Maximizing the right stuff: The trade-off between mem

Science 356, DOI: 10.1126/science.aab0530

Citation Report

#	Article	IF	CITATIONS
1	Physical Model for Rapid and Accurate Determination of Nanopore Size via Conductance Measurement. ACS Sensors, 2017, 2, 1523-1530.	4.0	28
2	Membrane thinning for efficient CO ₂ capture. Science and Technology of Advanced Materials, 2017, 18, 816-827.	2.8	30
3	Building Additional Passageways in Polyamide Membranes with Hydrostable Metal Organic Frameworks To Recycle and Remove Organic Solutes from Various Solvents. ACS Applied Materials & Interfaces, 2017, 9, 38877-38886.	4.0	93
4	Channel-facilitated molecule and ion transport across polymer composite membranes. Chemical Society Reviews, 2017, 46, 6725-6745.	18.7	90
5	Highly permeable and antifouling reverse osmosis membranes with acidified graphitic carbon nitride nanosheets as nanofillers. Journal of Materials Chemistry A, 2017, 5, 19875-19883.	5.2	103
6	Solventâ€Templated Block Ionomers for Base―and Acidâ€Gas Separations: Effect of Humidity on Ammonia and Carbon Dioxide Permeation. Advanced Materials Interfaces, 2017, 4, 1700854.	1.9	25
7	Integrating seawater desalination and wastewater reclamation forward osmosis process using thin-film composite mixed matrix membrane with functionalized carbon nanotube blended polyethersulfone support layer. Chemosphere, 2017, 185, 1181-1188.	4.2	57
8	Nanofluidics in two-dimensional layered materials: inspirations from nature. Chemical Society Reviews, 2017, 46, 5400-5424.	18.7	233
9	Ultrapermeable membranes. Nature Materials, 2017, 16, 880-881.	13.3	32
10	Poly(ether imide sulfone) Membranes from Solutions in Ionic Liquids. Industrial & Engineering Chemistry Research, 2017, 56, 14914-14922.	1.8	16
11	Phase Inversion Directly Induced Tight Ultrafiltration (UF) Hollow Fiber Membranes for Effective Removal of Textile Dyes. Environmental Science & Technology, 2017, 51, 14254-14261.	4.6	72
12	Structure-property relationships of crosslinked disulfonated poly(arylene ether sulfone) membranes for desalination of water. Polymer, 2017, 132, 286-293.	1.8	11
13	High-Performance Self-Cross-Linked PGP–POEM Comb Copolymer Membranes for CO ₂ Capture. Macromolecules, 2017, 50, 8938-8947.	2.2	28
14	Metal–organic frameworks based membranes for liquid separation. Chemical Society Reviews, 2017, 46, 7124-7144.	18.7	557
15	A graphene-like membrane with an ultrahigh water flux for desalination. Nanoscale, 2017, 9, 18951-18958.	2.8	46
16	Preparation of large, ultra-flexible and free-standing nanomembranes of metal oxide–polymer composite and their gas permeation properties. Clean Energy, 2017, 1, 80-89.	1.5	4
17	A scalable graphene-based membrane. Nature Nanotechnology, 2017, 12, 1022-1023.	15.6	15
18	Toward the Fabrication of Advanced Nanofiltration Membranes by Controlling Morphologies and Mesochannel Orientations of Hexagonal Lyotropic Liquid Crystals. Membranes, 2017, 7, 37.	1.4	12

#	Article	IF	CITATIONS
19	Recent Advances in the Fabrication of Membranes Containing "Ion Pairs―for Nanofiltration Processes. Polymers, 2017, 9, 715.	2.0	34
20	Efficient dye removal from aqueous solution by high-performance electrospun nanofibrous membranes through incorporation of SiO2 nanoparticles. Journal of Cleaner Production, 2018, 183, 1197-1206.	4.6	121
21	Facile Construction of Long-Lasting Antibacterial Membrane by Using an Orientated Halloysite Nanotubes Interlayer. Industrial & Engineering Chemistry Research, 2018, 57, 3235-3245.	1.8	17
22	Preparation and characterization of SLS-CNT/PES ultrafiltration membrane with antifouling and antibacterial properties. Journal of Membrane Science, 2018, 548, 459-469.	4.1	132
23	Nafion/IL hybrid membranes with tuned nanostructure for enhanced CO ₂ separation: effects of ionic liquid and water vapor. Green Chemistry, 2018, 20, 1391-1404.	4.6	59
24	A strain-controlled C2N monolayer membrane for gas separation in PEMFC application. Applied Surface Science, 2018, 441, 408-414.	3.1	33
25	Influence of CNT-rGO composite structures on their permeability and selectivity for membrane water treatment. Journal of Membrane Science, 2018, 551, 326-332.	4.1	40
26	Adsorption-Assisted Interfacial Polymerization toward Ultrathin Active Layers for Ultrafast Organic Permeation. ACS Applied Materials & Interfaces, 2018, 10, 10445-10453.	4.0	32
27	Sorption-enhanced membrane materials for gas separation: a road less traveled. Current Opinion in Chemical Engineering, 2018, 20, 50-59.	3.8	28
28	Self-cleaning membranes for water purification by co-deposition of photo-mobile 4,4′-azodianiline and bio-adhesive polydopamine. Journal of Membrane Science, 2018, 554, 164-174.	4.1	35
29	High-flux thin film composite membranes for nanofiltration mediated by a rapid co-deposition of polydopamine/piperazine. Journal of Membrane Science, 2018, 554, 97-108.	4.1	131
30	Creating cross-linked lamellar block copolymer supporting layers for biomimetic membranes. Faraday Discussions, 2018, 209, 179-191.	1.6	15
31	Robust Covalently Cross-linked Polybenzimidazole/Graphene Oxide Membranes for High-Flux Organic Solvent Nanofiltration. ACS Applied Materials & Interfaces, 2018, 10, 16140-16147.	4.0	135
32	Fluorinated and sulfonated poly (ether ether ketone) and Matrimid blend membranes for CO 2 separation. Separation and Purification Technology, 2018, 203, 233-241.	3.9	27
33	Optimized distillation coupled with state-of-the-art membranes for propylene purification. Journal of Membrane Science, 2018, 556, 321-328.	4.1	33
34	Nanocomposite Membrane with Polyethylenimine-Grafted Graphene Oxide as a Novel Additive to Enhance Pollutant Filtration Performance. Environmental Science & Technology, 2018, 52, 5920-5930.	4.6	88
35	Application of graphene-based materials in water purification: from the nanoscale to specific devices. Environmental Science: Nano, 2018, 5, 1264-1297.	2.2	102
36	Combined Effects of Surface Charge and Pore Size on Co-Enhanced Permeability and Ion Selectivity through RGO-OCNT Nanofiltration Membranes. Environmental Science & Context Sc	4.6	79

#	Article	IF	CITATIONS
37	Embedding hydrophobic MoS 2 nanosheets within hydrophilic sodium alginate membrane for enhanced ethanol dehydration. Chemical Engineering Science, 2018, 185, 231-242.	1.9	35
38	Role of filled PLGA in improving enantioselectivity of Glu-GO/PLGA composite membranes. Journal of Membrane Science, 2018, 555, 398-406.	4.1	46
39	Increasing salt size selectivity in low water content polymers via polymer backbone dynamics. Journal of Membrane Science, 2018, 552, 43-50.	4.1	24
40	Highly rectified ion transport through 2D WSe2/MoS2 bi-layered membranes. Chinese Chemical Letters, 2018, 29, 892-894.	4.8	29
41	Embedding Ag + @COFs within Pebax membrane to confer mass transport channels and facilitated transport sites for elevated desulfurization performance. Journal of Membrane Science, 2018, 552, 1-12.	4.1	61
42	Mixed matrix formulations with MOF molecular sieving for key energy-intensive separations. Nature Materials, 2018, 17, 283-289.	13.3	449
43	A perfect match. Nature Materials, 2018, 17, 216-217.	13.3	7
44	Synergistic effects of zeolite imidazole framework@graphene oxide composites in humidified mixed matrix membranes on CO ₂ separation. RSC Advances, 2018, 8, 6099-6109.	1.7	93
45	Post modification of acetylene functional poly(oxindole biphenylylene) by photoinduced CuAAC. European Polymer Journal, 2018, 100, 298-307.	2.6	8
46	Nanofilms directly formed on macro-porous substrates for molecular and ionic sieving. Journal of Materials Chemistry A, 2018, 6, 2908-2913.	5.2	33
47	Membrane Surface Modification Using Thiol-Containing Zwitterionic Polymers via Bioadhesive Polydopamine. Industrial & Engineering Chemistry Research, 2018, 57, 2336-2345.	1.8	49
48	Precise Molecular Sieving Architectures with Janus Pathways for Both Polar and Nonpolar Molecules. Advanced Materials, 2018, 30, 1705933.	11.1	190
49	Nanofoaming of Polyamide Desalination Membranes To Tune Permeability and Selectivity. Environmental Science and Technology Letters, 2018, 5, 123-130.	3.9	260
50	A novel sulfonated reverse osmosis membrane for seawater desalination: Experimental and molecular dynamics studies. Journal of Membrane Science, 2018, 550, 470-479.	4.1	32
51	Lewis-Acid-Catalyzed Interfacial Polymerization of Covalent Organic Framework Films. CheM, 2018, 4, 308-317.	5.8	364
52	Highly Permeable Oligo(ethylene oxide)―co â€poly(dimethylsiloxane) Membranes for Carbon Dioxide Separation. Advanced Sustainable Systems, 2018, 2, 1700113.	2.7	6
53	Manipulation of interactions at membrane interfaces for energy and environmental applications. Progress in Polymer Science, 2018, 80, 125-152.	11.8	56
54	Nanoporous Polymer Networks Templated by Gemini Surfactant Lyotropic Liquid Crystals. Chemistry of Materials, 2018, 30, 185-196.	3.2	25

#	Article	IF	CITATIONS
55	MXene molecular sieving membranes for highly efficient gas separation. Nature Communications, 2018, 9, 155.	5.8	825
56	Water and Salt Transport Properties of Triptycene-Containing Sulfonated Polysulfone Materials for Desalination Membrane Applications. ACS Applied Materials & Interfaces, 2018, 10, 4102-4112.	4.0	45
57	Atomic layer deposition of metal oxides on carbon nanotube fabrics for robust, hydrophilic ultrafiltration membranes. Journal of Membrane Science, 2018, 550, 246-253.	4.1	34
58	Bioinspired smart asymmetric nanochannel membranes. Chemical Society Reviews, 2018, 47, 322-356.	18.7	372
59	Optimal design of graphene nanopores for seawater desalination. Journal of Chemical Physics, 2018, 148, 014703.	1.2	30
60	Polyamide membranes with nanoscale Turing structures for water purification. Science, 2018, 360, 518-521.	6.0	996
61	Role of membrane pore polymerization conditions for pH responsive behavior, catalytic metal nanoparticle synthesis, and PCB degradation. Journal of Membrane Science, 2018, 555, 348-361.	4.1	33
62	Centimeter-scale continuous silica isoporous membranes for molecular sieving. Journal of Membrane Science, 2018, 558, 86-93.	4.1	19
63	Graphene oxide membrane for molecular separation: challenges and opportunities. Science China Materials, 2018, 61, 1021-1026.	3.5	33
64	A novel time lag method for the analysis of mixed gas diffusion in polymeric membranes by on-line mass spectrometry: Method development and validation. Journal of Membrane Science, 2018, 561, 39-58.	4.1	77
65	Probing ion current in solid-electrolytes at the meso- and nanoscale. Faraday Discussions, 2018, 210, 55-67.	1.6	4
66	A new approach to the identification of high-potential materials for cost-efficient membrane-based post-combustion CO ₂ capture. Sustainable Energy and Fuels, 2018, 2, 1225-1243.	2.5	32
67	Challenges and opportunities at the nexus of energy, water, and food: A perspective from the southwest United States. MRS Energy & Sustainability, 2018, 5, 1.	1.3	10
68	Polymeric Ion Pumps: Using an Oscillating Stimulus To Drive Solute Transport in Reactive Membranes. Langmuir, 2018, 34, 4503-4514.	1.6	8
69	Design Considerations for Artificial Water Channel–Based Membranes. Annual Review of Materials Research, 2018, 48, 57-82.	4.3	40
70	Star polymer-assembled thin film composite membranes with high separation performance and low fouling. Journal of Membrane Science, 2018, 555, 369-378.	4.1	37
71	Mussel-inspired construction of organic-inorganic interfacial nanochannels for ion/organic molecule selective permeation. Journal of Membrane Science, 2018, 555, 337-347.	4.1	29
72	Enabling Graphene-Oxide-Based Membranes for Large-Scale Energy Storage by Controlling Hydrophilic Microstructures. CheM, 2018, 4, 1035-1046.	5.8	65

#	Article	IF	CITATIONS
73	Highly CO2 perm-selective metal-organic framework membranes through CO2 annealing post-treatment. Journal of Membrane Science, 2018, 555, 97-104.	4.1	14
74	Study on membrane performance in vapor permeation of VOC/N2 mixtures via modified constant volume/variable pressure method. Separation and Purification Technology, 2018, 200, 273-283.	3.9	37
75	Dioxolane-Based Perfluoropolymers with Superior Membrane Gas Separation Properties. Macromolecules, 2018, 51, 2489-2497.	2.2	55
76	Towards sustainable ultrafast molecular-separation membranes: From conventional polymers to emerging materials. Progress in Materials Science, 2018, 92, 258-283.	16.0	253
77	Bimetallic metal-organic frameworks nanocages as multi-functional fillers for water-selective membranes. Journal of Membrane Science, 2018, 545, 19-28.	4.1	44
78	Superhydrophilic nickel-coated meshes with controllable pore size prepared by electrodeposition from deep eutectic solvent for efficient oil/water separation. Separation and Purification Technology, 2018, 192, 21-29.	3.9	39
79	Tunable semi-permeability of graphene-based membranes by adjusting reduction degree of laminar graphene oxide layer. Journal of Membrane Science, 2018, 547, 73-79.	4.1	128
80	Salt concentration dependence of ionic conductivity in ion exchange membranes. Journal of Membrane Science, 2018, 547, 123-133.	4.1	119
81	The role of halogens in polychlorotrifluoroethylene (PCTFE) in membrane gas separations. Journal of Membrane Science, 2018, 548, 380-389.	4.1	20
82	Coarse-grained molecular dynamics simulation of activated penetrant transport in glassy polymers. Soft Matter, 2018, 14, 440-447.	1.2	31
83	Highly efficient water desalination in carbon nanocones. Carbon, 2018, 129, 374-379.	5.4	66
84	Unprecedented size-sieving ability in polybenzimidazole doped with polyprotic acids for membrane H ₂ /CO ₂ separation. Energy and Environmental Science, 2018, 11, 94-100.	15.6	115
85	Significantly enhanced CO2 capture properties by synergy of zinc ion and sulfonate in Pebax-pitch hybrid membranes. Journal of Membrane Science, 2018, 549, 670-679.	4.1	41
86	Selective ion-permeation through strained and charged graphene membranes. Nanotechnology, 2018, 29, 035402.	1.3	14
87	Deep eutectic solvent as novel additive for PES membrane with improved performance. Separation and Purification Technology, 2018, 194, 239-248.	3.9	49
88	Metal organic framework based mixed matrix membranes: an overview on filler/polymer interfaces. Journal of Materials Chemistry A, 2018, 6, 293-312.	5.2	377
89	Polymers of intrinsic microporosity for energy-intensive membrane-based gas separations. Materials Today Nano, 2018, 3, 69-95.	2.3	214
90	Salt permeation mechanisms in charge-patterned mosaic membranes. Molecular Systems Design and Engineering, 2018, 3, 959-969.	1.7	9

#	Article	IF	CITATIONS
91	Preparation and characterization of novel forward osmosis membrane incorporated with sulfonated carbon nanotubes. RSC Advances, 2018, 8, 41032-41039.	1.7	16
92	Interaction Analysis between Gravity-Driven Ceramic Membrane and Smaller Organic Matter: Implications for Retention and Fouling Mechanism in Ultralow Pressure-Driven Filtration System. Environmental Science & Technology, 2018, 52, 13718-13727.	4.6	42
93	Preparation of Highly Porous Polymer Membranes with Hierarchical Porous Structures via Spinodal Decomposition of Mixed Solvents with UCST Phase Behavior. ACS Applied Materials & Interfaces, 2018, 10, 44041-44049.	4.0	38
94	Facilitating CO ₂ Transport Across Mixed Matrix Membranes Containing Multifunctional Nanocapsules. ACS Applied Materials & Interfaces, 2018, 10, 43031-43039.	4.0	29
95	Interfacial Engineering in Metal–Organic Framework-Based Mixed Matrix Membranes Using Covalently Grafted Polyimide Brushes. Journal of the American Chemical Society, 2018, 140, 17203-17210.	6.6	204
96	Metal–Organic Framework Membranes: From Fabrication to Gas Separation. Crystals, 2018, 8, 412.	1.0	51
97	Influence of Rubbery versus Glassy Backbone Dynamics on Multiscale Transport in Polymer Membranes. Macromolecules, 2018, 51, 9222-9233.	2.2	22
98	Self-assembled membrane composed of amyloid-like proteins for efficient size-selective molecular separation and dialysis. Nature Communications, 2018, 9, 5443.	5.8	84
99	Carbon Nanotubes and Related Nanomaterials: Critical Advances and Challenges for Synthesis toward Mainstream Commercial Applications. ACS Nano, 2018, 12, 11756-11784.	7.3	388
100	Atomic Layer Deposition for Membranes: Basics, Challenges, and Opportunities. Chemistry of Materials, 2018, 30, 7368-7390.	3.2	133
101	Rightsizing Nanochannels in Reduced Graphene Oxide Membranes by Solvating for Dye Desalination. Environmental Science & Technology, 2018, 52, 12649-12655.	4.6	85
102	Effects of tertiary amines and quaternary ammonium halides in polysulfone on membrane gas separation properties. Journal of Polymer Science, Part B: Polymer Physics, 2018, 56, 1239-1250.	2.4	9
103	Facile manufacture of porous organic framework membranes for precombustion CO ₂ capture. Science Advances, 2018, 4, eaau1698.	4.7	98
104	Constructing Continuous Proton-Conducting Highways within Sulfonated Poly(Arylene Ether) Tj ETQq1 1 0.7843 1005.	14 rgBT / 2.0	Overlock 10 1 17
105	Crystalline 2D Covalent Organic Framework Membranes for High-Flux Organic Solvent Nanofiltration. Journal of the American Chemical Society, 2018, 140, 14342-14349.	6.6	313
106	Osmotic Transport across Surface Functionalized Carbon Nanotube Membrane. Nano Letters, 2018, 18, 6679-6685.	4.5	34
107	Hybrid polyelectrolyte-anion exchange membrane and its interaction with phosphate. Reactive and Functional Polymers, 2018, 133, 126-135.	2.0	20
108	Polyester Nanofilms with Enhanced Polyhydroxyl Architectures for the Separation of Metal Ions from Aqueous Solutions. ACS Applied Nano Materials, 2018, 1, 6176-6186.	2.4	7

#	Article	IF	CITATIONS
109	Ultrathin Metal–Organic Framework Nanosheets as a Gutter Layer for Flexible Composite Gas Separation Membranes. ACS Nano, 2018, 12, 11591-11599.	7.3	118
110	Supramolecular interaction facilitated block copolymer assembly and preparation of self-organized scaffold for chiral selective transport. Polymer, 2018, 156, 240-249.	1.8	5
111	Molecular Dynamics Study on the Reverse Osmosis Using Multilayer Porous Graphene Membranes. Nanomaterials, 2018, 8, 805.	1.9	11
112	Controlling and Expanding the Selectivity of Filtration Membranes. Chemistry of Materials, 2018, 30, 7328-7354.	3.2	70
113	Synthesis, characterization, and gas permeation properties of thermally rearranged poly(hydroxyimide)s filled with mesoporous MCM-41 silica. Polymer, 2018, 158, 32-45.	1.8	16
114	Mixed Matrix Membranes for CO2 Separations. , 2018, , 103-153.		3
115	Engineering Sub-Nanometer Channels in Two-Dimensional Materials for Membrane Gas Separation. Membranes, 2018, 8, 100.	1.4	21
116	Photochemical Creation of Covalent Organic 2D Monolayer Objects in Defined Shapes <i>via</i> a Lithographic 2D Polymerization. ACS Nano, 2018, 12, 11294-11306.	7.3	16
117	Elucidation of Titanium Dioxide Nucleation and Growth on a Polydopamine-Modified Nanoporous Polyvinylidene Fluoride Substrate via Low-Temperature Atomic Layer Deposition. ACS Omega, 2018, 3, 10493-10502.	1.6	1
118	Ultrathin gutter layer for high-performance thin-film composite membranes for CO2 separation. Journal of Membrane Science, 2018, 566, 336-345.	4.1	47
119	Modeling Permeation through Mixed-Matrix Membranes: A Review. Processes, 2018, 6, 172.	1.3	50
120	Cost Optimization of Osmotically Assisted Reverse Osmosis. Environmental Science & Technology, 2018, 52, 11813-11821.	4.6	24
121	Heterostructured filler in mixed matrix membranes to coordinate physical and chemical selectivities for enhanced CO2 separation. Journal of Membrane Science, 2018, 567, 272-280.	4.1	60
122	A Facile and Scalable Route to the Preparation of Catalytic Membranes with in Situ Synthesized Supramolecular Dendrimer Particle Hosts for Pt(0) Nanoparticles Using a Low-Generation PAMAM Dendrimer (G1-NH2) as Precursor. ACS Applied Materials & Interfaces, 2018, 10, 33238-33251.	4.0	9
123	PoreDesigner for tuning solute selectivity in a robust and highly permeable outer membrane pore. Nature Communications, 2018, 9, 3661.	5.8	50
124	Gas Flow at the Ultra-nanoscale: Universal Predictive Model and Validation in Nanochannels of Ãngstrom-Level Resolution. ACS Applied Materials & Interfaces, 2018, 10, 32233-32238.	4.0	19
125	Effect of fixed charge group concentration on salt permeability and diffusion coefficients in ion exchange membranes. Journal of Membrane Science, 2018, 566, 307-316.	4.1	34
126	Gas concentration polarization and transport mechanism transition near thin polymeric membranes. Journal of Membrane Science, 2018, 567, 1-6.	4.1	8

#	Article	IF	CITATIONS
127	Polyamide thin-film composite membrane fabricated through interfacial polymerization coupled with surface amidation for improved reverse osmosis performance. Journal of Membrane Science, 2018, 566, 87-95.	4.1	36
128	Controlling reduction degree of graphene oxide membranes for improved water permeance. Science Bulletin, 2018, 63, 788-794.	4.3	131
129	Structure design and applications of dual-layer polymeric membranes. Journal of Membrane Science, 2018, 562, 85-111.	4.1	94
130	Modeling Amorphous Microporous Polymers for CO ₂ Capture and Separations. Chemical Reviews, 2018, 118, 5488-5538.	23.0	208
131	Carbon Nanotube Networks as Nanoscaffolds for Fabricating Ultrathin Carbon Molecular Sieve Membranes. ACS Applied Materials & Interfaces, 2018, 10, 20182-20188.	4.0	33
132	Preparation and characterization of a diatomite hybrid microfiltration carbon membrane for oily wastewater treatment. Journal of the Taiwan Institute of Chemical Engineers, 2018, 89, 39-48.	2.7	32
133	Hierarchical pore architectures from 2D covalent organic nanosheets for efficient water/alcohol separation. Journal of Membrane Science, 2018, 561, 79-88.	4.1	33
134	Enhanced ethanol recovery of PDMS mixed matrix membranes with hydrophobically modified ZIF-90. Separation and Purification Technology, 2018, 206, 80-89.	3.9	71
135	Reduced wrinkling in GO membrane by grafting basal-plane groups for improved gas and liquid separations. Journal of Membrane Science, 2018, 563, 336-344.	4.1	40
136	Functionalized boron nitride membranes with ultrafast solvent transport performance for molecular separation. Nature Communications, 2018, 9, 1902.	5.8	225
137	Study of polyethyleneimine coating on membrane permselectivity and desalination performance during pilot-scale electrodialysis of reverse osmosis concentrate. Separation and Purification Technology, 2018, 207, 396-405.	3.9	36
138	Layer-by-layer self-assembled chitosan/PAA nanofiltration membranes. Separation and Purification Technology, 2018, 207, 142-150.	3.9	90
139	Permselectivity and ion-conductivity of grafted cation-exchange membranes based on UV-oxidized polymethylpenten and sulfonated polystyrene. Separation and Purification Technology, 2018, 207, 329-335.	3.9	43
140	Dynamic Microcapsules with Rapid and Reversible Permeability Switching. Advanced Functional Materials, 2018, 28, 1803385.	7.8	37
141	Enhanced CO ₂ /CH ₄ Separation Performance of a Mixed Matrix Membrane Based on Tailored MOFâ€Polymer Formulations. Advanced Science, 2018, 5, 1800982.	5.6	88
142	Emerging opportunities for nanotechnology to enhance water security. Nature Nanotechnology, 2018, 13, 634-641.	15.6	627
143	Uniformly Oriented Zeolite ZSMâ€5 Membranes with Tunable Wettability on a Porous Ceramic. Angewandte Chemie - International Edition, 2018, 57, 12458-12462.	7.2	19
144	A simulation study with a new performance index for pressure-retarded osmosis processes hybridized with seawater reverse osmosis and membrane distillation. Desalination, 2018, 444, 118-128.	4.0	19

#	Article	IF	CITATIONS
145	Tannic Acid/Fe ³⁺ Nanoscaffold for Interfacial Polymerization: Toward Enhanced Nanofiltration Performance. Environmental Science & amp; Technology, 2018, 52, 9341-9349.	4.6	310
146	On the Origin of Ion Selectivity in Ultrathin Nanopores: Insights for Membraneâ€Scale Osmotic Energy Conversion. Advanced Functional Materials, 2018, 28, 1804189.	7.8	101
147	Fabrication and characterization of phosphorylated chitosan nanofiltration membranes with tunable surface charges and improved selectivities. Chemical Engineering Journal, 2018, 352, 163-172.	6.6	32
148	Chaotic printing: using chaos to fabricate densely packed micro- and nanostructures at high resolution and speed. Materials Horizons, 2018, 5, 813-822.	6.4	28
149	Performance of Nanocomposite Membranes Containing 0D to 2D Nanofillers for CO2 Separation: A Review. Membranes, 2018, 8, 24.	1.4	52
150	Effects of Thermal Cross-Linking on the Structure and Property of Asymmetric Membrane Prepared from the Polyacrylonitrile. Polymers, 2018, 10, 539.	2.0	28
151	Ion Diffusion Coefficients in Ion Exchange Membranes: Significance of Counterion Condensation. Macromolecules, 2018, 51, 5519-5529.	2.2	123
152	Surface dependent enhancement in water vapor permeation through nanochannels. Analyst, The, 2018, 143, 4256-4266.	1.7	9
153	Revealing the Role of Oxygen Debris and Functional Groups on the Water Flux and Molecular Separation of Graphene Oxide Membrane: A Combined Experimental and Theoretical Study. Journal of Physical Chemistry C, 2018, 122, 17507-17517.	1.5	32
154	Enhanced separation performance of PES ultrafiltration membranes by imidazole-based deep eutectic solvents as novel functional additives. Journal of Membrane Science, 2018, 564, 247-258.	4.1	48
155	Covalent Organic Framework–Covalent Organic Framework Bilayer Membranes for Highly Selective Gas Separation. Journal of the American Chemical Society, 2018, 140, 10094-10098.	6.6	500
156	Superhydrophilicity and underwater superoleophobicity TiO2/Al2O3 composite membrane with ultra low oil adhesion for highly efficient oil-in-water emulsions separation. Applied Surface Science, 2018, 458, 157-165.	3.1	69
157	Unique selectivity trends of highly permeable PAP[5] water channel membranes. Faraday Discussions, 2018, 209, 193-204.	1.6	13
158	On the rejection and reversibility of fouling in ultrafiltration as assessed by hydraulic impedance spectroscopy. Journal of Membrane Science, 2018, 564, 532-542.	4.1	10
159	Tuning the functional groups of carbon quantum dots in thin film nanocomposite membranes for nanofiltration. Journal of Membrane Science, 2018, 564, 394-403.	4.1	161
160	Gas Permeation Properties, Physical Aging, and Its Mitigation in High Free Volume Glassy Polymers. Chemical Reviews, 2018, 118, 5871-5911.	23.0	414
161	Structural characterization and properties of ODPA–ODA polyetherimide membranes modified by ethylene glycol. Polymer Bulletin, 2018, 75, 5825-5842.	1.7	1
162	Rapid Water Permeation Through Carbon Nanomembranes with Sub-Nanometer Channels. ACS Nano, 2018, 12, 4695-4701.	7.3	75

		CITATION REPORT		
#	Article		IF	Citations
163	New Pyridinium Type Poly(Ionic Liquids) as Membranes for CO2 Separation. Polymers,	2018, 10, 912.	2.0	35
164	Artificial water channels $\mathbf{\hat{\in}}$ ''deconvolution of natural Aquaporins through synthetic des Water, 2018, 1, .	sign. Npj Clean	3.1	46
165	Biomimetic Silicification on Membrane Surface for Highly Efficient Treatments of Both Emulsion and Protein Wastewater. ACS Applied Materials & Interfaces, 2018, 10,	Oil-in-Water 29982-29991.	4.0	101
166	Harnessing Filler Materials for Enhancing Biogas Separation Membranes. Chemical Rev 8655-8769.	iews, 2018, 118,	23.0	239
167	Tuned Fabrication of the Aligned and Opened CNT Membrane with Exceptionally High Selectivity for Bioalcohol Recovery. Nano Letters, 2018, 18, 6150-6156.	Permeability and	4.5	78
168	Sandwich membranes through a two-dimensional confinement strategy for gas separa Chemistry Frontiers, 2018, 2, 1911-1919.	ition. Materials	3.2	12
169	Benzimidazole linked polymers (BILPs) in mixed-matrix membranes: Influence of filler p CO2/N2 separation performance. Journal of Membrane Science, 2018, 566, 213-222.	orosity on the	4.1	20
170	Potable Water Reuse through Advanced Membrane Technology. Environmental Scienc Technology, 2018, 52, 10215-10223.	:e &	4.6	363
171	Preparation of nanocavity-contained thin film composite nanofiltration membranes wi permeability and divalent to monovalent ion selectivity. Desalination, 2018, 445, 115-	th enhanced 122.	4.0	96
172	3D printed polyamide membranes for desalination. Science, 2018, 361, 682-686.		6.0	359
173	Tunable Ion Sieving of Graphene Membranes through the Control of Nitrogen-Bonding Nano Letters, 2018, 18, 5506-5513.	g Configuration.	4.5	52
174	Ultra-high selectivity COF-based membranes for biobutanol production. Journal of Mat Chemistry A, 2018, 6, 17602-17611.	erials	5.2	56
175	A comprehensive description of the threshold flux during oil/water emulsion filtration t sustainable flux regimes for tannic acid (TA) dip-coated poly(vinylidene fluoride) (PVDF Journal of Membrane Science, 2018, 563, 43-53.	to identify ⁻) membranes.	4.1	59
176	High-performance thin-film composite membranes with surface functionalization by or phosphonic acids. Journal of Membrane Science, 2018, 563, 284-297.	rganic	4.1	56
177	Molecular-Scale Hybrid Membranes Derived from Metal-Organic Polyhedra for Gas Sep Applied Materials & Interfaces, 2018, 10, 21381-21389.	aration. ACS	4.0	55
178	2D MXene Nanofilms with Tunable Gas Transport Channels. Advanced Functional Mate 1801511.	erials, 2018, 28,	7.8	332
179	Preparation of anti-adhesion and bacterial destructive polymeric ultrafiltration membra modified mesoporous carbon. Separation and Purification Technology, 2018, 205, 273	anes using 3-283.	3.9	46
180	Achieving high permeability and enhanced selectivity for Angstrom-scale separations u water channel membranes. Nature Communications, 2018, 9, 2294.	ising artificial	5.8	95

