1781-1796.e25.	13.5	81
75	Where, When, and How: Context-Dependent Functions of RNA Methylation Writers, Readers, and Erasers. Molecular Cell, 2019, 74, 640-650.	4.5	1,096
76	A Review in Research Progress Concerning m6A Methylation and Immunoregulation. Frontiers in Immunology, 2019, 10, 922.	2.2	209
77	Detection of N6‑methyladenosine modification residues (Review). International Journal of Molecular Medicine, 2019, 43, 2267-2278.	1.8	40
78	Methionine is a metabolic dependency of tumor-initiating cells. Nature Medicine, 2019, 25, 825-837.	15.2	226
79	The RNA N6-methyladenosine modification landscape of human fetal tissues. Nature Cell Biology, 2019, 21, 651-661.	4.6	124
80	The interactome of a family of potential methyltransferases in HeLa cells. Scientific Reports, 2019, 9, 6584.	1.6	52
81	N6-Methyladenosine (m6A): A Promising New Molecular Target in Acute Myeloid Leukemia. Frontiers in Oncology, 2019, 9, 251.	1.3	66
82	Bisubstrate analogues as structural tools to investigate m ⁶ A methyltransferase active sites. RNA Biology, 2019, 16, 798-808.	1.5	24
83	N6-Methyladenosine and Viral Infection. Frontiers in Microbiology, 2019, 10, 417.	1.5	55
84	Gene-Specific Intron Retention Serves as Molecular Signature that Distinguishes Melanoma from Non-Melanoma Cancer Cells in Greek Patients. International Journal of Molecular Sciences, 2019, 20, 937.	1.8	8
85	Functions of RNA N6-methyladenosine modification in cancer progression. Molecular Biology Reports, 2019, 46, 2567-2575.	1.0	32
86	Regulation of Gene Expression by N-methyladenosine in Cancer. Trends in Cell Biology, 2019, 29, 487-499.	3.6	159
87	TGF-β1/p65/MAT2A pathway regulates liver fibrogenesis via intracellular SAM. EBioMedicine, 2019, 42, 458-469.	2.7	41
88	FTO controls reversible m6Am RNA methylation during snRNA biogenesis. Nature Chemical Biology, 2019, 15, 340-347.	3.9	192
89	Functions of RNA N6-methyladenosine modification in cancer progression. Molecular Biology Reports, 2019, 46, 1383-1391.	1.0	18
90	The role of m6A RNA methylation in cancer. Biomedicine and Pharmacotherapy, 2019, 112, 108613.	2,5	540
91	Antibody-Free Assay for RNA Methyltransferase Activity Analysis. Journal of Visualized Experiments, 2019, , .	0.2	0

	CITATION	N REPORT	
#	Article	IF	CITATIONS
92	Association of N6-methyladenosine with viruses and related diseases. Virology Journal, 2019, 16, 133.	1.4	48
93	Functions of N6-methyladenosine and its role in cancer. Molecular Cancer, 2019, 18, 176.	7.9	798
94	N6-Methyladenosine: A Novel RNA Imprint in Human Cancer. Frontiers in Oncology, 2019, 9, 1407.	1.3	22
95	Hematopoietic stem cells: self-renewal and expansion. Current Opinion in Hematology, 2019, 26, 258-265.	1.2	13
96	N6-methyladenosine (m6A) RNA modification in gastrointestinal tract cancers: roles, mechanisms, and applications. Molecular Cancer, 2019, 18, 178.	7.9	72
97	Atlas of quantitativeÂsingle-base-resolution N6-methyl-adenine methylomes. Nature Communications, 2019, 10, 5636.	5.8	145
98	The m ⁶ A Writer: Rise of a Machine for Growing Tasks. Biochemistry, 2019, 58, 363-378.	1.2	117
99	The role of RNA adenosine demethylases in the control of gene expression. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2019, 1862, 343-355.	0.9	26
100	m6A modification of non-coding RNA and the control of mammalian gene expression. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2019, 1862, 310-318.	0.9	132
101	Structural basis of 7SK RNA 5′-γ-phosphate methylation and retention by MePCE. Nature Chemical Biology, 2019, 15, 132-140.	3.9	38
102	Finely tuned conformational dynamics regulate the protective function of the lncRNA MALAT1 triple helix. Nucleic Acids Research, 2019, 47, 1468-1481.	6.5	25
103	Cap-specific terminal <i>N</i> ⁶ -methylation of RNA by an RNA polymerase II–associated methyltransferase. Science, 2019, 363, .	6.0	262
104	Differential NOVA2-Mediated Splicing in Excitatory and Inhibitory Neurons Regulates Cortical Development and Cerebellar Function. Neuron, 2019, 101, 707-720.e5.	3.8	52
105	HIV-1 envelope proteins up-regulate N6-methyladenosine levels of cellular RNA independently of viral replication. Journal of Biological Chemistry, 2019, 294, 3249-3260.	1.6	32
106	Mapping <i>N</i> ⁶ â€Methyladenosine (m ⁶ A) in RNA: Established Methods, Remaining Challenges, and Emerging Approaches. Chemistry - A European Journal, 2019, 25, 3455-3464.	1.7	18
107	RNA Modifications: Reversal Mechanisms and Cancer. Biochemistry, 2019, 58, 312-329.	1.2	41
108	Mechanistic insights into m6A RNA enzymes. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2019, 1862, 222-229.	0.9	89
109	Nucleoside analogs in the study of the epitranscriptome. Methods, 2019, 156, 46-52.	1.9	6

CITATION REPORT IF CITATIONS N6-Methyladenosine methyltransferase ZCCHC4 mediates ribosomal RNA methylation. Nature Chemical 3.9 258 Biology, 2019, 15, 88-94. It's complicated… m6A-dependent regulation of gene expression in cancer. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2019, 1862, 382-393. Dynamic and reversible RNA <i>N</i>⁶â€methyladenosine methylation. Wiley 3.2 31 Interdisciplinary Reviews RNA, 2019, 10, e1507. Reading Chemical Modifications in the Transcriptome. Journal of Molecular Biology, 2020, 432, Association of polymorphisms in the vitamin D receptor gene with susceptibility to and severity of hand, foot, and mouth disease caused by coxsackievirus A16. Journal of Medical Virology, 2020, 92, 2.5 1 Epigenetic Regulation of m6A Modifications in Human Cancer. Molecular Therapy - Nucleic Acids, 2020, 2.3 159 N6-Methyladenosine: A Potential Breakthrough for Human Cancer. Molecular Therapy - Nucleic Acids, 2.3 36 2020, 19, 804-813. Mouse Trmt2B protein is a dual specific mitochondrial metyltransferase responsible for 1.5 m⁵U formation in both tRNA and rRNA. RNA Biology, 2020, 17, 441-450. Differential roles of human PUS10 in miRNA processing and tRNA pseudouridylation. Nature Chemical 3.9 68 Biology, 2020, 16, 160-169. The human methyltransferase ZCCHC4 catalyses N6-methyladenosine modification of 28S ribosomal 6.5 RNA. Nucleic Acids Research, 2020, 48, 830-846. RNA Modifications in Cancer: Functions, Mechanisms, and Therapeutic Implications. Annual Review of 2.3 60 Cancer Biology, 2020, 4, 221-240.

121	The Biogenesis and Precise Control of RNA m6A Methylation. Trends in Genetics, 2020, 36, 44-52.	2.9	198
122	The Potential Roles of RNA N6-Methyladenosine in Urological Tumors. Frontiers in Cell and Developmental Biology, 2020, 8, 579919.	1.8	18
123	The m6A epitranscriptome opens a new charter in immune system logic. Epigenetics, 2021, 16, 819-837.	1.3	18
124	Principles of RNA methylation and their implications for biology and medicine. Biomedicine and Pharmacotherapy, 2020, 131, 110731.	2.5	72
125	New Insights on the Role of N6-Methyladenosine RNA Methylation in the Physiology and Pathology of the Nervous System. Frontiers in Molecular Biosciences, 2020, 7, 555372.	1.6	19
126	The epitranscriptome in stem cell biology and neural development. Neurobiology of Disease, 2020, 146, 105139.	2.1	32
127	The critical roles of m6A modification in metabolic abnormality and cardiovascular diseases. Genes and Diseases, 2021, 8, 746-758.	1.5	51

ARTICLE

1824-1839.

271-278.

19, 405-412.

#

110

112

114

116

118

#	Article	IF	CITATIONS
128	N ⁶ â€methyladenosine (m ⁶ A) RNA modification in human cancer. Cell Proliferation, 2020, 53, e12921.	2.4	29
129	Nuclear metabolism and the regulation of the epigenome. Nature Metabolism, 2020, 2, 1190-1203.	5.1	66
130	The Mammalian Cap-Specific m6Am RNA Methyltransferase PCIF1 Regulates Transcript Levels in Mouse Tissues. Cell Reports, 2020, 32, 108038.	2.9	50
131	REW-ISA: unveiling local functional blocks in epi-transcriptome profiling data via an RNA expression-weighted iterative signature algorithm. BMC Bioinformatics, 2020, 21, 447.	1.2	5
132	N6-methyladenosine RNA modification in cancer therapeutic resistance: Current status and perspectives. Biochemical Pharmacology, 2020, 182, 114258.	2.0	43
133	Analysis of m6A RNA methylation in Caenorhabditis elegans. Cell Discovery, 2020, 6, 47.	3.1	23
134	Reversible N6-methyladenosine of RNA: The regulatory mechanisms on gene expression and implications in physiology and pathology. Genes and Diseases, 2020, 7, 585-597.	1.5	23
135	Bioinformatics approaches for deciphering the epitranscriptome: Recent progress and emerging topics. Computational and Structural Biotechnology Journal, 2020, 18, 1587-1604.	1.9	38
136	N6-methyladenosine as a Novel Regulator of Brain Physiology and Diseases. Current Medical Science, 2020, 40, 401-406.	0.7	3
137	N6-methyladenine modification in noncoding RNAs and its function in cancer. Biomarker Research, 2020, 8, 61.	2.8	28
138	Epitranscriptomic(N6-methyladenosine) Modification of Viral RNA and Virus-Host Interactions. Frontiers in Cellular and Infection Microbiology, 2020, 10, 584283.	1.8	36
139	METTL7B (methyltransferase-like 7B) identification as a novel biomarker for lung adenocarcinoma. Annals of Translational Medicine, 2020, 8, 1130-1130.	0.7	6
140	Methionine metabolism in chronic liver diseases: an update on molecular mechanism and therapeutic implication. Signal Transduction and Targeted Therapy, 2020, 5, 280.	7.1	46
141	The role of m6A modification in physiology and disease. Cell Death and Disease, 2020, 11, 960.	2.7	111
142	Advances in the profiling of N6-methyladenosine (m6A) modifications. Biotechnology Advances, 2020, 45, 107656.	6.0	55
143	Crosstalk between RNA m6A Modification and Non-coding RNA Contributes to Cancer Growth and Progression. Molecular Therapy - Nucleic Acids, 2020, 22, 62-71.	2.3	59
144	HNF4α regulates sulfur amino acid metabolism and confers sensitivity to methionine restriction in liver cancer. Nature Communications, 2020, 11, 3978.	5.8	73
145	Novel insights into the interplay between m6A modification and noncoding RNAs in cancer. Molecular Cancer, 2020, 19, 121.	7.9	148

