A weighted normalized difference water index for wate

International Journal of Remote Sensing 38, 5430-5445 DOI: 10.1080/01431161.2017.1341667

Citation Report

#	Article	IF	CITATIONS
1	Fine spatial resolution coastline extraction from Landsat-8 OLI imagery by integrating downscaling and pansharpening approaches. Remote Sensing Letters, 2018, 9, 314-323.	0.6	19
2	Spatiotemporal Change Patterns of Coastlines in Xiangshan Harbor (Zhejiang, China) During the Past 40 Years. Journal of Coastal Research, 2018, 346, 1418-1428.	0.1	5
3	Spatiotemporal Change Patterns of Coastlines in Zhejiang Province, China, Over the Last Twenty-Five Years. Sustainability, 2018, 10, 477.	1.6	19
4	Impacts of Coastal Development Strategies on Long-Term Coastline Changes: A Comparison Between Tampa Bay, USA and Xiangshan Harbor, China. Papers in Applied Geography, 2019, 5, 126-139.	0.8	3
5	A Comparative Study of Spectral Indices for Surface Water Delineation Using Landsat 8 Images. , 2019, ,		5
6	Impact of Climate Variabilities and Human Activities on Surface Water Extents in Reservoirs of Yongding River Basin, China, from 1985 to 2016 Based on Landsat Observations and Time Series Analysis. Remote Sensing, 2019, 11, 560.	1.8	34
7	Automatic Inundation Mapping Using Sentinel-2 Data Applicable to Both Camargue and Doñana Biosphere Reserves. Remote Sensing, 2019, 11, 2251.	1.8	9
8	Automatic and Unsupervised Water Body Extraction Based on Spectral-Spatial Features Using CF-1 Satellite Imagery. IEEE Geoscience and Remote Sensing Letters, 2019, 16, 927-931.	1.4	23
9	A water identification method basing on grayscale Landsat 8 OLI images. Geocarto International, 2020, 35, 700-710.	1.7	4
10	Exploring wetland transformations in moribund deltaic parts of India. Geocarto International, 2020, 35, 1873-1894.	1.7	23
11	Towards high resolution flood monitoring: An integrated methodology using passive microwave brightness temperatures and Sentinel synthetic aperture radar imagery. Journal of Hydrology, 2020, 582, 124377.	2.3	29
12	Combining Multi-Sensor Satellite Imagery to Improve Long-Term Monitoring of Temporary Surface Water Bodies in the Senegal River Floodplain. Remote Sensing, 2020, 12, 3157.	1.8	15
13	A Novel Method for River Bank Detection from Landsat Satellite Data: A Case Study in the Vietnamese Mekong Delta. Remote Sensing, 2020, 12, 3298.	1.8	22
14	Automatic extraction of aquaculture ponds based on Google Earth Engine. Ocean and Coastal Management, 2020, 198, 105348.	2.0	40
15	Predicting wetland area and water depth of Ganges moribund deltaic parts of India. Remote Sensing Applications: Society and Environment, 2020, 19, 100338.	0.8	6
16	Surface water detection and delineation using remote sensing images: a review of methods and algorithms. Sustainable Water Resources Management, 2020, 6, 1.	1.0	53
17	A new accuracy evaluation method for water body extraction. International Journal of Remote Sensing, 2020, 41, 7311-7342.	1.3	25
18	Mapping and Monitoring the Selected Wetlands of Punjab, India, Using Geospatial Techniques. Journal of the Indian Society of Remote Sensing, 2020, 48, 615-625.	1.2	13