#	Article	IF	Citations
181	Efficient removal of nickel(II) from high salinity wastewater by a novel PAA/ZIF-8/PVDF hybrid ultrafiltration membrane. Water Research, 2018, 143, 87-98.	5.3	131
182	Enhanced CO2/CH4 separation performance of mixed-matrix membranes through dispersion of sorption-selective MOF nanocrystals. Journal of Membrane Science, 2018, 563, 360-370.	4.1	82
183	Revisiting Anisotropic Diffusion of Carbon Dioxide in the Metal–Organic Framework Zn ₂ (dobpdc). Journal of Physical Chemistry C, 2018, 122, 15344-15351.	1.5	15
184	Facile CO ₂ Separation in Composite Membranes. Chemical Engineering and Technology, 2019, 42, 30-44.	0.9	45
185	Ultrafiltration membrane microreactor (MMR) for simultaneous removal of nitrate and phosphate from water. Chemical Engineering Journal, 2019, 355, 238-246.	6.6	78
186	Antifouling Ultrafiltration Membranes with Retained Pore Size by Controlled Deposition of Zwitterionic Polymers and Poly(ethylene glycol). Langmuir, 2019, 35, 1872-1881.	1.6	24
187	Polyamide thin-film nanocomposite membranes with graphene oxide nanosheets: Balancing membrane performance and fouling propensity. Desalination, 2019, 451, 139-147.	4.0	85
188	Facile Synthesis of Robust and Pore-Size-Tunable Nanoporous Covalent Framework Membrane by Simultaneous Gelation and Phase Separation of Covalent Network/Poly(methyl methacrylate) Mixture. ACS Applied Materials & Interfaces, 2019, 11, 32398-32407.	4.0	7
189	Ultra-permeable polyamide membranes harvested by covalent organic framework nanofiber scaffolds: a two-in-one strategy. Chemical Science, 2019, 10, 9077-9083.	3.7	108
190	Electrospun flexible nanofibrous membranes for oil/water separation. Journal of Materials Chemistry A, 2019, 7, 20075-20102.	5.2	177
191	A thin film nanocomposite membrane with pre-immobilized UiO-66-NH ₂ toward enhanced nanofiltration performance. RSC Advances, 2019, 9, 24802-24810.	1.7	71
192	Precise nanofiltration in a fouling-resistant self-assembled membrane with water-continuous transport pathways. Science Advances, 2019, 5, eaav9308.	4.7	79
193	Manipulation of Fibril Surfaces in Nanocellulose-Based Facilitated Transport Membranes for Enhanced CO ₂ Capture. ACS Applied Materials & Interfaces, 2019, 11, 33302-33313.	4.0	39
194	Highly Polar but Amorphous Polymers with Robust Membrane CO2/N2 Separation Performance. Joule, 2019, 3, 1881-1894.	11.7	60
195	Activity-derived model for water and salt transport in reverse osmosis membranes: A combination of film theory and electrolyte theory. Desalination, 2019, 469, 114094.	4.0	14
196	Bioadhesion-inspired surface engineering constructing robust, hydrophilic membranes for highly-efficient wastewater remediation. Journal of Membrane Science, 2019, 591, 117353.	4.1	76
197	Engineering Selective Desalination Membranes via Molecular Control of Polymer Functional Groups. Environmental Science and Technology Letters, 2019, 6, 462-466.	3.9	22
198	Sub-1 μm Free-Standing Symmetric Membrane for Osmotic Separations. Environmental Science and Technology Letters, 2019, 6, 492-498.	3.9	20

#	ARTICLE	IF	CITATIONS
199	Trade-off in membrane distillation with monolithic omniphobic membranes. Nature Communications, 2019, 10, 3220.	5.8	106
200	Polymeric membrane materials for nitrogen production from air: A process synthesis study. Chemical Engineering Science, 2019, 207, 1196-1213.	1.9	36
201	Controlled Postassembly Functionalization of Mesoporous Copolymer Membranes Informed by Fourier Transform Infrared Spectroscopy. ACS Applied Polymer Materials, 2019, 1, 2120-2130.	2.0	3
202	Highly permeable and fouling-resistant hollow fiber membranes for reverse osmosis. Chemical Engineering Science, 2019, 207, 903-910.	1.9	36
203	A Crown Ether-Containing Copolyimide Membrane with Improved Free Volume for CO ₂ Separation. Industrial & Engineering Chemistry Research, 2019, 58, 14357-14367.	1.8	15
204	Sorptionâ€Enhanced Mixed Matrix Membranes with Facilitated Hydrogen Transport for Hydrogen Purification and CO ₂ Capture. Advanced Functional Materials, 2019, 29, 1904357.	7.8	45
205	Self-Healing Hyper-Cross-Linked Metal–Organic Polyhedra (HCMOPs) Membranes with Antimicrobial Activity and Highly Selective Separation Properties. Journal of the American Chemical Society, 2019, 141, 12064-12070.	6.6	124
206	A Review on Computational Modeling Tools for MOF-Based Mixed Matrix Membranes. Computation, 2019, 7, 36.	1.0	23
207	Redefining the Robeson upper bounds for CO ₂ /CH ₄ and CO ₂ /N ₂ separations using a series of ultrapermeable benzotriptycene-based polymers of intrinsic microporosity. Energy and Environmental Science, 2019, 12, 2733-2740.	15.6	509
208	New Gas-Diffusion Electrode Based on Heterocyclic Microporous Polymer PIM-1 for High-Temperature Polymer Electrolyte Membrane Fuel Cell. Russian Journal of Electrochemistry, 2019, 55, 552-557.	0.3	19
209	Tailored CO ₂ -philic Gas Separation Membranes via One-Pot Thiol–ene Chemistry. Macromolecules, 2019, 52, 5819-5828.	2.2	20
210	Optimal transport and colossal ionic mechano-conductance in graphene crown ethers. Science Advances, 2019, 5, eaaw5478.	4.7	37
211	Modulation of Charge Density and Charge Polarity of Nanopore Wall by Salt Gradient and Voltage. ACS Nano, 2019, 13, 9868-9879.	7.3	42
212	Tailoring Polyamide Rejection Layer with Aqueous Carbonate Chemistry for Enhanced Membrane Separation: Mechanistic Insights, Chemistry-Structure-Property Relationship, and Environmental Implications. Environmental Science & Technology, 2019, 53, 9764-9770.	4.6	91
213	Evaluation of a nanoporous lyotropic liquid crystal polymer membrane for the treatment of hydraulic fracturing produced water via cross-flow filtration. Journal of Membrane Science, 2019, 592, 117313.	4.1	19
214	Microâ€Phase Separation within Epoxy Resin Yields Ultrathin Mesoporous Membranes with Increased Scalability by Conversion from Spin―to Dip oating Process. Macromolecular Materials and Engineering, 2019, 304, 1900321.	1.7	1
215	Membrane desalination performance governed by molecular reflection at the liquid-vapor interface. International Journal of Heat and Mass Transfer, 2019, 140, 1006-1022.	2.5	13
216	A solution for trade-off phenomenon based on symmetric-like membrane with nano-scale pore structure. Separation and Purification Technology, 2019, 227, 115693.	3.9	3

#	Article	IF	CITATIONS
217	Biomimetic Separation of Transport and Matrix Functions in Lamellar Block Copolymer Channel-Based Membranes. ACS Nano, 2019, 13, 8292-8302.	7.3	37
218	Permeabilities and selectivities in anisotropic planar membranes for gas separations. Separation and Purification Technology, 2019, 228, 115762.	3.9	4
219	Porous metal-organic frameworks for gas storage and separation: Status and challenges. EnergyChem, 2019, 1, 100006.	10.1	434
220	Ion Transport in Nanofluidic Devices for Energy Harvesting. Joule, 2019, 3, 2364-2380.	11.7	255
221	Design Rules for Membranes from Polymers of Intrinsic Microporosity for Crossover-free Aqueous Electrochemical Devices. Joule, 2019, 3, 2968-2985.	11.7	84
222	Highly Efficient Ionic Photocurrent Generation through WS ₂ â€Based 2D Nanofluidic Channels. Small, 2019, 15, e1905355.	5.2	41
223	Data science-enabled molecular-to-systems engineering for sustainable water treatment. Current Opinion in Chemical Engineering, 2019, 26, 122-130.	3.8	22
224	Conformational dynamics and interfacial interactions of peptide-appended pillar[5]arene water channels in biomimetic membranes. Physical Chemistry Chemical Physics, 2019, 21, 22711-22721.	1.3	5
225	Bioinspired Graphene Oxide Membranes with Dual Transport Mechanisms for Precise Molecular Separation. Advanced Functional Materials, 2019, 29, 1905229.	7.8	75
226	In-situ growth of highly permeable zeolite imidazolate framework membranes on porous polymer substrate using metal chelated polyaniline as interface layer. Journal of Membrane Science, 2019, 576, 1-8.	4.1	30
227	Molecular Modeling Investigations of Sorption and Diffusion of Small Molecules in Glassy Polymers. Membranes, 2019, 9, 98.	1.4	54
228	Multifunctional Core–Shell Zwitterionic Nanoparticles To Build Robust, Stable Antifouling Membranes via Magnetic-Controlled Surface Segregation. ACS Applied Materials & Interfaces, 2019, 11, 35501-35508.	4.0	52
229	Facile large-area fabrication of highly selective and permeable few-layered graphene: A molecular dynamics study. Carbon, 2019, 155, 369-378.	5.4	15
230	Artificial water channels: toward and beyond desalination. Current Opinion in Chemical Engineering, 2019, 25, 9-17.	3.8	39
231	Influence of Water Uptake, Charge, Manning Parameter, and Contact Angle on Water and Salt Transport in Commercial Ion Exchange Membranes. Industrial & Engineering Chemistry Research, 2019, 58, 18663-18674.	1.8	27
232	Structurally Stable, Antifouling, and Easily Renewable Reduced Graphene Oxide Membrane with a Carbon Nanotube Protective Layer. Environmental Science & Technology, 2019, 53, 11896-11903.	4.6	19
233	A review of different synthetic approaches of amorphous intrinsic microporous polymers and their potential applications in membrane-based gases separation. European Polymer Journal, 2019, 120, 109262.	2.6	40
234	Three-Dimensional Stable Cation-Exchange Membrane with Enhanced Mechanical, Electrochemical, and Antibacterial Performance by in Situ Synthesis of Silver Nanoparticles. ACS Omega, 2019, 4, 16619-16628.	1.6	9

#	Article	IF	CITATIONS
235	Highly CO2-permeable membranes derived from a midblock-sulfonated multiblock polymer after submersion in water. NPG Asia Materials, 2019, 11, .	3.8	19
236	Polymerizable Photocleavable Columnar Liquid Crystals for Nanoporous Water Treatment Membranes. ACS Macro Letters, 2019, 8, 1303-1308.	2.3	34
237	Modeling and Simulation Studies Analyzing the Pressure-Retarded Osmosis (PRO) and PRO-Hybridized Processes. Energies, 2019, 12, 243.	1.6	20
238	Supramolecular membranes: A robust platform to develop separation strategies towards water-based applications. Separation and Purification Technology, 2019, 215, 441-453.	3.9	20
239	Tailoring the Performance of Organic Solvent Nanofiltration Membranes with Biophenol Coatings. ACS Applied Polymer Materials, 2019, 1, 452-460.	2.0	61
240	Review on structural control and modification of graphene oxide-based membranes in water treatment: From separation performance to robust operation. Chinese Journal of Chemical Engineering, 2019, 27, 1348-1360.	1.7	33
241	Etching gas-sieving nanopores in single-layer graphene with an angstrom precision for high-performance gas mixture separation. Science Advances, 2019, 5, eaav1851.	4.7	151
242	Composite nanofiltration membrane with asymmetric selective separation layer for enhanced separation efficiency to anionic dye aqueous solution. Journal of Hazardous Materials, 2019, 368, 436-443.	6.5	49
243	Growing covalent organic frameworks on porous substrates for molecule-sieving membranes with pores tunable from ultra- to nanofiltration. Journal of Membrane Science, 2019, 576, 116-122.	4.1	75
244	Cellulose nanocrystal-assembled reverse osmosis membranes with high rejection performance and excellent antifouling. Journal of Materials Chemistry A, 2019, 7, 3992-4001.	5.2	52
245	Comparison of energy consumption in desalination by capacitive deionization and reverse osmosis. Desalination, 2019, 455, 100-114.	4.0	210
246	Guanidyl-functionalized graphene/polysulfone mixed matrix ultrafiltration membrane with superior permselective, antifouling and antibacterial properties for water treatment. Journal of Colloid and Interface Science, 2019, 540, 295-305.	5.0	76
247	Solvation Effects on the Permeation and Aging Performance of PIM-1-Based MMMs for Gas Separation. ACS Applied Materials & Interfaces, 2019, 11, 6502-6511.	4.0	43
248	ETAâ€mâ€PAN and its Composite Membrane with High Performance Prepared by In Situ Modification/NIPS Principle. Macromolecular Materials and Engineering, 2019, 304, 1800745.	1.7	7
249	2D-enabled membranes: materials and beyond. BMC Chemical Engineering, 2019, 1, .	3.4	27
250	Sub-5 nm Graphene Oxide Nanofilm with Exceptionally High H ⁺ /V Selectivity for Vanadium Redox Flow Battery. ACS Applied Energy Materials, 2019, 2, 4590-4596.	2.5	22
251	Improving hydrogen permeation and interface property of ceramic-supported graphene oxide membrane via embedding of silicalite-1 zeolite into Al2O3 hollow fiber. Separation and Purification Technology, 2019, 227, 115712.	3.9	12
252	Characterization of Interfacial Micro tructures of Explosiveâ€Binder Composites by Gas Permeation. Propellants, Explosives, Pyrotechnics, 2019, 44, 1160-1166.	1.0	5

#	Article	IF	CITATIONS
253	Postcombustion Carbon Capture Using Thin-Film Composite Membranes. Accounts of Chemical Research, 2019, 52, 1905-1914.	7.6	60
254	Self-Limiting Growth of Two-Dimensional Palladium between Graphene Oxide Layers. Nano Letters, 2019, 19, 4678-4683.	4.5	18
255	Selectively tuning gas transport through ionic liquid filled graphene oxide nanoslits using an electric field. Journal of Materials Chemistry A, 2019, 7, 15062-15067.	5.2	48
256	Ultrathin metal/covalent–organic framework membranes towards ultimate separation. Chemical Society Reviews, 2019, 48, 3811-3841.	18.7	334
257	Metal ions †̃sewing' isoporous membranes with polystyrene-block-poly (acrylic acid) block copolymer. Journal of Membrane Science, 2019, 587, 117086.	4.1	24
258	Fast and selective fluoride ion conduction in sub-1-nanometer metal-organic framework channels. Nature Communications, 2019, 10, 2490.	5.8	158
259	Tuning the permselectivity of polymeric desalination membranes via control of polymer crystallite size. Nature Communications, 2019, 10, 2347.	5.8	43
261	Amphiphilic PVDF―g â€PDMAPMA ultrafiltration membrane with enhanced hydrophilicity and antifouling properties. Journal of Applied Polymer Science, 2019, 136, 48049.	1.3	18
262	A highly permeable loose nanofiltration membrane prepared via layer assembled in-situ mineralization. Journal of Membrane Science, 2019, 587, 117159.	4.1	58
263	Ultrahigh Water Flow Enhancement by Optimizing Nanopore Chemistry and Geometry. Langmuir, 2019, 35, 8867-8873.	1.6	26
264	Effect of Pendant Dioxolane Rings in Polymers on Gas Transport Characteristics. ACS Applied Polymer Materials, 2019, 1, 1641-1647.	2.0	7
265	Bicontinuous Network Nanostructure with Tunable Thickness Formed on Asymmetric Triblock Terpolymer Thick Films. Macromolecules, 2019, 52, 4413-4420.	2.2	10
266	Large-area graphene-nanomesh/carbon-nanotube hybrid membranes for ionic and molecular nanofiltration. Science, 2019, 364, 1057-1062.	6.0	475
267	Synthesis and Characterization of a High Flux Nanocellulose–Cellulose Acetate Nanocomposite Membrane. Membranes, 2019, 9, 70.	1.4	25
268	Dynamic behavior of unsteady-state membrane gas separation: Modelling of a closed-mode operation for a membrane module. Journal of Membrane Science, 2019, 587, 117173.	4.1	22
269	Interfacial Junctions Control Electrolyte Transport through Charge-Patterned Membranes. ACS Nano, 2019, 13, 7655-7664.	7.3	13
270	New Synthetic Methods of Novel Nanoporous Polycondensates and Excellent Oxygen Permselectivity of Their Composite Membranes. Nanomaterials, 2019, 9, 859.	1.9	6
271	A hydrophobic pervaporation membrane with hierarchical microporosity for high-efficient dehydration of alcohols. Chemical Engineering Science, 2019, 206, 489-498.	1.9	16

#	Apticie	IE	CITATIONS
#	Single-step coating of polyethylenimine on gradient nanoporous phenolics for tight membranes with	IF	CHATIONS
272	ultrahigh permeance. Journal of Membrane Science, 2019, 587, 117172.	4.1	11
273	Critical Knowledge Gaps in Mass Transport through Single-Digit Nanopores: A Review and Perspective. Journal of Physical Chemistry C, 2019, 123, 21309-21326.	1.5	234
274	Osmosis, from molecular insights to large-scale applications. Chemical Society Reviews, 2019, 48, 3102-3144.	18.7	177
275	Chemistry in a spinneret — Sinusoidal-shaped composite hollow fiber membranes. Journal of Membrane Science, 2019, 585, 115-125.	4.1	22
276	Monte Carlo Simulations of Framework Defects in Layered Two-Dimensional Nanomaterial Desalination Membranes: Implications for Permeability and Selectivity. Environmental Science & Technology, 2019, 53, 6214-6224.	4.6	80
277	Mixed matrix membrane contactor containing core-shell hierarchical Cu@4A filler for efficient SO2 capture. Journal of Hazardous Materials, 2019, 376, 160-169.	6.5	16
278	Recent developments in polyetherimide membrane for gas separation. Journal of the Chinese Chemical Society, 2019, 66, 1738-1744.	0.8	8
279	High-Performance Polybenzimidazole Membranes for Helium Extraction from Natural Gas. ACS Applied Materials & Interfaces, 2019, 11, 20098-20103.	4.0	36
280	Effect of crossflow regime on the deposit and cohesive strength of membrane surface fouling layers. Food and Bioproducts Processing, 2019, 115, 185-193.	1.8	15
281	Highly selective and robust PDMS mixed matrix membranes by embedding two-dimensional ZIF-L for alcohol permselective pervaporation. Journal of Membrane Science, 2019, 582, 307-321.	4.1	80
282	Emerging R&D on membranes and systems for water reuse and desalination. Chinese Journal of Chemical Engineering, 2019, 27, 1578-1585.	1.7	27
283	Novel thin-film nanofibrous composite membranes containing directional toxin transport nanochannels for efficient and safe hemodialysis application. Journal of Membrane Science, 2019, 582, 151-163.	4.1	43
284	Study of the enrichment of NF3 waste gas using zeolite and polymeric membranes. Separation and Purification Technology, 2019, 220, 1-7.	3.9	6
285	Characterizing salt permeability in polyamide desalination membranes using electrochemical impedance spectroscopy. Journal of Membrane Science, 2019, 583, 248-257.	4.1	35
286	Thin Composite Carbon Molecular Sieve Membranes from a Polymer of Intrinsic Microporosity Precursor. ACS Applied Materials & Interfaces, 2019, 11, 18770-18781.	4.0	42
287	Thin-film nanocomposite membranes incorporated with water stable metal-organic framework CuBTTri for mitigating biofouling. Journal of Membrane Science, 2019, 582, 289-297.	4.1	58
288	Ultrathin Carbon Molecular Sieve Films and Room-Temperature Oxygen Functionalization for Gas-Sieving. ACS Applied Materials & amp; Interfaces, 2019, 11, 16729-16736.	4.0	19
289	Molecular Hybridization of Polydimethylsiloxane with Zirconia for Highly Gas Permeable Membranes. ACS Applied Polymer Materials, 2019, 1, 1165-1174.	2.0	16

#	Article	IF	CITATIONS
290	Fouling and wetting in the membrane distillation driven wastewater reclamation process – A review. Advances in Colloid and Interface Science, 2019, 269, 370-399.	7.0	164
291	<i>110th Anniversary:</i> Mixed Matrix Membranes with Fillers of Intrinsic Nanopores for Gas Separation. Industrial & Engineering Chemistry Research, 2019, 58, 7706-7724.	1.8	54
292	Volatile Organic Compound Liquid Recovery by the Dead End Gas Separation Membrane Process: Theory and Process Simulation. Industrial & Engineering Chemistry Research, 2019, 58, 5008-5017.	1.8	13
293	Zeolite Imidazolate Framework Membranes on Polymeric Substrates Modified with Poly(vinyl alcohol) and Alginate Composite Hydrogels. ACS Applied Materials & Interfaces, 2019, 11, 12605-12612.	4.0	32
294	Membranes with Functionalized Nanopores for Aromaticity-Based Separation of Small Molecules. ACS Applied Materials & Interfaces, 2019, 11, 12854-12862.	4.0	20
295	Anisotropic membrane materials for gas separations. AICHE Journal, 2019, 65, e16599.	1.8	4
296	Optimizing separation performance and interfacial adhesion of PDMS/PVDF composite membranes for butanol recovery from aqueous solution. Journal of Membrane Science, 2019, 579, 210-218.	4.1	38
297	High-Frequency Mechanical Behavior of Pure Polymer-Grafted Nanoparticle Constructs. ACS Macro Letters, 2019, 8, 294-298.	2.3	27
298	Eco-friendly construction of dye-fouled loose CS/PAN nanofibrous composite membranes for permeability-selectivity anti-trade-off property. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 569, 145-155.	2.3	24
299	Open-cocoon zeolitic imidazolate framework nanoparticles introduce low-resistance path for CO2 transport in crosslinked poly(ethylene oxide) membrane. Separation and Purification Technology, 2019, 217, 299-306.	3.9	10
300	Antibacterial Thin-Film Nanocomposite Membranes Incorporated with Graphene Oxide Quantum Dot-Mediated Silver Nanoparticles for Reverse Osmosis Application. ACS Sustainable Chemistry and Engineering, 2019, 7, 8724-8734.	3.2	69
301	Controllable ion transport by surface-charged graphene oxide membrane. Nature Communications, 2019, 10, 1253.	5.8	327
302	The roles of metal-organic frameworks in modulating water permeability of graphene oxide-based carbon membranes. Carbon, 2019, 148, 277-289.	5.4	50
303	In-situ sulfonation of targeted silica-filled Nafion for high-temperature PEM fuel cell application. International Journal of Hydrogen Energy, 2019, 44, 29711-29716.	3.8	38
304	Maximizing Ether Oxygen Content in Polymers for Membrane CO ₂ Removal from Natural Gas. ACS Applied Materials & Interfaces, 2019, 11, 10933-10940.	4.0	35
305	Super-wetting, photoactive TiO2 coating on amino-silane modified PAN nanofiber membranes for high efficient oil-water emulsion separation application. Journal of Membrane Science, 2019, 580, 40-48.	4.1	94
306	Defect-Free MOF-Based Mixed-Matrix Membranes Obtained by Corona Cross-Linking. ACS Applied Materials & amp; Interfaces, 2019, 11, 13029-13037.	4.0	91
307	Photo-induced ultrafast active ion transport through graphene oxide membranes. Nature Communications, 2019, 10, 1171.	5.8	146

#	Article	IF	CITATIONS
308	Modelling Mixed-Gas Sorption in Glassy Polymers for CO2 Removal: A Sensitivity Analysis of the Dual Mode Sorption Model. Membranes, 2019, 9, 8.	1.4	43
309	Attapulgite nanofibers and graphene oxide composite membrane for high-performance molecular separation. Journal of Colloid and Interface Science, 2019, 545, 276-281.	5.0	33
310	In Situ Assembly of a Zeolite Imidazolate Framework Hybrid Thin-Film Nanocomposite Membrane with Enhanced Desalination Performance Induced by Noria–Polyethyleneimine Codeposition. ACS Applied Materials & Interfaces, 2019, 11, 12871-12879.	4.0	86
311	A Novel Nanocomposite Membrane Combining BN Nanosheets and GO for Effective Removal of Antibiotic in Water. Nanomaterials, 2019, 9, 386.	1.9	20
312	Impacts of Metal–Organic Frameworks on Structure and Performance of Polyamide Thin-Film Nanocomposite Membranes. ACS Applied Materials & Interfaces, 2019, 11, 13724-13734.	4.0	100
313	Effect of Water Content on Sodium Chloride Sorption in Cross-Linked Cation Exchange Membranes. Macromolecules, 2019, 52, 2569-2579.	2.2	14
314	Synthesis of Soluble Metal Organic Framework Composites for Mixed Matrix Membranes. ACS Applied Materials & Interfaces, 2019, 11, 15638-15645.	4.0	9
315	Rational design of hydrocarbon-based sulfonated copolymers for proton exchange membranes. Journal of Materials Chemistry A, 2019, 7, 11847-11857.	5.2	17
316	Zeolitic imidazolate framework-polyvinylpyrrolidone-polyethersulfone composites membranes: From synthesis to the detailed pollutant removal from wastewater using cross flow system. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 572, 211-220.	2.3	20
317	Autogenic analyte translocation in nanopores. Nano Energy, 2019, 60, 503-509.	8.2	9
318	A high-efficiency diffusion process in carbonized ZIF-8 incorporated mixed matrix membrane for n-butanol recovery. Separation and Purification Technology, 2019, 221, 286-293.	3.9	34
319	Progress in molecular-simulation-based research on the effects of interface-induced fluid microstructures on flow resistance. Chinese Journal of Chemical Engineering, 2019, 27, 1403-1415.	1.7	6
320	Engineered PES/SPES nanochannel membrane for salinity gradient power generation. Nano Energy, 2019, 59, 354-362.	8.2	71
321	Magnetic nanoFe ₂ 0 ₃ – incorporated PEBA membranes for CO ₂ /CH ₄ and CO ₂ /N ₂ separation: experimental study and grand canonical Monte Carlo and molecular dynamics simulations. , 2019, 9, 306-330.		17
322	Layer-by-layer modification of aliphatic polyamide anion-exchange membranes to increase Clâ^'/SO42â^' selectivity. Journal of Membrane Science, 2019, 578, 209-219.	4.1	52
323	Microporous Polyimides from Ladder Diamines Synthesized by Facile Catalytic Arene–Norbornene Annulation as High-Performance Membranes for Gas Separation. Chemistry of Materials, 2019, 31, 1767-1774.	3.2	62
324	Simulation of multicomponent gas transport through mixed-matrix membranes. Journal of Membrane Science, 2019, 577, 219-234.	4.1	12
325	Non-Polyamide Based Nanofiltration Membranes Using Green Metal–Organic Coordination Complexes: Implications for the Removal of Trace Organic Contaminants. Environmental Science & Technology, 2019, 53, 2688-2694.	4.6	90

#	Article	IF	CITATIONS
326	Characteristics and performance of PVDF membrane prepared by using NaCl coagulation bath: Relationship between membrane polymorphous structure and organic fouling. Journal of Membrane Science, 2019, 579, 22-32.	4.1	65
327	A facile and versatile strategy for fabricating thin-film nanocomposite membranes with polydopamine-piperazine nanoparticles generated in situ. Journal of Membrane Science, 2019, 579, 79-89.	4.1	87
328	Hierarchical aramid nanofibrous membranes from a nanofiber-based solvent-induced phase inversion process. Journal of Membrane Science, 2019, 578, 16-26.	4.1	22
329	Facile Preparation of Polyamide Thin-Film Nanocomposite Membranes Using Spray-Assisted Nanofiller Predeposition. Industrial & Engineering Chemistry Research, 2019, 58, 4248-4256.	1.8	29
330	A Bibliometric Survey of Paraffin/Olefin Separation Using Membranes. Membranes, 2019, 9, 157.	1.4	15
331	Unexpectedly Strong Size-Sieving Ability in Carbonized Polybenzimidazole for Membrane H ₂ /CO ₂ Separation. ACS Applied Materials & Interfaces, 2019, 11, 47365-47372.	4.0	63
332	Selective Phosphate Removal from Water and Wastewater using Sorption: Process Fundamentals and Removal Mechanisms. Environmental Science & Technology, 2020, 54, 50-66.	4.6	437
333	Understanding Gas Transport Behavior through Few-Layer Graphene Oxide Membranes Controlled by Tortuosity and Interlayer Spacing. Journal of Physical Chemistry Letters, 2019, 10, 7725-7731.	2.1	20
334	A review: the effect of the microporous support during interfacial polymerization on the morphology and performances of a thin film composite membrane for liquid purification. RSC Advances, 2019, 9, 35417-35428.	1.7	69
335	Covalent organic framework-modulated interfacial polymerization for ultrathin desalination membranes. Journal of Materials Chemistry A, 2019, 7, 25641-25649.	5.2	173
336	Reverse Osmosis Membrane Separation Technology. , 2019, , 1-45.		10
337	High-performance acid-stable polysulfonamide thin-film composite membrane prepared via spinning-assist multilayer interfacial polymerization. Journal of Materials Science, 2019, 54, 886-900.	1.7	38
338	Beyond graphene oxides: Emerging 2D molecular sieve membranes for efficient separation. Chinese Journal of Chemical Engineering, 2019, 27, 1257-1271.	1.7	13
339	Porous organosilicon nanotubes in pebax-based mixed-matrix membranes for biogas purification. Journal of Membrane Science, 2019, 573, 301-308.	4.1	41
340	Hierarchical Optimization of High-Performance Biomimetic and Bioinspired Membranes. Langmuir, 2019, 35, 589-607.	1.6	15
341	Elucidating the relationship between states of water and ion transport properties in hydrated polymers. Journal of Membrane Science, 2019, 574, 299-308.	4.1	33
342	Fabrication and characterization of anti-fouling and non-toxic polyvinylidene fluoride -Sulphonated carbon nanotube ultrafiltration membranes for membrane bioreactors applications. Chemical Engineering Research and Design, 2019, 142, 176-188.	2.7	42
343	Selective Gas Permeation in Mixed Matrix Membranes Accelerated by Hollow Ionic Covalent Organic Polymers. ACS Sustainable Chemistry and Engineering, 2019, 7, 1564-1573.	3.2	26

#	ARTICLE	IF	CITATIONS
344	Densification-induced hollow fiber membranes using crosslinked thermally rearranged (XTR) polymer for CO2 capture. Journal of Membrane Science, 2019, 573, 393-402.	4.1	33
345	Surface charge and hydrophilicity improvement of graphene membranes via modification of pore surface oxygen-containing groups to enhance permeability and selectivity. Carbon, 2019, 145, 140-148.	5.4	55
346	Bottom-up fabrication of two-dimensional Co-based zeolitic imidazolate framework tubular membranes consisting of nanosheets by vapor phase transformation of Co-based gel for H2/CO2 separation. Journal of Membrane Science, 2019, 573, 200-209.	4.1	58
347	Water content, relative permittivity, and ion sorption properties of polymers for membrane desalination. Journal of Membrane Science, 2019, 574, 24-32.	4.1	37
348	Influence of concentration polarization and thermodynamic non-ideality on salt transport in reverse osmosis membranes. Journal of Membrane Science, 2019, 572, 668-675.	4.1	36
349	Fabrication and application of nanoporous polymer ion-track membranes. Nanotechnology, 2019, 30, 052001.	1.3	33
350	Ordered polymeric membranes using metals. Nature Materials, 2019, 18, 92-93.	13.3	4
351	Nanofiltration membranes consisting of quaternized polyelectrolyte complex nanoparticles for heavy metal removal. Chemical Engineering Journal, 2019, 359, 994-1005.	6.6	112
352	Clay-based electrospun nanofibrous membranes for colored wastewater treatment. Applied Clay Science, 2019, 168, 77-86.	2.6	105
353	Performance metrics for the objective assessment of capacitive deionization systems. Water Research, 2019, 152, 126-137.	5.3	201
354	Mussel-inspired zwitterionic dopamine nanoparticles as building blocks for constructing salt selective nanocomposite membranes. Journal of Membrane Science, 2019, 572, 140-151.	4.1	68
355	High-efficiency water-selective membranes from the solution-diffusion synergy of calcium alginate layer and covalent organic framework (COF) layer. Journal of Membrane Science, 2019, 572, 557-566.	4.1	48
356	Characteristics of microplastic removal via coagulation and ultrafiltration during drinking water treatment. Chemical Engineering Journal, 2019, 359, 159-167.	6.6	382
357	Preparation of Porous Polymeric Membranes Based on a Pyridine Containing Aromatic Polyether Sulfone. Polymers, 2019, 11, 59.	2.0	31
358	Properties of polyvinyl chloride (PVC) ultrafiltration membrane improved by lignin: Hydrophilicity and antifouling. Journal of Membrane Science, 2019, 575, 50-59.	4.1	136
359	Environmental performance of graphene-based 3D macrostructures. Nature Nanotechnology, 2019, 14, 107-119.	15.6	286
360	Atomic layer deposition of hybrid metal oxides on carbon nanotube membranes for photodegradation of dyes. Composites Communications, 2019, 12, 39-46.	3.3	25
361	A novel Pebax-C60(OH)24/PAN thin film composite membrane for carbon dioxide capture. Separation and Purification Technology, 2019, 215, 480-489.	3.9	35