		CITATION REPORT		
# 146	ARTICLE Critical Roles of N6-Methyladenosine (m6A) in Cancer and Virus Infection. Biomolecules, 2	020, 10, 1071.	IF 1.8	CITATIONS
147	Comprehensive Analysis of the PD-L1 and Immune Infiltrates of m6A RNA Methylation Reg Head and Neck Squamous Cell Carcinoma. Molecular Therapy - Nucleic Acids, 2020, 21, 25		2.3	143
148	Synthesis of Triazole-Linked SAM-Adenosine Conjugates: Functionalization of Adenosine a Position without Protecting Groups. Molecules, 2020, 25, 3241.	t N-1 or N-6	1.7	9
149	Associations of smoking and air pollution with peripheral blood RNA N6-methyladenosine Beijing truck driver air pollution study. Environment International, 2020, 144, 106021.	in the	4.8	25
150	Roles of N6-Methyladenosine (m6A) in Stem Cell Fate Decisions and Early Embryonic Deve Mammals. Frontiers in Cell and Developmental Biology, 2020, 8, 782.	lopment in	1.8	57
151	Insight into m ⁶ A methylation from occurrence to functions. Open Biology, 2 200091.	2020, 10,	1.5	24
152	Distinct Pattern of Endoplasmic Reticulum Protein Processing and Extracellular Matrix Pro Functioning and Silent Corticotroph Pituitary Adenomas. Cancers, 2020, 12, 2980.	teins in	1.7	9
153	The Effect of m6A Methylation Regulatory Factors on the Malignant Progression and Clinic Prognosis of Hepatocellular Carcinoma. Frontiers in Oncology, 2020, 10, 1435.	cal	1.3	17
154	Using Chou's 5-steps rule to identify N6-methyladenine sites by ensemble learning cor multiple feature extraction methods. Journal of Biomolecular Structure and Dynamics, 202	nbined with ?0, , 1-11.	2.0	3
155	The Role of RNA Epigenetic Modification in Normal and Malignant Hematopoiesis. Current Reports, 2020, 6, 144-155.	Stem Cell	0.7	12
156	Roles of METTL3 in cancer: mechanisms and therapeutic targeting. Journal of Hematology Oncology, 2020, 13, 117.	and	6.9	269
157	Functional Characterization of a Putative RNA Demethylase ALKBH6 in Arabidopsis Growth Stress Responses. International Journal of Molecular Sciences, 2020, 21, 6707.	n and Abiotic	1.8	50
158	The evolving metabolic landscape of chromatin biology and epigenetics. Nature Reviews G 2020, 21, 737-753.	enetics,	7.7	255
159	METTL4 catalyzes m6Am methylation in U2 snRNA to regulate pre-mRNA splicing. Nucleic Research, 2020, 48, 9250-9261.	Acids	6.5	60
160	Ribosome 18S m6A Methyltransferase METTL5 Promotes Translation Initiation and Breast Growth. Cell Reports, 2020, 33, 108544.	Cancer Cell	2.9	71
161	Expression and Prognostic Characteristics of m6 A RNA Methylation Regulators in Breast C Frontiers in Genetics, 2020, 11, 604597.	Cancer.	1.1	42
162	Gene Signatures and Prognostic Values of m6A Regulators in Hepatocellular Carcinoma. F Genetics, 2020, 11, 540186.	rontiers in	1.1	46
163	meCLICK-Seq, a Substrate-Hijacking and RNA Degradation Strategy for the Study of RNA M ACS Central Science, 2020, 6, 2196-2208.	lethylation.	5.3	31

#	Article	IF	CITATIONS
164	The tRNA pseudouridine synthase TruB1 regulates the maturation of letâ€7 miRNA. EMBO Journal, 2020, 39, e104708.	3.5	17
165	The Distinct Function and Localization of METTL3/METTL14 and METTL16 Enzymes in Cardiomyocytes. International Journal of Molecular Sciences, 2020, 21, 8139.	1.8	15
166	RNA m6A Modification in Cancers: Molecular Mechanisms and Potential Clinical Applications. Innovation(China), 2020, 1, 100066.	5.2	69
167	m6A Editing: New Tool to Improve Crop Quality?. Trends in Plant Science, 2020, 25, 859-867.	4.3	23
168	Functional Implications of Active N6-Methyladenosine in Plants. Frontiers in Cell and Developmental Biology, 2020, 8, 291.	1.8	30
169	The 18S ribosomal <scp>RNA</scp> m ⁶ A methyltransferase Mettl5 is required for normal walking behavior in <i>Drosophila</i> . EMBO Reports, 2020, 21, e49443.	2.0	52
170	Diverse molecular functions of m6A mRNA modification in cancer. Experimental and Molecular Medicine, 2020, 52, 738-749.	3.2	38
171	Unraveling the structure and biological functions of <scp>RNA</scp> triple helices. Wiley Interdisciplinary Reviews RNA, 2020, 11, e1598.	3.2	51
172	The role of N6-methyladenosine (m6A) modification in the regulation of circRNAs. Molecular Cancer, 2020, 19, 105.	7.9	184
173	Mechanism of RNA modification N6-methyladenosine in human cancer. Molecular Cancer, 2020, 19, 104.	7.9	184
174	The functions of N6-methyladenosine modification in IncRNAs. Genes and Diseases, 2020, 7, 598-605.	1.5	64
175	METTL7B Is Required for Cancer Cell Proliferation and Tumorigenesis in Non-Small Cell Lung Cancer. Frontiers in Pharmacology, 2020, 11, 178.	1.6	36
176	The roles of m6A RNA modifiers in human cancer. Journal of the Chinese Medical Association, 2020, 83, 221-226.	0.6	28
177	m6A Modification in Coding and Non-coding RNAs: Roles and Therapeutic Implications in Cancer. Cancer Cell, 2020, 37, 270-288.	7.7	688
178	The emerging role of RNA modifications in the regulation of mRNA stability. Experimental and Molecular Medicine, 2020, 52, 400-408.	3.2	259
179	Epigenetic modulations of noncoding RNA: a novel dimension of Cancer biology. Molecular Cancer, 2020, 19, 64.	7.9	69
180	Role of m6A in Embryonic Stem Cell Differentiation and in Gametogenesis. Epigenomes, 2020, 4, 5.	0.8	22
181	Impact of the gut microbiota on the m6A epitranscriptome of mouse cecum and liver. Nature Communications. 2020. 11. 1344.	5.8	59

#	Article	IF	CITATIONS
182	The emerging roles of N6-methyladenosine RNA methylation in human cancers. Biomarker Research, 2020, 8, 24.	2.8	31
183	N6-Adenosine Methylation in RNA and a Reduced m3G/TMG Level in Non-Coding RNAs Appear at Microirradiation-Induced DNA Lesions. Cells, 2020, 9, 360.	1.8	36
184	Protein-protein interactions involving enzymes of the mammalian methionine and homocysteine metabolism. Biochimie, 2020, 173, 33-47.	1.3	25
185	Two genomes, one cell: Mitochondrial-nuclear coordination via epigenetic pathways. Molecular Metabolism, 2020, 38, 100942.	3.0	55
186	Expression profile analyses of mettl8 in Oryzias latipes. Fish Physiology and Biochemistry, 2020, 46, 971-979.	0.9	0
187	Characterization of METTL16 as a cytoplasmic RNA binding protein. PLoS ONE, 2020, 15, e0227647.	1.1	43
188	RNA modifications and cancer. RNA Biology, 2020, 17, 1560-1575.	1.5	93
189	A molecularâ€level perspective on the frequency, distribution, and consequences of messenger RNA modifications. Wiley Interdisciplinary Reviews RNA, 2020, 11, e1586.	3.2	48
190	LARP7-Mediated U6 snRNA Modification Ensures Splicing Fidelity and Spermatogenesis in Mice. Molecular Cell, 2020, 77, 999-1013.e6.	4.5	41
191	Antisense targeting of decoy exons can reduce intron retention and increase protein expression in human erythroblasts. Rna, 2020, 26, 996-1005.	1.6	8
192	Pathogenic diversity of RNA variants and RNA variation-associated factors in cancer development. Experimental and Molecular Medicine, 2020, 52, 582-593.	3.2	10
193	m6A-binding proteins: the emerging crucial performers in epigenetics. Journal of Hematology and Oncology, 2020, 13, 35.	6.9	174
194	The RNA modification N6-methyladenosine as a novel regulator of the immune system. Nature Immunology, 2020, 21, 501-512.	7.0	256
195	Mechanistic insights into m6A modification of U6 snRNA by human METTL16. Nucleic Acids Research, 2020, 48, 5157-5168.	6.5	70
196	The rRNA m ⁶ A methyltransferase METTL5 is involved in pluripotency and developmental programs. Genes and Development, 2020, 34, 715-729.	2.7	93
197	Insights into the Regulatory Role of m6A Epitranscriptome in Glioblastoma. International Journal of Molecular Sciences, 2020, 21, 2816.	1.8	32
198	O-GlcNAc regulates gene expression by controlling detained intron splicing. Nucleic Acids Research, 2020, 48, 5656-5669.	6.5	67
199	Epitranscriptomics in liver disease: Basic concepts and therapeutic potential. Journal of Hepatology, 2020, 73, 664-679.	1.8	92