#	Article	IF	CITATIONS
19	RiMARS: An automated river morphodynamics analysis method based on remote sensing multispectral datasets. Science of the Total Environment, 2020, 719, 137336.	3.9	17
20	An OBIA and Rule Algorithm for Coastline Extraction from High- and Medium-Resolution Multispectral Remote Sensing Images. Remote Sensing in Earth Systems Sciences, 2020, 3, 24-34.	1.1	7
21	Assessing scaling effect in downscaling land surface temperature in a heterogenous urban environment. International Journal of Applied Earth Observation and Geoinformation, 2021, 96, 102256.	1.4	15
22	A simple, robust, and automatic approach to extract water body from Landsat images (case study: Lake) Tj ETQq1	1 0.7843 1.2	14 rgBT /O
23	Ensembles of multiple spectral water indices for improving surface water classification. International Journal of Applied Earth Observation and Geoinformation, 2021, 96, 102278.	1.4	3
24	Water Body Extraction from High-resolution Remote Sensing images Based on Scaling EfficientNets. Journal of Physics: Conference Series, 2021, 1894, 012100.	0.3	0
25	Gauging of Sedimentation in Idukki Reservoir, Kerala (1974–2019), and the Impact of 2018 Kerala Floods on the Reservoir. Journal of the Indian Society of Remote Sensing, 2021, 49, 2103-2112.	1.2	6
26	Deep multi-feature learning architecture for water body segmentation from satellite images. Journal of Visual Communication and Image Representation, 2021, 77, 103141.	1.7	21
27	Impact of wetland fragmentation due to damming on the linkages between water richness and ecosystem services. Environmental Science and Pollution Research, 2021, 28, 50266-50285.	2.7	19
28	Accurate extraction of surface water in complex environment based on Google Earth Engine and Sentinel-2. PLoS ONE, 2021, 16, e0253209.	1.1	18
29	Fine-Grained Tidal Flat Waterbody Extraction Method (FYOLOv3) for High-Resolution Remote Sensing Images. Remote Sensing, 2021, 13, 2594.	1.8	7
30	Evaluation of Parametric and Nonparametric Algorithms for the Estimation of Suspended Particulate Matter in Turbid Water using Gaofen-1 Wide Field-of-view Sensors. Journal of the Indian Society of Remote Sensing, 0, , 1.	1.2	1
31	Integrating remote sensing with swarm intelligence and artificial intelligence for modelling wetland habitat vulnerability in pursuance of damming. Ecological Informatics, 2021, 64, 101349.	2.3	21
32	Comparison of thresholding methods for shoreline extraction from Sentinel-2 and Landsat-8 imagery: Extreme Lake Salda, track of Mars on Earth. Journal of Environmental Management, 2021, 298, 113481.	3.8	18
33	Satellite monitoring of surface water variability in the drought prone Western Cape, South Africa. Physics and Chemistry of the Earth, 2021, 124, 102914.	1.2	4
34	Water spread mapping of multiple lakes using remote sensing and satellite data. Arabian Journal of Geosciences, 2021, 14, 1.	0.6	34
35	Efficient measurement of large-scale decadal shoreline change with increased accuracy in tide-dominated coastal environments with Google Earth Engine. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 181, 385-399.	4.9	27
36	UCL: Unsupervised Curriculum Learning for water body classification from remote sensing imagery. International Journal of Applied Earth Observation and Geoinformation, 2021, 105, 102568.	1.4	7

CITATION REPORT

#	Article	IF	CITATIONS
37	Contributions of remote sensing in the diachronic study of the spatial and temporal evolution of the Ahmed El Hansali dam water reservoir from 2002-03 to 2018-19. E3S Web of Conferences, 2020, 183, 02004.	0.2	0
38	Colour weight maps in visible and NIR image fusion. , 2020, , .		0
39	Estimation of land surface temperature in response to land use/land cover transformation in Kolkata city and its suburban area, India. International Journal of Urban Sciences, 2022, 26, 604-631.	1.3	9
40	Automated Training Data Generation from Spectral Indexes for Mapping Surface Water Extent with Sentinel-2 Satellite Imagery at 10 m and 20 m Resolutions. Remote Sensing, 2021, 13, 4531.	1.8	5
41	Uncertainties Involved in the Use of Thresholds for the Detection of Water Bodies in Multitemporal Analysis from Landsat-8 and Sentinel-2 Images. Sensors, 2021, 21, 7494.	2.1	10
43	Hierarchical Urban Land Mappings and Their Distribution with Physical Medium Environments Using Time Series of Land Resource Images in Beijing, China (1981–2021). Remote Sensing, 2022, 14, 580.	1.8	4
44	Long-Term 10 m Resolution Water Dynamics of Qinghai Lake and the Driving Factors. Water (Switzerland), 2022, 14, 671.	1.2	11
45	Surface Water Change Detection via Water Indices and Predictive Modeling Using Remote Sensing Imagery: A Case Study of Nuntasi-Tuzla Lake, Romania. Water (Switzerland), 2022, 14, 556.	1.2	20
46	The Dynamic Changes of Lake Issyk-Kul from 1958 to 2020 Based on Multi-Source Satellite Data. Remote Sensing, 2022, 14, 1575.	1.8	12
47	Earth observation and geospatial data can predict the relative distribution of village level poverty in the Sundarban Biosphere Reserve, India. Journal of Environmental Management, 2022, 313, 114950.	3.8	11
48	Cosine-similarity watershed algorithm for water-body segmentation applying deep neural network classifier. Environmental Earth Sciences, 2022, 81, 1.	1.3	4
49	Tracing surface water change from 1990 to 2020 in China's Shandong Province using Landsat series images. Ecological Indicators, 2022, 140, 108993.	2.6	6
50	How far damming induced wetland fragmentation and water richness change affect wetland ecosystem services?. Remote Sensing Applications: Society and Environment, 2022, 27, 100777.	0.8	1
51	Urban Surface Water Mapping from VHR Images Based on Superpixel Segmentation and Target Detection. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15, 5339-5356.	2.3	3
52	MRSE-Net: Multiscale Residuals and SE-Attention Network for Water Body Segmentation From Satellite Images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15, 5049-5064.	2.3	14
53	An automatic graph-based method for characterizing multichannel networks. Computers and Geosciences, 2022, 166, 105180.	2.0	2
54	Fusing Landsat-8, Sentinel-1, and Sentinel-2 Data for River Water Mapping Using Multidimensional Weighted Fusion Method. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-12.	2.7	0
55	Assessment of spatial–temporal changes in water bodies and its influencing factors using remote sensing and GIS – a model study in the southeast coast of India. Environmental Monitoring and Assessment, 2022, 194, .	1.3	0