ARTICLE IF CITATIONS # Global sensitivity analysis for hybrid membrane-cryogenic post combustion carbon capture process. 362 2.3 18 International Journal of Greenhouse Gas Control, 2019, 81, 157-169. Interface-confined surface engineering constructing water-unidirectional Janus membrane. Journal 4.1 of Membrane Science, 2019, 576, 9-16. Rough or wiggly? Membrane topology and morphology for fouling control. Journal of Fluid 364 1.4 20 Mechanics, 2019, 862, 753-780. Efficient Synthesis of PVDF/PI Side-by-Side Bicomponent Nanofiber Membrane with Enhanced Mechanical Strength and Good Thermal Stability. Nanomaterials, 2019, 9, 39. Thin-film composite membranes comprising ultrathin hydrophilic polydopamine interlayer with 366 4.0 120 graphene oxide for forward osmosis. Desalination, 2019, 449, 41-49. Characterization of fluorescence foulants on ultrafiltration membrane using front-face excitation-emission matrix (FF-EEM) spectroscopy: Fouling evolution and mechanism analysis. Water 5.3 Research, 2019, 148, 546-555. Incorporating phosphoric acid-functionalized polydopamine into Nafion polymer by in situ sol-gel 368 4.1 19 method for enhanced proton conductivity. Journal of Membrane Science, 2019, 570-571, 236-244. Thin mixed matrix and dual layer membranes containing metal-organic framework nanosheets and 4.1 Polyactiveâ, ¢ for CO2 capture. Journal of Membrane Science, 2019, 570-571, 226-235. Ultrafast formation of pyrogallol/polyethyleneimine nanofilms for aqueous and organic 370 4.1 23 nanofiltration. Journal of Membrane Science, 2019, 570-571, 270-277. Nanoporous framework "reservoir―maximizing low-molecular-weight enhancer impregnation into 371 CO2-philic membranes for highly-efficient CO2 capture. Journal of Membrane Science, 2019, 570-571, 4.1 278-285. Removal characteristics of microplastics by Fe-based coagulants during drinking water treatment. 372 235 3.2 Journal of Environmental Science's, 2019, 78, 267-275. Layer-by-layer self-assembled nanocomposite membranes via bio-inspired mineralization for 4.1 pervaporation dehydration. Journal of Membrane Science, 2019, 570-571, 44-52. Constructing rapid diffusion pathways in ultrapermeable hybrid membranes by hierarchical porous 374 1.9 11 nanotubes. Chemical Engineering Science, 2019, 195, 609-618. In situ fabrication of MOF nanoparticles in PDMS membrane via interfacial synthesis for enhanced 4.1 ethanol permselective pervaporation. Journal of Membrane Science, 2019, 573, 344-358. Crystal Engineering of Metal–Organic Framework Thin Films for Gas Separations. ACS Sustainable 376 3.2 52 Chemistry and Engineering, 2019, 7, 49-69. High-performance microporous polymer membranes prepared by interfacial polymerization for gas separation. Journal of Membrane Science, 2019, 573, 425-438. Improving Ion Rejection of Conductive Nanofiltration Membrane through Electrically Enhanced 378 4.6 83 Surface Charge Density. Environmental Science & amp; Technology, 2019, 53, 868-877. Elucidating conductivity-permselectivity tradeoffs in electrodialysis and reverse electrodialysis by 379 structure-property analysis of ion-exchange membranes. Journal of Membrane Science, 2019, 573, 4.1 668-681.

#	Article	IF	CITATIONS
380	Porous metal organic framework CuBDC nanosheet incorporated thin-film nanocomposite membrane for high-performance forward osmosis. Journal of Membrane Science, 2019, 573, 46-54.	4.1	97
381	Bioinspired membranes for multi-phase liquid and molecule separation. Science China Chemistry, 2019, 62, 14-23.	4.2	25
382	Novel conductive membranes breaking through the selectivity-permeability trade-off for Congo red removal. Separation and Purification Technology, 2019, 211, 368-376.	3.9	82
383	ZIF-8 particle size effects on reverse osmosis performance of polyamide thin-film nanocomposite membranes: Importance of particle deposition. Journal of Membrane Science, 2019, 570-571, 23-33.	4.1	146
384	A dually charged nanofiltration membrane by pH-responsive polydopamine for pharmaceuticals and personal care products removal. Separation and Purification Technology, 2019, 211, 90-97.	3.9	61
385	Enhancing the forward osmosis performance via the mesoporous silica hollow spheres assisted fast adsorption-diffusion process. Materials Letters, 2019, 234, 347-350.	1.3	5
386	Metal–organic framework membranes: Production, modification, and applications. Progress in Materials Science, 2019, 100, 21-63.	16.0	169
387	Review: membrane materials for the removal of water from industrial solvents by pervaporation and vapor permeation. Journal of Chemical Technology and Biotechnology, 2019, 94, 343-365.	1.6	101
388	Pore structure characterization and gas transport property of the penetrating layer in composite membranes. Separation and Purification Technology, 2019, 211, 252-258.	3.9	12
389	High-hydrophilic and salt rejecting PA-g/co-PVP RO membrane via bionic sand-fixing grass for pharmaceutical wastewater treatment. Chemical Engineering Journal, 2019, 357, 269-279.	6.6	39
390	Pd/Fe nanoparticle integrated PMAA-PVDF membranes for chloro-organic remediation from synthetic and site groundwater. Journal of Membrane Science, 2020, 594, 117454.	4.1	29
391	Multifunctional thin-film nanocomposite membranes comprising covalent organic nanosheets with high crystallinity for efficient reverse osmosis desalination. Journal of Membrane Science, 2020, 593, 117398.	4.1	85
392	Improved reverse osmosis thin film composite biomimetic membranes by incorporation of polymersomes. Journal of Membrane Science, 2020, 593, 117392.	4.1	23
393	Preparation of PEEK Membranes with Excellent Stability Using Common Organic Solvents. Industrial & Engineering Chemistry Research, 2020, 59, 5218-5226.	1.8	26
394	High-hydrophobic CF3 groups within PTFPMS membrane for enhancing the furfural pervaporation performance. Separation and Purification Technology, 2020, 235, 116144.	3.9	27
395	Synthesis of tubular ZIF-8 membranes for propylene/propane separation under high-pressure. Journal of Membrane Science, 2020, 595, 117503.	4.1	41
396	Nanomaterials Developed for Removing Air Pollutants. , 2020, , 203-247.		1
397	Dielectric Permittivity Properties of Hydrated Polymers: Measurement and Connection to Ion Transport Properties. Industrial & Engineering Chemistry Research, 2020, 59, 5205-5217.	1.8	24

#	Article	IF	CITATIONS
398	Dual hydrophobic modifications toward anion exchange membranes with both high ion conductivity and excellent dimensional stability. Journal of Membrane Science, 2020, 595, 117521.	4.1	51
399	Gas separation performance and mechanical properties of thermally-rearranged polybenzoxazoles derived from an intrinsically microporous dihydroxyl-functionalized triptycene diamine-based polyimide. Journal of Membrane Science, 2020, 595, 117512.	4.1	44
400	A novel electrical double-layer ion transport carbon-based membrane with 3D porous structure: High permselectivity for dilute zinc ion separation. Chemical Engineering Journal, 2020, 380, 122413.	6.6	12
401	Polycrystalline Advanced Microporous Framework Membranes for Efficient Separation of Small Molecules and Ions. Advanced Materials, 2020, 32, e1902009.	11.1	134
402	Manipulating the separation performance of nanofiltration membranes by coating thickness of organic phase during interfacial polymerization. Journal of Applied Polymer Science, 2020, 137, 48284.	1.3	3
403	Graphene quantum dots (GQDs)-polyethyleneimine as interlayer for the fabrication of high performance organic solvent nanofiltration (OSN) membranes. Chemical Engineering Journal, 2020, 380, 122462.	6.6	103
404	Novel MOF-capped halloysite nanotubes/PDMS mixed matrix membranes for enhanced n-butanol permselective pervaporation. Journal of Membrane Science, 2020, 595, 117543.	4.1	59
405	A highly selective sorption process in POSS-g-PDMS mixed matrix membranes for ethanol recovery via pervaporation. Separation and Purification Technology, 2020, 236, 116238.	3.9	36
406	Cross-Linkable Semi-Rigid 6FDA-Based Polyimide Hollow Fiber Membranes for Sour Natural Gas Purification. Industrial & Engineering Chemistry Research, 2020, 59, 5333-5339.	1.8	19
407	Ultra-thin graphene oxide films via contra-diffusion method: Fast fabrication for ion rejection. Journal of Membrane Science, 2020, 595, 117586.	4.1	22
408	Surface modification of mesoporous silica nanoparticle with 4-triethoxysilylaniline to enhance seawater desalination properties of thin-film nanocomposite reverse osmosis membranes. Frontiers of Environmental Science and Engineering, 2020, 14, 1.	3.3	20
409	High-Performance Polyamide Thin-Film Nanocomposite Membranes Containing ZIF-8/CNT Hybrid Nanofillers for Reverse Osmosis Desalination. Industrial & Engineering Chemistry Research, 2020, 59, 5324-5332.	1.8	55
410	Novel anion exchange membrane with low ionic resistance based on chloromethylated/quaternizedâ€grafted polystyrene for energy efficient electromembrane processes. Journal of Applied Polymer Science, 2020, 137, 48656.	1.3	27
411	Dual superlyophobic zeolitic imidazolate framework-8 modified membrane for controllable oil/water emulsion separation. Separation and Purification Technology, 2020, 236, 116273.	3.9	72
412	Accelerating CO ₂ capture of highly permeable polymer through incorporating highly selective hollow zeolite imidazolate framework. AICHE Journal, 2020, 66, e16800.	1.8	21
413	Scalable electric-field-assisted fabrication of vertically aligned carbon nanotube membranes with flow enhancement. Carbon, 2020, 157, 208-216.	5.4	20
414	Covalent triazine frameworks membrane with highly ordered skeleton nanopores for robust and precise molecule/ion separation. Journal of Membrane Science, 2020, 595, 117525.	4.1	29
415	A Facile and Scalable Fabrication Procedure for Thin-Film Composite Membranes: Integration of Phase Inversion and Interfacial Polymerization. Environmental Science & (2006), 2020, 54, 1946-1954.	4.6	56

#	Article	IF	CITATIONS
416	Hydrogel assisted interfacial polymerization for advanced nanofiltration membranes. Journal of Materials Chemistry A, 2020, 8, 3238-3245.	5.2	99
417	Screening PIM-1 performance as a membrane for binary mixture separation of gaseous organic compounds. Journal of Membrane Science, 2020, 599, 117798.	4.1	13
418	Transport of Neutral and Charged Solutes in Imidazolium-Functionalized Poly(phenylene oxide) Membranes for Artificial Photosynthesis. Industrial & Engineering Chemistry Research, 2020, 59, 5257-5266.	1.8	17
419	Aromatic porous polymer network membranes for organic solvent nanofiltration under extreme conditions. Journal of Materials Chemistry A, 2020, 8, 15891-15899.	5.2	37
420	Thermal stability and dynamics of soft nanoparticle membranes: role of entropy, enthalpy and membrane compressibility. Soft Matter, 2020, 16, 1117-1124.	1.2	8
421	Graphene oxide/Fe(III)-based metal-organic framework membrane for enhanced water purification based on synergistic separation and photo-Fenton processes. Applied Catalysis B: Environmental, 2020, 264, 118548.	10.8	162
422	Covalent cross-linking for interface engineering of high flux UiO-66-TMS/PDMS pervaporation membranes. Journal of Membrane Science, 2020, 598, 117791.	4.1	26
423	Post-combustion carbon capture by membrane separation, Review. Separation and Purification Technology, 2020, 238, 116448.	3.9	97
424	Perspective on Gas Separation Membrane Materials from Process Economics Point of View. Industrial & Engineering Chemistry Research, 2020, 59, 556-568.	1.8	44
425	Solvationâ€Involved Nanoionics: New Opportunities from 2D Nanomaterial Laminar Membranes. Advanced Materials, 2020, 32, e1904562.	11.1	61
426	Construction of a stable zwitterionic layer on negatively-charged membrane via surface adsorption and cross-linking. Journal of Membrane Science, 2020, 597, 117766.	4.1	16
427	Mussel-/diatom-inspired silicified membrane for high-efficiency water remediation. Journal of Membrane Science, 2020, 597, 117753.	4.1	48
428	Improved gas transport properties of polyurethane–urea membranes through incorporating a cadmiumâ€based metal organic framework. Journal of Applied Polymer Science, 2020, 137, 48704.	1.3	11
429	Using lantern Zn/Co-ZIF nanoparticles to provide channels for CO2 permeation through PEO-based MMMs. Journal of Membrane Science, 2020, 597, 117644.	4.1	25
430	Modeling and cost analysis of helium recovery using combined-membrane process configurations. Separation and Purification Technology, 2020, 236, 116269.	3.9	13
431	Macromolecular design strategies toward tailoring free volume in glassy polymers for high performance gas separation membranes. Molecular Systems Design and Engineering, 2020, 5, 22-48.	1.7	63
432	High-performance thin film nanocomposite membranes enabled by nanomaterials with different dimensions for nanofiltration. Journal of Membrane Science, 2020, 596, 117717.	4.1	86
433	Artificial water channels enable fast and selective water permeation through water-wire networks. Nature Nanotechnology, 2020, 15, 73-79.	15.6	111

#	Article	IF	CITATIONS
436	Subâ€10 nm Polyamide Nanofiltration Membrane for Molecular Separation. Chemistry - an Asian Journal, 2020, 15, 2341-2345.	1.7	12
437	Metal-organic framework UiO-66 membranes. Frontiers of Chemical Science and Engineering, 2020, 14, 216-232.	2.3	67
438	High-flux mixed matrix membranes containing bimetallic zeolitic imidazole framework-8 for C3H6/C3H8 separation. Journal of Membrane Science, 2020, 596, 117735.	4.1	39
439	Interfacial Engineering of MOF-Based Mixed Matrix Membrane through Atomistic Simulations. Journal of Physical Chemistry C, 2020, 124, 594-604.	1.5	39
440	Downstream of the bioreactor: advancements in recovering fuels and commodity chemicals. Current Opinion in Biotechnology, 2020, 62, 189-195.	3.3	17
441	Influence of floc dynamic protection layer on alleviating ultrafiltration membrane fouling induced by humic substances. Journal of Environmental Sciences, 2020, 90, 10-19.	3.2	4
442	Sub-100 nm carbon molecular sieve membranes from a polymer of intrinsic microporosity precursor: Physical aging and near-equilibrium gas separation properties. Journal of Membrane Science, 2020, 597, 117752.	4.1	39
443	Exploiting Giant-Pore Systems of Nanosized MIL-101 in PDMS Matrix for Facilitated Reverse-Selective Hydrocarbon Transport. ACS Applied Materials & amp; Interfaces, 2020, 12, 1511-1522.	4.0	5
444	Amide A band is a fingerprint for water dynamics in reverse osmosis polyamide membranes. Journal of Membrane Science, 2020, 596, 117705.	4.1	15
445	The encouraging improvement of polyamide nanofiltration membrane by cucurbiturilâ€based host–guest chemistry. AICHE Journal, 2020, 66, e16879.	1.8	64
446	Dual-functional acyl chloride monomer for interfacial polymerization: Toward enhanced water softening and antifouling performance. Separation and Purification Technology, 2020, 237, 116362.	3.9	22
447	Metal-organic framework membranes for wastewater treatment and water regeneration. Coordination Chemistry Reviews, 2020, 404, 213116.	9.5	265
448	Defective analcime/geopolymer composite membrane derived from fly ash for ultrafast and highly efficient filtration of organic pollutants. Journal of Hazardous Materials, 2020, 388, 121736.	6.5	34
449	A review on emerging organic-containing microporous material membranes for carbon capture and separation. Chemical Engineering Journal, 2020, 391, 123575.	6.6	82
450	Efficient removal of anionic dye by constructing thin-film composite membrane with high perm-selectivity and improved anti-dye-deposition property. Desalination, 2020, 476, 114228.	4.0	31
451	Assessing internal fouling during microfiltration using optical coherence tomography and evapoporometry. Journal of Membrane Science, 2020, 595, 117588.	4.1	15
452	Superhydrophilic alkynyl carbon composite nanofiltration membrane for water purification. Applied Surface Science, 2020, 508, 144788.	3.1	16
453	Magnetic field assisted preparation of PES-Ni@MWCNTs membrane with enhanced permeability and antifouling performance. Chemosphere, 2020, 243, 125446.	4.2	53

#	Article	IF	Citations
454	"Nonstick―Membranes Prepared by Facile Surface Fluorination for Water Purification. Industrial & Engineering Chemistry Research, 2020, 59, 5307-5314.	1.8	7
455	Separation of Volatile Fatty Acids from Model Anaerobic Effluents Using Various Membrane Technologies. Membranes, 2020, 10, 252.	1.4	21
456	Ion separations with membranes. Journal of Polymer Science, 2020, 58, 2831-2856.	2.0	52
457	Separation of alkali metal cations by a supported liquid membrane (SLM) operating under electro dialysis (ED) conditions. Desalination, 2020, 495, 114631.	4.0	21
458	Ti-exchanged UiO-66-NH2–containing polyamide membranes with remarkable cation permselectivity. Journal of Membrane Science, 2020, 615, 118608.	4.1	57
459	High-performance forward osmosis membrane with ultra-fast water transport channel and ultra-thin polyamide layer. Journal of Membrane Science, 2020, 616, 118611.	4.1	56
460	Membrane Electrolyzers for Impure-Water Splitting. Joule, 2020, 4, 2549-2561.	11.7	102
461	Predicting the performance of polyvinylidene fluoride, polyethersulfone and polysulfone filtration membranes using machine learning. Journal of Materials Chemistry A, 2020, 8, 21862-21871.	5.2	33
462	Compartmentalizing Cell-Free Systems: Toward Creating Life-Like Artificial Cells and Beyond. ACS Synthetic Biology, 2020, 9, 2881-2901.	1.9	71
463	Design and fabrication of highly selective and permeable polymer membranes. Journal of Applied Physics, 2020, 128, .	1.1	10
464	Gas Transport in a Polymer of Intrinsic Microporosity (PIM-1) Substituted with Pseudo-Ionic Liquid Tetrazole-Type Structures. Macromolecules, 2020, 53, 8951-8959.	2.2	31
465	Synergistic engineering of 1D electrospun nanofibers and 2D nanosheets for sustainable applications. Sustainable Materials and Technologies, 2020, 26, e00214.	1.7	13
466	Enhancing the Gas Separation Selectivity of Mixed-Matrix Membranes Using a Dual-Interfacial Engineering Approach. Journal of the American Chemical Society, 2020, 142, 18503-18512.	6.6	86
467	Two-Dimensional Nanomaterials and its Application as a Reverse Osmosis Membrane: An Overview. IOP Conference Series: Materials Science and Engineering, 2020, 912, 032046.	0.3	0
468	Incorporation of lysine-modified UiO-66 for the construction of thin-film nanocomposite nanofiltration membrane with enhanced water flux and salt selectivity. Desalination, 2020, 493, 114661.	4.0	45
469	Recent progress on thin film composite membranes for CO2 separation. Journal of CO2 Utilization, 2020, 42, 101296.	3.3	52
470	Co-Casting Highly Selective Dual-Layer Membranes with Disordered Block Polymer Selective Layers. ACS Applied Materials & Interfaces, 2020, 12, 45351-45362.	4.0	12
471	Porous organic polymer embedded thin-film nanocomposite membranes for enhanced nanofiltration performance. Journal of Membrane Science, 2020, 602, 117982.	4.1	47

#	Article	IF	CITATIONS
472	Computational studies. , 2020, , 255-272.		0
473	New Antifouling and Antibacterial Membrane Material for Highly Selective Removal of Nitrate and Phosphate. Industrial & Engineering Chemistry Research, 2020, 59, 12114-12122.	1.8	7
474	Rational Design of Halloysite Surface Chemistry for High Performance Nanotube–Thin Film Nanocomposite Gas Separation Membranes. ACS Applied Materials & Interfaces, 2020, 12, 37527-37537.	4.0	14
475	Enhanced nanoparticle rejection in aligned boron nitride nanotube membranes. Nanoscale, 2020, 12, 21138-21145.	2.8	15
476	Novel semi-fluorinated poly(ether imide)s with benzyl ether side groups: Synthesis, physicochemical characterization, gas transport properties and simulation. European Polymer Journal, 2020, 135, 109879.	2.6	12
477	Polyelectrolyte membranes with tunable hollow CO2-philic clusters via sacrificial template for biogas upgrading. Journal of Membrane Science, 2020, 612, 118445.	4.1	6
478	Clicking the Surface of Poly[1-(trimethylsilyl)propyne] (PTMSP) via a Thiol–Ene Reaction: Unexpected CO2/N2 Permeability. Langmuir, 2020, 36, 1768-1772.	1.6	6
479	High performance CO2-perm-selective SSZ-13 membranes: Elucidation of the link between membrane material and module properties. Journal of Membrane Science, 2020, 611, 118390.	4.1	29
480	Connecting the Ion Separation Factor to the Sorption and Diffusion Selectivity of Ion Exchange Membranes. Industrial & Engineering Chemistry Research, 2020, 59, 14189-14206.	1.8	28
481	Molecularly engineering polymeric membranes for <scp>H₂</scp> / <scp>CO₂</scp> separation at 100–300 °C. Journal of Polymer Science, 2020, 58, 2467-2481.	2.0	41
482	Optical Analysis of the Internal Void Structure in Polymer Membranes for Gas Separation. Membranes, 2020, 10, 328.	1.4	5
483	Molecularly-porous ultrathin membranes for highly selective organic solvent nanofiltration. Nature Communications, 2020, 11, 5882.	5.8	101
484	Ultraâ€Permeable Singleâ€Walled Carbon Nanotube Membranes with Exceptional Performance at Scale. Advanced Science, 2020, 7, 2001670.	5.6	28
485	A Critical Review on Thin-Film Nanocomposite Membranes with Interlayered Structure: Mechanisms, Recent Developments, and Environmental Applications. Environmental Science & Technology, 2020, 54, 15563-15583.	4.6	308
486	Tuning Selectivities in Gas Separation Membranes Based on Polymer-Grafted Nanoparticles. ACS Nano, 2020, 14, 17174-17183.	7.3	55
487	Recent Purification Technologies and Human Health Risk Assessment of Microplastics. Materials, 2020, 13, 5196.	1.3	16
488	Vertically-Oriented Ti ₃ C ₂ T _{<i>x</i>} MXene Membranes for High Performance of Electrokinetic Energy Conversion. ACS Nano, 2020, 14, 16654-16662.	7.3	47
489	Incorporation of Core–Shell-Structured Zwitterionic Carbon Dots in Thin-Film Nanocomposite Membranes for Simultaneously Improved Perm-Selectivity and Antifouling Properties. ACS Applied Materials & Amp: Interfaces, 2020, 12, 53215-53229	4.0	34

#	Article	IF	CITATIONS
490	Sorptionâ€induced polymer rearrangement: approaches from molecular modeling. Polymer International, 2020, 70, 984.	1.6	13
491	Polymeric membranes: chemistry, physics, and applications. Journal of Polymer Science, 2020, 58, 2433-2434.	2.0	17
492	Polymer nanotube membranes synthesized via liquid deposition in anodic alumina. Colloids and Interface Science Communications, 2020, 39, 100334.	2.0	8
493	Effect of Porous and Nonporous Nanostructures on the Permeance of Positively Charged Nanofilm Composite Membranes. Advanced Materials Interfaces, 2020, 7, 2000251.	1.9	12
494	Flow through negatively charged, nanoporous membranes separates Li ⁺ and K ⁺ due to induced electromigration. Chemical Communications, 2020, 56, 10954-10957.	2.2	26
495	Selectivity of Transport Processes in Ion-Exchange Membranes: Relationship with the Structure and Methods for Its Improvement. International Journal of Molecular Sciences, 2020, 21, 5517.	1.8	105
496	Self-assembly of robust graphene oxide membranes with chirality for highly stable and selective molecular separation. Journal of Materials Chemistry A, 2020, 8, 16985-16993.	5.2	28
497	Synthesis and Permselectivity of a <i>Soluble</i> Two-Dimensional Macromolecular Sheet by Solid–Solid Interfacial Polycondensation Followed by Chemical Exfoliation. , 2020, 2, 1121-1128.		8
498	Photothermalâ€Responsive Microporous Nanosheets Confined Ionic Liquid for Efficient CO ₂ Separation. Small, 2020, 16, e2002699.	5.2	33
499	Custom Formulation of Multicomponent Mixed-Matrix Membranes for Efficient Post-combustion Carbon Capture. Cell Reports Physical Science, 2020, 1, 100113.	2.8	10
500	Preparation and Characterization of PEBAX-5513/AgBF4/BMIMBF4 Membranes for Olefin/Paraffin Separation. Polymers, 2020, 12, 1550.	2.0	7
501	Enhanced ion transport by graphene oxide/cellulose nanofibers assembled membranes for high-performance osmotic energy harvesting. Materials Horizons, 2020, 7, 2702-2709.	6.4	118
502	Selective Etching of Graphene Membrane Nanopores: From Molecular Sieving to Extreme Permeance. ACS Applied Materials & Interfaces, 2020, 12, 36468-36477.	4.0	22
503	Programmable Permeability of Metal–Phenolic Network Microcapsules. Chemistry of Materials, 2020, 32, 6975-6982.	3.2	38
504	Can Self-Assembly Address the Permeability/Selectivity Trade-Offs in Polymer Membranes?. Macromolecules, 2020, 53, 5649-5654.	2.2	39
505	A novel water-stable two-dimensional zeolitic imidazolate frameworks thin-film composite membrane for enhancements in water permeability and nanofiltration performance. Chemosphere, 2020, 261, 127717.	4.2	12
506	Carbon Quantum Dot-Enabled Tuning of the Microphase Structures of Poly(ether- <i>b</i> -amide) Membrane for CO ₂ Separation. Industrial & Engineering Chemistry Research, 2020, 59, 14960-14969.	1.8	13
507	Etching and acidifying graphene oxide membranes to increase gas permeance while retaining molecular sieving ability. AICHE Journal, 2020, 66, e17022.	1.8	19

#	Article	IF	CITATIONS
508	Rationally designed in-situ fabrication of thin film nanocomposite membranes with enhanced desalination and anti-biofouling performance. Journal of Membrane Science, 2020, 615, 118542.	4.1	40
509	Sharpening Nanofiltration: Strategies for Enhanced Membrane Selectivity. ACS Applied Materials & Interfaces, 2020, 12, 39948-39966.	4.0	242
510	Beyond Solution-Based Protocols: MOF Membrane Synthesis in Supercritical Environments for an Elegant Sustainability Performance Balance. , 2020, 2, 1142-1147.		16
511	Performance of chemically resistant polyurea reverse osmosis membrane in the treatment of highly alkaline industrial wastewater containing sodium aluminate. Water Science and Technology, 2020, 82, 2259-2270.	1.2	5
512	Polysulfone metal-activated carbon magnetic nanocomposites with enhanced CO ₂ capture. RSC Advances, 2020, 10, 34595-34604.	1.7	9
513	Vacuum-assisted diamine monomer distribution for synthesizing polyamide composite membranes by interfacial polymerization. Journal of Membrane Science, 2020, 616, 118557.	4.1	50
514	Expanding the Use of Synchrotron Techniques for Water Treatment: From Minerals to Membranes. Synchrotron Radiation News, 2020, 33, 3-12.	0.2	2
515	Nanofiltration for Decolorization: Membrane Fabrication, Applications and Challenges. Industrial & Engineering Chemistry Research, 2020, 59, 19858-19875.	1.8	36
516	Pathways and Challenges for Biomimetic Desalination Membranes with Sub-Nanometer Channels. ACS Nano, 2020, 14, 10894-10916.	7.3	72
517	<i>In silico</i> study of structure and water dynamics in CNT/polyamide nanocomposite reverse osmosis membranes. Physical Chemistry Chemical Physics, 2020, 22, 22324-22331.	1.3	6
518	Microporous organic polymer-based membranes for ultrafast molecular separations. Progress in Polymer Science, 2020, 110, 101308.	11.8	83
519	Application of Desalination Membranes to Nuclide (Cs, Sr, and Co) Separation. ACS Omega, 2020, 5, 20261-20269.	1.6	15
520	Transport Models of Ammonium Nitrogen in Wastewater from Rare Earth Smelteries by Reverse Osmosis Membranes. Sustainability, 2020, 12, 6230.	1.6	10
521	Ultrathin heterostructured covalent organic framework membranes with interfacial molecular sieving capacity for fast water-selective permeation. Journal of Materials Chemistry A, 2020, 8, 19328-19336.	5.2	43
522	Pressure-Dependent Ion Rejection in Nanopores. Journal of Physical Chemistry C, 2020, 124, 20498-20505.	1.5	20
523	<i>Exo</i> -selective, Reductive Heck Derived Polynorbornenes with Enhanced Molecular Weights, Yields, and Hydrocarbon Gas Transport Properties. ACS Macro Letters, 2020, 9, 1363-1368.	2.3	15
524	A new route to porous metal–organic framework crystal–glass composites. Chemical Science, 2020, 11, 9910-9918.	3.7	21
525	Prediction of Nanofiltration and Reverse-Osmosis-Membrane Rejection of Organic Compounds Using Random Forest Model Journal of Environmental Engineering ASCE 2020, 146	0.7	22