# 200	ARTICLE Role of RNA modifications in cancer. Nature Reviews Cancer, 2020, 20, 303-322.	IF 12.8	Citations 621
201	Occurrence and Functions of m ⁶ A and Other Covalent Modifications in Plant mRNA. Plant Physiology, 2020, 182, 79-96.	2.3	80
202	Naturally occurring modified ribonucleosides. Wiley Interdisciplinary Reviews RNA, 2020, 11, e1595.	3.2	108
203	Epigenetic N6-methyladenosine modification of RNA and DNA regulates cancer. Cancer Biology and Medicine, 2020, 17, 9-19.	1.4	26
204	Stabilize and connect: the role of LARP7 in nuclear non-coding RNA metabolism. RNA Biology, 2021, 18, 290-303.	1.5	14
205	YTHDF1 Promotes Gastric Carcinogenesis by Controlling Translation of <i>FZD7</i> . Cancer Research, 2021, 81, 2651-2665.	0.4	150
206	A functional m ⁶ Aâ€RNA methylation pathway in the oyster <i>Crassostrea gigas</i> assumes epitranscriptomic regulation of lophotrochozoan development. FEBS Journal, 2021, 288, 1696-1711.	2.2	3
207	A birds'â€eye view of the activity and specificity of the <scp>mRNA m⁶A</scp> methyltransferase complex. Wiley Interdisciplinary Reviews RNA, 2021, 12, e1618.	3.2	34
208	Tagâ€Free Internal RNA Labeling and Photocaging Based on mRNA Methyltransferases. Angewandte Chemie - International Edition, 2021, 60, 4098-4103.	7.2	40
209	Novel Insights Into the Role of N6-Methyladenosine RNA Modification in Bone Pathophysiology. Stem Cells and Development, 2021, 30, 17-28.	1.1	21
210	Nuclear mechanisms of gene expression control: pre-mRNA splicing as a life or death decision. Current Opinion in Genetics and Development, 2021, 67, 67-76.	1.5	29
211	The epitranscriptome beyond m6A. Nature Reviews Genetics, 2021, 22, 119-131.	7.7	353
212	Aberrant regulation of RNA methylation during spermatogenesis. Reproduction in Domestic Animals, 2021, 56, 3-11.	0.6	6
213	Anything but Ordinary – Emerging Splicing Mechanisms in Eukaryotic Gene Regulation. Trends in Genetics, 2021, 37, 355-372.	2.9	64
214	N6-Methyladenosine Regulates Host Responses to Viral Infection. Trends in Biochemical Sciences, 2021, 46, 366-377.	3.7	28
215	MetaTX: deciphering the distribution of mRNA-related features in the presence of isoform ambiguity, with applications in epitranscriptome analysis. Bioinformatics, 2021, 37, 1285-1291.	1.8	10
216	Cancer Dependencies: PRMT5 and MAT2A in MTAP/p16-Deleted Cancers. Annual Review of Cancer Biology, 2021, 5, 371-390.	2.3	8
217	Tagâ€Free Internal RNA Labeling and Photocaging Based on mRNA Methyltransferases. Angewandte Chemie, 2021, 133, 4144-4149.	1.6	11

#	Article	IF	CITATIONS
218	Sequence- and structure-selective mRNA m5C methylation by NSUN6 in animals. National Science Review, 2021, 8, nwaa273.	4.6	36
219	The momentous role of N6â€methyladenosine in lung cancer. Journal of Cellular Physiology, 2021, 236, 3244-3256.	2.0	21
220	Oncogenic AURKA-enhanced N6-methyladenosine modification increases DROSHA mRNA stability to transactivate STC1 in breast cancer stem-like cells. Cell Research, 2021, 31, 345-361.	5.7	68
221	Regulatory Role of the RNA N6-Methyladenosine Modification in Immunoregulatory Cells and Immune-Related Bone Homeostasis Associated With Rheumatoid Arthritis. Frontiers in Cell and Developmental Biology, 2020, 8, 627893.	1.8	16
222	The Impacts of Non-coding RNAs and N6-Methyladenosine on Cancer: Past, Present, and Future. Current Cancer Drug Targets, 2021, 21, 375-385.	0.8	4
224	Epitranscriptomic Signatures in Neural Development and Disease. RNA Technologies, 2021, , 79-120.	0.2	1
225	Enzymatic characterization of three human RNA adenosine methyltransferases reveals diverse substrate affinities and reaction optima. Journal of Biological Chemistry, 2021, 296, 100270.	1.6	21
226	Multifaceted regulation of translation by the epitranscriptomic modification N ⁶ -methyladenosine. Critical Reviews in Biochemistry and Molecular Biology, 2021, 56, 137-148.	2.3	11
227	The crosstalk between m ⁶ A RNA methylation and other epigenetic regulators: a novel perspective in epigenetic remodeling. Theranostics, 2021, 11, 4549-4566.	4.6	57
228	Editing and Chemical Modifications on Non-Coding RNAs in Cancer: A New Tale with Clinical Significance. International Journal of Molecular Sciences, 2021, 22, 581.	1.8	31
229	Role of N6-methyl-adenosine modification in mammalian embryonic development. Genetics and Molecular Biology, 2021, 44, e20200253.	0.6	9
230	Data mining analysis of the prognostic impact of N ⁶ -methyladenosine regulators in patients with endometrial adenocarcinoma. Journal of Cancer, 2021, 12, 4729-4738.	1.2	7
231	Regulation of Gene Expression Associated With the N6-Methyladenosine (m6A) Enzyme System and Its Significance in Cancer. Frontiers in Oncology, 2020, 10, 623634.	1.3	27
232	Precise identification of an RNA methyltransferase's substrate modification site. Chemical Communications, 2021, 57, 2499-2502.	2.2	7
233	Roles of m6A RNA Modification in Normal Development and Disease. RNA Technologies, 2021, , 267-308.	0.2	2
234	Sensing and Signaling of Methionine Metabolism. Metabolites, 2021, 11, 83.	1.3	56
235	From m6A to Cap-Adjacent m6Am and their Effects on mRNAs. RNA Technologies, 2021, , 325-351.	0.2	1
236	The role of m6A, m5C and Î [.] RNA modifications in cancer: Novel therapeutic opportunities. Molecular Cancer, 2021, 20, 18.	7.9	245

#	Article	IF	CITATIONS
237	Metabolic regulation in urological tumors: Interplay with epigenetics and epitranscriptomics. , 2021, , 107-145.		0
238	Chemoenzymatic labeling of RNA to enrich, detect and identify methyltransferase-target sites. Methods in Enzymology, 2021, 658, 161-190.	0.4	1
240	N6-Adenosine Methylation (m6A) RNA Modification: an Emerging Role in Cardiovascular Diseases. Journal of Cardiovascular Translational Research, 2021, 14, 857-872.	1.1	25
241	Transcriptome-wide analysis of epitranscriptome and translational efficiency associated with heterosis in maize. Journal of Experimental Botany, 2021, 72, 2933-2946.	2.4	28
242	The Regulation of RNA Modification Systems: The Next Frontier in Epitranscriptomics?. Genes, 2021, 12, 345.	1.0	29
243	The role of m6A modification in the biological functions and diseases. Signal Transduction and Targeted Therapy, 2021, 6, 74.	7.1	718
244	METTL16, Methyltransferase-Like Protein 16: Current Insights into Structure and Function. International Journal of Molecular Sciences, 2021, 22, 2176.	1.8	46
245	The Important Role of N6-methyladenosine RNA Modification in Non-Small Cell Lung Cancer. Genes, 2021, 12, 440.	1.0	14
246	RNA methylation in hematological malignancies and its interactions with other epigenetic modifications. Leukemia, 2021, 35, 1243-1257.	3.3	19
247	A neural m6A/Ythdf pathway is required for learning and memory in Drosophila. Nature Communications, 2021, 12, 1458.	5.8	54
248	Deciphering Epitranscriptome: Modification of mRNA Bases Provides a New Perspective for Post-transcriptional Regulation of Gene Expression. Frontiers in Cell and Developmental Biology, 2021, 9, 628415.	1.8	76
249	RNA N6-methyladenosine modification, spermatogenesis, and human male infertility. Molecular Human Reproduction, 2021, 27, .	1.3	25
250	A brief review of RNA modification related database resources. Methods, 2022, 203, 342-353.	1.9	15
251	Role of m6A methyltransferase component VIRMA in multiple human cancers (Review). Cancer Cell International, 2021, 21, 172.	1.8	36
252	The role of RNA N6-methyladenosine methyltransferase in cancers. Molecular Therapy - Nucleic Acids, 2021, 23, 887-896.	2.3	20
253	SYVN1-MTR4-MAT2A Signaling Axis Regulates Methionine Metabolism in Glioma Cells. Frontiers in Cell and Developmental Biology, 2021, 9, 633259.	1.8	7
254	Clinical and Prognostic Pan-Cancer Analysis of N6-Methyladenosine Regulators in Two Types of Hematological Malignancies: A Retrospective Study Based on TCGA and GTEx Databases. Frontiers in Oncology, 2021, 11, 623170.	1.3	20
255	Regulation of translation by methylation multiplicity of 18S rRNA. Cell Reports, 2021, 34, 108825.	2.9	16

#	Article	IF	CITATIONS
256	Spliceosomal snRNA Epitranscriptomics. Frontiers in Genetics, 2021, 12, 652129.	1.1	58
257	Epigenetic regulations in mammalian spermatogenesis: RNA-m6A modification and beyond. Cellular and Molecular Life Sciences, 2021, 78, 4893-4905.	2.4	31
259	The Emerging Role of RNA Modifications in DNA Double-Strand Break Repair. Frontiers in Molecular Biosciences, 2021, 8, 664872.	1.6	11
260	The Putative Role of m6A-RNA Methylation in Memory Consolidation. Neurochemical Journal, 2021, 15, 103-113.	0.2	0
261	Tracking pre-mRNA maturation across subcellular compartments identifies developmental gene regulation through intron retention and nuclear anchoring. Genome Research, 2021, 31, 1106-1119.	2.4	31
262	Epigenetic regulation of mRNA N6-methyladenosine modifications in mammalian gametogenesis. Molecular Human Reproduction, 2021, 27, .	1.3	15
263	N6-methyladenosine-dependent signalling in cancer progression and insights into cancer therapies. Journal of Experimental and Clinical Cancer Research, 2021, 40, 146.	3.5	26
264	RNA Epigenetics: Fine-Tuning Chromatin Plasticity and Transcriptional Regulation, and the Implications in Human Diseases. Genes, 2021, 12, 627.	1.0	12
265	The epitranscriptome of long noncoding RNAs in metabolic diseases. Clinica Chimica Acta, 2021, 515, 80-89.	0.5	19
266	The role of N6-methyladenosine mRNA in the tumor microenvironment. Biochimica Et Biophysica Acta: Reviews on Cancer, 2021, 1875, 188522.	3.3	69
267	The crucial roles of N6-methyladenosine (m6A) modification in the carcinogenesis and progression of colorectal cancer. Cell and Bioscience, 2021, 11, 72.	2.1	27
268	Ribosome dynamics and <scp>mRNA</scp> turnover, a complex relationship under constant cellular scrutiny. Wiley Interdisciplinary Reviews RNA, 2021, 12, e1658.	3.2	41
269	REW-ISA V2: A Biclustering Method Fusing Homologous Information for Analyzing and Mining Epi-Transcriptome Data. Frontiers in Genetics, 2021, 12, 654820.	1.1	6
270	Characterization of ALTO-encoding circular RNAs expressed by Merkel cell polyomavirus and trichodysplasia spinulosa polyomavirus. PLoS Pathogens, 2021, 17, e1009582.	2.1	17
271	mRNA modifications in cardiovascular biology and disease: with a focus on m6A modification. Cardiovascular Research, 2022, 118, 1680-1692.	1.8	66
272	Role of RNA N6-Methyladenosine Modification in Male Infertility and Genital System Tumors. Frontiers in Cell and Developmental Biology, 2021, 9, 676364.	1.8	11
273	Functions of RNA N6-methyladenosine modification in acute myeloid leukemia. Biomarker Research, 2021, 9, 36.	2.8	13
274	Regulatory Mechanisms of the RNA Modification m6A and Significance in Brain Function in Health and Disease. Frontiers in Cellular Neuroscience, 2021, 15, 671932.	1.8	29