CITATION REPORT

#	Article	IF	CITATIONS
56	Monitoring Long-Term Spatiotemporal Changes in Iran Surface Waters Using Landsat Imagery. Remote Sensing, 2022, 14, 4491.	1.8	8
57	Detection of Water Spread Area Changes in Eutrophic Lake Using Landsat Data. Sensors, 2022, 22, 6827.	2.1	33
58	Surface Water Area Extraction by Using Water Indices and DFPS Method Applied to Satellites Data. Sensing and Imaging, 2022, 23, .	1.0	5
59	Changes in and driving factors of the lake area of Huri Chagannao'er Lake in Inner Mongolia. Journal of Limnology, 0, 81, .	0.3	1
60	Surface Water Mapping and Flood Monitoring in the Mekong Delta Using Sentinel-1 SAR Time Series and Otsu Threshold. Remote Sensing, 2022, 14, 5721.	1.8	13
61	Urban Blue-Green Conundrum: A 10-City Study on the Impacts of Urbanization on Natural Infrastructure in India. , 0, , .		0
62	The Performance Analysis of Different Water Indices and Algorithms Using Sentinel-2 and Landsat-8 Images in Determining Water Surface: Demirkopru Dam Case Study. Arabian Journal for Science and Engineering, 2023, 48, 7883-7903.	1.7	8
63	Thermal infrared remote sensing data downscaling investigations: An overview on current status and perspectives. Remote Sensing Applications: Society and Environment, 2023, 29, 100921.	0.8	2
64	Ecohydrological metrics derived from multispectral images to characterize surface water in an intermittent river. Journal of Hydrology, 2023, 617, 129087.	2.3	2
65	Improving the accuracy of the Water Detect algorithm using Sentinel-2, Planetscope and sharpened imagery: a case study in an intermittent river. ClScience and Remote Sensing, 2023, 60, .	2.4	3
66	Comparing the Capability of Sentinel-2 and Landsat 9 Imagery for Mapping Water and Sandbars in the River Bed of the Lower Tagus River (Portugal). Remote Sensing, 2023, 15, 1927.	1.8	3
67	An Interpretable Deep Semantic Segmentation Method for Earth Observation. , 2022, , .		2
68	Evaluation of pre- and post-fire flood risk by analytical hierarchy process method: a case study for the 2021 wildfires in Bodrum, Turkey. Landscape and Ecological Engineering, 2023, 19, 271-288.	0.7	4
69	Analyzing the variations in the water surface area of Taleqan Dam of Iran using ground-based and satellite observations. , 2023, , .		0
70	Utilizing NDWI, MNDWI, SAVI, WRI, and AWEI for Estimating Erosion and Deposition in Ping River in Thailand. Hydrology, 2023, 10, 70.	1.3	10
72	Sub-Pixel Surface Water Mapping for Heterogeneous Areas from Sentinel-2 Images: A Case Study in the Jinshui Basin, China. Water (Switzerland), 2023, 15, 1446.	1.2	3
80	Effects of Anthropogenic Stress and Water Security in Himalayan Urban River Watershed. Lecture Notes in Civil Engineering, 2023, , 187-199.	0.3	0
83	SEN2DWATER: A Novel Multispectral and Multitemporal Dataset and Deep Learning Benchmark for Water Resources Analysis. , 2023, , .		0

#	Article	IF	CITATIONS
89	Extraction of Surface Water Bodies using Optical Remote Sensing Images: A Review. Earth Science Informatics, 2024, 17, 893-956.	1.6	0