#	ARTICLE Metal–Organic Framework Nanosheets for Thin-Film Composite Membranes with Enhanced	IF	CITATIONS
526 527	Permeability and Selectivity. ACS Applied Nano Materials, 2020, 3, 9238-9248.	2.4	57
528	Applied Polymer Materials, 2020, 2, 4752-4761. Microplastics pollution in China water ecosystems: a review of the abundance, characteristics, fate, risk and removal. Water Science and Technology, 2020, 82, 1495-1508.	1.2	8
529	Mitigation of Physical Aging with Mixed Matrix Membranes Based on Cross-Linked PIM-1 Fillers and PIM-1. ACS Applied Materials & amp; Interfaces, 2020, 12, 46756-46766.	4.0	47
530	Mixed matrix membranes containing polymerâ€embedded metalâ€organic framework microspheres. AICHE Journal, 2020, 66, e17028.	1.8	14
531	100th Anniversary of Macromolecular Science Viewpoint: Integrated Membrane Systems. ACS Macro Letters, 2020, 9, 1267-1279.	2.3	19
532	Multiscale simulations of charge and size separation of nanoparticles with a solid-state nanoporous membrane. Physical Review E, 2020, 102, 063104.	0.8	3
533	Gas flow through atomic-scale apertures. Science Advances, 2020, 6, .	4.7	22
534	Mechanism and Compatibility of Pretreated Lignocellulosic Biomass and Polymeric Mixed Matrix Membranes: A Review. Membranes, 2020, 10, 370.	1.4	16
535	Relationship between surface hydrophobicity and flux for membrane separation. RSC Advances, 2020, 10, 40043-40046.	1.7	7
536	Controlling the Relative Fluxes of Protons and Oxygen to Electrocatalytic Buried Interfaces with Tunable Silicon Oxide Overlayers. ACS Applied Energy Materials, 2020, 3, 12338-12350.	2.5	9
537	Next-Generation Ultrafiltration Membranes Enabled by Block Polymers. ACS Nano, 2020, 14, 16446-16471.	7.3	108
538	Algal fouling control in low-pressure membrane systems by pre-adsorption: Influencing factors and mechanisms. Algal Research, 2020, 52, 102110.	2.4	7
539	Designing Solute-Tailored Selectivity in Membranes: Perspectives for Water Reuse and Resource Recovery. ACS Macro Letters, 2020, 9, 1709-1717.	2.3	62
540	Rapid Production of Metal–Organic Frameworks Based Separators in Industrial‣evel Efficiency. Advanced Science, 2020, 7, 2002190.	5.6	34
541	Role of pore geometry in gas separation using nanoporous graphene – A study in contrast between equilibrium cases. Chemical Physics Letters, 2020, 760, 137971.	1.2	3
542	Graphene quantum dot engineered ultrathin loose polyamide nanofilms for high-performance nanofiltration. Journal of Materials Chemistry A, 2020, 8, 23930-23938.	5.2	95
543	Molecularly Engineered 6FDAâ€Based Polyimide Membranes for Sour Natural Gas Separation. Angewandte Chemie - International Edition, 2020, 59, 14877-14883.	7.2	69

#	Article	IF	CITATIONS
544	The mixture effect on ionic selectivity and permeability of nanotubes. Nanoscale Advances, 2020, 2, 3834-3840.	2.2	1
545	High-performance polyamide nanofiltration membrane with arch-bridge structure on a highly hydrated cellulose nanofiber support. Science China Materials, 2020, 63, 2570-2581.	3.5	35
546	<i>Ab initio</i> nanofluidics: disentangling the role of the energy landscape and of density correlations on liquid/solid friction. Nanoscale, 2020, 12, 10994-11000.	2.8	27
547	Ultrathin Film Composite Membranes Fabricated by Novel In Situ Free Interfacial Polymerization for Desalination. ACS Applied Materials & amp; Interfaces, 2020, 12, 25304-25315.	4.0	101
548	Dissecting the Role of Substrate on the Morphology and Separation Properties of Thin Film Composite Polyamide Membranes: Seeing Is Believing. Environmental Science & Technology, 2020, 54, 6978-6986.	4.6	123
549	Toward Sustainable Energy and Materials: CO2 Capture Using Microencapsulated Sorbents. Industrial & Engineering Chemistry Research, 2020, 59, 9746-9759.	1.8	14
550	Polyrotaxane-based thin film composite membranes for enhanced nanofiltration performance. Separation and Purification Technology, 2020, 246, 116893.	3.9	7
551	Molecularly Engineered 6FDAâ€Based Polyimide Membranes for Sour Natural Gas Separation. Angewandte Chemie, 2020, 132, 14987-14993.	1.6	4
552	Covalent organic framework incorporated outer-selective hollow fiber thin-film nanocomposite membranes for osmotically driven desalination. Desalination, 2020, 485, 114461.	4.0	31
553	Designing exceptional gas-separation polymer membranes using machine learning. Science Advances, 2020, 6, eaaz4301.	4.7	132
554	Two-Dimensional Supramolecular Ionic Frameworks for Precise Membrane Separation of Small Nanoparticles. ACS Applied Materials & Interfaces, 2020, 12, 30761-30769.	4.0	20
555	Research progress and challenges in hydrate-based carbon dioxide capture applications. Applied Energy, 2020, 269, 114928.	5.1	88
556	Chemically stable two-dimensional MXene@UIO-66-(COOH)2 composite lamellar membrane for multi-component pollutant-oil-water emulsion separation. Composites Part B: Engineering, 2020, 197, 108188.	5.9	79
557	Unprecedentedly Low CO ₂ Transport through Vertically Aligned, Conical Silicon Nanotube Membranes. Nano Letters, 2020, 20, 4754-4760.	4.5	9
558	All-Nanoporous Hybrid Membranes: Incorporating Zeolite Nanoparticles and Nanosheets with Zeolitic Imidazolate Framework Matrices. ACS Applied Materials & Interfaces, 2020, 12, 27368-27377.	4.0	17
559	Opportunities for high productivity and selectivity desalination via osmotic distillation with improved membrane design. Journal of Membrane Science, 2020, 611, 118309.	4.1	9
560	In-situ crosslinked AEMs with self-assembled nanostructure for acid recovery. Separation and Purification Technology, 2020, 247, 116927.	3.9	20
561	<scp>PDMS</scp> mixedâ€matrix membranes with molecular fillers via reactive incorporation and their application for bioâ€butanol recovery from aqueous solution. Journal of Polymer Science, 2020, 58, 2634-2643.	2.0	8

#	Article	IF	CITATIONS
562	Representing polymer molecular structure using molecular simulations for the study of liquid sorption and diffusion. Current Opinion in Chemical Engineering, 2020, 28, 144-151.	3.8	3
563	Highly selective separation and resource recovery using forward osmosis membrane assembled by polyphenol network. Journal of Membrane Science, 2020, 611, 118305.	4.1	21
564	Uncovering Alternate Pathways to Nafion Membrane Degradation in Fuel Cells with First-Principles Modeling. Journal of Physical Chemistry C, 2020, 124, 15094-15106.	1.5	6
565	Ultrathin water-stable metal-organic framework membranes for ion separation. Science Advances, 2020, 6, eaay3998.	4.7	179
566	High-flux robust ceramic membranes functionally decorated with nano-catalyst for emerging micro-pollutant removal from water. Journal of Membrane Science, 2020, 611, 118281.	4.1	47
567	Self-driven membrane filtration by core–shell polymer composites. Journal of Materials Chemistry A, 2020, 8, 15942-15950.	5.2	13
568	Precisely Determined Water Permeabilities of Subâ€100 nm Nanochannels. Advanced Materials Interfaces, 2020, 7, 2000307.	1.9	3
569	Manipulating membrane surface porosity via deep insight into surfactants during nonsolvent induced phase separation. Journal of Membrane Science, 2020, 611, 118358.	4.1	28
570	Design and synthesis of organic polymers for molecular separation membranes. Current Opinion in Chemical Engineering, 2020, 28, 60-65.	3.8	22
571	Hydration Mimicry by Membrane Ion Channels. Annual Review of Physical Chemistry, 2020, 71, 461-484.	4.8	27
572	Design Next Generation Membranes or Rethink the "Old―Asymmetric Membranes?. Symmetry, 2020, 12, 270.	1.1	11
573	Molecular dynamics study on applying layered graphene oxide membranes for separating cadmium ions from water. Journal of Membrane Science, 2020, 603, 117996.	4.1	27
574	Thermally annealed polyimide-based mixed matrix membrane containing ZIF-67 decorated porous graphene oxide nanosheets with enhanced propylene/propane selectivity. Journal of Membrane Science, 2020, 603, 118019.	4.1	30
575	Graphene oxide membranes: controlling their transport pathways. Journal of Materials Chemistry A, 2020, 8, 15319-15340.	5.2	118
576	Carbon Nanomembranes from Aromatic Carboxylate Precursors. ChemPhysChem, 2020, 21, 1006-1011.	1.0	14
577	Precisely Patterned Nanostrand Surface of Cucurbituril[<i>n</i>]-Based Nanofiltration Membranes for Effective Alcohol–Water Condensation. Nano Letters, 2020, 20, 2717-2723.	4.5	66
578	Gas Separation via Hybrid Metal–Organic Framework/Polymer Membranes. Trends in Chemistry, 2020, 2, 254-269.	4.4	71
579	Controlled chlorination of polyamide reverse osmosis membranes at real scale for enhanced desalination performance. Journal of Membrane Science, 2020, 611, 118400.	4.1	18

#	Article	IF	CITATIONS
580	In-situ interfacial assembly of ultra-H2-permeable metal-organic framework membranes for H2/CO2 separation. Journal of Membrane Science, 2020, 611, 118419.	4.1	36
581	Relating Selectivity and Separation Performance of Lamellar Two-Dimensional Molybdenum Disulfide (MoS ₂) Membranes to Nanosheet Stacking Behavior. Environmental Science & Technology, 2020, 54, 9640-9651.	4.6	82
582	Gas-separation and physical properties of ABA triblock copolymers synthesized from polyimide and hydrophilic adamantane derivatives. Polymer, 2020, 202, 122642.	1.8	4
583	Ultrafast Ion Sieving from Honeycomb-like Polyamide Membranes Formed Using Porous Protein Assemblies. Nano Letters, 2020, 20, 5821-5829.	4.5	46
584	Superhydrophilic polyvinylidene fluoride membrane with hierarchical surface structures fabricated via nanoimprint and nanoparticle grafting. Journal of Membrane Science, 2020, 612, 118332.	4.1	16
585	Greatly Enhanced Gas Selectivity in Mixed-Matrix Membranes through Size-Controlled Hyper-cross-linked Polymer Additives. Industrial & Engineering Chemistry Research, 2020, 59, 13773-13782.	1.8	19
586	Nanocarbon-Immobilized Membranes for Separation of Tetrahydrofuran from Water via Membrane Distillation. ACS Applied Nano Materials, 2020, 3, 6344-6353.	2.4	23
587	Critical Role of the Molecular Interface in Double-Layered Pebax-1657/PDMS Nanomembranes for Highly Efficient CO ₂ /N ₂ Gas Separation. ACS Applied Materials & Interfaces, 2020, 12, 33196-33209.	4.0	41
589	Pharmaceutical and synthetic hormone removal using biopolymer membranes. , 2020, , 397-421.		3
590	Constructing interlayer to tailor structure and performance of thin-film composite polyamide membranes: A review. Advances in Colloid and Interface Science, 2020, 282, 102204.	7.0	154
591	Fabrication and structural tailoring of reverse osmosis membranes using β-cyclodextrin-cored star polymers. Journal of Membrane Science, 2020, 611, 118415.	4.1	19
592	Transforming polymer hollow fiber membrane modules to mixed-matrix hollow fiber membrane modules for propylene/propane separation. Journal of Membrane Science, 2020, 612, 118429.	4.1	20
593	Water and Ion Transport through the Glass Transition in Polyelectrolyte Complexes. Chemistry of Materials, 2020, 32, 5994-6002.	3.2	18
594	Facile preparation of petaliform-like superhydrophobic meshes via moisture etching for oil-water separation. Surface and Coatings Technology, 2020, 399, 126124.	2.2	21
595	Water desalination of a new three-dimensional covalent organic framework: a molecular dynamics simulation study. Physical Chemistry Chemical Physics, 2020, 22, 16978-16984.	1.3	35
596	Nanofluidics coming of age. Nature Materials, 2020, 19, 254-256.	13.3	255
597	Membrane materials for energy production and storage. Pure and Applied Chemistry, 2020, 92, 1147-1157.	0.9	33
598	Polyelectrolyte Functionalized Ti ₂ CT <i>_x</i> MXene Membranes for Pervaporation Dehydration of Isopropanol/Water Mixtures. Industrial & Engineering Chemistry Research, 2020, 59, 4732-4741.	1.8	63

#	Article	IF	CITATIONS
599	Asymmetric forward osmosis membranes from p-aramid nanofibers. Materials and Design, 2020, 191, 108591.	3.3	15
600	Intrinsic Nanoscale Structure of Thin Film Composite Polyamide Membranes: Connectivity, Defects, and Structure–Property Correlation. Environmental Science & Technology, 2020, 54, 3559-3569.	4.6	135
601	Hydrophobicity versus Pore Size: Polymer Coatings to Improve Membrane Wetting Resistance for Membrane Distillation. ACS Applied Polymer Materials, 2020, 2, 1256-1267.	2.0	55
602	Polyphenol ensitized Atomic Layer Deposition for Membrane Interface Hydrophilization. Advanced Functional Materials, 2020, 30, 1910062.	7.8	70
603	Enhanced dispersibility of metal–organic frameworks (MOFs) in the organic phase <i>via</i> surface modification for TFN nanofiltration membrane preparation. RSC Advances, 2020, 10, 4045-4057.	1.7	75
604	New Findings on an Old Question: Can Defectâ€Free Graphene Monolayers be Superior Metalâ€ŀon Battery Anodes?. Advanced Sustainable Systems, 2020, 4, 1900152.	2.7	10
605	Enhanced Gas Separation Properties of Tröger's Base Polymer Membranes Derived from Pure Triptycene Diamine Regioisomers. Macromolecules, 2020, 53, 1573-1584.	2.2	51
606	Durability and Recoverability of Soft Lithographically Patterned Hydrogel Molds for the Formation of Phase Separation Membranes. Micromachines, 2020, 11, 108.	1.4	6
607	Ultrathin Membranes: A New Opportunity for Ultrafast and Efficient Separation. Advanced Materials Technologies, 2020, 5, 1901069.	3.0	37
608	Recent developments in forward osmosis membranes using carbon-based nanomaterials. Desalination, 2020, 482, 114375.	4.0	118
609	Hollow Fiber-Type Facilitated Transport Membrane Composed of a Polymerized Ionic Liquid-Based Gel Layer with Amino Acidate as the CO2 Carrier. Industrial & Engineering Chemistry Research, 2020, 59, 2083-2092.	1.8	12
610	Multiscale Design of Flexible Metal–Organic Frameworks. Trends in Chemistry, 2020, 2, 199-213.	4.4	43
611	Cellulose nanocrystal/silver (CNC/Ag) thin-film nanocomposite nanofiltration membranes with multifunctional properties. Environmental Science: Nano, 2020, 7, 803-816.	2.2	49
612	Electricâ€Fieldâ€Induced Ionic Sieving at Planar Graphene Oxide Heterojunctions for Miniaturized Water Desalination. Advanced Materials, 2020, 32, e1903954.	11.1	64
613	The role of surface wettability on water transport through membranes. Chemical Engineering Science, 2020, 219, 115602.	1.9	24
614	Field-enhanced selectivity in nanoconfined ionic transport. Nanoscale, 2020, 12, 6512-6521.	2.8	10
615	Azobenzene-assisted exfoliation of 2D covalent organic frameworks into large-area, few-layer nanosheets for high flux and selective molecular separation membrane. Journal of Membrane Science, 2020, 601, 117864.	4.1	46
616	Advanced porous polymer membranes from self-assembling block copolymers. Progress in Polymer Science, 2020, 102, 101219.	11.8	119

#	Article	IF	CITATIONS
617	Charge Inversion and Calcium Gating in Mixtures of Ions in Nanopores. Journal of the American Chemical Society, 2020, 142, 2925-2934.	6.6	73
618	Paradigm shifts and current challenges in wastewater management. Journal of Hazardous Materials, 2020, 390, 122139.	6.5	80
619	Simultaneous rational design of ion separation membranes and processes. Journal of Membrane Science, 2020, 600, 117860.	4.1	29
620	The behavior of suspensions and macromolecular solutions in crossflow microfiltration: An update. Journal of Membrane Science, 2020, 601, 117865.	4.1	79
621	Ultrahigh Ionic Exclusion through Carbon Nanomembranes. Advanced Materials, 2020, 32, e1907850.	11.1	29
622	Role of ionic liquids in eliminating interfacial defects in mixed matrix membranes. , 2020, , 269-309.		1
623	Rapid fabrication of precise high-throughput filters from membrane protein nanosheets. Nature Materials, 2020, 19, 347-354.	13.3	59
624	Proteins tailor pore geometry. Nature Materials, 2020, 19, 257-258.	13.3	3
625	The establishment of high-performance anti-fouling nanofiltration membranes via cooperation of annular supramolecular Cucurbit[6]uril and dendritic polyamidoamine. Journal of Membrane Science, 2020, 600, 117863.	4.1	47
626	Positron annihilation lifetime spectroscopy study of polyvinylpyrrolidoneâ€added polyvinylidene fluoride membranes: Investigation of free volume and permeation relationships. Journal of Polymer Science, 2020, 58, 589-598.	2.0	4
627	Improving the perm-selectivity and anti-fouling property of UF membrane through the micro-phase separation of PSf-b-PEG block copolymers. Journal of Membrane Science, 2020, 599, 117851.	4.1	46
628	Effect of Humidity on CO2/N2 and CO2/CH4 Separation Using Novel Robust Mixed Matrix Composite Hollow Fiber Membranes: Experimental and Model Evaluation. Membranes, 2020, 10, 6.	1.4	11
629	Zeolite imidazolate framework (ZIF)â€based mixed matrix membranes for CO ₂ separation: A review. Journal of Applied Polymer Science, 2020, 137, 48968.	1.3	63
630	Interlocking a synthesized polymer and bifunctional filler containing the same polymer's monomer for conformable hybrid membrane systems. Journal of Materials Chemistry A, 2020, 8, 3942-3955.	5.2	21
631	Phenanthroline-Based Polyarylate Porous Membranes with Rapid Water Transport for Metal Cation Separation. ACS Applied Materials & Interfaces, 2020, 12, 7605-7616.	4.0	14
632	Emerging thin-film nanocomposite (TFN) membranes for reverse osmosis: A review. Water Research, 2020, 173, 115557.	5.3	230
633	Ion Permeability and Selectivity in Composite Nanochannels: Engineering through the End Effects. Journal of Physical Chemistry C, 2020, 124, 4890-4898.	1.5	31
634	Robust stable MoS2/GO filtration membrane for effective removal of dyes and salts from water with enhanced permeability. Desalination, 2020, 480, 114328.	4.0	80
#	Article	IF	CITATIONS
-----	--	------	-----------
635	Morphologically Tunable MOF Nanosheets in Mixed Matrix Membranes for CO ₂ Separation. Chemistry of Materials, 2020, 32, 4174-4184.	3.2	82
636	Dehydration-Determined Ion Selectivity of Graphene Subnanopores. ACS Applied Materials & Interfaces, 2020, 12, 24281-24288.	4.0	39
637	Molecular Dynamics Simulations of Hydrated Poly(amidoamine) Dendrimer/Graphene Oxide Nanocomposite Membranes. Journal of Physical Chemistry C, 2020, 124, 9512-9522.	1.5	6
638	Removal of microplastics via drinking water treatment: Current knowledge and future directions. Chemosphere, 2020, 251, 126612.	4.2	211
639	Hierarchical poly(vinylidene fluoride)/active carbon composite membrane with self-confining functional carbon nanotube layer for intractable wastewater remediation. Journal of Membrane Science, 2020, 603, 118041.	4.1	32
640	Interpenetrating networks of mixed matrix materials comprising metal-organic polyhedra for membrane CO2 capture. Journal of Membrane Science, 2020, 606, 118122.	4.1	22
641	Non-destructive fabrication of Nafion/silica composite membrane via swelling-filling modification strategy for high temperature and low humidity PEM fuel cell. Renewable Energy, 2020, 153, 935-939.	4.3	48
642	Polyelectrolyte Grafted MOFs Enable Conjugated Membranes for Molecular Separations in Dual Solvent Systems. Cell Reports Physical Science, 2020, 1, 100034.	2.8	25
643	Effective stress jump across membranes. Journal of Fluid Mechanics, 2020, 892, .	1.4	11
644	Dual-Functional Nanofiltration Membranes Exhibit Multifaceted Ion Rejection and Antifouling Performance. ACS Applied Materials & Interfaces, 2020, 12, 19944-19954.	4.0	16
645	A solution-processable and ultra-permeable conjugated microporous thermoset for selective hydrogen separation. Nature Communications, 2020, 11, 1633.	5.8	40
646	Controlling the morphology of metal–organic frameworks and porous carbon materials: metal oxides as primary architecture-directing agents. Chemical Society Reviews, 2020, 49, 3348-3422.	18.7	190
647	Ultrathin permselective membranes: the latent way for efficient gas separation. RSC Advances, 2020, 10, 12653-12670.	1.7	69
648	Metal–Organic Frameworks (MOFs)-boosted filtration membrane technology for water sustainability. APL Materials, 2020, 8, .	2.2	54
649	Atomic layer deposition and electrospinning as membrane surface engineering methods for water treatment: a short review. Environmental Science: Water Research and Technology, 2020, 6, 1765-1785.	1.2	12
650	Vertically Transported Graphene Oxide for Highâ€Performance Osmotic Energy Conversion. Advanced Science, 2020, 7, 2000286.	5.6	78
651	Three-dimensional adsorbent with pH induced superhydrophobic and superhydrophilic transformation for oil recycle and adsorbent regeneration. Journal of Colloid and Interface Science, 2020, 575, 231-244.	5.0	34
652	Hydrophilic yolk-shell ZIF-8 modified polyamide thin-film nanocomposite membrane with improved permeability and selectivity. Separation and Purification Technology, 2020, 247, 116990.	3.9	44

ARTICLE IF CITATIONS Theory of Multicomponent Phenomena in Cation-Exchange Membranes: Part I. Thermodynamic Model 653 1.3 29 and Validation. Journal of the Electrochemical Society, 2020, 167, 013547. Gas Transport in Mixed Matrix Membranes: Two Methods for Time Lag Determination. Computation, 654 1.0 2020, 8, 28. A new kind of filter paper comprising ultralong hydroxyapatite nanowires and double metal oxide 655 nanosheets for high-performance dye separation. Journal of Colloid and Interface Science, 2020, 575, 5.0 21 78-87. Cellulose Membrane Composited with ZIFâ€8 for Selective Separation of Rhodamine B. ChemistrySelect, 656 2020, 5, 4078-4084. Enhancing the gas separation properties of mixed matrix membranes via impregnation of sieve phases 657 3.9 10 with metal and nonmetal promoters. Separation and Purification Technology, 2020, 245, 116859. Polymer Electrolyte Membranes with Hybrid Cluster Network for Efficient CO₂/CH₄ Separation. ACS Sustainable Chemistry and Engineering, 2020, 8, 3.2 6815-6825. Molecular transport in ionic liquid/nanomembrane hybrids. Physical Chemistry Chemical Physics, 659 1.39 2020, 22, 9808-9814. How to coordinate the trade-off between water permeability and salt rejection in nanofiltration?. 5.2 162 Journal of Materials Chemistry A, 2020, 8, 8831-8847. Engineering plasticization resistant gas separation membranes using metalâ€" organic nanocapsules. 661 3.7 22 Chemical Science, 2020, 11, 4687-4694. Water Treatment: Are Membranes the Panacea?. Annual Review of Chemical and Biomolecular 3.3 Engineering, 2020, 11, 559-585. 2D materials-based membranes for hydrogen purification: Current status and future prospects. 663 3.8 35 International Journal of Hydrogen Energy, 2021, 46, 11389-11410. Rational design of two-dimensional nanofillers for polymer nanocomposites toward multifunctional 664 16.0 150 applications. Progress in Materials Science, 2021, 115, 100708. Role of surface functional groups of hydrogels in metal adsorption: From performance to 665 6.5 63 mechanism. Journal of Hazardous Materials, 2021, 408, 124463. Polyamide reverse osmosis membranes containing 1D nanochannels for enhanced water purification. 4.1 Journal of Membrane Science, 2021, 618, 118681 Carbon nanotube arrays hybrid membrane with excellent separation performance and conductivity. 667 4.1 14 Journal of Membrane Ścieńce, 2021, 620, 118874. Stabilizing phosphotungstic acid in Nafion membrane via targeted silica fixation for high-temperature fuel cell application. International Journal of Hydrogen Energy, 2021, 46, 4301-4308. Mixed substituent <scp>etherâ€containing</scp> polyphosphazene/poly(bisâ€phenoxyphosphazene) blends 669 as membranes for <scp>CO₂</scp> separation from <scp>N₂</scp>. Journal of 1.35 Applied Polymer Science, 2021, 138, 50207. Gas separation and water desalination performance of defect-free interfacially polymerized 670 4.1 para-linked polyamide thin-film composite membranes. Journal of Membrane Science, 2021, 618, 118572.

#	Article	IF	CITATIONS
671	Effect of introduction of fluoromonomer copolymerization on properties of polyimide hollow fibers. High Performance Polymers, 2021, 33, 75-88.	0.8	3
672	Structure adjustment for enhancing the water permeability and separation selectivity of the thin film composite nanofiltration membrane based on a dendritic hyperbranched polymer. Journal of Membrane Science, 2021, 618, 118455.	4.1	37
673	Robust and non-fluorinated superhydrophobic meshes with controllable pore size for high-efficiency water-in-oil emulsion separation. Separation Science and Technology, 2021, 56, 1699-1709.	1.3	3
674	Gas-sieving zeolitic membranes fabricated by condensation of precursor nanosheets. Nature Materials, 2021, 20, 362-369.	13.3	86
675	Coordinate covalent grafted ILs-modified MIL-101/PEBA membrane for pervaporation: Adsorption simulation and separation characteristics. Journal of Membrane Science, 2021, 619, 118807.	4.1	21
676	Stitching nanosheets of covalent organic frameworks to build aligned nanopores in nanofiltration membranes for precise ion separations. Journal of Membrane Science, 2021, 618, 118754.	4.1	50
677	Unravelling intercalation-regulated nanoconfinement for durably ultrafast sieving graphene oxide membranes. Journal of Membrane Science, 2021, 619, 118791.	4.1	80
678	Liposomes-assisted fabrication of high performance thin film composite nanofiltration membrane. Journal of Membrane Science, 2021, 620, 118833.	4.1	28
679	A mini review of multifunctional ultrafiltration membranes for wastewater decontamination: Additional functions of adsorption and catalytic oxidation. Science of the Total Environment, 2021, 762, 143083.	3.9	50
680	Ultraselective and Highly Permeable Polyamide Nanofilms for Ionic and Molecular Nanofiltration. Advanced Functional Materials, 2021, 31, 2007054.	7.8	162
681	Impact of incubation conditions and post-treatment on the properties of bacterial cellulose membranes for pressure-driven filtration. Carbohydrate Polymers, 2021, 251, 117073.	5.1	15
682	Field trial of hollow fiber modules of hybrid facilitated transport membranes for flue gas CO2 capture in cement industry. Chemical Engineering Journal, 2021, 413, 127405.	6.6	35
683	Engineered two-dimensional nanomaterials: an emerging paradigm for water purification and monitoring. Materials Horizons, 2021, 8, 758-802.	6.4	92
684	Comparison of different MOF fillers on CO ₂ removal performance of supported PEBA mixed matrix membranes. , 2021, 11, 128-143.		6
685	Vertically oriented Fe3O4 nanoflakes within hybrid membranes for efficient water/ethanol separation. Journal of Membrane Science, 2021, 620, 118916.	4.1	8
686	Design and fabrication of nanofiltration membranes based on intrinsic porous monomer resorcin[4]arene. Desalination, 2021, 500, 114861.	4.0	14
687	Deep eutectic solvents in membrane science and technology: Fundamental, preparation, application, and future perspective. Separation and Purification Technology, 2021, 258, 118015.	3.9	74
688	Polyamide thin film nanocomposite membrane containing polydopamine modified ZIF-8 for nanofiltration. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 612, 125971.	2.3	38

#	Article	IF	CITATIONS
689	Insights into metal-organic frameworks-integrated membranes for desalination process: A review. Desalination, 2021, 500, 114867.	4.0	70
690	The intercalation of nanoscale lattices into micro-sized graphene oxide sheets for enhancing pressure-driven desalination performances. Desalination, 2021, 500, 114868.	4.0	27
691	Electrospun transition layer that enhances the structure and performance of thin-film nanofibrous composite membranes. Journal of Membrane Science, 2021, 620, 118927.	4.1	20
692	Improved CO2/N2 separation performance of Pebax composite membrane containing polyethyleneimine functionalized ZIF-8. Separation and Purification Technology, 2021, 259, 118190.	3.9	55
693	Transient dynamics in a membrane module with a pulsed change of retentate: Modeling and experimental study of an unsteady-state mode of membrane gas separation process. Separation and Purification Technology, 2021, 259, 118201.	3.9	1
694	Mechanism of Permselectivity Enhancement in Polyelectrolyte-Dense Nanofiltration Membranes via Surfactant-Assembly Intercalation. Environmental Science & Technology, 2021, 55, 738-748.	4.6	23
695	Aktuelle Trends zu Metallâ€organischen und kovalenten organischen Netzwerken als Membranmaterialien. Angewandte Chemie, 2021, 133, 15281-15293.	1.6	6
696	Developing helical carbon functionalized chitosan-based loose nanofiltration membranes for selective separation and wastewater treatment. Chemical Engineering Journal, 2021, 417, 127911.	6.6	23
697	Current Trends in Metal–Organic and Covalent Organic Framework Membrane Materials. Angewandte Chemie - International Edition, 2021, 60, 15153-15164.	7.2	96
698	Synthesis-structure-performance relationships of nanocomposite polymeric ultrafiltration membranes: A comparative study of two carbon nanofillers. Journal of Membrane Science, 2021, 620, 118847.	4.1	18
699	Permselective metal–organic framework gel membrane enables long-life cycling of rechargeable organic batteries. Nature Nanotechnology, 2021, 16, 77-84.	15.6	105
700	Bioinspired Metalâ€Organic Frameworks in Mixed Matrix Membranes for Efficient Static/Dynamic Removal of Mercury from Water. Advanced Functional Materials, 2021, 31, 2008499.	7.8	43
701	Sulfonyl <scp>PIM</scp> â€l: A diverse separation membrane with dilation resistance. AICHE Journal, 2021, 67, e17006.	1.8	4
702	Mixed matrix membranes for hydrocarbons separation and recovery: a critical review. Reviews in Chemical Engineering, 2021, 37, 363-406.	2.3	32
703	Nanostructured microporous membranes for advanced water and wastewater treatment. , 2021, , 3-23.		0
704	Reverse osmotic characteristics and mechanism of pillared graphene membranes for water desalination. Wuli Xuebao/Acta Physica Sinica, 2021, .	0.2	0
705	Active layer modification of commercial nanofiltration membrane using <scp>CuBTC</scp> / <scp>PVA</scp> matrix for improved surface and separation characteristics. Journal of Applied Polymer Science, 2021, 138, app50508.	1.3	7
706	Fast water transport through sub-5 nm polyamide nanofilms: the new upper-bound of the permeance–selectivity trade-off in nanofiltration. Journal of Materials Chemistry A, 2021, 9, 20714-20724	5.2	31