#	Article	IF	CITATIONS
275	A comprehensive review of m6A/m6Am RNA methyltransferase structures. Nucleic Acids Research, 2021, 49, 7239-7255.	6.5	190
276	The Role of RNA Modifications and RNA-modifying Proteins in Cancer Therapy and Drug Resistance. Current Cancer Drug Targets, 2021, 21, 326-352.	0.8	23
278	A single m6A modification in U6 snRNA diversifies exon sequence at the 5' splice site. Nature Communications, 2021, 12, 3244.	5.8	30
279	SAM homeostasis is regulated by CFIm-mediated splicing of MAT2A. ELife, 2021, 10, .	2.8	20
280	Identification METTL18 as a Potential Prognosis Biomarker and Associated With Immune Infiltrates in Hepatocellular Carcinoma. Frontiers in Oncology, 2021, 11, 665192.	1.3	11
281	mTORC1 stimulates cell growth through SAM synthesis and m6A mRNA-dependent control of protein synthesis. Molecular Cell, 2021, 81, 2076-2093.e9.	4.5	77
282	m6A RNA methylation of major satellite repeat transcripts facilitates chromatin association and RNA:DNA hybrid formation in mouse heterochromatin. Nucleic Acids Research, 2021, 49, 5568-5587.	6.5	21
283	Emerging Role of m6 A Methylome in Brain Development: Implications for Neurological Disorders and Potential Treatment. Frontiers in Cell and Developmental Biology, 2021, 9, 656849.	1.8	15
284	Mutual Correlation between Non-Coding RNA and S-Adenosylmethionine in Human Cancer: Roles and Therapeutic Opportunities. Cancers, 2021, 13, 3264.	1.7	7
285	Epigenetic regulation of N6â€methyladenosine modifications in obesity. Journal of Diabetes Investigation, 2021, 12, 1306-1315.	1.1	14
286	RNA modifications in hematopoietic malignancies: a new research frontier. Blood, 2021, 138, 637-648.	0.6	24
287	From A to m6A: The Emerging Viral Epitranscriptome. Viruses, 2021, 13, 1049.	1.5	34
288	Dual effects of N6-methyladenosine on cancer progression and immunotherapy. Molecular Therapy - Nucleic Acids, 2021, 24, 25-39.	2.3	20
289	The role of M6A modification in the regulation of tumor-related lncRNAs. Molecular Therapy - Nucleic Acids, 2021, 24, 768-779.	2.3	42
290	The dynamics of N6-methyladenine RNA modification in interactions between rice and plant viruses. Genome Biology, 2021, 22, 189.	3.8	42
291	The METTL3-m6A Epitranscriptome: Dynamic Regulator of Epithelial Development, Differentiation, and Cancer. Genes, 2021, 12, 1019.	1.0	15
292	Clostridioides difficile specific DNA adenine methyltransferase CamA squeezes and flips adenine out of DNA helix. Nature Communications, 2021, 12, 3436.	5.8	16
293	Strategies for Covalent Labeling of Long RNAs. ChemBioChem, 2021, 22, 2826-2847.	1.3	25

#	Article	IF	CITATIONS
294	Splice site m6A methylation prevents binding of U2AF35 to inhibit RNA splicing. Cell, 2021, 184, 3125-3142.e25.	13.5	103
295	Potential roles of N6-methyladenosine (m6A) in immune cells. Journal of Translational Medicine, 2021, 19, 251.	1.8	36
296	m ⁶ Aâ€mediated alternative splicing coupled with nonsenseâ€mediated mRNA decay regulates SAM synthetase homeostasis. EMBO Journal, 2021, 40, e106434.	3.5	26
297	METTL16 promotes cell proliferation by upâ€regulating cyclin D1 expression in gastric cancer. Journal of Cellular and Molecular Medicine, 2021, 25, 6602-6617.	1.6	50
298	Long Non-Coding RNA Epigenetics. International Journal of Molecular Sciences, 2021, 22, 6166.	1.8	23
299	N6-Methyladenosine RNA Methylation Regulator-Related Alternative Splicing (AS) Gene Signature Predicts Non–Small Cell Lung Cancer Prognosis. Frontiers in Molecular Biosciences, 2021, 8, 657087.	1.6	19
300	Chromatin and transcriptional regulation by reversible RNA methylation. Current Opinion in Cell Biology, 2021, 70, 109-115.	2.6	44
301	Interactions between m6A modification and miRNAs in malignant tumors. Cell Death and Disease, 2021, 12, 598.	2.7	52
302	N6-Methyladenosine RNA Modification in Inflammation: Roles, Mechanisms, and Applications. Frontiers in Cell and Developmental Biology, 2021, 9, 670711.	1.8	56
303	Vitamin B ₁₂ Deficiency Dysregulates m6A mRNA Methylation of Genes Involved in Neurological Functions. Molecular Nutrition and Food Research, 2021, 65, e2100206.	1.5	6
304	<scp>RNA</scp> methyltransferase <scp>METTL16</scp> : Targets and function. Wiley Interdisciplinary Reviews RNA, 2022, 13, e1681.	3.2	47
305	RNA methylation in mammalian development and cancer. Cell Biology and Toxicology, 2021, 37, 811-831.	2.4	47
306	Function and clinical significance of N6-methyladenosine in digestive system tumours. Experimental Hematology and Oncology, 2021, 10, 40.	2.0	16
307	Localization of METTL16 at the Nuclear Periphery and the Nucleolus Is Cell Cycle-Specific and METTL16 Interacts with Several Nucleolar Proteins. Life, 2021, 11, 669.	1.1	4
308	The Emerging Clinical Application of m6A RNA Modification in Inflammatory Bowel Disease and Its Associated Colorectal Cancer. Journal of Inflammation Research, 2021, Volume 14, 3289-3306.	1.6	21
309	Role of m6A methylation in occurrence and progression of digestive system malignancies. World Chinese Journal of Digestology, 2021, 29, 747-757.	0.0	0
310	METTL3 Inhibitors for Epitranscriptomic Modulation of Cellular Processes. ChemMedChem, 2021, 16, 3035-3043.	1.6	87
311	N6-Methyladenosine Modification Opens a New Chapter in Circular RNA Biology. Frontiers in Cell and Developmental Biology, 2021, 9, 709299.	1.8	25

#	Article	IF	CITATIONS
312	N6-methyladenosine methyltransferases: functions, regulation, and clinical potential. Journal of Hematology and Oncology, 2021, 14, 117.	6.9	105
313	RNA m6A meets transposable elements and chromatin. Protein and Cell, 2021, 12, 906-910.	4.8	10
314	m6A modification of RNA and its role in cancer, with a special focus on lung cancer. Genomics, 2021, 113, 2860-2869.	1.3	19
315	Towards a druggable epitranscriptome: Compounds that target RNA modifications in cancer. British Journal of Pharmacology, 2022, 179, 2868-2889.	2.7	19
316	Computational Prediction of N6-methyladenosine (m6A) RNA Methylation in SARS-CoV-2 Viral Transcripts. , 2021, , .		0
317	Metabolic Controls on Epigenetic Reprogramming in Regulatory T Cells. Frontiers in Immunology, 2021, 12, 728783.	2.2	10
318	Cross-Talk between Oxidative Stress and m6A RNA Methylation in Cancer. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-26.	1.9	26
319	RNA modifications in cardiovascular diseases, the potential therapeutic targets. Life Sciences, 2021, 278, 119565.	2.0	37
320	How RNA modifications regulate the antiviral response. Immunological Reviews, 2021, 304, 169-180.	2.8	17
321	The detection and functions of RNA modification m6A based on m6A writers and erasers. Journal of Biological Chemistry, 2021, 297, 100973.	1.6	43
323	Regulatory role and mechanism of m6A RNA modification in human metabolic diseases. Molecular Therapy - Oncolytics, 2021, 22, 52-63.	2.0	23
324	Crosstalk between N6-methyladenosine modification and circular RNAs: current understanding and future directions. Molecular Cancer, 2021, 20, 121.	7.9	52
325	Epitranscriptomic signatures in stem cell differentiation to the neuronal lineage. RNA Biology, 2021, 18, 51-60.	1.5	3
326	RNA Modifications and Epigenetics in Modulation of Lung Cancer and Pulmonary Diseases. International Journal of Molecular Sciences, 2021, 22, 10592.	1.8	61
327	The Latest Research Progress of m6A Modification and Its Writers, Erasers, Readers in Infertility: A Review. Frontiers in Cell and Developmental Biology, 2021, 9, 681238.	1.8	3
328	RNA <i>N</i> ⁶ â€methyladenosine modification in the lethal teamwork of cancer stem cells and the tumor immune microenvironment: Current landscape and therapeutic potential. Clinical and Translational Medicine, 2021, 11, e525.	1.7	18
329	Epigenetic regulation of ion channels in the sense of taste. Pharmacological Research, 2021, 172, 105760.	3.1	4
331	Brain on food: The neuroepigenetics of nutrition. Neurochemistry International, 2021, 149, 105099.	1.9	9

#	Article	IF	CITATIONS
332	m6A modification impacts hepatic drug and lipid metabolism properties by regulating carboxylesterase 2. Biochemical Pharmacology, 2021, 193, 114766.	2.0	21
333	Relevance of N6-methyladenosine regulators for transcriptome: Implications for development and the cardiovascular system. Journal of Molecular and Cellular Cardiology, 2021, 160, 56-70.	0.9	9
334	N ⁶ -methyladenosine (m ⁶ A) in pancreatic cancer: Regulatory mechanisms and future direction. International Journal of Biological Sciences, 2021, 17, 2323-2335.	2.6	20
335	FBCwPlaid: A Functional Biclustering Analysis of Epi-Transcriptome Profiling Data Via a Weighted Plaid Model. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2022, 19, 1640-1650.	1.9	7
336	The Role of <i>N⁶</i> Methyladenosine Modified Circular RNA in Pathophysiological Processes. International Journal of Biological Sciences, 2021, 17, 2262-2277.	2.6	16
337	The emerging roles of m ⁶ A modification in liver carcinogenesis. International Journal of Biological Sciences, 2021, 17, 271-284.	2.6	27
338	Epitranscriptomics and Diseases. RNA Technologies, 2021, , 121-140.	0.2	0
339	RNA m6A Modification: The Mediator Between Cellular Stresses and Biological Effects. RNA Technologies, 2021, , 353-390.	0.2	1
340	Metabolic Control of m6A RNA Modification. Metabolites, 2021, 11, 80.	1.3	24
341	The comprehensive interactomes of human adenosine RNA methyltransferases and demethylases reveal distinct functional and regulatory features. Nucleic Acids Research, 2021, 49, 10895-10910.	6.5	26
342	Flipping the script: viral capitalization of RNA modifications. Briefings in Functional Genomics, 2021, 20, 86-93.	1.3	6
343	m ⁶ A RNA methylation: from mechanisms to therapeutic potential. EMBO Journal, 2021, 40, e105977.	3.5	316
344	RNA N 6-Methyladenosine Modification in Normal and Malignant Hematopoiesis. Advances in Experimental Medicine and Biology, 2019, 1143, 75-93.	0.8	35
345	Mapping the epigenetic modifications of DNA and RNA. Protein and Cell, 2020, 11, 792-808.	4.8	174
346	N6-methyladenosine (m6A) recruits and repels proteins to regulate mRNA homeostasis. Nature Structural and Molecular Biology, 2017, 24, 870-878.	3.6	432
354	Interaction between N6-methyladenosine (m6A) modification and noncoding RNAs in cancer. Molecular Cancer, 2020, 19, 94.	7.9	168
355	The Prognostic Value of m6A RNA Methylation Regulators in Colon Adenocarcinoma. Medical Science Monitor, 2019, 25, 9435-9445.	0.5	51
356	Research Progress of N6-Methyladenosine in the Cardiovascular System. Medical Science Monitor, 2020, 26, e921742.	0.5	9

#	Article	IF	CITATIONS
357	The 18S <scp>rRNA</scp> m ⁶ A methyltransferase <scp>METTL</scp> 5 promotes mouse embryonic stem cell differentiation. EMBO Reports, 2020, 21, e49863.	2.0	42
358	A newly defined risk signature, consisting of three m6A RNA methylation regulators, predicts the prognosis of ovarian cancer. Aging, 2020, 12, 18453-18475.	1.4	29
359	Expression profiles and prognostic roles of m6A writers, erasers and readers in gastric cancer. Future Oncology, 2021, 17, 2605-2620.	1.1	18
360	Methionine adenosyltransferases in liver cancer. World Journal of Gastroenterology, 2019, 25, 4300-4319.	1.4	41
361	N6‑methyladenine RNA modification and cancer (Review). Oncology Letters, 2020, 20, 1504-1512.	0.8	25
362	The Tudor SND1 protein is an m6A RNA reader essential for replication of Kaposi's sarcoma-associated herpesvirus. ELife, 2019, 8, .	2.8	107
363	Nanopore direct RNA sequencing maps the complexity of Arabidopsis mRNA processing and m6A modification. ELife, 2020, 9, .	2.8	312
364	Role of N6-Methyladenosine (m6A) Methylation Regulators in Hepatocellular Carcinoma. Frontiers in Oncology, 2021, 11, 755206.	1.3	16
365	The epitranscriptome of small non-coding RNAs. Non-coding RNA Research, 2021, 6, 167-173.	2.4	13
366	N6 -Methyladenosine Negatively Regulates Human Respiratory Syncytial Virus Replication. Frontiers in Cell and Developmental Biology, 2021, 9, 739445.	1.8	2
367	N6-methyladenosine RNA modification and its interaction with regulatory non-coding RNAs in colorectal cancer. RNA Biology, 2021, 18, 551-561.	1.5	7
368	Epitranscriptomic modifications in acute myeloid leukemia: m ⁶ A and 2′- <i>O</i> -methylation as targets for novel therapeutic strategies. Biological Chemistry, 2021, 402, 1531-1546.	1.2	3
370	N6-Methyladenosine-Sculpted Regulatory Landscape of Noncoding RNA. Frontiers in Oncology, 2021, 11, 743990.	1.3	6
377	The Role of mRNA m6A in Regulation of Gene Expression. RNA Technologies, 2019, , 353-376.	0.2	0
378	Molecular mechanism of methyltransferase-like protein family: Relationship with gastric cancer. World Chinese Journal of Digestology, 2020, 28, 428-434.	0.0	0
379	Role of RNA modification in gastrointestinal tumors. World Chinese Journal of Digestology, 2021, 29, 1179-1185.	0.0	0
384	m6A Modification in Non-Coding RNA: The Role in Cancer Drug Resistance. Frontiers in Oncology, 2021, 11, 746789.	1.3	10
385	Metabolic Fuel for Epigenetic: Nuclear Production Meets Local Consumption. Frontiers in Genetics, 2021, 12, 768996.	1.1	18

		CITATION REPORT		
#	Article		IF	CITATIONS
388	Epigenetic regulation of alternative splicing. American Journal of Cancer Research, 201	8, 8, 2346-2358.	1.4	42
390	Global Detection of RNA Methylation by Click Degradation. ACS Central Science, 2020	, 6, 2126-2129.	5.3	0
391	The N6-Methyladenosine- (m6A-) Associated Genes Act as Strong Key Biomarkers for t Pancreatic Adenocarcinoma. Computational and Mathematical Methods in Medicine, 2	he Prognosis of 2021, 2021, 1-19.	0.7	2
392	Epigenetic modifications in acute myeloid leukemia: The emerging role of circular RNAs International Journal of Oncology, 2021, 59, .	s (Review).	1.4	7
393	Comprehensive Analysis of m6A Regulators Characterized by the Immune Cell Infiltrati Neck Squamous Cell Carcinoma to Aid Immunotherapy and Chemotherapy. Frontiers in 11, 764798.	on in Head and n Oncology, 2021,	1.3	12
394	Human Mat2A Uses an Ordered Kinetic Mechanism and Is Stabilized but Not Regulated Biochemistry, 2021, 60, 3621-3632.	d by Mat2B.	1.2	6
395	The Emerging Role of m6A Modification in Regulating the Immune System and Autoim Frontiers in Cell and Developmental Biology, 2021, 9, 755691.	mune Diseases.	1.8	32
396	Three critical regions of the erythromycin resistance methyltransferase, ErmE, are requ function supporting a model for the interaction of Erm family enzymes with substrate 2022, 28, 210-226.	ired for rRNA. Rna,	1.6	1
397	Roles of M6A Regulators in Hepatocellular Carcinoma: Promotion or Suppression. Curr Therapy, 2021, 22, 40-50.	ent Gene	0.9	2
398	Up–to–date on the evidence linking miRNA-related epitranscriptomic modification settings. Can these modifications affect cross-kingdom regulation?. RNA Biology, 2021	is and disease ., , 1-14.	1.5	3
399	Yeast Two-Hybrid Screen Identifies PKA-Riα Interacting Proteins during Mouse Spermic 2021, 12, 1941.	ogenesis. Genes,	1.0	2
400	Balancing of mitochondrial translation through METTL8-mediated m3C modification of tRNAs. Molecular Cell, 2021, 81, 4810-4825.e12.	mitochondrial	4.5	44
401	Structural basis for METTL6-mediated m3C RNA methylation. Biochemical and Biophys Communications, 2022, 589, 159-164.	ical Research	1.0	5
402	Global Detection of RNA Methylation by Click Degradation. ACS Central Science, 2020	, 6, 2126-2129.	5.3	1
403	PM2.5 Induces Pulmonary Microvascular Injury in COPD Via METTL16-Mediated m6A N Electronic Journal, 0, , .	Iodification. SSRN	0.4	0
404	Dynamic regulation and functions of mRNA m6A modification. Cancer Cell Internation	al, 2022, 22, 48.	1.8	63
405	N6-Methyladenosine Modifications in the Female Reproductive System: Roles in Gonac and Diseases. International Journal of Biological Sciences, 2022, 18, 771-782.	l Development	2.6	12
407	The Role of N6-Methyladenosine (m6A) Methylation Modifications in Hematological M Cancers, 2022, 14, 332.	alignancies.	1.7	12

#	Article	IF	CITATIONS
408	FIONA1â€Mediated m ⁶ A Modification Regulates the Floral Transition in <i>Arabidopsis</i> . Advanced Science, 2022, 9, e2103628.	5.6	34
410	Emerging role of m6A modification in osteogenesis of stem cells. Journal of Bone and Mineral Metabolism, 2022, 40, 177-188.	1.3	6
411	Induction of m6A methylation in adipocyte exosomal LncRNAs mediates myeloma drug resistance. Journal of Experimental and Clinical Cancer Research, 2022, 41, 4.	3.5	52
412	Oxidative Stress Aggravates Apoptosis of Nucleus Pulposus Cells through m6A Modification of MAT2A Pre-mRNA by METTL16. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-15.	1.9	12
413	Prognostic Potential of METTL7B in Glioma. NeuroImmunoModulation, 2022, 29, 186-201.	0.9	5
414	A nuclear function for an oncogenic microRNA as a modulator of snRNA and splicing. Molecular Cancer, 2022, 21, 17.	7.9	10
415	The Interaction Between N6-Methyladenosine Modification and Non-Coding RNAs in Gastrointestinal Tract Cancers. Frontiers in Oncology, 2021, 11, 784127.	1.3	7
416	RNA demethylase ALKBH5 in cancer: from mechanisms to therapeutic potential. Journal of Hematology and Oncology, 2022, 15, 8.	6.9	62
417	The role of regulators of RNA m6A methylation in lung cancer. Genes and Diseases, 2023, 10, 495-504.	1.5	5
418	The METTL5-TRMT112 N6-methyladenosine methyltransferase complex regulates mRNA translation via 18S rRNA methylation. Journal of Biological Chemistry, 2022, 298, 101590.	1.6	26
419	The N6-Methyladenosine Modification and Its Role in mRNA Metabolism and Gastrointestinal Tract Disease. Frontiers in Surgery, 2022, 9, 819335.	0.6	4
420	FIONA1 is an RNA N6-methyladenosine methyltransferase affecting Arabidopsis photomorphogenesis and flowering. Genome Biology, 2022, 23, 40.	3.8	43
421	Emerging role of m ⁶ A modification in cardiovascular diseases. Cell Biology International, 2022, 46, 711-722.	1.4	10
422	Interplay Between m6A RNA Methylation and Regulation of Metabolism in Cancer. Frontiers in Cell and Developmental Biology, 2022, 10, 813581.	1.8	7
423	Potential applications of <scp><i>N</i>⁶â€methyladenosine</scp> modification in the prognosis and treatment of cancers via modulating apoptosis, autophagy, and ferroptosis. Wiley Interdisciplinary Reviews RNA, 2022, 13, e1719.	3.2	11
424	Progress on <italic>N</italic> ⁶ -methyladenosine regulation of immune homeostasis. Scientia Sinica Vitae, 2023, 53, 334-346.	0.1	1
425	Functions, mechanisms, and therapeutic implications of METTL14 in human cancer. Journal of Hematology and Oncology, 2022, 15, 13.	6.9	34
426	METTL16 exerts an m6A-independent function to facilitate translation and tumorigenesis. Nature Cell Biology, 2022, 24, 205-216.	4.6	143