#	Article	IF	CITATIONS
707	A data-driven and DFT assisted theoretic guide for membrane design in flow batteries. Journal of Materials Chemistry A, 2021, 9, 14545-14552.	5.2	9
708	Differentiating Solutes with Precise Nanofiltration for Next Generation Environmental Separations: A Review. Environmental Science & Technology, 2021, 55, 1359-1376.	4.6	156
709	Cellulose Nanofiber Nanocomposite Pervaporation Membranes for Ethanol Recovery. ACS Applied Nano Materials, 2021, 4, 568-579.	2.4	22
710	Preparation of a PES/PFSA- <i>g</i> -MWCNT ultrafiltration membrane with improved permeation and antifouling properties. New Journal of Chemistry, 2021, 45, 4950-4962.	1.4	6
711	Organic molecular sieve membranes for chemical separations. Chemical Society Reviews, 2021, 50, 5468-5516.	18.7	170
712	A self-assembling, biporous, metal-binding covalent organic framework and its application for gas separation. Materials Advances, 0, , .	2.6	3
713	Graphene oxide nanofiltration membranes for desalination under realistic conditions. Nature Sustainability, 2021, 4, 402-408.	11.5	111
714	Dehydration of <scp>C₂</scp> – <scp>C₄</scp> alcohol/water mixtures via electrostatically enhanced graphene oxide laminar membranes. AICHE Journal, 2021, 67, aic17170.	1.8	26
715	Substituted polynorbornene membranes: a modular template for targeted gas separations. Polymer Chemistry, 2021, 12, 2947-2977.	1.9	39
716	Nanoscale control of internal inhomogeneity enhances water transport in desalination membranes. Science, 2021, 371, 72-75.	6.0	193
717	High-performance polymer molecular sieve membranes prepared by direct fluorination for efficient helium enrichment. Journal of Materials Chemistry A, 2021, 9, 18313-18322.	5.2	28
718	Mixed-dimensional membranes: chemistry and structure–property relationships. Chemical Society Reviews, 2021, 50, 11747-11765.	18.7	51
719	Designing organic solvent separation membranes: polymers, porous structures, 2D materials, and their combinations. Materials Advances, 2021, 2, 4574-4603.	2.6	21
720	Confined assembly of ultrathin dual-functionalized Z-MXene nanosheet intercalated GO nanofilms with controlled structure for size-selective permeation. Journal of Materials Chemistry A, 2021, 9, 12236-12243.	5.2	26
721	<scp>CO₂</scp> / <scp>N₂</scp> and <scp>O₂</scp> / <scp>N₂</scp> Separation Using <scp>Mixedâ€Matrix</scp> Membranes with <scp>MOF</scp> â€74 Nanocrystals Synthesized Via Microwave Reactions. Bulletin of the Korean Chemical Society, 2021, 42, 459-462.	1.0	25
722	Carbon Nanotubes Composite Membrane for Water Desalination. Advances in Science, Technology and Innovation, 2021, , 163-184.	0.2	1
723	Fabrication of desalination membranes by interfacial polymerization: history, current efforts, and future directions. Chemical Society Reviews, 2021, 50, 6290-6307.	18.7	263
724	Carbon capture Using Metal–Organic Frameworks. , 2021, , 155-204.		1

#	Article	IF	CITATIONS
725	High-performing composite membrane based on dopamine-functionalized graphene oxide incorporated two-dimensional MXene nanosheets for water purification. Journal of Materials Science, 2021, 56, 6814-6829.	1.7	33
726	Microporous Polymers for Gas Separation Membranes: Overview and Advances. , 2021, , 1527-1555.		0
727	Quantum effects of gas flow in nanochannels. Nanotechnology Reviews, 2021, 10, 254-263.	2.6	1
728	Porous liquids – Future for CO2 capture and separation?. Current Research in Green and Sustainable Chemistry, 2021, 4, 100070.	2.9	23
729	Sulfonated Reverse Osmosis Membrane Fabricated with Comonomer Having Excellent Scaling and Fouling Resistance. Industrial & Engineering Chemistry Research, 2021, 60, 3095-3104.	1.8	12
730	High-Performance, Free-Standing Symmetric Hybrid Membranes for Osmotic Separation. ACS Applied Materials & Interfaces, 2021, 13, 8967-8975.	4.0	7
731	Ultrathin Reduced Graphene Oxide/Organosilica Hybrid Membrane for Gas Separation. Jacs Au, 2021, 1, 328-335.	3.6	16
732	Development of Novel Polyamide-Imide/DES Composites and Their Application for Pervaporation and Gas Separation. Molecules, 2021, 26, 990.	1.7	6
733	Fast Evaporation Enabled Ultrathin Polymer Coatings on Nanoporous Substrates for Highly Permeable Membranes. Innovation(China), 2021, 2, 100088.	5.2	4
734	Membrane fouling by lysozyme: Effect of local interaction. AICHE Journal, 2021, 67, e17212.	1.8	12
735	Detection and removal of microplastics in wastewater: evolution and impact. Environmental Science and Pollution Research, 2021, 28, 16925-16947.	2.7	123
736	The Need for Accurate Osmotic Pressure and Mass Transfer Resistances in Modeling Osmotically Driven Membrane Processes. Membranes, 2021, 11, 128.	1.4	12
737	Designing Biomimic Two-Dimensional Ionic Transport Channels for Efficient Ion Sieving. ACS Nano, 2021, 15, 5209-5220.	7.3	98
738	Mathematical Modeling of the Effect of Pulsed Electric Field on the Specific Permselectivity of Ion-Exchange Membranes. Membranes, 2021, 11, 115.	1.4	11
739	Proteinâ€Based Separation Membranes: State of the Art and Future Trends. Advanced Energy and Sustainability Research, 2021, 2, 2100008.	2.8	6
740	Is Porosity at the MOF/Polymer Interface Necessarily an Obstacle to Optimal Gas-Separation Performances in Mixed Matrix Membranes?. , 2021, 3, 344-350.		24
741	Fungal Cell Wallâ€Graphene Oxide Microcomposite Membrane for Organic Solvent Nanofiltration. Advanced Functional Materials, 2021, 31, 2100110.	7.8	42
742	Facilely Cross-Linking Polybenzimidazole with Polycarboxylic Acids to Improve H ₂ /CO ₂ Separation Performance. ACS Applied Materials & Interfaces, 2021, 13, 12521-12530.	4.0	29

#	Article	IF	CITATIONS
743	Enhanced Gas Separation Prowess Using Functionalized Lignin-Free Lignocellulosic Biomass/Polysulfone Composite Membranes. Membranes, 2021, 11, 202.	1.4	5
744	Rational design of charge-functional materials: Insights from molecular engineering and operando imaging. MRS Bulletin, 2021, 46, 273-279.	1.7	6
745	Harnessing Ionic Power from Equilibrium Electrolyte Solution via Photoinduced Active Ion Transport through vanâ€derâ€Waals‣ike Heterostructures. Advanced Materials, 2021, 33, e2007529.	11.1	37
746	Amphiphilic poly(arylene ether sulfone) multiblock copolymers with quaternary ammonium groups for novel thin-film composite nanofiltration membranes. Polymer, 2021, 217, 123446.	1.8	5
747	Highly selective laser-induced graphene (LIG)/polysulfone composite membrane for hydrogen purification. Applied Materials Today, 2021, 22, 100971.	2.3	5
748	Preparation of an Amidated Graphene Oxide/Sulfonated Poly Ether Ether Ketone (AGO/SPEEK) Modified Atmosphere Packaging for the Storage of Cherry Tomatoes. Foods, 2021, 10, 552.	1.9	5
749	Frontiers of Membrane Desalination Processes for Brackish Water Treatment: A Review. Membranes, 2021, 11, 246.	1.4	38
750	Molecularly soldered covalent organic frameworks for ultrafast precision sieving. Science Advances, 2021, 7, .	4.7	185
751	Free volume characteristics of 2, 2â€bistrifluoromethyl â€4,5â€difluoroâ€1,3â€dioxole―co â€tetrafluoroethyler copolymers: Effect of composition and molecular weight. Journal of Polymer Science, 2021, 59, 754-763.	¹⁰ 2.0	3
752	Ultrapermeable Composite Membranes Enhanced Via Doping with Amorphous MOF Nanosheets. ACS Central Science, 2021, 7, 671-680.	5.3	27
753	CO2/CH4 mixed gas separation using graphene oxide nanosheets embedded hollow fiber membranes: Evaluating effect of filler concentration on performance. Chemical Engineering Journal Advances, 2021, 5, 100074.	2.4	31
754	Electrified Membranes for Water Treatment Applications. ACS ES&T Engineering, 2021, 1, 725-752.	3.7	139
755	HNb3O8 Nanosheet–Graphene Oxide Composite Membranes for Molecular Separation. ACS Applied Nano Materials, 2021, 4, 3455-3466.	2.4	11
756	Challenges in membrane-based liquid phase separations. Green Chemical Engineering, 2021, 2, 3-13.	3.3	13
757	Three-Dimensional Analysis of the Natural-Organic-Matter Distribution in the Cake Layer to Precisely Reveal Ultrafiltration Fouling Mechanisms. Environmental Science & Technology, 2021, 55, 5442-5452.	4.6	38
758	The Role of Membrane-Based Technologies in Environmental Treatment and Reuse of Produced Water. Frontiers in Environmental Science, 2021, 9, .	1.5	17
759	Ionic Mobility in Ion-Exchange Membranes. Membranes, 2021, 11, 198.	1.4	49
760	Hydrophobic Porous Polypropylene with Hierarchical Structures for Ultrafast and Highly Selective Oil/Water Separation. ACS Applied Materials & amp; Interfaces, 2021, 13, 16859-16868.	4.0	53

#	Article	IF	CITATIONS
761	Bioinspired and biomimetic membranes for water purification and chemical separation: A review. Frontiers of Environmental Science and Engineering, 2021, 15, 1.	3.3	26
763	Superelastic Polyimide Nanofiber-Based Aerogels Modified with Silicone Nanofilaments for Ultrafast Oil/Water Separation. ACS Applied Materials & Interfaces, 2021, 13, 20489-20500.	4.0	53
764	Ion-capture electrodialysis using multifunctional adsorptive membranes. Science, 2021, 372, 296-299.	6.0	152
765	Combined Vapor Permeation and Continuous Solid-State Distillation for Energy-Efficient Bioethanol Production. Energies, 2021, 14, 2266.	1.6	8
766	Emerging Homochiral Porous Materials for Enantiomer Separation. Advanced Functional Materials, 2021, 31, 2101335.	7.8	43
767	Fabrication of surface-charged MXene membrane and its application for water desalination. Journal of Membrane Science, 2021, 623, 119076.	4.1	95
768	Defect Engineering in Metal–Organic Frameworks Towards Advanced Mixed Matrix Membranes for Efficient Propylene/Propane Separation. Angewandte Chemie - International Edition, 2021, 60, 13081-13088.	7.2	70
769	Enhanced Diffusive Transport in Fluctuating Porous Media. ACS Nano, 2021, 15, 7392-7398.	7.3	10
770	Single molecule characterization of anomalous transport in a thin, anisotropic film. Analytica Chimica Acta, 2021, 1154, 338331.	2.6	4
771	Hybrid Data-Driven and Mechanistic Modeling Approaches for Multiscale Material and Process Design. Engineering, 2021, 7, 1231-1238.	3.2	19
772	Nanofluidics for osmotic energy conversion. Nature Reviews Materials, 2021, 6, 622-639.	23.3	288
773	Defect Repair of Polyelectrolyte Bilayers Using SDS: The Action of Micelles Versus Monomers. Langmuir, 2021, 37, 5306-5310.	1.6	2
774	Mitigating the Agglomeration of Nanofiller in a Mixed Matrix Membrane by Incorporating an Interface Agent. Membranes, 2021, 11, 328.	1.4	9
775	Biomimetic N-Doped Graphene Membrane for Proton Exchange Membranes. Nano Letters, 2021, 21, 4314-4319.	4.5	27
776	Novel Positively Charged Metal-Coordinated Nanofiltration Membrane for Lithium Recovery. ACS Applied Materials & Interfaces, 2021, 13, 16906-16915.	4.0	70
777	A review on the synthesis of fully aromatic polyamide reverse osmosis membranes. Desalination, 2021, 502, 114939.	4.0	64
778	A PA/O-NGO/PPS sandwich composite membrane prepared via multi-step interfacial polymerization for desalination. Journal of Materials Science, 2021, 56, 11736-11748.	1.7	3
779	Atomic-scale ion transistor with ultrahigh diffusivity. Science, 2021, 372, 501-503.	6.0	95

#	Article	IF	CITATIONS
780	Defect Engineering in Metal–Organic Frameworks Towards Advanced Mixed Matrix Membranes for Efficient Propylene/Propane Separation. Angewandte Chemie, 2021, 133, 13191-13198.	1.6	20
781	Diversity-oriented synthesis of polymer membranes with ion solvation cages. Nature, 2021, 592, 225-231.	13.7	83
782	Improving the permselectivity and antifouling performance of reverse osmosis membrane based on a semi-interpenetrating polymer network. Desalination, 2021, 502, 114910.	4.0	14
783	Zwitterionization of Tertiary Amines in Nanoporous Block Copolymers: toward Fouling-Resistant Ultrafiltration Membranes. Macromolecules, 2021, 54, 4236-4245.	2.2	17
784	Carbon nanotubes intercalated RGO electro-Fenton membrane for coenhanced permeability, rejection and catalytic oxidation of organic micropollutants. Journal of Membrane Science, 2021, 623, 119069.	4.1	29
785	Understanding water and solute transport in thin film nanocomposite membranes by resistance-in-series theory combined with Monte Carlo simulation. Journal of Membrane Science, 2021, 626, 119106.	4.1	10
786	A Plant Leaf-Mimetic Membrane with Controllable Gas Permeation for Efficient Preservation of Perishable Products. ACS Nano, 2021, 15, 8742-8752.	7.3	79
787	Synthesis and Characterization of Macrocyclic Ionic Liquids for CO ₂ Separation. Industrial & Engineering Chemistry Research, 2021, 60, 8218-8226.	1.8	6
788	Foldamer-based ultrapermeable and highly selective artificial water channels that exclude protons. Nature Nanotechnology, 2021, 16, 911-917.	15.6	54
789	Interfacial Polymerization at the Alkane/Ionic Liquid Interface. Angewandte Chemie - International Edition, 2021, 60, 14636-14643.	7.2	81
790	Polymer-supported ultra-thin ZIF-67 membrane through in situ interface self-repair. Journal of Membrane Science, 2021, 625, 119139.	4.1	45
791	Artificial water-channel membranes for desalination. Science Bulletin, 2021, 66, 1611-1611.	4.3	5
792	Preparation and High Performance of Cellulose Acetate Films by Grafting with Imidazole Ionic Liquid. ACS Omega, 2021, 6, 12500-12506.	1.6	11
793	Surface-crumpled thin-film nanocomposite membranes with elevated nanofiltration performance enabled by facilely synthesized covalent organic frameworks. Journal of Membrane Science, 2021, 625, 119144.	4.1	34
794	Interfacial Polymerization at the Alkane/Ionic Liquid Interface. Angewandte Chemie, 2021, 133, 14757-14764.	1.6	10
795	Nonâ€Destructive Threeâ€Dimensional Imaging of Metal Organic Framework Mixed Matrix Membranes using Labâ€based Xâ€ray Computed Tomography. Chemistry Methods, 2021, 1, 210-213.	1.8	0
796	Water friction in nanofluidic channels made from two-dimensional crystals. Nature Communications, 2021, 12, 3092.	5.8	59
797	In Situ Defectâ€Free Vertically Aligned Layered Double Hydroxide Composite Membrane for High Areal Capacity and Longâ€Cycle Zincâ€Based Flow Battery. Advanced Functional Materials, 2021, 31, 2102167.	7.8	36

#	Article	IF	CITATIONS
798	Enhanced water permeance of a polyamide thin-film composite nanofiltration membrane with a metal-organic framework interlayer. Journal of Membrane Science, 2021, 625, 119154.	4.1	50
799	Highly Permeable Polyamide Nanofiltration Membrane Mediated by an Upscalable Wet-Laid EVOH Nanofibrous Scaffold. ACS Applied Materials & Interfaces, 2021, 13, 23142-23152.	4.0	19
800	Microporous Nickel-Coordinated Aminosilica Membranes for Improved Pervaporation Performance of Methanol/Toluene Separation. ACS Applied Materials & amp; Interfaces, 2021, 13, 23247-23259.	4.0	23
801	One-step synthesis of hydroxyl-functionalized fully carbon main chain PIMs via a Friedel-Crafts reaction for efficient gas separation. Separation and Purification Technology, 2021, 262, 118313.	3.9	16
802	High-efficiency CO2 separation using hybrid LDH-polymer membranes. Nature Communications, 2021, 12, 3069.	5.8	56
803	Nanofluidics for Gas Separation Applications: The Molecular Dynamics Simulation Perspective. Separation and Purification Reviews, 2022, 51, 245-260.	2.8	4
804	Polyamide nanofilms with linearly-tunable thickness for high performance nanofiltration. Journal of Membrane Science, 2021, 627, 119142.	4.1	107
805	Polymerizable metal-organic frameworks for the preparation of mixed matrix membranes with enhanced interfacial compatibility. IScience, 2021, 24, 102560.	1.9	7
806	Adsorption complexes â€~zeolite–cationic surfactant': properties and surface activity in a polymer composite material based on ultra-high-molecular-weight polyethylene. Materials Today Chemistry, 2021, 20, 100441.	1.7	4
807	Assembly of Defect-Free Microgel Nanomembranes for CO ₂ Separation. ACS Applied Materials & Interfaces, 2021, 13, 30030-30038.	4.0	18
808	Tunable Pore Size from Sub-Nanometer to a Few Nanometers in Large-Area Graphene Nanoporous Atomically Thin Membranes. ACS Applied Materials & Interfaces, 2021, 13, 29926-29935.	4.0	23
809	Microplastic particles in the aquatic environment: A systematic review. Science of the Total Environment, 2021, 775, 145793.	3.9	101
810	Sustainable MXenes-based membranes for highly energy-efficient separations. Renewable and Sustainable Energy Reviews, 2021, 143, 110878.	8.2	39
811	Confined assembly of ultrathin nanoporous nitrogen-doped graphene nanofilms with dual metal coordination chemistry. IScience, 2021, 24, 102576.	1.9	7
812	Layered double hydroxide membrane with high hydroxide conductivity and ion selectivity for energy storage device. Nature Communications, 2021, 12, 3409.	5.8	94
813	Polycrystalline zeolite and metal-organic framework membranes for molecular separations. Coordination Chemistry Reviews, 2021, 437, 213794.	9.5	52
814	Protein Transport through Nanopores Illuminated by Long-Time-Scale Simulations. ACS Nano, 2021, 15, 9900-9912.	7.3	11
815	Membrane-Suspended Nanopores in Microchip Arrays for Stochastic Transport Recording and Sensing. Frontiers in Nanotechnology, 2021, 3, .	2.4	2

#	Article	IF	CITATIONS
816	Biselective microporous TrÓ§ger's base membrane for effective ion separation. Journal of Membrane Science, 2021, 627, 119246.	4.1	19
817	Polymeric membranes for CO2 separation and capture. Journal of Membrane Science, 2021, 628, 119244.	4.1	235
818	Engineering Covalent Organic Framework Membranes. Accounts of Materials Research, 2021, 2, 630-643.	5.9	64
820	Investigating the Antibacterial Activity of Polymeric Membranes Fabricated with Aminated Graphene Oxide. Membranes, 2021, 11, 510.	1.4	22
821	A novel ceramic microfiltration membrane fabricated by anthurium andraeanum-like attapulgite nanofibers for high-efficiency oil-in-water emulsions separation. Journal of Membrane Science, 2021, 630, 119291.	4.1	51
822	Seawater desalination by reverse osmosis: Current development and future challenges in membrane fabrication – A review. Journal of Membrane Science, 2021, 629, 119292.	4.1	231
823	Fabrication of a novel latex-based membrane for oily wastewater filtration: effect of degassing on the properties of membrane. Iranian Polymer Journal (English Edition), 2021, 30, 989-1000.	1.3	9
824	Advanced Materials for Energy-Water Systems: The Central Role of Water/Solid Interfaces in Adsorption, Reactivity, and Transport. Chemical Reviews, 2021, 121, 9450-9501.	23.0	43
825	High-Temperature Proton Conduction in Covalent Organic Frameworks Interconnected with Nanochannels for Reverse Electrodialysis. ACS Applied Materials & Interfaces, 2021, 13, 33437-33448.	4.0	8
826	High CO2 permeability in supported molten-salt membranes with highly dense and aligned pores produced by directional solidification. Journal of Membrane Science, 2021, 630, 119057.	4.1	8
827	Emerging Materials to Prepare Mixed Matrix Membranes for Pollutant Removal in Water. Membranes, 2021, 11, 508.	1.4	36
828	Predicting Gas Permeability through Mixed-matrix Membranes Filled with Nanofillers of Different Shapes. Arabian Journal for Science and Engineering, 0, , 1.	1.7	4
829	Molecular dynamics simulation based design of biomimetic membrane with artificial water channels. Journal of Membrane Science, 2021, 630, 119279.	4.1	11
830	Reformulating the <scp>permselectivityâ€conductivity</scp> tradeoff relation in <scp>ionâ€exchange</scp> membranes. Journal of Polymer Science, 2021, 59, 2510-2520.	2.0	15
831	MEL zeolite nanosheet membranes for water purification: insights from molecular dynamics simulations. Journal of Nanostructure in Chemistry, 2022, 12, 291-305.	5.3	8
832	Structural modification of polysulfone/NMP membranes: effect of chloroform as co-solvent. Polymer Bulletin, 0, , 1.	1.7	1
833	Recent advances in designing and tailoring nanofiber composite electrolyte membranes for high-performance proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 2021, 46, 25225-25251.	3.8	40
834	Regulating composition and structure of nanofillers in thin film nanocomposite (TFN) membranes for enhanced separation performance: A critical review. Separation and Purification Technology, 2021, 266, 118567.	3.9	122

#	Article	IF	CITATIONS
835	Stitch and copolymerization of thin-film composite membranes to enhance hydrophilicity and organics resistance for the separation of glycerol-based wastewater. Journal of Hazardous Materials, 2021, 413, 125446.	6.5	4
836	Bioinspired Graphene Oxide Membranes with pH-Responsive Nanochannels for High-Performance Nanofiltration. ACS Nano, 2021, 15, 13178-13187.	7.3	128
837	Size effects of carboxylated magnetite nanoparticles on the membrane dehumidification performance. Journal of Environmental Chemical Engineering, 2021, 9, 105304.	3.3	6
838	Engineering novel thin-film composite membranes with crater-like surface morphology using rigidly-contorted monomer for high flux nanofiltration. Desalination, 2021, 509, 115067.	4.0	21
839	Enhanced water-selective performance of dual-layer hybrid membranes by incorporating carbon nanotubes. Chemical Engineering Science: X, 2021, 11, 100102.	1.5	4
840	Porous Medium Equation in Graphene Oxide Membrane: Nonlinear Dependence of Permeability on Pressure Gradient Explained. Membranes, 2021, 11, 665.	1.4	2
841	Effects of an Alternating Magnetic Field towards Dispersion of α-Fe2O3/TiO2 Magnetic Filler in PPOdm Polymer for CO2/CH4 Gas Separation. Membranes, 2021, 11, 641.	1.4	4
842	CeO2-Blended Cellulose Triacetate Mixed-Matrix Membranes for Selective CO2 Separation. Membranes, 2021, 11, 632.	1.4	11
843	Development of Environment-Friendly Membrane for Oily Industrial Wastewater Filtration. Membranes, 2021, 11, 614.	1.4	5
844	Electrosorptive removal of organic water constituents by positively charged electrically conductive UF membranes. Water Research, 2021, 201, 117318.	5.3	15
845	High Permeance or High Selectivity? Optimization of System-Scale Nanofiltration Performance Constrained by the Upper Bound. ACS ES&T Engineering, 2022, 2, 377-390.	3.7	29
846	Pathways for minimal and zero liquid discharge with enhanced reverse osmosis technologies: Module-scale modeling and techno-economic assessment. Desalination, 2021, 509, 115069.	4.0	36
847	Synthesis and characterization of poly(ethylene oxide) based copolymer membranes for efficient gas/vapor separation: Effect of PEO content and chain length. Journal of Membrane Science, 2021, 632, 119353.	4.1	15
848	Review—High-Pressure Carbon Dioxide Separation Using Ionic Liquids: A CO ₂ -Electrocatalysis Perspective. Journal of the Electrochemical Society, 2021, 168, 086502.	1.3	7
849	Influence of Solute Molecular Diameter on Permeability-Selectivity Tradeoff of Thin-Film Composite Polyamide Membranes in Aqueous Separations. Water Research, 2021, 201, 117311.	5.3	20
850	On the Control Strategy to Improve the Salt Rejection of a Thin-Film Composite Reverse Osmosis Membrane. Applied Sciences (Switzerland), 2021, 11, 7619.	1.3	12
851	Preparation of butadiene-bridged polymethylsiloxane (BBPMS)/ethyl cellulose (EC) hybrid membranes for gas separation. European Polymer Journal, 2021, 157, 110679.	2.6	8
852	Nanochannels and nanodroplets in polymer membranes controlling ionic transport. Current Opinion in Colloid and Interface Science, 2021, 56, 101501.	3.4	2

#	Article	IF	CITATIONS
853	Hybrid Porous Crystalline Materials from Metal Organic Frameworks and Covalent Organic Frameworks. Advanced Science, 2021, 8, e2101883.	5.6	83
854	Superfast Water Transport Zwitterionic Polymeric Nanofluidic Membrane Reinforced by Metal–Organic Frameworks. Advanced Materials, 2021, 33, e2102292.	11.1	64
855	Recent advances in transition metal carbides and nitrides (MXenes): Characteristics, environmental remediation and challenges. Chemical Engineering Journal, 2021, 418, 129296.	6.6	70
857	Recent progress on carbon based desalination membranes and carbon nanomaterial incorporated non-polyamide desalination membranes. Journal of Environmental Chemical Engineering, 2021, 9, 105762.	3.3	13
858	In situ syntheses of NH2-MIL-53/PVDF composite membranes for dyes separation. Separation and Purification Technology, 2021, 269, 118760.	3.9	25
859	Enhancing polyimide-based mixed matrix membranes performance for CO2 separation containing PAF-1 and p-DCX. Separation and Purification Technology, 2021, 268, 118677.	3.9	14
860	Application of Metal-Organic Framework-Based Composites for Gas Sensing and Effects of Synthesis Strategies on Gas-Sensitive Performance. Chemosensors, 2021, 9, 226.	1.8	18
861	Predicting Micropollutant Removal by Reverse Osmosis and Nanofiltration Membranes: Is Machine Learning Viable?. Environmental Science & Technology, 2021, 55, 11348-11359.	4.6	44
862	Lithium Extraction by Emerging Metal–Organic Frameworkâ€Based Membranes. Advanced Functional Materials, 2021, 31, 2105991.	7.8	79
863	Advanced thin-film nanocomposite membranes embedded with organic-based nanomaterials for water and organic solvent purification: A review. Separation and Purification Technology, 2021, 269, 118719.	3.9	37
864	High recovery, energy efficient wastewater desalination. Journal of Membrane Science, 2021, 631, 119317.	4.1	14
865	Silver-polyamidoamine/graphene oxide thin film nanofiltration membrane with improved antifouling and antibacterial properties for water purification and desalination. Desalination, 2021, 511, 115109.	4.0	46
866	Emerging porous framework material-based nanofluidic membranes toward ultimate ion separation. Matter, 2021, 4, 2810-2830.	5.0	27
867	Facile preparation of Porous aromatic frameworks PAF-56 membranes for nanofiltration of dyes solutions. Separation and Purification Technology, 2022, 280, 119845.	3.9	7
868	Macromolecular Design for Oxygen/Nitrogen Permselective Membranes—Top-Performing Polymers in 2020—. Polymers, 2021, 13, 3012.	2.0	13
869	Smart light-responsive hierarchical metal organic frameworks constructed mixed matrix membranes for efficient gas separation. Green Chemical Engineering, 2022, 3, 71-82.	3.3	12
870	Origins of Lithium/Sodium Reverse Permeability Selectivity in 12-Crown-4-Functionalized Polymer Membranes. ACS Macro Letters, 2021, 10, 1167-1173.	2.3	13
871	FTIR investigation of the interfacial properties and mechanisms of CO2 sorption in porous ionic liquids. Green Chemical Engineering, 2021, 2, 392-401.	3.3	24

#	Article	IF	CITATIONS
872	Novel preparation of low-cost support for NaA zeolite membrane by utilizing natural clay. Applied Water Science, 2021, 11, 1.	2.8	5
873	Pentiptycene-based ladder polymers with configurational free volume for enhanced gas separation performance and physical aging resistance. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	40
874	Fabrication of Ultrathin Membranes Using 2Dâ€MOF Nanosheets for Tunable Gas Separation. Chemistry - an Asian Journal, 2021, 16, 3413-3418.	1.7	6
875	Graphene oxide-modified g-C3N4 nanosheet membranes for efficient hydrogen purification. Chemical Engineering Journal, 2021, 420, 129574.	6.6	65
876	Maximizing selectivity: An analysis of isoporous membranes. Journal of Membrane Science, 2021, 633, 119389.	4.1	29
877	A framework for blue energy enabled energy storage in reverse osmosis processes. Desalination, 2021, 511, 115088.	4.0	7
878	Tunable isoporous ceramic membranes towards precise sieving of nanoparticles and proteins. Journal of Membrane Science, 2021, 634, 119391.	4.1	10
879	Ultrahigh permeance metal coated porous graphene membranes with tunable gas selectivities. CheM, 2021, 7, 2385-2394.	5.8	15
880	Robust preparation of flexibly super-hydrophobic carbon fiber membrane by electrospinning for efficient oil-water separation in harsh environments. Carbon, 2021, 182, 11-22.	5.4	85
881	Homogenization-based design of microstructured membranes: wake flows past permeable shells. Journal of Fluid Mechanics, 2021, 927, .	1.4	7
882	Direct Chemical Vapor Deposition Synthesis of Porous Singleâ€Layer Graphene Membranes with High Gas Permeances and Selectivities. Advanced Materials, 2021, 33, e2104308.	11.1	28
883	CO2/N2 Gas Separation Using Pebax/ZIF-7—PSf Composite Membranes. Membranes, 2021, 11, 708.	1.4	6
884	Polyphenol etched ZIF-8 modified graphene oxide nanofiltration membrane for efficient removal of salts and organic molecules. Journal of Membrane Science, 2021, 635, 119521.	4.1	35
885	Polyamide nanofiltration membrane with high mono/divalent salt selectivity via pre-diffusion interfacial polymerization. Journal of Membrane Science, 2021, 636, 119478.	4.1	62
886	Molecular insights into the separation mechanism of imidazole-based ionic liquid supported membranes. Journal of Molecular Liquids, 2021, 340, 117173.	2.3	11
887	The effect of chain rigidity and microporosity on the sub-ambient temperature gas separation properties of intrinsic microporous polyimides. Journal of Membrane Science, 2021, 635, 119439.	4.1	29
888	Unprecedented gas separation performance of ITTB/CNT nanocomposite membranes at low temperature by strong interfacial interaction enhanced rigidity. Journal of Membrane Science, 2021, 636, 119590.	4.1	14
889	Improved C3H6/C3H8 separation performance on ZIF-8 membranes through enhancing PDMS contact-dependent confinement effect. Journal of Membrane Science, 2021, 636, 119613.	4.1	17

#	Article	IF	CITATIONS
890	Fine-tuned thermally cross-linkable 6FDA-based polyimide membranes for aggressive natural gas separation. Journal of Membrane Science, 2021, 635, 119474.	4.1	26
891	MoS2-based membranes in water treatment and purification. Chemical Engineering Journal, 2021, 422, 130082.	6.6	77
892	Significantly improved gas separation properties of sulfonated PIM-1 by direct sulfonation using SO3 solution. Journal of Membrane Science, 2021, 635, 119440.	4.1	26
893	Pervaporation membrane materials: Recent trends and perspectives. Journal of Membrane Science, 2021, 636, 119557.	4.1	140
894	Performance optimization of diamine cross-linked mixed matrix membrane for high value organic acid recovery. Journal of Membrane Science, 2021, 635, 119543.	4.1	1
895	Influences of gamma-ray irradiation on PVDF membrane behavior: An experimental study based on simulation and numerical analysis. Polymer Degradation and Stability, 2021, 193, 109722.	2.7	12
896	Benchmark CO2 separation achieved by highly fluorinated nanoporous molecular sieve membranes from nonporous precursor via in situ cross-linking. Journal of Membrane Science, 2021, 638, 119698.	4.1	6
897	Repairing of graphene oxide membranes based on SPEEK substrate for organic solvents nanofiltration through PEI needle thread method. Carbon, 2021, 185, 39-47.	5.4	13
898	Graphene oxide reinforced facilitated transport membrane with poly(ionic liquid) and ionic liquid carriers for CO2/N2 separation. Journal of Membrane Science, 2021, 638, 119652.	4.1	33
899	CO2-selective membranes containing amino acid salts for CO2/N2 separation. Journal of Membrane Science, 2021, 638, 119696.	4.1	28
900	Fabrication of defect-free thin-film nanocomposite (TFN) membranes for reverse osmosis desalination. Desalination, 2021, 516, 115230.	4.0	41
901	Manipulating interfacial polymerization for polymeric nanofilms of composite separation membranes. Progress in Polymer Science, 2021, 122, 101450.	11.8	90
902	Ligninsulfonate/trimesoylchloride nanocomposite membrane with transmembrane nanochannels via bionic cell membrane for molecular separation. Journal of Membrane Science, 2021, 638, 119741.	4.1	4
903	Different combined systems with Fenton-like oxidation and ultrafiltration for industrial wastewater treatment. Journal of Membrane Science, 2021, 638, 119688.	4.1	2
904	Preparation of poly(piperazine-amide) nanofilms with micro-wrinkled surface via nanoparticle-templated interfacial polymerization: Performance and mechanism. Journal of Membrane Science, 2021, 638, 119711.	4.1	22
905	Carbon nanotubes integrated into polyamide membranes by support pre-infiltration improve the desalination performance. Carbon, 2021, 185, 546-557.	5.4	14
906	Fabrication of polyimide mixed matrix membranes with asymmetric confined mass transfer channels for improved CO2 separation. Journal of Membrane Science, 2021, 637, 119653.	4.1	14
907	Calcium ion-sodium alginate double cross-linked graphene oxide nanofiltration membrane with enhanced stability for efficient separation of dyes. Separation and Purification Technology, 2021, 276, 119348.	3.9	46