#	Article	IF	CITATIONS
427	The role of alternative splicing in human cancer progression. American Journal of Cancer Research, 2021, 11, 4642-4667.	1.4	3
428	Identification and validation of the N6-methyladenosine RNA methylation regulator ZC3H13 as a novel prognostic marker and potential target for hepatocellular carcinoma. International Journal of Medical Sciences, 2022, 19, 618-630.	1.1	4
429	The role of Insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs) as m ⁶ A readers in cancer. International Journal of Biological Sciences, 2022, 18, 2744-2758.	2.6	30
430	N ⁶ -Methyladenosine Modification Confers Thermal Vulnerability to HPV E7 Oncotranscripts via Reverse Regulation of Its Reader Protein IGF2BP1 Upon Heat Stress. SSRN Electronic Journal, 0, , .	0.4	0
431	m6A methyltransferase KIAA1429 acts as an oncogenic factor in colorectal cancer by regulating SIRT1 in an m6A-dependent manner. Cell Death Discovery, 2022, 8, 83.	2.0	15
432	Driving Chromatin Organisation through N6-methyladenosine Modification of RNA: What Do We Know and What Lies Ahead?. Genes, 2022, 13, 340.	1.0	6
433	RNA N6-Methyladenosine Modifications and Its Roles in Alzheimer's Disease. Frontiers in Cellular Neuroscience, 2022, 16, 820378.	1.8	8
434	Emerging Roles and Mechanism of m6A Methylation in Cardiometabolic Diseases. Cells, 2022, 11, 1101.	1.8	19
435	The XRN1-regulated RNA helicase activity of YTHDC2 ensures mouse fertility independently of m6A recognition. Molecular Cell, 2022, 82, 1678-1690.e12.	4.5	31
436	MTA1â€mediated RNA m ⁶ A modification regulates autophagy and is required for infection of the rice blast fungus. New Phytologist, 2022, 235, 247-262.	3.5	19
438	METTL7B contributes to the malignant progression of glioblastoma by inhibiting EGR1 expression. Metabolic Brain Disease, 2022, 37, 1133-1143.	1.4	3
440	The crucial roles of m6A RNA modifications in cutaneous cancers: Implications in pathogenesis, metastasis, drug resistance, and targeted therapies. Genes and Diseases, 2022, , .	1.5	0
441	The N6-methyladenosine:mechanisms, diagnostic value, immunotherapy prospec-ts and challenges in gastric cancer. Experimental Cell Research, 2022, 415, 113115.	1.2	8
442	PM2.5 induces pulmonary microvascular injury in COPD via METTL16-mediated m6A modification. Environmental Pollution, 2022, 303, 119115.	3.7	36
443	The molecular characteristics in different procedures of spermatogenesis. Gene, 2022, 826, 146405.	1.0	5
444	RNA N6â€methyladenosine in nonocular and ocular disease. Journal of Cellular Physiology, 2022, 237, 1686-1710.	2.0	4
446	Functional interplay within the epitranscriptome: Reality or fiction?. BioEssays, 2022, 44, e2100174.	1.2	5
447	N6-Methyladenosine RNA Modification in the Tumor Immune Microenvironment: Novel Implications for Immunotherapy. Frontiers in Immunology, 2021, 12, 773570.	2.2	22

#	Article	IF	CITATIONS
448	RNA metabolism and links to inflammatory regulation and disease. Cellular and Molecular Life Sciences, 2022, 79, 21.	2.4	3
449	Characterization of m6A RNA Methylation Regulators Predicts Survival and Immunotherapy in Lung Adenocarcinoma. Frontiers in Immunology, 2021, 12, 782551.	2.2	7
450	Parallelâ€reaction monitoring revealed altered expression of a number of epitranscriptomic reader, writer, and eraser proteins accompanied with colorectal cancer metastasis. Proteomics, 2023, 23, e2200059.	1.3	7
451	Loss of MAT2A compromises methionine metabolism and represents a vulnerability in H3K27M mutant glioma by modulating the epigenome. Nature Cancer, 2022, 3, 629-648.	5.7	16
452	Chemo-Enzymatic Modification of the 5′ Cap To Study mRNAs. Accounts of Chemical Research, 2022, 55, 1249-1261.	7.6	13
453	The Potential Role of m6A RNA Methylation in the Aging Process and Aging-Associated Diseases. Frontiers in Genetics, 2022, 13, 869950.	1.1	19
454	Intron retention: importance, challenges, and opportunities. Trends in Genetics, 2022, 38, 789-792.	2.9	16
478	Role of main RNA modifications in cancer: N6-methyladenosine, 5-methylcytosine, and pseudouridine. Signal Transduction and Targeted Therapy, 2022, 7, 142.	7.1	62
479	N6-Methyladenosine RNA Methylation in Cardiovascular Diseases. Frontiers in Cardiovascular Medicine, 2022, 9, 887838.	1.1	15
480	RNA modifications can affect RNase H1-mediated PS-ASO activity. Molecular Therapy - Nucleic Acids, 2022, 28, 814-828.	2.3	7
481	Exploring epitranscriptomics for crop improvement and environmental stress tolerance. Plant Physiology and Biochemistry, 2022, 183, 56-71.	2.8	5
482	Epigenetic Modifications and Their Potential Contribution to Traumatic Brain Injury Pathobiology and Outcome. Journal of Neurotrauma, 2022, 39, 1279-1288.	1.7	5
483	ProMetheusDB: An In-Depth Analysis of the High-Quality Human Methyl-proteome. Molecular and Cellular Proteomics, 2022, 21, 100243.	2.5	3
484	The Role and Research Progress of m6A Methyltransferase KIAA1429 in Malignant Tumors. Advances in Clinical Medicine, 2022, 12, 3985-3993.	0.0	0
485	The importance of N6-methyladenosine modification in tumor immunity and immunotherapy. Experimental Hematology and Oncology, 2022, 11, 30.	2.0	8
486	Role of m6A modification in female infertility and reproductive system diseases. International Journal of Biological Sciences, 2022, 18, 3592-3604.	2.6	28
487	The impact of RNA modifications on the biology of DNA virus infection. European Journal of Cell Biology, 2022, 101, 151239.	1.6	5
488	Research progress on N6-methyladenosine in the human placenta. Journal of Perinatal Medicine, 2022, 50, 1115-1123.	0.6	3

#	Article	IF	CITATIONS
491	Emerging Role of Epitranscriptomics in Diabetes Mellitus and Its Complications. Frontiers in Endocrinology, 2022, 13, .	1.5	11
492	The Functional Roles and Regulation of Circular RNAs during Cellular Stresses. Non-coding RNA, 2022, 8, 38.	1.3	3
493	Physical Exercise Prevented Stressâ€induced Anxiety via Improving Brain RNA Methylation. Advanced Science, 2022, 9, .	5.6	14
494	One Stone, Two Birds: N6-Methyladenosine RNA Modification in Leukemia Stem Cells and the Tumor Immune Microenvironment in Acute Myeloid Leukemia. Frontiers in Immunology, 0, 13, .	2.2	1
495	METTL16 promotes hepatocellular carcinoma progression through downregulating RAB11B-AS1 in an m6A-dependent manner. Cellular and Molecular Biology Letters, 2022, 27, .	2.7	57
496	Small-Molecule-Mediated Split-Aptamer Assembly for Inducible CRISPR-dCas9 Transcription Activation. ACS Chemical Biology, 2022, 17, 1769-1777.	1.6	2
497	Ablation of long noncoding RNA MALAT1 activates antioxidant pathway and alleviates sepsis in mice. Redox Biology, 2022, 54, 102377.	3.9	12
498	Novel insights into the interaction between <scp>N6â€methyladenosine</scp> methylation and noncoding <scp>RNAs</scp> in musculoskeletal disorders. Cell Proliferation, 2022, 55, .	2.4	20
499	Crosstalk Between Histone and m6A Modifications and Emerging Roles of m6A RNA Methylation. Frontiers in Genetics, 0, 13, .	1.1	4
500	Cancer epitranscriptomics in a nutshell. Current Opinion in Genetics and Development, 2022, 75, 101924.	1.5	6
501	The Alteration of m6A Modification at the Transcriptome-Wide Level in Human Villi During Spontaneous Abortion in the First Trimester. Frontiers in Genetics, 0, 13, .	1.1	2
502	Research advances of <scp>N6</scp> â€methyladenosine in diagnosis and therapy of pancreatic cancer. Journal of Clinical Laboratory Analysis, 2022, 36, .	0.9	12
503	Lipid metabolism and m6A RNA methylation are altered in lambs supplemented rumen-protected methionine and lysine in a low-protein diet. Journal of Animal Science and Biotechnology, 2022, 13, .	2.1	5
504	Epitranscriptomics in myeloid malignancies. Blood Science, 0, Publish Ahead of Print, .	0.4	0
505	Progress and application of epitranscriptomic m ⁶ A modification in gastric cancer. RNA Biology, 2022, 19, 885-896.	1.5	5
506	Targeting the methionineâ^'methionine adenosyl transferase 2Aâ^'S-adenosyl methionine axis for cancer therapy. Current Opinion in Oncology, 0, Publish Ahead of Print, .	1.1	6
507	m6A-modified circRNAs: detections, mechanisms, and prospects in cancers. Molecular Medicine, 2022, 28, .	1.9	10
508	N6-methyladenosine (m6A) methyltransferase METTL3 regulates sepsis-induced myocardial injury through IGF2BP1/HDAC4 dependent manner. Cell Death Discovery, 2022, 8, .	2.0	17

#	Article	IF	CITATIONS
509	RNA m6A modification orchestrates the rhythm of immune cell development from hematopoietic stem cells to T and B cells. Frontiers in Immunology, 0, 13, .	2.2	2
510	The Emerging Role of RNA N6-Methyladenosine Modification in Pancreatic Cancer. Frontiers in Oncology, 0, 12, .	1.3	2
511	RNA m6A modification: Mapping methods, roles, and mechanisms in acute myeloid leukemia. Blood Science, 2022, 4, 116-124.	0.4	2
512	Alternative splicing of METTL3 explains apparently METTL3-independent m6A modifications in mRNA. PLoS Biology, 2022, 20, e3001683.	2.6	31
513	Enzymes flying under the radar: Cryptic METTL3 can persist in knockout cells. PLoS Biology, 2022, 20, e3001717.	2.6	0
514	Role of m6A writers, erasers and readers in cancer. Experimental Hematology and Oncology, 2022, 11, .	2.0	49
515	The role, mechanism, and application of RNA methyltransferase METTL14 in gastrointestinal cancer. Molecular Cancer, 2022, 21, .	7.9	15
516	Expansion of the RNAStructuromeDB to include secondary structural data spanning the human protein-coding transcriptome. Scientific Reports, 2022, 12, .	1.6	1
517	All Quiet on the TE Front? The Role of Chromatin in Transposable Element Silencing. Cells, 2022, 11, 2501.	1.8	2
518	The Potential Role of m6A in the Regulation of TBI-Induced BGA Dysfunction. Antioxidants, 2022, 11, 1521.	2.2	4
519	Dysregulation and implications of N6-methyladenosine modification in renal cell carcinoma. Current Urology, 2023, 17, 45-51.	0.4	1
520	Dynamic Alteration Profile and New Role of RNA m6A Methylation in Replicative and H2O2-Induced Premature Senescence of Human Embryonic Lung Fibroblasts. International Journal of Molecular Sciences, 2022, 23, 9271.	1.8	5
521	Physio-pathological effects of N6-methyladenosine and its therapeutic implications in leukemia. Biomarker Research, 2022, 10, .	2.8	3
522	Role of WTAP in Cancer: From Mechanisms to the Therapeutic Potential. Biomolecules, 2022, 12, 1224.	1.8	10
523	Role of <scp>m6A</scp> RNA methylation in the development of hepatitis B virusâ€associated hepatocellular carcinoma. Journal of Gastroenterology and Hepatology (Australia), 2022, 37, 2039-2050.	1.4	3
524	RNA methylation in immune cells. Advances in Immunology, 2022, , 39-94.	1.1	4
525	Polypharmacology in Drug Design and Discovery—Basis for Rational Design of Multitarget Drugs. , 2022, , 397-533.		1
526	Genome-Wide CRISPR Screening to Identify Mammalian Factors that Regulate Intron Retention. Methods in Molecular Biology, 2022, , 263-284.	0.4	0

#	Article	IF	CITATIONS
527	METTL16 Promotes Translation and Lung Tumorigenesis by Sequestering Cytoplasmic elF4E2. SSRN Electronic Journal, 0, , .	0.4	0
529	Keep a watchful eye on methionine adenosyltransferases, novel therapeutic opportunities for hepatobiliary and pancreatic tumours. Biochimica Et Biophysica Acta: Reviews on Cancer, 2022, 1877, 188793.	3.3	4
530	FIONA1-mediated methylation of the 3'UTR of FLC affects FLC transcript levels and flowering in Arabidopsis. PLoS Genetics, 2022, 18, e1010386.	1.5	16
531	Integrative Analysis of N6-Methyladenosine-Related Enhancer RNAs Identifies Distinct Prognosis and Tumor Immune Micro-Environment Patterns in Head and Neck Squamous Cell Carcinoma. Cancers, 2022, 14, 4657.	1.7	2
532	Exploring the epitranscriptome by native RNA sequencing. Rna, 2022, 28, 1430-1439.	1.6	21
533	N6-methyladenosine in hematological malignancies: a concise review. Current Opinion in Hematology, O, Publish Ahead of Print, .	1.2	0
534	The role and regulatory mechanism of m6A methylation in the nervous system. Frontiers in Genetics, 0, 13, .	1.1	3
535	RNA modification by M6A methylation in cardiovascular diseases: Current trends and future directions. Frigid Zone Medicine, 2022, 2, 158-177.	0.2	0
536	Stimulusâ€specific remodeling of the neuronal transcriptome through nuclear intronâ€retaining transcripts. EMBO Journal, 2022, 41, .	3.5	9
537	RNA modifications: importance in immune cell biology and related diseases. Signal Transduction and Targeted Therapy, 2022, 7, .	7.1	74
538	ALKBH9C, a potential RNA m ⁶ A demethylase, regulates the response of <i>Arabidopsis</i> to abiotic stresses and abscisic acid. Plant, Cell and Environment, 2022, 45, 3566-3581.	2.8	14
539	Targeted Quantitative Profiling of Epitranscriptomic Reader, Writer, and Eraser Proteins Using Stable Isotope-Labeled Peptides. Analytical Chemistry, 2022, 94, 12559-12564.	3.2	4
540	Novel Roles of RNA m6A Methylation Regulators in the Occurrence of Alzheimer's Disease and the Subtype Classification. International Journal of Molecular Sciences, 2022, 23, 10766.	1.8	3
541	METTL16 predicts a favorable outcome and primes antitumor immunity in pancreatic ductal adenocarcinoma. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	6
542	N6-methyladenosine modification: A potential regulatory mechanism in spinal cord injury. Frontiers in Cellular Neuroscience, 0, 16, .	1.8	5
543	Multilevel regulation of N6-methyladenosine RNA modifications: Implications in tumorigenesis and therapeutic opportunities. Genes and Diseases, 2022, , .	1.5	1
544	Formation and removal of 1, <i>N</i> 6-dimethyladenosine in mammalian transfer RNA. Nucleic Acids Research, 2022, 50, 9858-9872.	6.5	15
545	The regulation and potential roles of m6A modifications in early embryonic development and immune tolerance at the maternal-fetal interface. Frontiers in Immunology, 0, 13, .	2.2	5

#	Article	IF	CITATIONS
546	The emerging therapeutic target of dynamic and reversible N6-methyladenosine modification during cancer development. Frontiers in Oncology, 0, 12, .	1.3	1
547	An RNA link for METTL16 and DNA repair in PDAC. Nature Cancer, 2022, 3, 1018-1020.	5.7	4
548	CDK12 regulates co-transcriptional splicing and RNA turnover in human cells. IScience, 2022, 25, 105030.	1.9	5
549	METTL16 antagonizes MRE11-mediated DNA end resection and confers synthetic lethality to PARP inhibition in pancreatic ductal adenocarcinoma. Nature Cancer, 2022, 3, 1088-1104.	5.7	20
550	The RNA m6A writer WTAP in diseases: structure, roles, and mechanisms. Cell Death and Disease, 2022, 13, .	2.7	28
551	Upregulated YTHDF1 associates with tumor immune microenvironment in head and neck squamous cell carcinomas. Translational Cancer Research, 2022, 11, 3986-3999.	0.4	2
552	Modulation of DNA/RNA Methylation Signaling Mediating Metabolic Homeostasis in Cancer. Sub-Cellular Biochemistry, 2022, , 201-237.	1.0	1
553	Biological roles of adenine methylation in RNA. Nature Reviews Genetics, 2023, 24, 143-160.	7.7	73
554	Knockdown of METTL16 disrupts learning and memory by reducing the stability of MAT2A mRNA. Cell Death Discovery, 2022, 8, .	2.0	3
555	<scp>RNA m⁶A</scp> methylation in cancer. Molecular Oncology, 2023, 17, 195-229.	2.1	10
556	Emerging role of N6-methyladenosine RNA methylation in lung diseases. Experimental Biology and Medicine, 2022, 247, 1862-1872.	1.1	4
557	The Role of m6A Modification and m6A Regulators in Esophageal Cancer. Cancers, 2022, 14, 5139.	1.7	2
558	Interplay between the m6A Epitranscriptome and Tumor Metabolism: Mechanisms and Therapeutic Implications. Biomedicines, 2022, 10, 2589.	1.4	1
559	<scp>N6</scp> â€methyladenosine functions and its role in skin cancer. Experimental Dermatology, 0, , .	1.4	2
560	The N6-methyladenosine methyltransferase METTL16 enables erythropoiesis through safeguarding genome integrity. Nature Communications, 2022, 13, .	5.8	13
561	N6-methyladenosine RNA methylation: From regulatory mechanisms to potential clinical applications. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	6
562	Modulation of gene expression by YTH domain family (YTHDF) proteins in human physiology and pathology. Journal of Cellular Physiology, 2023, 238, 5-31.	2.0	5
563	Implications of m6A-associated snRNAs in the prognosis and immunotherapeutic responses of hepatocellular carcinoma. Frontiers in Immunology, 0, 13, .	2.2	4

#	Article	IF	Citations
564	FGFICA: Independent Component Analysis of Fusion Genomic Features for Mining Epi-transcriptome Profiling Data. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2022, , 1-12.	1.9	0
565	A molecular brake that modulates spliceosome pausing at detained introns contributes to neurodegeneration. Protein and Cell, 0, , .	4.8	0
566	The roles of RNA N6-methyladenosine in esophageal cancer. Heliyon, 2022, 8, e11430.	1.4	2
567	Genetic and epigenetic defects of the RNA modification machinery in cancer. Trends in Genetics, 2023, 39, 74-88.	2.9	17
568	Role of N ⁶ ‑methyladenosine in the pathogenesis, diagnosis and treatment of pancreatic cancer (Review). International Journal of Oncology, 2022, 62, .	1.4	3
569	mTORC1-c-Myc pathway rewires methionine metabolism for HCC progression through suppressing SIRT4 mediated ADP ribosylation of MAT2A. Cell and Bioscience, 2022, 12, .	2.1	11
570	Oroxylin A regulates cGAS DNA hypermethylation induced by methionine metabolism to promote HSC senescence. Pharmacological Research, 2023, 187, 106590.	3.1	5
571	Arabidopsis <i>N</i> 6-methyladenosine methyltransferase FIONA1 regulates floral transition by affecting the splicing of <i>FLC</i> and the stability of floral activators <i>SPL3</i> and <i>SEP3</i> . Journal of Experimental Botany, 2023, 74, 864-877.	2.4	10
572	N6-methyladenosine Modification of Noncoding RNAs: Mechanisms and Clinical Applications in Cancer. Diagnostics, 2022, 12, 2996.	1.3	1
573	m6A modification of U6 snRNA modulates usage of two major classes of pre-mRNA 5' splice site. ELife, 0, 11, .	2.8	14
574	Effect of M6A regulators on diagnosis, subtype classification, prognosis and novel therapeutic target development of idiopathic pulmonary fibrosis. Frontiers in Pharmacology, 0, 13, .	1.6	1
575	Biological roles of the RNA m6A modification and its implications in cancer. Experimental and Molecular Medicine, 2022, 54, 1822-1832.	3.2	10
576	Methionine regulates self-renewal, pluripotency, and cell death of GIC through cholesterol—rRNA axis. BMC Cancer, 2022, 22, .	1.1	5
577	Novel insights into the N6-methyladenosine RNA modification and phytochemical intervention in lipid metabolism. Toxicology and Applied Pharmacology, 2022, 457, 116323.	1.3	Ο
578	The Role of the m6A RNA Methyltransferase METTL16 in Gene Expression and SAM Homeostasis. Genes, 2022, 13, 2312.	1.0	0
579	The Role of N6-Methyladenosine in Inflammatory Diseases. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-18.	1.9	4
580	Regulation of pre-mRNA splicing: roles in physiology and disease, and therapeutic prospects. Nature Reviews Genetics, 2023, 24, 251-269.	7.7	39
581	RNA modifications in cardiovascular health and disease. Nature Reviews Cardiology, 2023, 20, 325-346.	6.1	11