#	Article	IF	CITATIONS
908	Sour mixed-gas upper bounds of glassy polymeric membranes. Separation and Purification Technology, 2021, 277, 119535.	3.9	12
909	Soluble polymeric metal-organic frameworks toward crystalline membranes for efficient cation separation. Journal of Membrane Science, 2021, 639, 119757.	4.1	8
910	Mixed matrix membranes with highly dispersed MOF nanoparticles for improved gas separation. Separation and Purification Technology, 2021, 277, 119449.	3.9	47
911	Precise separation of small neutral solutes with mixed-diamine-based nanofiltration membranes and the impact of solvent activation. Separation and Purification Technology, 2021, 279, 119692.	3.9	19
912	Enabling experimental characterization and prediction of ternary mixed-gas sorption in polymers: C2H6/CO2/CH4 in PIM-1. Chemical Engineering Journal, 2021, 426, 130715.	6.6	17
913	Desalinated brackish water with improved mineral composition using monovalent-selective nanofiltration followed by reverse osmosis. Desalination, 2021, 520, 115364.	4.0	23
914	Facile synthesis of Bi-functionalized intrinsic microporous polymer with fully carbon backbone for gas separation application. Separation and Purification Technology, 2021, 279, 119681.	3.9	7
915	Star polymer-mediated in-situ synthesis of silver-incorporated reverse osmosis membranes with excellent and durable biofouling resistance. Journal of Membrane Science, 2021, 639, 119778.	4.1	15
916	Highly permeable carbon nanotubes/polyamide layered membranes for molecular sieving. Chemical Engineering Journal, 2021, 425, 130684.	6.6	14
917	Variation of free volume and thickness by high pressure applied on thin film composite reverse osmosis membrane. Desalination, 2021, 520, 115365.	4.0	12
918	Veiled metal organic frameworks nanofillers for mixed matrix membranes with enhanced CO2/CH4 separation performance. Separation and Purification Technology, 2021, 279, 119707.	3.9	12
919	Controlling interlayer spacing and organic solvent permeation in laminar graphene oxide membranes modified with crosslinker. Separation and Purification Technology, 2021, 276, 119279.	3.9	17
920	Tuning the nano-porosity and nano-morphology of nano-filtration (NF) membranes: Divalent metal nitrates modulated inter-facial polymerization. Journal of Membrane Science, 2021, 640, 119780.	4.1	19
921	MOF-based membranes for pervaporation. Separation and Purification Technology, 2021, 278, 119233.	3.9	40
922	Effect of pore-forming/hydrophilic additive anchorage on the mesoporous structure and sieving performance of a blended ultrafiltration (UF) membrane. Journal of Membrane Science, 2022, 641, 119904.	4.1	10
923	Controlling phase and rheological behaviours of hexagonal lyotropic liquid crystalline templates for nanostructural administration and retention. Journal of Colloid and Interface Science, 2022, 607, 816-825.	5.0	1
924	Amino-functionalized NUS-8 nanosheets as fillers in PIM-1 mixed matrix membranes for CO2 separations. Journal of Membrane Science, 2022, 641, 119912.	4.1	50
925	Plasma-assisted in-situ preparation of graphene-Ag nanofiltration membranes for efficient removal of heavy metal ions. Journal of Hazardous Materials, 2022, 423, 127012.	6.5	29

#	Article	IF	CITATIONS
926	Size-Sieving Separation of Hard-Sphere Gases at Low Concentrations through Cylindrically Porous Membranes. Soft Matter, 2021, 17, 10025-10031.	1.2	2
927	Bio-inspired incorporation of phenylalanine enhances ionic selectivity in layer-by-layer deposited polyelectrolyte films. Soft Matter, 2021, 17, 6315-6325.	1.2	5
928	Fouling is the beginning: upcycling biopolymer-fouled substrates for fabricating high-permeance thin-film composite polyamide membranes. Green Chemistry, 2021, 23, 1013-1025.	4.6	18
929	Importance of small loops within PIM-1 topology on gas separation selectivity in thin film composite membranes. Journal of Materials Chemistry A, 2021, 9, 21807-21823.	5.2	30
930	Zr-Porphyrin Metal–Organic Framework-Based Photocatalytic Self-Cleaning Membranes for Efficient Dye Removal. Industrial & Engineering Chemistry Research, 2021, 60, 1850-1858.	1.8	41
931	Enhancing water permeability with super-hydrophilic metal–organic frameworks and hydrophobic straight pores. Environmental Science: Water Research and Technology, 0, , .	1.2	0
932	A review of advantages and challenges of using engineered nanoparticles for waste and wastewater treatments. International Journal of Environmental Science and Technology, 2021, 18, 3295-3306.	1.8	7
933	The rise of metal–organic frameworks for electrolyte applications. Journal of Materials Chemistry A, 2021, 9, 20837-20856.	5.2	26
934	Research Progress in Metal-Organic Framework and Its Composites for Separation of C ₂ Based on Sieving Multiple Effects. Acta Chimica Sinica, 2021, 79, 459.	0.5	13
935	Porous block copolymer separation membranes for 21st century sanitation and hygiene. Chemical Society Reviews, 2021, 50, 6333-6348.	18.7	38
936	MOF-in-COF molecular sieving membrane for selective hydrogen separation. Nature Communications, 2021, 12, 38.	5.8	212
937	Interfacially Polymerized Thinâ€Film Composite Membranes for Organic Solvent Nanofiltration. Advanced Materials Interfaces, 2021, 8, 2001671.	1.9	49
938	Nanoscale Thickness Control of Nanoporous Films Derived from Directionally Photopolymerized Mesophases. Advanced Materials Interfaces, 2021, 8, 2001977.	1.9	9
939	Nanotechnology as a Key Enabler for Effective Environmental Remediation Technologies. , 2020, , 197-207.		5
940	Nickel(II) ion-intercalated MXene membranes for enhanced H2/CO2 separation. Frontiers of Chemical Science and Engineering, 2021, 15, 882-891.	2.3	22
941	High-throughput CO2 capture using PIM-1@MOF based thin film composite membranes. Chemical Engineering Journal, 2020, 396, 125328.	6.6	78
942	Concurrent multiresponse multifactorial screening of an electrodialysis process of polluted wastewater using robust non-linear Taguchi profiling. Chemometrics and Intelligent Laboratory Systems, 2020, 200, 103997.	1.8	5
943	Plasticization- and aging-resistant membranes with venation-like architecture for efficient carbon capture. Journal of Membrane Science, 2020, 609, 118215.	4.1	12

ARTICLE IF CITATIONS # Elucidating the Role of Embedded Metal–Organic Frameworks in Water and Ion Transport Properties 944 3.2 23 in Polymer Nanocomposite Membranes. Chemistry of Materials, 2020, 32, 10165-10175. Nanoconfined Fluids: What Can We Expect from Them?. Journal of Physical Chemistry Letters, 2020, 11, 945 2.1 4678-4692. How the Shape and Chemistry of Molecular Penetrants Control Responsive Hydrogel Permeability. ACS 946 7.3 30 Nano, 2021, 15, 614-624. Mass Transport Across Atomically Thin Membranes. RSC Nanoscience and Nanotechnology, 2018, , 947 0.2 43-75. Polyamide nanofilms synthesized <i>via</i> controlled interfacial polymerization on a "jelly―surface. 948 2.2 35 Chémical Communications, 2020, 56, 7249-7252. Grafting polysiloxane onto ultrafiltration membranes to optimize surface energy and mitigate 949 1.2 fouling. Soft Matter, 2020, 16, 5044-5053. lonic structure and decay length in highly concentrated confined electrolytes. AIP Advances, 2020, 10, 950 0.6 12 Affinity of small-molecule solutes to hydrophobic, hydrophilic, and chemically patterned interfaces in aquéous solution. Proceedings of the National Academy of Sciences of the United States of 3.3 24 America, 2021, 118, Fundamentals and potentials of solid-state nanopores: a review. Journal Physics D: Applied Physics, 952 1.3 18 2021, 54, 023001. Improved CO2/CH4 Separation Properties of Cellulose Triacetate Mixed–Matrix Membranes with 1.4 CeO2@GO Hybrid Fillers. Membranes, 2021, 11, 777. Multiobjective Optimization Based on "Distance-to-Target―Approach of Membrane Units for 954 1.3 8 Separation of CO2/CH4. Processes, 2021, 9, 1871. In Situ Assembly of Polyamide/Fe(BTC) Nanocomposite Reverse Osmosis Membrane Assisted by Fe³⁺â€"Polyphenolic Complex for Desalination. ACS Applied Materials & amp; Interfaces, 2021, 4.0 13, 48679-48690. Ultra-selective molecular-sieving gas separation membranes enabled by multi-covalent-crosslinking of 956 5.8 49 microporous polymer blends. Nature Communications, 2021, 12, 6140. Two-dimensional MXene hollow fiber membrane for divalent ions exclusion from water. Chinese 1.7 Journal of Chemical Engineering, 2022, 41, 260-266. In Situ Derived Hybrid Carbon Molecular Sieve Membranes with Tailored Ultramicroporosity for 958 5.219 Efficient Gas Separation. Small, 2021, 17, e2104698. Tailoring interfacially polymerized thin-film composite polyesteramide nanofiltration membranes based on carboxylated chitosan and trimesoyl chloride for salt separation. Chemical Engineering Research and Design, 2022, 181, 399-411. Facile manufacture of COF-based mixed matrix membranes for efficient CO2 separation. Chemical 960 6.6 54 Engineering Journal, 2022, 430, 133001. Multivariate Polycrystalline Metal–Organic Framework Membranes for CO₂/CH₄ Separation. Journal of the American Chemical Society, 2021, 143, 99 6.6 <u>1771</u>6-17723.

#	Article	IF	CITATIONS
962	Bio-inspired Fabrication of Anti-fouling and Stability of Nanofiltration Membranes with a Poly(dopamine)/Graphene Oxide Interlayer. Industrial & Engineering Chemistry Research, 2021, 60, 14868-14883.	1.8	20
963	Minimize the trade-off between wetting resistance and water permeance in membrane distillation with ion-sieving coating layer. Chemical Engineering Journal, 2022, 430, 133165.	6.6	20
964	Ultrahigh Water Permeance of Reduced Graphene Oxide Membrane for Radioactive Liquid Waste Treatment. Membranes, 2021, 11, 809.	1.4	3
965	Metal–Organic Frameworks Membranes. Sustainable Textiles, 2022, , 215-240.	0.4	1
966	Development of Graphene Nanocomposite Membrane Using Layer-by-layer Technique for Desalination. Membrane Journal, 2018, 28, 75-82.	0.2	1
967	Nanopolysaccharides in Environmental Treatments. Springer Series in Biomaterials Science and Engineering, 2019, , 255-282.	0.7	2
968	Microporous Polymers for Gas Separation Membranes: Overview and Advances. , 2020, , 1-29.		1
969	Regulating interface nucleus growth of CuTCPP membranes via polymer collaboration method. Separation and Purification Technology, 2022, 282, 120045.	3.9	4
970	Homogeneous and Fast Li-Ion Transport Enabled by a Novel Metal–Organic-Framework-Based Succinonitrile Electrolyte for Dendrite-Free Li Deposition. ACS Applied Materials & Interfaces, 2021, 13, 52688-52696.	4.0	22
971	Synergic Effects of the Nanopore Size and Surface Charge on the Ion Selectivity of Graphene Membranes. Journal of Physical Chemistry C, 2021, 125, 507-514.	1.5	11
972	Novel PVDF-g-NMA Copolymer for Fabricating the Hydrophilic Ultrafiltration Membrane with Good Antifouling Property. Industrial & Engineering Chemistry Research, 2021, 60, 541-550.	1.8	7
973	Facile polyamide microstructure adjustment of the composite reverse osmosis membrane assisted by PF127/SDS mixed micelles for improving seawater desalination performance. Desalination, 2022, 521, 115395.	4.0	7
974	Interfacial synthesized covalent organic framework nanofiltration membranes for precisely ultrafast sieving. Chemical Engineering Journal, 2022, 430, 133024.	6.6	32
975	Printed graphene oxide-based membranes for gas separation and carbon capture. Chemical Engineering Journal, 2022, 430, 132942.	6.6	36
976	Interfacial polymerization plus: A new strategy for membrane selective layer construction. Journal of Membrane Science, 2022, 642, 119973.	4.1	21
977	Thermal treatment of hydroxyl functionalized polytriazole and its effect on gas transport: From crosslinking to carbon molecular sieve. Journal of Membrane Science, 2022, 642, 119963.	4.1	6
978	Consequences of Convex Nanopore Chemistry on Confined Water Dynamics. Journal of Physical Chemistry B, 2020, 124, 1495-1508.	1.2	3
979	Interface Engineering and Anion Engineering of Moâ€Based Heterogeneous Electrocatalysts for Hydrogen Evolution Reaction. Energy and Environmental Materials, 2023, 6, .	7.3	30

			_
#	ARTICLE	IF	CITATIONS
980	Membranes for Water Self-Purification. ACS Omega, 2021, 6, 30656-30665.	1.6	8
981	Asymmetric Solventâ€Annealed Triblock Terpolymer Thick Films Topped by a Hexagonal Perforated Lamellar Nanostructure. Macromolecular Rapid Communications, 2021, , 2100585.	2.0	4
982	Enhanced Proton Conductivity of (3-mercaptopropyl)trimethoxysilane—Grafted Graphene Oxide Membranes for Hydrogen Fuel Cells. Journal of the Electrochemical Society, 2021, 168, 124502.	1.3	5
983	Tunable Supramolecular Cavities Molecularly Homogenized in Polymer Membranes for Ultraefficient Precombustion CO ₂ Capture. Advanced Materials, 2022, 34, e2105156.	11.1	22
984	Selective separation membranes for fractionating organics and salts for industrial wastewater treatment: Design strategies and process assessment. Journal of Membrane Science, 2022, 643, 120052.	4.1	53
985	Preparation and performance characterization of novel PVA blended with fluorinated polyimide membrane for gas separation. High Performance Polymers, 2021, 33, 394-404.	0.8	3
986	A review on 2D porous organic polymers for membrane-based separations: Processing and engineering of transport channels. , 2021, 1, 100014.		19
987	Significantly improved pervaporation performance by relatively continuous and defect-free distribution of IL-modified ZIF-8 in PDMS membrane. , 2021, 1, 100006.		4
988	Ferrocene metallopolymers of intrinsic microporosity (MPIMs). Chemical Communications, 2021, 58, 238-241.	2.2	4
989	Ladder polymers of intrinsic microporosity from superacid-catalyzed Friedel-Crafts polymerization for membrane gas separation. Journal of Membrane Science, 2022, 644, 120115.	4.1	22
990	Preparation of highly selective nanofiltration membranes by moderately increasing pore size and optimizing microstructure of polyamide layer. Journal of Membrane Science, 2022, 643, 120056.	4.1	24
991	Hierarchically porous membranes with multiple channels: Fabrications in PVDF/PMMA/PLLA blend and enhanced separation performance. Journal of Membrane Science, 2022, 643, 120065.	4.1	12
992	Tunable Graphene Oxide Nanofiltration Membrane for Effective Dye/Salt Separation and Desalination. ACS Applied Materials & Interfaces, 2021, 13, 55339-55348.	4.0	34
993	Engineering hierarchical nanochannels in graphene oxide membranes by etching and polydopamine intercalation for highly efficient dye recovery. Chemical Engineering Journal, 2022, 433, 133593.	6.6	11
994	High-Flux pH-Responsive Ultrafiltration Membrane for Efficient Nanoparticle Fractionation. ACS Applied Materials & Interfaces, 2021, 13, 56575-56583.	4.0	11
995	Self-Limited Formation of Bowl-Shaped Nanopores for Directional DNA Translocation. ACS Nano, 2021, 15, 17938-17946.	7.3	4
996	Oriented UiOâ€67 Metal–Organic Framework Membrane with Fast and Selective Lithiumâ€Ion Transport. Angewandte Chemie - International Edition, 2022, 61, .	7.2	49
997	Preparation of advanced reverse osmosis membrane by a wettability-transformable interlayer combining with N-acyl imidazole chemistry. Journal of Membrane Science, 2022, 644, 120085.	4.1	11

#	Article	IF	CITATIONS
998	1D continuous ZIF-8 tubes incorporated PDMS mixed matrix membrane for superior ethyl acetate pervaporation separation. Separation and Purification Technology, 2022, 282, 120127.	3.9	6
999	Second interfacial polymerization decorating defects of TFC NF membrane formed by 1D nanochannels for improving separation performance. Journal of Environmental Chemical Engineering, 2022, 10, 106896.	3.3	2
1001	Local Water Transport in Rubbery versus Glassy Separation Membranes and Analogous Solutions. Macromolecules, 2021, 54, 11187-11197.	2.2	6
1002	Synthesis of pH-Responsive Polymer Sponge Coatings and Freestanding Films via Vapor-Phase Deposition. ACS Applied Polymer Materials, 2021, 3, 6366-6374.	2.0	5
1003	Fabrication of Twin-Free Ultrathin NH ₂ -MIL-125(Ti) Membrane with <i>c</i> -Preferred Orientation Using Transition-Metal Trichalcogenides as Titanium Source. , 2022, 4, 55-60.		10
1004	Simultaneously enhanced CO2 permeability and CO2/N2 selectivity at sub-ambient temperature from two novel functionalized intrinsic microporous polymers. Journal of Membrane Science, 2022, 644, 120086.	4.1	8
1005	The energetic barrier to single-file water flow through narrow channels. Biophysical Reviews, 2021, 13, 913-923.	1.5	18
1006	State-of-the-Art Ceramic Membranes for Oily Wastewater Treatment: Modification and Application. Membranes, 2021, 11, 888.	1.4	22
1007	Tuning the Transport Properties of Gases in Porous Graphene Membranes with Controlled Pore Size and Thickness. Advanced Materials, 2022, 34, e2106785.	11.1	18
1008	Critical assessment of the performance of next-generation carbon-based adsorbents for CO2 capture focused on their structural properties. Science of the Total Environment, 2022, 810, 151720.	3.9	17
1009	Novel Polymers with Ultrapermeability Based on Alternately Planar and Contorted Units for Gas Separation. , 2022, 4, 61-67.		6
1010	Masking covalent organic frameworks (COFs) with loose polyamide networks for precise nanofiltration. Separation and Purification Technology, 2022, 283, 120233.	3.9	17
1011	Oriented UiOâ€67 Metal–Organic Framework Membrane with Fast and Selective Lithiumâ€lon Transport. Angewandte Chemie, 0, , .	1.6	6
1012	Design of high-performance biomimetic reverse osmosis membranes by introducing loose liposome as an artificial water channel. Chemical Engineering Journal, 2022, 431, 133878.	6.6	23
1013	Molecular insights on Ca2+/Na+ separation via graphene-based nanopores: The role of electrostatic interactions to ionic dehydration. Chinese Journal of Chemical Engineering, 2022, 41, 220-229.	1.7	3
1014	Supramolecular Polymer Network Membranes with Molecularâ€Sieving Nanocavities for Efficient Preâ€Combustion CO ₂ Capture. Small Methods, 2022, 6, e2101288.	4.6	22
1015	A review of nano-confined composite membranes fabricated inside the porous support. , 2021, 1, 100005.		10
1016	Current status and future directions of self-assembled block copolymer membranes for molecular separations. Soft Matter, 2021, 17, 10405-10415.	1.2	8

# 1017	ARTICLE Tailored design of nanofiltration membranes for water treatment based on synthesis–property–performance relationships. Chemical Society Reviews, 2022, 51, 672-719.	IF 18.7	CITATIONS
1018	Bioinspired photo-responsive membrane enhanced with "light-cleaning―feature for controlled molecule release. Journal of Materials Chemistry B, 2022, 10, 2617-2627.	2.9	2
1019	A Two-Dimensional Lamellar Vermiculite Membrane for Precise Molecular Separation and Ion Sieving. ACS Sustainable Chemistry and Engineering, 2022, 10, 1137-1148.	3.2	23
1020	Gravity-driven electrospun membranes for effective removal of perfluoro-organics from synthetic groundwater. Journal of Membrane Science, 2022, 644, 120180.	4.1	14
1021	Recent progress in PIM-1 based membranes for sustainable CO2 separations: Polymer structure manipulation and mixed matrix membrane design. Separation and Purification Technology, 2022, 284, 120277.	3.9	64
1022	Separation of nitrogen from methane by multi-stage membrane processes: Modeling, simulation, and cost estimation. Journal of Natural Gas Science and Engineering, 2022, 98, 104380.	2.1	3
1023	Mixed matrix membranes for post-combustion carbon capture: From materials design to membrane engineering. Journal of Membrane Science, 2022, 644, 120140.	4.1	28
1024	Thin-film composite membranes based on hyperbranched poly(ethylene oxide) for CO2/N2 separation. Journal of Membrane Science, 2022, 644, 120184.	4.1	17
1025	Boron removal by water molecules inside covalent organic framework (COF) multilayers. Desalination, 2022, 526, 115548.	4.0	22
1026	New sterically hindered polyvinylamine-containing membranes for CO2 capture from flue gas. Journal of Membrane Science, 2022, 645, 120195.	4.1	12
1027	Facile suppression of intensified plasticization in glassy polymer thin films towards scalable composite membranes for propylene/propane separation. Journal of Membrane Science, 2022, 645, 120215.	4.1	16
1028	Synthesis and characterization of polymerizable MOFs for the preparation of MOF/polymer mixed matrix membranes. STAR Protocols, 2022, 3, 101039.	0.5	3
1029	TiO2/CDs modified thin-film nanocomposite polyamide membrane for simultaneous enhancement of antifouling and chlorine-resistance performance. Desalination, 2022, 525, 115506.	4.0	39
1030	Unprecedented Mg2+/Li+ separation using layer-by-layer based nanofiltration hollow fiber membranes. Desalination, 2022, 525, 115492.	4.0	57
1031	Photoelectrocatalytic mechanism of PEDOT modified filtration membrane. Science of the Total Environment, 2022, 813, 152397.	3.9	5
1032	Molecular engineering of intrinsically microporous polybenzimidazole for energy-efficient gas separation. Applied Materials Today, 2022, 26, 101271.	2.3	3
1033	Novel Poly(piperazinamide)/poly(m-phenylene isophthalamide) composite nanofiltration membrane with polydopamine coated silica as an interlayer for the splendid performance. Separation and Purification Technology, 2022, 285, 120390.	3.9	23
1034	MÜHENDİSLİK TASARIMA DAYALI STEM EĞİTİMİNİN OKULÖNCESİ ÖĞRENCİLERİN PROBLEM Trakya EÄŸitim Dergisi, 0, , .	ÇÃ−ZM 0:1	E BECERÄ [®] S

#	Article	IF	CITATIONS
1035	PVA-Based MMMs for Ethanol Dehydration via Pervaporation: A Comparison Study between Graphene and Graphene Oxide. Separations, 2022, 9, 26.	1.1	8
1036	Potential and design of imine-linked two-dimensional covalent organic framework membranes for Ethane/Methane separation. Applied Surface Science, 2022, 585, 152601.	3.1	5
1037	Progress in carbon dioxide capture materials for deep decarbonization. CheM, 2022, 8, 141-173.	5.8	56
1038	Vapor linker exchange of partially amorphous metal–organic framework membranes for ultraâ€selective gas separation. AICHE Journal, 2022, 68, .	1.8	15
1039	Mixed matrix membranes for gas separation. , 2022, , 203-254.		0
1040	Polydopamine-Induced Modification on the Highly Charged Surface of Asymmetric Nanofluidics: A Strategy for Adjustable Ion Current Rectification Properties. Analytical Chemistry, 2022, 94, 2493-2501.	3.2	9
1041	2D Polymer Nanosheets for Membrane Separation. Advanced Science, 2022, 9, e2103814.	5.6	39
1042	Advanced organic molecular sieve membranes for carbon capture: Current status, challenges and prospects. , 2022, 2, 100028.		8
1043	Efficient ethylene/ethane separation through ionic liquid-confined covalent organic framework membranes. Journal of Materials Chemistry A, 2022, 10, 5420-5429.	5.2	29
1044	Manning condensation in ion exchange membranes: A review on ion partitioning and diffusion models. Journal of Polymer Science, 2022, 60, 2929-2973.	2.0	32
1047	Recent Advances of Polymeric Membranes in Tackling Plasticization and Aging for Practical Industrial CO2/CH4 Applications—A Review. Membranes, 2022, 12, 71.	1.4	37
1048	Surface and Interface Engineering for Advanced Nanofiltration Membranes. Chinese Journal of Polymer Science (English Edition), 2022, 40, 124-137.	2.0	10
1049	Effects of surface-charge regulation, convection, and slip lengths on the electrical conductance of charged nanopores. Physical Review Fluids, 2022, 7, .	1.0	8
1050	Membranes for blue energy conversion by pressure-retarded osmosis (PRO). , 2022, , 17-90.		0
1051	Transport phenomena in drug delivery membrane systems. , 2022, , 231-245.		0
1052	Porous composite membrane based on organic substrate for molecular sieving: Current status, opportunities and challenges. , 2022, 2, 100027.		13
1053	Nanostructured membranes for gas and vapor separation. , 2022, , 139-201.		0
1054	Membranes for blue energy conversion by reverse electrodialysis (RED). , 2022, , 91-137.		0

#	Article	IF	Citations
1055	Overview of nanostructured and nano-enhanced membranes. , 2022, , 1-16.		0
1056	Double Trigonal Pyramidal {SeO3} Groups Bridged 2-Picolinic Acid Modified Cerium-Inlaid Polyoxometalate Including Mixed Selenotungstate Subunits for Electrochemically Sensing Ochratoxin A. Inorganic Chemistry, 2022, 61, 1949-1960.	1.9	7
1057	Flexible Softâ€ S olid Metal–Organic Framework Composite Membranes for H ₂ /CO ₂ Separation. Angewandte Chemie - International Edition, 2022, 61, .	7.2	41
1058	Flexible Softâ€Solid Metal–Organic Framework Composite Membranes for H ₂ /CO ₂ Separation. Angewandte Chemie, 2022, 134, .	1.6	3
1059	Preparation of Small-Pore Ultrafiltration Membranes with High Surface Porosity by In Situ CO ₂ Nanobubble-Assisted NIPS. ACS Applied Materials & Interfaces, 2022, 14, 8633-8643.	4.0	17
1060	Effective and efficient transport mechanism of CO2 in subnano-porous crystalline membrane of syndiotactic polystyrene. Journal of Membrane Science, 2022, 646, 120202.	4.1	3
1061	Polyarylester thin films with narrowed pore size distribution via metal-phenolic network modulated interfacial polymerization for precise separation. Journal of Membrane Science, 2022, 646, 120263.	4.1	7
1062	Ultrapermeable polyamide nanofiltration membrane formed on a self-constructed cellulose nanofibers interlayer. Chemical Engineering Research and Design, 2022, 179, 249-256.	2.7	7
1063	Membranes based on porous hexagonal boron nitride nanorods for ultrafast and effective molecular separation. Journal of Membrane Science, 2022, 647, 120307.	4.1	6
1064	Factors influencing pressure-driven membrane-assisted volatile fatty acids recovery and purification-A review. Science of the Total Environment, 2022, 817, 152993.	3.9	28
1065	Nanofiltration membrane fabrication by the introduction of polyhedral oligomeric silsesquioxane nanoparticles: Feasibility evaluation and the mechanisms for breaking "trade-off―effect. Desalination, 2022, 527, 115515.	4.0	13
1066	Highly selective CO2/C2H2 separation with porous g-C9N7 nanosheets by charge and strain engineering. Chemical Engineering Journal, 2022, 435, 134737.	6.6	3
1067	In silico design of microporous polymers for chemical separations and storage. Current Opinion in Chemical Engineering, 2022, 36, 100795.	3.8	6
1068	Indications of ion dehydration in diffusion-only and pressure-driven nanofiltration. Journal of Membrane Science, 2022, 648, 120358.	4.1	23
1069	Dopamine-intercalated polyelectrolyte multilayered nanofiltration membranes: Toward high permselectivity and ion-ion selectivity. Journal of Membrane Science, 2022, 648, 120337.	4.1	22
1070	Matrimid substrates with bicontinuous surface and macrovoids in the bulk: A nearly ideal substrate for composite membranes in CO2 capture. Applied Energy, 2022, 311, 118624.	5.1	5
1071	Retarded transport properties of graphene oxide based chiral separation membranes modified with dipeptide. Separation and Purification Technology, 2022, 288, 120642.	3.9	9
1072	pH-responsive laminar WSe2 membrane with photocatalytic antifouling property for ultrafast water transport. Chemical Engineering Journal, 2022, 435, 135159.	6.6	17

ARTICLE IF CITATIONS Effect of Branch Length on the Structural and Separation Properties of Hyperbranched 1073 2.2 7 Poly(1,3-dioxolane). Macromolecules, 2022, 55, 382-389. A Review of the Recent Progress in the Development of Nanocomposites Based on 1074 Poly(ether-block-amide) Copolymers as Membranes for CO2 Separation. Polymers, 2022, 14, 10. Supramolecular assemblies of polybenzimidazole and aromatic polycarboxylic acids with superior 1075 mechanical and H₂/CO₂ separation properties. Journal of Materials Chemistry 5.2 4 A, 2022, 10, 10872-10879. Fabrication Strategies of Conjugated Microporous Polymer Membranes for Molecular Separation. 0.5 Acta Chimica Sinica, 2022, 80, 168. Photopatterning of two stage reactive polymer networks with CO₂-philic thiol–acrylate chemistry: enhanced mechanical toughness and CO₂/N₂ selectivity. Polymer 1077 1.9 2 Chemistry, 2022, 13, 2495-2505. Polymer-based nanofiltration membranes., 2022, 159-196. Surface Modification of Matrimid® 5218 Polyimide Membrane with Fluorine-Containing Diamines for 1079 1.4 11 Efficient Gas Separation. Membranes, 2022, 12, 256. Transition Metal Dichalcogenide-based Membranes for Water Desalination, Gas Separation, and Energy 1080 2.8 Storage. Separation and Purification Reviews, 2023, 52, 43-57. Ionic Control of Functional Zeolitic Imidazolate Framework-Based Membrane for Tailoring Selectivity 1081 4.0 11 toward Target Ions. ACS Applied Materials & amp; Interfaces, 2022, 14, 11038-11049. Mathematical Description of the Increase in Selectivity of an Anion-Exchange Membrane Due to Its Modification with a Perfluorosulfonated Ionomer. International Journal of Molecular Sciences, 1.8 2022, 23, 2238. Graphene Oxide Composite Membranes for Water Purification. ACS Applied Nano Materials, 2022, 5, 1083 2.4 27 3643-3653. Controlling covalent chemistry on graphene oxide. Nature Reviews Physics, 2022, 4, 247-262. 1084 A self-driving laboratory advances the Pareto front for material properties. Nature Communications, 1085 5.8 55 2022, 13, 995. High-Performance and Stable Two-Dimensional MXene-Polyethyleneimine Composite Lamellar Membranes for Molecular Separation. ACS Applied Materials & Amp; Interfaces, 2022, 14, 10237-10245. 1086 4.0 26 Tailoring sub-3.3 Ã... ultramicropores in advanced carbon molecular sieve membranes for blue hydrogen 1087 49 4.7 production. Science Advances, 2022, 8, eabl8160. Metal-organic framework enables ultraselective polyamide membrane for desalination and water 1088 reuse. Science Advances, 2022, 8, eabm4149. Proteoliposome-Incorporated Seawater Reverse Osmosis Polyamide Membrane: Is the Aquaporin Water 1089 Channel Effect in Improving Membrane Performance Overestimated?. Environmental Science & Composition Channel Effect in Improving Membrane Performance Overestimated? 4.6 19 Technology, 2022, 56, 5179-5188. A novel preparation of high permeation SiC supports for NaA zeolite membrane by in situ reaction 1090 2.8 bonding. Applied Water Science, 2022, 12, 1.