#	Article	IF	CITATIONS
583	Biological and pharmacological roles of m6A modifications in cancer drug resistance. Molecular Cancer, 2022, 21, .	7.9	23
584	Dynamic regulation and key roles of ribonucleic acid methylation. Frontiers in Cellular Neuroscience, 0, 16, .	1.8	1
585	METTL16-mediated translation of <i>CIDEA</i> promotes non-alcoholic fatty liver disease progression <i>via</i> m6A-dependent manner. PeerJ, 0, 10, e14379.	0.9	8
586	Interplay between <scp>m⁶A</scp> epitranscriptome and epigenome in cancer: current knowledge and therapeutic perspectives. International Journal of Cancer, 2023, 153, 464-475.	2.3	6
587	Analysis approaches for the identification and prediction of <i>N</i> ⁶ -methyladenosine sites. Epigenetics, 2023, 18, .	1.3	2
588	METTL16 drives leukemogenesis and leukemia stem cell self-renewal by reprogramming BCAA metabolism. Cell Stem Cell, 2023, 30, 52-68.e13.	5.2	24
589	Brute Force Virtual Drug Screening with Molecular Dynamics Simulation and MM/PBSA to Find Potent Inhibitors of METTL16. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2023, 20, 2356-2361.	1.9	4
590	The function and clinical implication of YTHDF1 in the human system development and cancer. Biomarker Research, 2023, 11, .	2.8	6
591	Three's a crowd – why did three N-terminal methyltransferases evolve for one job?. Journal of Cell Science, 2023, 136, .	1.2	4
592	Elucidating the Kinetic Mechanism of Human METTL16. Biochemistry, 2023, 62, 494-506.	1.2	6
593	RNA N6-methyladenosine methylation and skin diseases. Autoimmunity, 2023, 56, .	1.2	3
594	METTL3 from Target Validation to the First Small-Molecule Inhibitors: A Medicinal Chemistry Journey. Journal of Medicinal Chemistry, 2023, 66, 1654-1677.	2.9	14
595	Current Insights into m6A RNA Methylation and Its Emerging Role in Plant Circadian Clock. Plants, 2023, 12, 624.	1.6	1
596	RNA N6-methyladenosine modification in female reproductive biology and pathophysiology. Cell Communication and Signaling, 2023, 21, .	2.7	3
597	<scp>N6</scp> â€methyladenosine <scp>RNA</scp> modification regulates cotton drought response in a Ca ²⁺ and <scp>ABA</scp> â€dependent manner. Plant Biotechnology Journal, 2023, 21, 1270-1285.	4.1	6
598	The m6A methyltransferase METTL16 negatively regulates MCP1 expression in mesenchymal stem cells during monocyte recruitment. JCI Insight, 2023, 8, .	2.3	3
599	Development and validation of an m6A RNA methylation regulator-based signature for the prediction of prognosis and immunotherapy in cutaneous melanoma. Chinese Medical Journal, 0, Publish Ahead of Print, .	0.9	0
600	Aberrant RNA m6A modification in gastrointestinal malignancies: versatile regulators of cancer hallmarks and novel therapeutic opportunities. Cell Death and Disease, 2023, 14, .	2.7	3

#	Article	IF	CITATIONS
601	FLK is an mRNA m6A reader that regulates floral transition by modulating the stability and splicing of FLC in Arabidopsis. Molecular Plant, 2023, 16, 919-929.	3.9	9
602	The emerging importance role of m6A modification in liver disease. Biomedicine and Pharmacotherapy, 2023, 162, 114669.	2.5	8
603	Characterization of the m6A gene family in sorghum and its function in growth, development and stress resistance. Industrial Crops and Products, 2023, 198, 116625.	2.5	1
604	Self-attention enabled deep learning of dihydrouridine (D)Âmodification on mRNAs unveiled a distinct sequence signature from tRNAs. Molecular Therapy - Nucleic Acids, 2023, 31, 411-420.	2.3	4
605	Interaction between N6-methyladenosine (m6A) modification and environmental chemical-induced diseases in various organ systems. Chemico-Biological Interactions, 2023, 373, 110376.	1.7	2
606	RNA m6A methylation across the transcriptome. Molecular Cell, 2023, 83, 428-441.	4.5	60
607	The Emerging Role of m6A Modification in Endocrine Cancer. Cancers, 2023, 15, 1033.	1.7	0
608	Factors and Methods for the Detection of Gene Expression Regulation. Biomolecules, 2023, 13, 304.	1.8	0
609	RNA Methylome Reveals the m 6 A-Mediated Regulation of Flavor Metabolites in Tea Leaves under Solar-Withering. Genomics, Proteomics and Bioinformatics, 2023, 21, 769-787.	3.0	6
611	A far red emissive RNA aptamer–fluorophore system for demethylase FTO detection: design and optimization. New Journal of Chemistry, 2023, 47, 5238-5243.	1.4	0
612	Understanding the Epitranscriptome for Avant-Garde Brain Tumour Diagnostics. Cancers, 2023, 15, 1232.	1.7	2
613	Splice site m ⁶ A methylation prevents binding of DGCR8 to suppress KRT4 pre-mRNA splicing in oral squamous cell carcinoma. PeerJ, 0, 11, e14824.	0.9	4
614	Structure of the <i>Caenorhabditis elegans</i> m6A methyltransferase METT10 that regulates SAM homeostasis. Nucleic Acids Research, 2023, 51, 2434-2446.	6.5	6
615	Emerging role of interaction between m6A and main ncRNAs in gastrointestinal (GI) cancers. Frontiers in Immunology, 0, 14, .	2.2	0
616	Overview of m6A and circRNAs in human cancers. Journal of Cancer Research and Clinical Oncology, 2023, 149, 6769-6784.	1.2	3
617	Random Forest model reveals the interaction between N6-methyladenosine modifications and RNA-binding proteins. IScience, 2023, 26, 106250.	1.9	1
618	Targeting RNA N6-methyladenosine to synergize with immune checkpoint therapy. Molecular Cancer, 2023, 22, .	7.9	9
619	METTL16 promotes translation and lung tumorigenesis by sequestering cytoplasmic eIF4E2. Cell Reports, 2023, 42, 112150.	2.9	7

#	Article	IF	CITATIONS
620	The Role of m6A Modifications in B-Cell Development and B-Cell-Related Diseases. International Journal of Molecular Sciences, 2023, 24, 4721.	1.8	0
621	rRNA methylation by Spb1 regulates the GTPase activity of Nog2 during 60S ribosomal subunit assembly. Nature Communications, 2023, 14, .	5.8	3
622	Roles and therapeutic implications of m6A modification in cancer immunotherapy. Frontiers in Immunology, 0, 14, .	2.2	6
623	Recent advances in the plant epitranscriptome. Genome Biology, 2023, 24, .	3.8	10
624	The effects of N6-methyladenosine RNA methylation on the nervous system. Molecular and Cellular Biochemistry, 2023, 478, 2657-2669.	1.4	4
625	N6-methyladenosine reader YTHDF family in biological processes: Structures, roles, and mechanisms. Frontiers in Immunology, 0, 14, .	2.2	10
626	Multi-task adaptive pooling enabled synergetic learning of RNA modification across tissue, type and species from low-resolution epitranscriptomes. Briefings in Bioinformatics, 2023, 24, .	3.2	3
627	The role of m6A RNA methylation in autoimmune diseases: Novel therapeutic opportunities. Genes and Diseases, 2023, , .	1.5	1
628	Design and Structural Optimization of Methionine Adenosyltransferase 2A (MAT2A) Inhibitors with High In Vivo Potency and Oral Bioavailability. Journal of Medicinal Chemistry, 2023, 66, 4849-4867.	2.9	7
629	RNA m6A reader YTHDF2 facilitates precursor miR-126 maturation to promote acute myeloid leukemia progression. Genes and Diseases, 2024, 11, 382-396.	1.5	4
631	The novel putative methyltransferase METTL7A as one prognostic biomarker potentially associated with immune infiltration in human renal cancer. Heliyon, 2023, 9, e15371.	1.4	1
632	Comprehensive analysis of a novel RNA modifications-related model in the prognostic characterization, immune landscape and drug therapy of bladder cancer. Frontiers in Genetics, 0, 14, .	1.1	1
633	Functions of N6-methyladenosine in cancer metabolism: from mechanism to targeted therapy. Biomarker Research, 2023, 11, .	2.8	3
634	Exploring m6Aâ€RNA methylation as a potential therapeutic strategy for acute lung injury and acute respiratory distress syndrome. Pulmonary Circulation, 2023, 13, .	0.8	1
635	The Proteins of mRNA Modification: Writers, Readers, and Erasers. Annual Review of Biochemistry, 2023, 92, 145-173.	5.0	21
636	RNA methylation pattern and immune microenvironment characteristics mediated by m6A regulator in ischemic stroke. Frontiers in Genetics, 0, 14, .	1.1	1
637	Novel insights into the multifaceted roles of m6A-modified LncRNAs in cancers: biological functions and therapeutic applications. Biomarker Research, 2023, 11, .	2.8	3
638	METTL16, an evolutionarily conserved m6A methyltransferase member, inhibits the antiviral immune response of miiuy croaker (Miichthys miiuy). Developmental and Comparative Immunology, 2023, , 104713.	1.0	0

ARTICLE IF CITATIONS # Novel insights into the METTL3-METTL14 complex in musculoskeletal diseases. Cell Death Discovery, 647 2.0 2 2023, 9, . The interplay betweenÂN6-methyladenosine andÂprecancerous liver disease: molecular functions 649 0.8 andÂmechanisms. Discover Oncology, 2023, 14, . Phage display and human disease detection. Progress in Molecular Biology and Translational Science, 660 0.9 0 2023,,. Regulation of non-coding RNAs., 2023, , 209-271. Epigenetic regulation in the tumor microenvironment: molecular mechanisms and therapeutic 668 7.1 30 targets. Signal Transduction and Targeted Therapy, 2023, 8, . The roles and implications of RNA m6A modification in cancer. Nature Reviews Clinical Oncology, 12.5 2023, 20, 507-526. 676 Role of N6-methyladenosine RNA modification in gastric cancer. Cell Death Discovery, 2023, 9, . 2.0 0 N6-methyladenosine RNA modifications: a potential therapeutic target for AML. Annals of Hematology, 679 0.8 The implications of N6-methyladenosine (m6A) modification in esophageal carcinoma. Molecular 682 1.0 0 Biology Reports, 0, , . RNA modifications in physiology and disease: towards clinical applications. Nature Reviews Genetics, 2024, 25, 104-122. RNA modification: mechanisms and therapeutic targets. Molecular Biomedicine, 2023, 4, . 688 9 1.7 RNA modification in cardiovascular disease: implications for therapeutic interventions. Signal 710 7.1 Transduction and Targeted Therapy, 2023, 8, . Multifaceted Functions of RNA m6A Modification in Modulating Regulated Cell Death. RNA 717 0.2 0 Technologies, 2023, , 539-573. RNA Modifications in Cancer Metabolism and Tumor Microenvironment. Cancer Treatment and 0.2 Research, 2023, , 3-24. New horizons for the role of RNA N6-methyladenosine modification in hepatocellular carcinoma. 736 2.8 0 Acta Pharmacologica Sinica, 0, , . N6-Methyladenosine RNA Modification in Normal and Malignant Hematopoiesis. Advances in Experimental Medicine and Biology, 2023, , 105-123. Ubiquitination and deubiquitination in the regulation of N6-methyladenosine functional molecules. 740 1.7 0 Journal of Molecular Medicine, 2024, 102, 337-351. 743 The Functions of N6-Methyladenosine in Nuclear RNAs. Biochemistry (Moscow), 2024, 89, 159-172.

#	Article	IF	CITATIONS
744	Emerging role of RNA modification and long noncoding RNA interaction in cancer. Cancer Gene Therapy, 0, , .	2.2	0
745	M6A RNA methylation in biliary tract cancer: the function roles and potential therapeutic implications. Cell Death Discovery, 2024, 10, .	2.0	0
755	RNA Metabolism Governs Immune Function and Response. Advances in Experimental Medicine and Biology, 2024, , 145-161.	0.8	0