#	Article	IF	CITATIONS
1092	Designing polymeric membranes with coordination chemistry for high-precision ion separations. Science Advances, 2022, 8, eabm9436.	4.7	50
1093	Nanocellulose for Sustainable Water Purification. Chemical Reviews, 2022, 122, 8936-9031.	23.0	82
1094	Putting Forward NUS-8-CO ₂ H/PIM-1 as a Mixed Matrix Membrane for CO ₂ Capture. ACS Applied Materials & Interfaces, 2022, 14, 16820-16829.	4.0	14
1095	<scp>UTSA</scp> â€280 metal–organic framework incorporated <scp>6FDA</scp> â€polyimide mixedâ€matrix membranes for ethylene/ethane separation. AICHE Journal, 2022, 68, .	1.8	17
1096	Graphene Oxide Nanofiltration Membrane Based on Three-Dimensional Size-Controllable Metal–Organic Frameworks for Water Treatment. ACS Applied Nano Materials, 2022, 5, 5196-5207.	2.4	42
1097	Cation-Gated Ion Transport at Nanometer Scale for Tunable Power Generation. Journal of Physical Chemistry Letters, 2022, 13, 2625-2631.	2.1	3
1099	Tunable organic solvent nanofiltration in self-assembled membranes at the sub–1 nm scale. Science Advances, 2022, 8, eabm5899.	4.7	16
1100	Microporous Pentiptycene-Based Polymers with Heterocyclic Rings for High-Performance Gas Separation Membranes. Chemistry of Materials, 2022, 34, 2730-2742.	3.2	14
1101	Synthetic subnanochannels in porous aromatic frameworks accelerate selective water permeation in membrane desalination. Science China Materials, 2022, 65, 1920-1928.	3.5	5
1102	Deciphering the Role of Amine Concentration on Polyamide Formation toward Enhanced RO Performance. ACS ES&T Engineering, 2022, 2, 903-912.	3.7	23
1103	Treatment and Recovery of High-Value Elements from Produced Water. Water (Switzerland), 2022, 14, 880.	1.2	11
1104	Recent developments in polymeric nano-based separation membranes. Fundamental Research, 2022, 2, 254-267.	1.6	16
1105	Ionic Liquid Stabilizes Olefin Facilitated Transport Membranes Against Reduction. Angewandte Chemie - International Edition, 2022, 61, .	7.2	13
1106	Freestanding non-covalent thin films of the propeller-shaped polycyclic aromatic hydrocarbon decacyclene. Nature Communications, 2022, 13, 1920.	5.8	1
1107	Bicontinuous substrates with reduced pore restriction for CO2-selective composite membranes. Journal of Membrane Science, 2022, 654, 120547.	4.1	6
1108	Tuning transport in graphene oxide membrane with single-site copper (II) cations. IScience, 2022, 25, 104044.	1.9	3
1109	Ionâ€â€œdistillation―for isolating lithium from lake brine. AICHE Journal, 2022, 68, .	1.8	26
1110	Ionic Liquid Stabilizes Olefin Facilitated Transport Membranes Against Reduction. Angewandte Chemie, 2022, 134, .	1.6	2

#	Article	IF	CITATIONS
1111	Understanding Gas Transport in Polymer-Grafted Nanoparticle Assemblies. Macromolecules, 2022, 55, 3011-3019.	2.2	9
1112	Tailoring the Structure of Carbon Molecular Sieves Derived from an Aromatic Polyamide. Industrial & Engineering Chemistry Research, 0, , .	1.8	6
1113	Thermodynamic limits of using fertilizer to produce clean fertigation solution from wastewater via forward osmosis. Journal of Membrane Science, 2022, 647, 120168.	4.1	5
1114	An integrated materials approach to ultrapermeable and ultraselective CO ₂ polymer membranes. Science, 2022, 376, 90-94.	6.0	81
1115	Heterostructured ZIF-8/lamellar talc composites incorporated polydimethylsiloxane membrane with enhanced separation performance for butanol recovery. Journal of Membrane Science, 2022, 650, 120433.	4.1	12
1116	Mechanistic insights into the removal of PFOA by 2D MXene/CNT membrane with the influence of Ca2+ and humic acid. Desalination, 2022, 529, 115643.	4.0	12
1117	All-dry free radical polymerization inside nanopores: Ion-milling-enabled coating thickness profiling revealed "necking―phenomena. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2022, 40, .	0.9	5
1118	Tailoring the physicochemical and geometric properties of two-dimensional graphene membranes for aqueous separation. Desalination, 2022, 530, 115621.	4.0	14
1119	Fast layer-by-layer assembly of PDMS for boosting the gas separation of P84 membranes. Chemical Engineering Science, 2022, 253, 117588.	1.9	10
1120	Anionic covalent organic framework engineered high-performance polyamide membrane for divalent anions removal. Journal of Membrane Science, 2022, 650, 120451.	4.1	22
1121	A general strategy for fabricating polymer/nanofiller composite membranes with enhanced CO2/N2 separation performance. Journal of Cleaner Production, 2022, 350, 131468.	4.6	7
1122	Cost-effective polymer-based membranes for drinking water purification. Giant, 2022, 10, 100099.	2.5	26
1123	Preparation of highly selective reverse osmosis membranes by introducing a nonionic surfactant in the organic phase. Journal of Membrane Science, 2022, 651, 120453.	4.1	13
1124	Chemical vapor deposition of guest-host dual metal-organic framework heterosystems for high-performance mixed matrix membranes. Applied Materials Today, 2022, 27, 101462.	2.3	2
1125	The way to increase the monovalent ion selectivity of FujiFilm® anion-exchange membranes by cerium phosphate modification for electrodialysis desalination. Desalination, 2022, 531, 115719.	4.0	10
1126	MXene assisted preparation of well-intergrown ZIF-67 membrane for helium separation. Journal of Membrane Science, 2022, 652, 120432.	4.1	15
1127	Ultrathin sulfonated mesoporous interlayer facilitates to prepare highly-permeable polyamide nanofiltration membranes. Journal of Membrane Science, 2022, 652, 120507.	4.1	20
1128	Synthesis of dual-functionalized APTES-Bentonite/PVDF mixed-matrix membranes for the efficient separation of CO2/CH4 and CO2/N2. Materials Today Communications, 2022, 31, 103431.	0.9	3

ARTICLE IF CITATIONS Effects of locations of cellulose nanofibers in membrane on the performance of positively charged 1129 12 4.1 membranes. Journal of Membrane Science, 2022, 652, 120464. Aminated substrate based thin film composite nanofiltration membrane with high separation 4.0 performance by chemically inhibiting the intrusion of polyamide. Desalination, 2022, 532, 115724. Fabrication of organic solvent nanofiltration membrane using commercial PVDF substrate via 1131 interfacial polymerization on top of metal-organic frameworks interlayer. Journal of Membrane 4.1 25 Science, 2022, 652, 120465. Preparation of GO/GOH/MOFs ternary blend membrane and its application for enhanced dye wastewater purification. Journal of Solid State Chemistry, 2022, 310, 123028. Thin film nanocomposite membrane incorporated with 2D-MOF nanosheets for highly efficient reverse 1133 4.1 44 osmosis desalination. Journal of Membrane Science, 2022, 653, 120520. Entropy driving highly selective CO2 separation in nanoconfined ionic liquids. Chemical Engineering Journal, 2022, 440, 135918. 1134 6.6 Confined facilitated transport within covalent organic frameworks for propylene/propane membrane 1135 6.6 20 separation. Chemical Engineering Journal, 2022, 439, 135657. Biodegradable intelligent film for food preservation and real-time visual detection of food freshness. 5.6 57 Food Hydrocolloids, 2022, 129, 107665. Monolithic Chiral Nematic Organization of Cellulose Nanocrystals under Capillary Confinement. ACS 1137 7.3 23 Nano, 2021, 15, 19418-19429. Breakthroughs on tailoring membrane materials for ethanol recovery by pervaporation. Chinese 1.7 Journal of Chemical Engineering, 2022, 52, 19-36. Data-Driven Methods for Accelerating Polymer Design. ACS Polymers Au, 2022, 2, 8-26. 1139 39 1.7 Fabrication of a High Water Flux Conductive MWCNTs/PVC Composite Membrane with Effective 1.2 Electrically Enhanced Antifouling Behavior. Coatings, 2021, 11, 1548. Enhanced Membrane Performance for Gas Separation by Coupling Effect of the Porous Aromatic 1142 Framework (PAF) Incorporation and Photo-Oxidation. Industrial & amp; Engineering Chemistry 1.8 6 Research, 2022, 61, 6190-6199. Exponentially selective molecular sieving through angstrom pores. Nature Communications, 2021, 12, 1143 5.8 29 7170. Investigation of the Side Chain Effect on Gas and Water Vapor Transport Properties of 1144 2.0 6 Anthracene-Maleimide Based Polymers of Intrinsic Microporosity. Polymers, 2022, 14, 119. Superhydrophobic Carbon Nanotube–Metal Rubber Composites for Emulsion Separation. ACS Applied 1145 2.4 Nano Materials, 2021, 4, 13643-13654. Beyond the Pore Size Limitation of a Nanoporous Graphene Monolayer Membrane for Water 1146 Desalination Assisted by an External Electric Field. Journal of Physical Chemistry Letters, 2022, 13, 2.115 258-266. Macromolecular Engineering of Thermoresponsive Metalâ€"Phenolic Networks. Journal of the 1147 6.6 American Chemical Society, 2022, 144, 503-514.

#	Article	IF	CITATIONS
1148	Electrochemical membrane technology for environmental remediation. , 2022, , 227-263.		0
1149	Ultra-high permeable phenine nanotube membranes for water desalination. Physical Chemistry Chemical Physics, 2022, , .	1.3	3
1150	The Unexpected Helical Supramolecular Assembly of a Simple Achiral Acetamide Tecton Generates Selective Water Channels. Chemistry - A European Journal, 2022, , .	1.7	0
1151	Capillary-Assisted Fabrication of Thin-Film Nanocomposite Membranes for Improved Solute–Solute Separation. Environmental Science & Technology, 2022, 56, 5849-5859.	4.6	20
1152	A review of the treatment techniques of VOC. Applied Mathematics and Nonlinear Sciences, 2023, 8, 2063-2074.	0.9	0
1153	Quenching the Macroporous Collapse of Polyelectrolyte Multilayer Films for Repeated Drug Loading. ACS Omega, 2022, 7, 13853-13860.	1.6	2
1154	Electrochemical separation processes for future societal challenges. Cell Reports Physical Science, 2022, 3, 100844.	2.8	6
1155	Pervaporation as a Successful Tool in the Treatment of Industrial Liquid Mixtures. Polymers, 2022, 14, 1604.	2.0	10
1156	Elastic Forces and Molecular Transport through Polymer Matrices. Macromolecules, 2022, 55, 3762-3768.	2.2	2
1157	Effects of alkali on the polyester membranes based on cyclic polyphenols for nanofiltration. Desalination, 2022, 533, 115774.	4.0	8
1158	A realistic approach for determining the pore size distribution of nanofiltration membranes. Separation and Purification Technology, 2022, 293, 121096.	3.9	31
1159	Alternating electric field-based ionic control and layer-by-layer assembly of anion exchange membranes for enhancing target anion selectivity. Desalination, 2022, 533, 115773.	4.0	4
1160	Separation membranes with long-term stability and high flux prepared through intramembrane dopamine-based nanoparticle assembly. Journal of Membrane Science, 2022, 654, 120563.	4.1	4
1161	Advancing osmotic power generation by covalent organic framework monolayer. Nature Nanotechnology, 2022, 17, 622-628.	15.6	113
1162	Membrane design for non-aqueous redox flow batteries: Current status and path forward. CheM, 2022, 8, 1611-1636.	5.8	16
1163	Mathematical Modeling of Monovalent Permselectivity of a Bilayer Ion-Exchange Membrane as a Function of Current Density. International Journal of Molecular Sciences, 2022, 23, 4711.	1.8	13
1164	Enhancement of compatibility between covalent organic framework and polyamide membrane via an interfacial bridging method: Toward highly efficient water purification. Journal of Membrane Science, 2022, 656, 120590.	4.1	10
1165	Continuum Modeling of Porous Electrodes for Electrochemical Synthesis. Chemical Reviews, 2022, 122, 11022-11084.	23.0	46

ARTICLE IF CITATIONS Beating natural proteins at filtering water. Science, 2022, 376, 698-699. 6.0 1166 1 Recent advances in electrocatalytic membrane for the removal of micropollutants from water and wastewater. IScience, 2022, 25, 104342. Space-confined growth of 2D MOF sheets between GO layers at room temperature for superior PDMS 1168 4.1 11 membrane-based ester/water separation. Journal of Membrane Science, 2022, 656, 120605. Integrated metal organic framework/ionic liquid-based composite membrane for CO2 separation. 1169 2.4 Chemical Engineering Journal Advances, 2022, 11, 100320. Current Challenges and Perspectives of Polymer Electrolyte Membranes. Macromolecules, 2022, 55, 1170 2.2 45 3773-3787. In Situ Growth of Crystalline and Polymerâ€Incorporated Amorphous ZIFs in Polybenzimidazole Achieving Hierarchical Nanostructures for Carbon Capture. Small, 2022, 18, e2201982. 1171 5.2 Aquaporin-Inspired CPs/AAO Nanochannels for the Effective Detection of HCHO: Importance of a 1172 4.5 12 Hydrophilic/Hydrophobic Janus Device for High-Performance Sensing. Nano Letters, 2022, 22, 3793-3800. In situ assembled zeolite imidazolate framework nanocrystals hybrid thin film nanocomposite 1173 3.9 20 membranes for brackish water desalination. Separation and Purification Technology, 2022, 293, 121134. Electrically conductive carbon nanotube/graphene composite membrane for self-cleaning of 1174 4.0 13 biofouling via bubble generation. Desalination, 2022, 535, 115841. Solvent-driven controllable molecularly imprinted membrane with switched selectivity and fast regenerability enabled by customized bifunctional monomers. Chemical Engineering Journal, 2022, 446, 6.6 136991. Status and future trends of hollow fiber biogas separation membrane fabrication and modification 1176 4.2 14 techniques. Chemosphere, 2022, 303, 134959. Applying Transition-State Theory to Explore Transport and Selectivity in Salt-Rejecting Membranes: A 4.6 26 Critical Review. Environmental Ścience & amp; Technology, 2022, 56, 7467-7483. The coming of age of water channels for separation membranes: from biological to biomimetic to 1178 18.7 70 synthetic. Chemical Society Reviews, 2022, 51, 4537-4582. Zirconium Metal–Organic Cages: Synthesis and Applications. Accounts of Chemical Research, 2022, 55, 1179 1546-1560. The Optimization of the Transition Zone of the Planar Heterogeneous Interface for High-Performance 1180 1.3 1 Seawater Desalination. Materials, 2022, 15, 3561. The Future of Membrane Separation Processes: A Prospective Analysis. Frontiers in Chemical 1.3 Engineering, 2022, 4, . Multimodal confined water dynamics in reverse osmosis polyamide membranes. Nature 1182 5.8 16 Communications, 2022, 13, 2809. Metalâ€"organic cage incorporating thin-film nanocomposite membranes with antifouling properties. 2.2 Chemical Communications, 2022, 58, 6865-6868.

#	Article	IF	CITATIONS
1184	Designing energy-efficient separation membranes: Knowledge from nature for a sustainable future. , 2022, 2, 100031.		13
1185	Novel thin-film nanocomposite membranes with crosslinked polyvinyl alcohol interlayer for Perfluorinated Compounds (PFCs) removal. Chemical Engineering Research and Design, 2022, 163, 498-505.	2.7	6
1186	Cost and efficiency perspectives of ceramic membranes for water treatment. Water Research, 2022, 220, 118629.	5.3	96
1187	Deploying holey rGO-based membranes for MPs removal. Journal of Water Process Engineering, 2022, 48, 102875.	2.6	1
1188	Polyoxometalate-modified halloysite nanotubes-based thin-film nanocomposite membrane for efficient organic solvent nanofiltration. Separation and Purification Technology, 2022, 295, 121348.	3.9	11
1189	Influence of the Zeolite ZSM-22 Precursor on a UF-PES Selective Substrate Layer for Salts Rejection. Membranes, 2022, 12, 553.	1.4	0
1190	Incorporating Carbon Nanotubes in Nanocomposite Mixed-Matrix Membranes for Gas Separation: A Review. Membranes, 2022, 12, 589.	1.4	16
1191	Significance of deposition and diffusion retention on the performance of the composite membrane. Waves in Random and Complex Media, 0, , 1-14.	1.6	8
1192	Modification Mechanism of Polyamide Reverse Osmosis Membrane by Persulfate: Roles of Hydroxyl and Sulfate Radicals. Environmental Science & Technology, 2022, 56, 8864-8874.	4.6	6
1193	Lamellar MXene Nanofiltration Membranes for Electrostatic Modulation of Molecular Permeation: Implications for Fine Separation. ACS Applied Nano Materials, 2022, 5, 7373-7381.	2.4	9
1194	Mixed Matrix Membranes Loaded with a Porous Organic Polymer Having Bipyridine Moieties. Membranes, 2022, 12, 547.	1.4	11
1195	State-of-the-Art Organic- and Inorganic-Based Hollow Fiber Membranes in Liquid and Gas Applications: Looking Back and Beyond. Membranes, 2022, 12, 539.	1.4	22
1196	Atomistic Simulations of the Permeability and Dynamic Transportation Characteristics of Diamond Nanochannels. Nanomaterials, 2022, 12, 1785.	1.9	2
1197	Recovery of Hydrochloric Acid from Industrial Wastewater by Diffusion Dialysis Using a Spiral-Wound Module. International Journal of Molecular Sciences, 2022, 23, 6212.	1.8	5
1198	Rational design of mixed-matrix metal-organic framework membranes for molecular separations. Science, 2022, 376, 1080-1087.	6.0	160
1199	Electrochemical lithium extraction from aqueous sources. Matter, 2022, 5, 1760-1791.	5.0	27
1200	Polytriazole membranes with ultrathin tunable selective layer for crude oil fractionation. Science, 2022, 376, 1105-1110.	6.0	44
1201	Dissecting the structure-property relationship of ceramic membrane with asymmetric multilayer structures for maximizing permselectivity. Water Research, 2022, 220, 118658.	5.3	4

#	Article	IF	CITATIONS
1202	Two-stage membrane cascades for post-combustion CO2 capture using facilitated transport membranes: Importance on sequence of membrane types. International Journal of Greenhouse Gas Control, 2022, 119, 103698.	2.3	8
1203	In-situ aeration-assisted polydopamine/polyethyleneimine copolymerization and deposition for rapid and uniform membrane modification. Journal of Membrane Science, 2022, 657, 120662.	4.1	14
1204	Permeability of Polymer Membranes beyond Linear Response. Macromolecules, 2022, 55, 7327-7339.	2.2	7
1205	Fluorofoldamer-Based Salt- and Proton-Rejecting Artificial Water Channels for Ultrafast Water Transport. Nano Letters, 2022, 22, 4831-4838.	4.5	12
1206	Wetting-Induced Water Promoted Flow on Tunable Liquid–Liquid Interface-Based Nanopore Membrane System. ACS Nano, 2022, 16, 11092-11101.	7.3	7
1207	Mixed-dimensional covalent organic framework membrane toward sustainable desalination. Science China Chemistry, 2022, 65, 1453-1454.	4.2	4
1208	A CNT/PVA film supported TFC membranes for improvement of mechanical properties and chemical cleaning stability: A new insight to an alternative to the polymeric support. Journal of Membrane Science, 2022, 658, 120753.	4.1	6
1209	A Review of Advancing Two-Dimensional Material Membranes for Ultrafast and Highly Selective Liquid Separation. Nanomaterials, 2022, 12, 2103.	1.9	10
1210	Challenges, Opportunities and Future Directions of Membrane Technology for Natural Gas Purification: A Critical Review. Membranes, 2022, 12, 646.	1.4	12
1211	Desalination Potential of Aquaporin-Inspired Functionalization of Carbon Nanotubes: Bridging Between Simulation and Experiment. ACS Applied Materials & Interfaces, 2022, 14, 28174-28185.	4.0	13
1212	Nano-confined superfluid-based highly efficient chemical reaction and signal transmission. Science Bulletin, 2022, 67, 1509-1512.	4.3	4
1213	Strong Flexible Ceramic Nanofiber Membranes for Ultrafast Separation of Oil Pollutants. ACS Applied Nano Materials, 2022, 5, 9389-9400.	2.4	7
1214	Vacuum-assisted MPD loading toward promoted nanoscale structure and enhanced water permeance of polyamide RO membrane. Separation and Purification Technology, 2022, 297, 121547.	3.9	6
1215	Molecular insights into the structure-property relationships of 3D printed polyamide reverse-osmosis membrane for desalination. Journal of Membrane Science, 2022, 658, 120731.	4.1	14
1216	Designing heterogeneous MOF-on-MOF membrane with hierarchical pores for effective water treatment. Journal of Membrane Science, 2022, 658, 120737.	4.1	22
1217	Carbon-based material derived from biomass waste for wastewater treatment. Environmental Advances, 2022, 9, 100259.	2.2	70
1218	Metal–Organic Frameworks as a Subnanometer Platform for Ion–Ion Selectivity. Accounts of Materials Research, 2022, 3, 735-747.	5.9	9
1219	Gas permeation through graphdiyne-based nanoporous membranes. Nature Communications, 2022, 13, .	5.8	15

#	Article	lF	CITATIONS
1220	Microporous polymer adsorptive membranes with high processing capacity for molecular separation. Nature Communications, 2022, 13, .	5.8	30
1221	Unveiling the Growth of Polyamide Nanofilms at Water/Organic Free Interfaces: Toward Enhanced Water/Salt Selectivity. Environmental Science & Technology, 2022, 56, 10279-10288.	4.6	27
1222	Highly durable ZIF-8 tubular membranes via precursor-assisted processing for propylene/propane separation. Journal of Membrane Science, 2022, 660, 120813.	4.1	10
1223	Drinking water consumption and association between actual and perceived risks of endocrine disrupting compounds. Npj Clean Water, 2022, 5, .	3.1	8
1224	Photo-tailored heterocrystalline covalent organic framework membranes for organics separation. Nature Communications, 2022, 13, .	5.8	35
1225	Modifications of microplastics in urban environmental management systems: A review. Water Research, 2022, 222, 118843.	5.3	13
1226	Elucidating the Roles of Polyamide Layer Structural Properties in the Permeability–Selectivity Tradeoff Governing Aqueous Separations. ACS ES&T Engineering, 2022, 2, 1857-1870.	3.7	4
1227	Finely tuning the microporosity in dual thermally crosslinked polyimide membranes for plasticization resistance gas separations. Journal of Membrane Science, 2022, 659, 120769.	4.1	19
1228	Highly stable and permeable graphene oxide membrane modified by carbohydrazide for efficient dyes separation. Separation and Purification Technology, 2022, 298, 121586.	3.9	16
1229	Polydimethylsiloxane based membranes for biofuels pervaporation. Separation and Purification Technology, 2022, 298, 121612.	3.9	20
1230	Theoretical investigation on two-dimensional conjugated aromatic polymer membranes for high-efficiency hydrogen separation: The effects of pore size and interaction. Separation and Purification Technology, 2022, 299, 121674.	3.9	1
1231	Thin film nanocomposite membranes of PIM-1 and graphene oxide/ZIF-8 nanohybrids for organophilic pervaporation. Separation and Purification Technology, 2022, 299, 121693.	3.9	6
1232	Removal of antibiotics and antibiotic resistance genes by self-assembled nanofiltration membranes with tailored selectivity. Journal of Membrane Science, 2022, 659, 120836.	4.1	14
1233	Engineering MOF surface defects in mixed matrix membranes: An effective strategy to enhance MOF/polymer adhesion and control interfacial gas transport. , 2022, 2, 100029.		9
1234	Constructing high-efficiency transport pathways via incorporating DP-POSS into PEG membranes for pervaporative desulfurization. Separation and Purification Technology, 2022, 299, 121754.	3.9	5
1235	Alumina separation layer with uniform pore size applied on a support with broad pore size distribution. Ceramics International, 2022, 48, 32513-32523.	2.3	6
1236	Machine learning enables interpretable discovery of innovative polymers for gas separation membranes. Science Advances, 2022, 8, .	4.7	50
1237	Controllable synthesis of ZIF-8 interlocked membranes for propylene/propane separation. Separation and Purification Technology, 2022, 300, 121811.	3.9	3

#	Article	IF	CITATIONS
1238	Rapid Upcycling of End-of-Life Microfiltration Membrane Mediated by the Healing of Metal–Organic Complex. ACS Sustainable Chemistry and Engineering, 2022, 10, 9841-9849.	3.2	9
1239	Electrochemical Methods for Water Purification, Ion Separations, and Energy Conversion. Chemical Reviews, 2022, 122, 13547-13635.	23.0	127
1241	Sulfonated Metal–Organic Framework Nanostructure-Based Membranes with Precise Sieving for Organic Solvent Forward Osmosis. ACS Applied Nano Materials, 2022, 5, 11324-11333.	2.4	6
1242	Modeling Water Transport in Interlayered Thin-Film Nanocomposite Membranes: Gutter Effect vs Funnel Effect. ACS ES&T Engineering, 2022, 2, 2023-2033.	3.7	27
1243	Polyethyleneglycol-Modified Cellulose Acetate Membrane for Efficient Olefin/Paraffin Separation. Energy & Fuels, 2022, 36, 10082-10095.	2.5	7
1244	Facilitating proton transport by endowing forward osmosis membrane with proton conductive sites in osmotic microbial fuel cell. Chemical Engineering Journal, 2023, 451, 138767.	6.6	11
1245	Engineering Programmable DNA Particles and Capsules Using Catechol-Functionalized DNA Block Copolymers. Chemistry of Materials, 2022, 34, 7468-7480.	3.2	9
1246	Membrane separation assisted by subnanometer channels. Matter, 2022, 5, 2526-2528.	5.0	2
1247	Study on Spacing Regulation and Separation Performance of Nanofiltration Membranes of GO. Membranes, 2022, 12, 803.	1.4	0
1248	Enhanced Ion Rejection in Carbon Nanotubes by a Lateral Electric Field. Langmuir, 2022, 38, 10065-10074.	1.6	7
1249	Perspective on structure-property relationship of room temperature single-component liquid crystals, 2022, 49, 1545-1603.	0.9	7
1250	Sessile Drop Method: Critical Analysis and Optimization for Measuring the Contact Angle of an Ion-Exchange Membrane Surface. Membranes, 2022, 12, 765.	1.4	18
1251	Membrane Fouling and Electrochemical Regeneration at a PbO2-Reactive Electrochemical Membrane: Study on Experiment and Mechanism. Membranes, 2022, 12, 814.	1.4	1
1252	Transport properties of graphene oxide nanofiltration membranes: Electrokinetic modeling and experimental validation. AICHE Journal, 2022, 68, .	1.8	1
1253	Fast water transport and molecular sieving through ultrathin ordered conjugated-polymer-framework membranes. Nature Materials, 2022, 21, 1183-1190.	13.3	45
1254	Carbonic Anhydrase-Mimicking Supramolecular Nanoassemblies for Developing Carbon Capture Membranes. ACS Applied Materials & amp; Interfaces, 2022, 14, 37595-37607.	4.0	6
1256	Transport across thin membranes: Effective solute flux jump. Physics of Fluids, 2022, 34, .	1.6	3
1259	In-situ sol-gel generation of SiO2 nanoparticles inside polyamide membrane for enhanced nanofiltration. Desalination, 2022, 540, 115981.	4.0	20

#	Article	IF	CITATIONS
1260	Trends and errors in reverse osmosis membrane performance calculations stemming from test pressure and simplifying assumptions about concentration polarization and solute rejection. Journal of Membrane Science, 2022, 660, 120856.	4.1	5
1261	Four-in-one multifunctional air filter using copper coordination polymer particle decorated fibre for efficient pathogen removal and indoor air treatment. Chemical Engineering Research and Design, 2022, 166, 177-188.	2.7	9
1262	Infiltration of 3D-macrocycles to integrally skinned asymmetric P84 co-polyimide membranes for boron removal. Desalination, 2022, 540, 115988.	4.0	7
1263	Cavitating substrates to boost water permeance of reverse osmosis membranes. Separation and Purification Technology, 2022, 299, 121810.	3.9	6
1264	Chemically tailored microporous nanocomposite membranes with multi-channels for intensified solvent permeation. Journal of Membrane Science, 2022, 660, 120877.	4.1	7
1265	A fluorinated, defect-free ZIF-8/PDMS mixed matrix membrane for enhancing ethanol pervaporation. Journal of Membrane Science, 2022, 661, 120920.	4.1	16
1266	A defects-free ZIF-90/6FDA-Durene membrane based on the hydrogen bonding/covalent bonding interaction for gas separation. Journal of Membrane Science, 2022, 661, 120910.	4.1	7
1267	Covalent organic framework-based membrane improved the performance of reverse electrodialysis under Na+/Mg2+ mixed solution. Desalination, 2022, 542, 115976.	4.0	8
1268	Salinity power generation based biocompatible bacterial cellulose/MXene membrane for biological power source. Nano Energy, 2022, 102, 107702.	8.2	26
1269	Limited ion-ion selectivity of salt-rejecting membranes due to enthalpy-entropy compensation. Desalination, 2022, 541, 116041.	4.0	11
1270	Effect of the interlayer construction on the performances of the TFC-FO membranes: A review from materials perspective. Desalination, 2022, 541, 116033.	4.0	11
1271	Novel Thin-Film nanocomposite hollow fiber membranes in modules with reduced reverse solute flux for pressure retarded osmosis. Chemical Engineering Journal, 2022, 450, 138338.	6.6	2
1272	Significantly enhanced gas separation properties of microporous membranes by precisely tailoring their ultra-microporosity through bromination/debromination. Chemical Engineering Journal, 2023, 451, 138513.	6.6	16
1273	Nanofiltration (NF) Membrane Processing in the Food Industry. Food Engineering Reviews, 2022, 14, 579-595.	3.1	19
1274	Membrane Separation Processes and Post-Combustion Carbon Capture: State of the Art and Prospects. Membranes, 2022, 12, 884.	1.4	13
1275	Distinct impact of substrate hydrophilicity on performance and structure of TFC NF and RO polyamide membranes. Journal of Membrane Science, 2022, 662, 120966.	4.1	24
1276	A novel method integrating response surface method with artificial neural network to optimize membrane fabrication for wastewater treatment. Journal of Cleaner Production, 2022, 376, 134236.	4.6	34
1277	Polyvinyl alcohol and sodium alginate hydrogel coating with different crosslinking procedures on a PSf support for fabricating high-flux NF membranes. Chemosphere, 2022, 308, 136323.	4.2	14

#	Article	IF	CITATIONS
1278	Silica nanoparticle modified polysulfone/polypropylene membrane for separation of oil-water emulsions. Results in Engineering, 2022, 16, 100623.	2.2	16
1279	Application of membrane technology for CO2 capture and separation. , 2022, , 257-289.		0
1280	Electropolymerized thin films with a microporous architecture enabling molecular sieving in harsh organic solvents under high temperature. Journal of Materials Chemistry A, 2022, 10, 20101-20110.	5.2	9
1281	Fluorinated metal–organic frameworks for gas separation. Chemical Society Reviews, 2022, 51, 7427-7508.	18.7	76
1282	Field Grand Challenge for Membrane Science and Technology. , 0, 1, .		4
1283	Modelling Sorption and Transport of Gases in Polymeric Membranes across Different Scales: A Review. Membranes, 2022, 12, 857.	1.4	13
1284	Aligned macrocycle pores in ultrathin films for accurate molecular sieving. Nature, 2022, 609, 58-64.	13.7	88
1285	Influence factor of Pr(III) recovery kinetics from rare-earth simulant wastewater by PAN microtubule hyperfiltration reactor. International Journal of Chemical Reactor Engineering, 2022, .	0.6	0
1286	Extreme Ionâ€Transport Inorganic 2D Membranes for Nanofluidic Applications. Advanced Materials, 2023, 35, .	11.1	14
1287	Sieving in order. Nature Materials, 2022, 21, 1106-1107.	13.3	1
1288	Well-structured 3D channels within GO-based membranes enable ultrafast wastewater treatment. Nano Research, 2023, 16, 1826-1834.	5.8	6
1289	Membranes Based on Polyvinylidene Fluoride and Radiation-Grafted Sulfonated Polystyrene and Their Performance in Proton-Exchange Membrane Fuel Cells. Polymers, 2022, 14, 3833.	2.0	4
1290	Networkâ€Nanostructured ZIFâ€8 to Enable Percolation for Enhanced Gas Transport. Advanced Functional Materials, 2022, 32, .	7.8	16
1291	Two-dimensional capillaries assembled by van der Waals heterostructures. Nano Research, 2023, 16, 4119-4129.	5.8	6
1292	Hybrid Dimensional MXene/CNC Framework-Regulated Nanofiltration Membrane with High Separation Performance. ACS ES&T Water, 2023, 3, 1767-1777.	2.3	7
1293	Interfacial Polymerization of Self-Standing Covalent Organic Framework Membranes at Alkane/Ionic Liquid Interfaces for Dye Separation. ACS Applied Polymer Materials, 2022, 4, 7528-7536.	2.0	9
1294	Manipulation strategies for improving gas separation performance on metal-organic frameworks membranes. Results in Engineering, 2022, 15, 100609.	2.2	9
1295	Nanofiltration Membranes with Crumpled Polyamide Films: A Critical Review on Mechanisms, Performances, and Environmental Applications. Environmental Science & Technology, 2022, 56, 12811-12827.	4.6	92
#	Article	IF	CITATIONS
------	--	------	-----------
1296	CO ₂ /CH ₄ Separation via Carbon-Based Membrane: The Dynamic Role of Gas–Membrane Interface. Langmuir, 2022, 38, 11274-11283.	1.6	2
1297	Fast hydrogen purification through graphitic carbon nitride nanosheet membranes. Nature Communications, 2022, 13, .	5.8	21
1298	Electrical Conductance of Charged Nanopores. ACS Omega, 0, , .	1.6	2
1299	Recent Progress on Pebax-Based Thin Film Nanocomposite Membranes for CO ₂ Capture: The State of the Art and Future Outlooks, Energy & amp; Fuels, 2022, 36, 12367-12428, Influence of chain length on structural properties of carbon molecular sieving membranes and their efforte on Communications in the structure of carbon molecular sieving membranes and their	2.5	5
1300	display="inline" id="d1e1075"> <mml:msub><mml:mrow /><mml:mrow><mml:msub></mml:msub></mml:mrow></mml:mrow </mml:msub> , CH <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si125.svg" display="inline"</mml:math 	4.1	2
1301	MOFs-mediated nanoscale Turing structure in polyamide membrane for enhanced nanofiltration. Desalination, 2022, 544, 116146.	4.0	13
1302	Natural-product-derived membranes for high-efficiency anionic dye removal. Journal of Membrane Science, 2022, 663, 121061.	4.1	6
1303	lonic liquid enhancement of interface compatibility in mixed-linker ZIF-based mixed matrix membranes for advanced CO ₂ /CH ₄ separation. Journal of Materials Chemistry A, 2022, 10, 24975-24984.	5.2	8
1304	Ti3C2 MXene Membranes for Gas Separation: Influence of Heat Treatment Conditions on D-Spacing and Surface Functionalization. Membranes, 2022, 12, 1025.	1.4	11
1305	Nanocellulose-intercalated MXene NF membrane with enhanced swelling resistance for highly efficient antibiotics separation. Separation and Purification Technology, 2023, 305, 122425.	3.9	19
1306	Engineering Metal–Phenolic Networks for Solar Desalination with Directional Salt Crystallization. Advanced Materials, 2023, 35, .	11.1	40
1307	Well-Defined Nanostructures by Block Copolymers and Mass Transport Applications in Energy Conversion. Polymers, 2022, 14, 4568.	2.0	4
1308	Post-synthetic modification of MOFs to enhance interfacial compatibility and selectivity of thin-film nanocomposite (TFN) membranes for water purification. Journal of Membrane Science, 2023, 666, 121133.	4.1	14
1309	Enhanced compatibility and selectivity in mixed matrix membranes for propylene/propane separation. AICHE Journal, 2023, 69, .	1.8	4
1310	Soluble Imide-Bridged Polypentamethyltrisiloxane (IBPPMS) with Rationally Designed Ladder-like Structure for O ₂ /N ₂ Permselectivity. Macromolecules, 2022, 55, 9833-9840.	2.2	0
1311	Ion Exchange Membranes: Constructing and Tuning Ion Transport Channels. Advanced Functional Materials, 2022, 32, .	7.8	31
1312	Polymeric membranes with aligned zeolite nanosheets for sustainable energy storage. Nature Sustainability, 2022, 5, 1080-1091.	11.5	33
1313	Nanomechanics and Plasticity. Nanomaterials, 2022, 12, 3807.	1.9	0

#	Article	IF	CITATIONS
1314	Materials discovery of ion-selective membranes using artificial intelligence. Communications Chemistry, 2022, 5, .	2.0	10
1315	Design and direct preparation of a novel silicon carbide support for zeolite membrane. Applied Water Science, 2022, 12, .	2.8	3
1316	One-Step Synthesis of Ultrathin Zeolitic Imidazole Framework-8 (ZIF-8) Membrane on Unmodified Porous Support via Electrophoretic Deposition. Membranes, 2022, 12, 1062.	1.4	1
1317	High permeability dual-channel membranes based on porous Fluorine–Cerium nanosheets for molecular sieving. Journal of Membrane Science, 2023, 666, 121126.	4.1	1
1318	Heterogeneous consecutive reaction kinetics of direct oxidation of H2 to H2O2: Effect and regulation of confined mass transfer. Chemical Engineering Journal, 2023, 455, 140111.	6.6	4
1319	Hydrophilic modified polydopamine tailored heterogeneous polyamide in thin-film nanocomposite membranes for enhanced separation performance and anti-fouling properties. Journal of Membrane Science, 2023, 666, 121124.	4.1	9
1320	Engineering Polymeric Nanofluidic Membranes for Efficient Ionic Transport: Biomimetic Design, Material Construction, and Advanced Functionalities. ACS Nano, 2022, 16, 17613-17640.	7.3	15
1321	Tunable Ion Transport with Freestanding Vermiculite Membranes. ACS Nano, 2022, 16, 18266-18273.	7.3	13
1322	Polymeric membranes for desalination. Journal of Polymer Science, 2022, 60, 2927-2928.	2.0	0
1323	Simulation of a novel hybrid membrane-cryogenic process for post-combustion carbon capture. Carbon Capture Science & Technology, 2022, 5, 100075.	4.9	8
1324	Comparison of different cleaning strategies on fouling mitigation in hollow fiber nanofiltration membranes for river water treatment. Journal of Cleaner Production, 2022, 380, 134764.	4.6	11
1325	Exfoliation of MoS2 nanosheets using stimuli responsive poly (N-isopropylacrylamide-co-allylamine) for multi-functional nanofiltration membranes preparation. Journal of Membrane Science, 2022, 664, 121080.	4.1	1
1326	Enhanced pervaporation performance of PEG membranes with synergistic effect of cross-linked PEG and porous MOF-508a. Separation and Purification Technology, 2023, 304, 122347.	3.9	10
1327	Tuning interlayer spacing of graphene oxide membrane to enhance its separation performance of hydrogen isotopic water in membrane distillation. Separation and Purification Technology, 2023, 304, 122382.	3.9	4
1328	A facile graphene oxide modified approach towards membrane with prominent improved permeability and antifouling performance. Desalination, 2023, 545, 116130.	4.0	4
1329	Molecular modeling of thin-film nanocomposite membranes for reverse osmosis water desalination. Physical Chemistry Chemical Physics, 2022, 24, 29298-29327.	1.3	4
1330	Dispersive two-dimensional MXene via potassium fulvic acid for mixed matrix membranes with enhanced organic solvent nanofiltration performance. Journal of Membrane Science, 2023, 666, 121168.	4.1	10
1331	Molecular geometry effect on gas transport through nanochannels: Beyond Knudsen theory. Applied Surface Science, 2023, 611, 155613.	3.1	5

#	Article	IF	CITATIONS
1332	Multiscale investigation for CO2 capture using membrane with AEEA: Significance of fluid flow and AEEA content to CO2 permeance. International Journal of Heat and Mass Transfer, 2023, 201, 123564.	2.5	0
1333	Separation of n-butanol from aqueous mixtures using TiO2 and h-BN functionalized MIL-101(Cr) incorporated PVDF mixed matrix membranes. Separation and Purification Technology, 2023, 306, 122613.	3.9	8
1334	In-situ modified polyethersulfone oxygenation membrane with improved hemocompatibility and gas transfer efficiency. Journal of Membrane Science, 2023, 667, 121162.	4.1	9
1335	Advancing ion-exchange membranes to ion-selective membranes: principles, status, and opportunities. Frontiers of Environmental Science and Engineering, 2023, 17, .	3.3	23
1336	Mixed Matrix Membrane with Penetrating Subnanochannels: A Versatile Nanofluidic Platform for Selective Metal Ion Conduction. Angewandte Chemie, 0, , .	1.6	1
1337	Bioinspired graphene oxide nanofiltration membranes with ultrafast water transport and selectivity for water treatment. FlatChem, 2022, 36, 100450.	2.8	8
1338	Functional molecular crossâ€linked zeolite nanosheets heighten ion selectivity and conductivity of flow battery membrane. AICHE Journal, 2023, 69, .	1.8	10
1339	Preparation of amorphous carbon membranes synthesized via a glucose-solution hydrothermal method. Ceramics International, 2022, , .	2.3	1
1340	Collaboration of two-star nanomaterials: The applications of nanocellulose-based metal organic frameworks composites. Carbohydrate Polymers, 2023, 302, 120359.	5.1	15
1341	Engineering metal–organic frameworks (MOFs) based thin-film nanocomposite (TFN) membranes for molecular separation. Chemical Engineering Journal, 2023, 454, 140447.	6.6	50
1342	Superhydrophobic polyphenylene sulfide fiber paper with nanofiber network-like structure prepared via regulation of TIPS process for oil/water separation. Journal of Materials Science, 2022, 57, 20531-20542.	1.7	4
1343	Intrinsic limitations of nanofiltration membranes to achieve precise selectivity in water-based separations. , 0, 1, .		5
1344	Solvent-resistant porous membranes using poly(ether—ether ketone): preparation and application. Frontiers of Chemical Science and Engineering, 2022, 16, 1536-1559.	2.3	7
1345	Theoretical Pathway toward Improved Reverse Osmosis Membrane Selectivity for Neutral Solutes: Inspiration from Gas Separations. Journal of Physical Chemistry C, 2022, 126, 19496-19506.	1.5	0
1346	Modified CARDO-Based Copolyimides with Improved Sour Mixed-Gas Permeation Properties. ACS Applied Polymer Materials, 2022, 4, 9257-9271.	2.0	3
1347	MPD and TMC supply as parameters to describe synthesis-morphology-performance relationships of polyamide thin film composite membranes. Journal of Membrane Science, 2023, 667, 121155.	4.1	10
1348	Mixed Matrix Membrane with Penetrating Subnanochannels: A Versatile Nanofluidic Platform for Selective Metal Ion Conduction. Angewandte Chemie - International Edition, 2023, 62, .	7.2	10
1349	Boosting the Performance of Nanofiltration Membranes in Removing Organic Micropollutants: Trade-Off Effect, Strategy Evaluation, and Prospective Development. Environmental Science & Scie	4.6	25

#	Article	IF	CITATIONS
1350	Aqueous Two-Phase Interfacial Assembly of COF Membranes for Water Desalination. Nano-Micro Letters, 2022, 14, .	14.4	29
1351	A review of membrane fouling by proteins in ultrafiltration and microfiltration. Journal of Water Process Engineering, 2022, 50, 103294.	2.6	32
1352	Phenolic-modified cationic polymers as coagulants for microplastic removal. Journal of Industrial and Engineering Chemistry, 2023, 119, 208-217.	2.9	5
1353	Enhancing antioxidant properties of hydrogen storage alloys using PMMA coating. International Journal of Hydrogen Energy, 2023, 48, 4339-4348.	3.8	3
1354	Interface engineering in MOF/crosslinked polyimide mixed matrix membranes for enhanced propylene/propane separation performance and plasticization resistance. Journal of Membrane Science, 2023, 667, 121182.	4.1	10
1355	Heteroâ€Polycrystalline Membranes with Narrow and Rigid Pores for Molecular Sieving. Small, 2023, 19,	5.2	5
1356	Advances in organic microporous membranes for CO ₂ separation. Energy and Environmental Science, 2023, 16, 53-75.	15.6	24
1357	Engineering approaches for CO2 converting to biomass coupled with nanobiomaterials as biomediated towards circular bioeconomy. Journal of CO2 Utilization, 2023, 67, 102295.	3.3	25
1358	Unlocking the potential of polymeric desalination membranes by understanding molecular-level interactions and transport mechanisms. Chemical Science, 2023, 14, 751-770.	3.7	9
1359	Improving the separation performance for heavy metals by optimizing the structure of multilayered GO membrane. Journal of Molecular Liquids, 2023, 370, 121071.	2.3	2
1360	Chlorine-resistance, reswelling after drying and molecule/ions separation properties of carboxyl multi-walled carbon nanotubes/calcium alginate composite hydrogel membrane. Composites Communications, 2023, 37, 101412.	3.3	1
1361	Phase equilibria insights into amine-water-NaCl interactions in liquid-liquid biphasic systems for temperature swing solvent extraction desalination. Desalination, 2023, 548, 116259.	4.0	6
1362	Nanorod-interlayered thin film composite membranes for ultrafast nanofiltration. Desalination, 2023, 548, 116255.	4.0	6
1363	Structures and performance of alcohol activated thin film composite polyamide (TFC-PA) nanofiltration (NF) membranes prepared with and without Co(II) modulation. Desalination, 2023, 548, 116242.	4.0	6
1364	PPO-ZIF MMMs possessing metal-polymer interactions for propane/propylene separation. Journal of Membrane Science, 2023, 668, 121208.	4.1	0
1365	Tuning charge density in tethered electrolyte active-layer membranes for enhanced ion-ion selectivity. Journal of Membrane Science, 2023, 668, 121214.	4.1	5
1366	Hansen solubility parameters-guided mixed matrix membranes with linker-exchanged metal-organic framework fillers showing enhanced gas separation performance. Journal of Membrane Science, 2023, 668, 121238.	4.1	7
1367	Enhanced and efficient removal of heavy metals by amino-decorated membranes in coordination with multi-function. Journal of Water Process Engineering, 2023, 51, 103328.	2.6	1

#	Article	IF	CITATIONS
1368	Designed channels in thin benzimidazole-linked polymer membranes for hot H2 purification. Journal of Membrane Science, 2023, 668, 121293.	4.1	2
1369	Challenge and promise of mixed matrix hollow fiber composite membranes for CO2 separations. Separation and Purification Technology, 2023, 308, 122876.	3.9	1
1370	Interfacial interactions between polymers and selective adsorbents influence ion transport properties of boron scavenging ion-exchange membranes. Journal of Membrane Science, 2023, 669, 121301.	4.1	3
1371	Diazotized polyamide membranes on commercial polyethylene textile with simultaneously improved water permeance, salt rejections and anti-fouling. Desalination, 2023, 549, 116307.	4.0	4
1372	Issues and challenges in hydrogen separation technologies. Energy Reports, 2023, 9, 894-911.	2.5	24
1373	Towards optimized membranes for aqueous organic redox flow batteries: Correlation between membrane properties and cell performance. Renewable and Sustainable Energy Reviews, 2023, 173, 113059.	8.2	12
1374	Tunable mass transport in the artificial smart membranes based on two-dimensional materials. , 2022, 2, 100045.		5
1375	Inverse Design of Pore Wall Chemistry To Control Solute Transport and Selectivity. ACS Central Science, 2022, 8, 1609-1617.	5.3	6
1376	Lamellar carbon nitride membrane for enhanced ion sieving and water desalination. Nature Communications, 2022, 13, .	5.8	16
1377	Using Cu-TCPP Nanosheets as Interlayers for High-Performance Organic Solvent Nanofiltration Membranes. ACS Applied Nano Materials, 2022, 5, 18718-18729.	2.4	16
1378	Topologically Programmed Graphene Oxide Membranes with Bioinspired Superstructures toward Boosting Osmotic Energy Harvesting. Advanced Functional Materials, 2023, 33, .	7.8	6
1379	Robust and highly hydrophilic ultrafiltration membrane with multi-branched cellulose nanocrystals for permeability-selectivity anti-trade-off property. Applied Surface Science, 2023, 614, 156157.	3.1	8
1380	Synthesis and Characterization of PES/Pebax-MWCNTs Mixed Matrix Membranes for Gas Separation. Solid State Phenomena, 0, 340, 3-10.	0.3	0
1381	Engineering 2D Aligned Nanowires Assembled Porous Heteroâ€Membrane for Smart Ion Transport. Small, 2023, 19, .	5.2	3
1382	Polyamide thin film nanocomposite membranes with in-situ integration of multiple functional nanoparticles for high performance reverse osmosis. Journal of Membrane Science, 2023, 669, 121311.	4.1	12
1383	Review on Liquid–Liquid Separation by Membrane Filtration. ACS Omega, 2022, 7, 44495-44506.	1.6	12
1384	Effect of MXene Nanosheet Dispersed Phases on the Fabrication of Polyamide Nanofiltration Membranes. , 2023, 1, 679-689.		4
1385	Epitaxial supercritical fluid processing of ZIF-8 membranes towards efficient C3H6/C3H8 separation. Journal of Membrane Science, 2023, 669, 121300.	4.1	4

ARTICLE IF CITATIONS Thin-film composite mixed-matrix membrane with irregular micron-sized UTSA-16 for outstanding gas 1386 4.1 4 separation performance. Journal of Membrane Science, 2023, 669, 121295. 13C NMR study of amino acid salts in facilitated transport membranes for post-combustion carbon 4.1 capture. Journal of Membrane Science, 2023, 671, 121309. Recent Advances in Stimuliâ€Responsive Smart Membranes for Nanofiltration. Advanced Functional 1388 7.8 24 Materials, 2023, 33, . Bidirectional Waterâ€Stream Behavior on a Multifunctional Membrane for Simultaneous Energy 1389 11.1 Generation and Water Purification. Advanced Materials, 2023, 35, . Solution-processable amorphous microporous polymers for membrane applications. Progress in 1390 11.8 13 Polymer Science, 2023, 137, 101636. Truly combining the advantages of polymeric and zeolite membranes for gas separations. Science, 2022, 378, 1189-1194. 1391 6.0 37 1393 Bimodal free volumes uplift gas separation. Nature Materials, 2023, 22, 10-11. 13.3 5 Applications of advanced MXene-based composite membranes for sustainable water desalination. 1394 4.2 Chemosphere, 2023, 314, 137643. 1395 Solid-state nanopore/channels meet DNA nanotechnology. Matter, 2023, 6, 373-396. 5.0 3 Advanced carbon molecular sieve membranes derived from molecularly engineered cross-linkable 1396 13.3 copolyimide for gas separations. Nature Materials, 2023, 22, 109-116. Attapulgite Nanorod-Incorporated Polyimide Membrane for Enhanced Gas Separation Performance. 1397 2 2.0 Polymers, 2022, 14, 5391. Biophysical quantification of unitary solute and solvent permeabilities to enable translation to 1398 4.1 membrane science. Journal of Membrane Science, 2022, 121308. Interfacial Wettability Regulation Enables One-Step Upcycling of the End-of-Life Polymeric 1399 3.7 5 Microfiltration Membrane. ACS ES&T Engineering, 2023, 3, 479-486. Amphiphilically Modified Porous Polymeric Nanosandwichâ€Based Membranes for Rapid and Efficient 1400 5.2 Water Treatment. Small, 0, , 2205714. Ion and Water Transport in Ion-Exchange Membranes for Power Generation Systems: Guidelines for 1401 1.8 13 Modeling. International Journal of Molecular Sciences, 2023, 24, 34. Network polyimide membranes prepared by interfacial polymerization for hot 1402 1.8 <scp>H₂</scp> purification. AICHE Journal, 2023, 69, . Diffusive exit rates through pores in membrane-enclosed structures. Physical Biology, 2023, 20, 1403 0.8 2 026001. Demystifying the Role of Surfactant in Tailoring Polyamide Morphology for Enhanced Reverse Osmósis Performance: Mechanistic Insights and Environmental Implications. Environmental Science 1404 & Technology, 2023, 57, 1819-1827.

ARTICLE IF CITATIONS Superhydrophobicity-improved Ethanol-Water Separation. Chemical Research in Chinese Universities, 1405 1.3 0 0, , Enhanced CO2/H2 separation by GO and PVA-GO embedded PVAm nanocomposite membranes. Journal of 1406 4.1 9 Membrane Science, 2023, 671, 121397. Toward a universal framework for evaluating transport resistances and driving forces in 1407 4.7 16 membrane-based desalination processes. Science Advances, 2023, 9, . Ion-Selective Separation Using MXene-Based Membranes: A Review. , 2023, 5, 341-356. 1408 Ionic Microporous Polymer Membranes for Advanced Gas Separations. Industrial & amp; Engineering 1409 1.8 6 Chemistry Research, 2023, 62, 1764-1775. Phosphorus Recovery and Simultaneous Heavy Metal Removal from ISSA in a Two-Compartment Cell. Water (Switzerland), 2023, 15, 226. 1.2 Is It Possible to Prepare a \hat{e} Super \hat{e} -Anion-Exchange Membrane by a Polypyrrole-Based Modification?. 1411 1.4 4 Membranes, 2023, 13, 103. Postâ€synthesis amination of polymer of intrinsic microporosity membranes for 1.8 <scp>CÓ₂</scp> separation. AICHE Journal, 2023, 69, . Preparation of High Flux Chlorinated Polyvinyl Chloride Composite Ultrafiltration Membranes with Ternary Amphiphilic Copolymers as Anchor Pore-Forming Agents and Enhanced Anti-Fouling Behavior. Industrial & amp; Engineering Chemistry Research, 2023, 62, 1390-1403. 1413 2 1.8 Antifouling modification of PVDF membranes via incorporating positive-charge tuned quaternized 1414 3.3 chitosan magnetic particles. Journal of Environmental Chemical Engineering, 2023, 11, 109192. A comprehensive review on zeolite-based mixed matrix membranes for CO2/CH4 separation. 1415 4.2 9 Chemosphere, 2023, 314, 137709. Fine tune gas separation property of intrinsic microporous polyimides and their carbon molecular sieve membrane's by gradient bromine substitution/removal. Journal of Membrane Science, 2023, 669, 4.1 121310. Construction of silicone composite with controllable micro-nano structure via in-situ polymerization on fiber surface and study on SO2 adsorption performance. Colloids and Surfaces A: 1417 2.3 2 Physicochemical and Engineering Aspects, 2023, 660, 130815. Enhanced CO2 separation performance by incorporating KAUST-8 nanosheets into crosslinked 1418 poly(ethylene oxide) membrane. Separation and Purification Technology, 2023, 309, 123057. Mixed matrix membranes comprising 6FDA-based polyimide blends and UiO-66 with co-continuous 1419 3.9 14 structures for gas separations. Separation and Purification Technology, 2023, 310, 123126. Uncertainty in Composite Membranes: From Defect Engineering to Film Processing. Journal of the 1420 American Ćhemical Society, 2023, 145, 830-840. Preparation of a PVA/Chitosan/Glass Fiber Composite Membrane and the Performance in CO2 1421 1.4 4 Separation. Membranes, 2023, 13, 36. Extraction elements of ytterbium(III) in metallic ore wastewater with combination of PAN microtube 1422 ultrafilter device and organic P-204. Petroleum Science and Technology, 0, , 1-18.

#	Article	IF	CITATIONS
1423	Fabrication of Polyarylate-Based Porous Membranes from Nonsolvent-Induced Phase Separation Process and Related Permeability and Filterability Characterizations. ACS Applied Polymer Materials, 2023, 5, 968-982.	2.0	3
1424	Poly(ethylene oxide)-Based Copolymer-IL Composite Membranes for CO2 Separation. Membranes, 2023, 13, 26.	1.4	4
1425	Preparation and Characterization of Polyvinylalcohol/Polysulfone Composite Membranes for Enhanced CO2/N2 Separation. Polymers, 2023, 15, 124.	2.0	6
1426	Machine Learning Guided Polyamide Membrane with Exceptional Solute–Solute Selectivity and Permeance. Environmental Science & Technology, 2023, 57, 17841-17850.	4.6	7
1427	Prospects of metal recovery from wastewater and brine. , 2023, 1, 37-46.		37
1428	Selective Ion Transport in Twoâ€Ðimensional Lamellar Nanochannel Membranes. Angewandte Chemie - International Edition, 2023, 62, .	7.2	22
1429	Composite Membrane for Organic Solvent Nanofiltration. , 2023, , 7-64.		0
1430	Principles of electrospinning and nanofiber membranes. , 2023, , 3-25.		1
1431	Computational Investigation of Dual Filler-Incorporated Polymer Membranes for Efficient CO ₂ and H ₂ Separation: MOF/COF/Polymer Mixed Matrix Membranes. Industrial & Engineering Chemistry Research, 2023, 62, 2924-2936.	1.8	9
1432	Selective Ion Transport in Twoâ€Dimensional Lamellar Nanochannel Membranes. Angewandte Chemie, 2023, 135, .	1.6	1
1433	Improvement of Selectivity of RALEX-CM Membranes via Modification by Ceria with a Functionalized Surface. Polymers, 2023, 15, 647.	2.0	3
1434	Cross-Linked and Doped Graphene Oxide Membranes with Excellent Antifouling Capacity for Rejection of Antibiotics and Salts. ACS Applied Materials & amp; Interfaces, 2023, 15, 8636-8652.	4.0	2
1435	Photobiofuel Cells, Current State of Research and Practical Application. Nanobiotechnology Reports, 2022, 17, 739-746.	0.2	0
1436	Wetting hysteresis induces effective unidirectional water transport through a fluctuating nanochannel. Nanoscale Horizons, 0, , .	4.1	0
1437	Nanopores: synergy from DNA sequencing to industrial filtration – small holes with big impact. Chemical Society Reviews, 2023, 52, 1983-1994.	18.7	15
1438	Advances in Preparation Technology of Block Copolymer Separation Membranes. Advances in Environmental Protection, 2023, 13, 225-232.	0.0	0
1439	Nanoarchitectonics of carbon molecular sieve membranes with graphene oxide and polyimide for hydrogen purification. RSC Advances, 2023, 13, 10168-10181.	1.7	4
1440	In Situ Fabrication of Metal–Organic Framework Thin Films with Enhanced Pervaporation Performance. Advanced Functional Materials, 2023, 33, .	7.8	8

#	Article	IF	CITATIONS
1441	Effects of Porous Supports in Thin-Film Composite Membranes on CO2 Separation Performances. Membranes, 2023, 13, 359.	1.4	3
1442	Performance metrics for nanofiltration-based selective separation for resource extraction and recovery. , 2023, 1, 291-300.		21
1443	Precise Cation Separations with Composite Cation-Exchange Membranes: Role of Base Layer Properties. Environmental Science & Technology, 2023, 57, 6331-6341.	4.6	6
1444	Remarkable gas separation performance of a thermally rearranged membrane derived from an alkynyl self-crosslinkable precursor. Journal of Membrane Science, 2023, 672, 121464.	4.1	10
1445	Inorganic salt-conditioning preparation of a copper (II) ions-doped thin film composite membrane with ridge-valley morphology for efficient organic solvent nanofiltration. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 663, 131114.	2.3	1
1446	Finely tuning the microporosity in phosphoric acid doped triptycene-containing polybenzimidazole membranes for highly permselective helium and hydrogen recovery. Journal of Membrane Science, 2023, 672, 121474.	4.1	11
1447	Reverse osmosis membrane and module improvement roadmap for maximum impact. Desalination, 2023, 554, 116511.	4.0	1
1448	Fine pore tailoring of PSf-b-PEG membrane in sub-5 nm via phase-inversion. Journal of Membrane Science, 2023, 672, 121427.	4.1	3
1449	Polyamide membrane with nanoscale stripes and internal voids for high-performance nanofiltration. Journal of Membrane Science, 2023, 671, 121406.	4.1	8
1450	Influence of surface chemistry and channel shapes on the lithium-ion separation in metal-organic-framework-nanochannel membranes. Journal of Membrane Science, 2023, 674, 121511.	4.1	9
1451	Tailoring properties and performance of thin-film composite membranes by salt additives for water treatment: A critical review. Water Research, 2023, 234, 119821.	5.3	7
1452	Making waves: Why do we need ultra-permeable nanofiltration membranes for water treatment?. Water Research X, 2023, 19, 100172.	2.8	12
1453	Regulation of micro-structure and surface property of SWRO membrane via introducing albumin into polyamide layer for improving permselectivity. Desalination, 2023, 555, 116551.	4.0	1
1454	Super high gas separation performance membranes derived from a brominated alternative PIM by thermal induced crosslinking and carbonization at low temperature. Separation and Purification Technology, 2023, 314, 123548.	3.9	4
1455	Hybrid graphene oxide membranes with regulated water and ion permeation channels via functional materials. Current Opinion in Chemical Engineering, 2023, 40, 100907.	3.8	3
1456	Modeling nanovoid-enhanced water permeance of thin film composite membranes. Journal of Membrane Science, 2023, 675, 121555.	4.1	7
1457	Coordination enhancement of hydrogen and helium recovery in polybenzimidazole-based carbon molecular sieve membranes. Separation and Purification Technology, 2023, 315, 123691.	3.9	8
1458	Stability of layer-by-layer nanofiltration membranes in highly saline streams. Desalination, 2023, 555, 116520.	4.0	14

#	Article	IF	CITATIONS
1459	Precisely tailored graphene oxide membranes on glass fiber supports for efficient hydrogen separation. Journal of Membrane Science, 2023, 675, 121529.	4.1	2
1460	Unveiling the role of post-treatment in thin-film composite nanofiltration membranes: Performance and mechanism. Desalination, 2023, 556, 116579.	4.0	9
1461	Preparation of highly permeable and selective nanofiltration membranes with antifouling properties by introducing the capsaicin derivative into polyamide thin selective layer by bidirectional interfacial polymerization. Journal of Membrane Science, 2023, 675, 121569.	4.1	6
1462	Hydrogen isotopic water separation in membrane distillation through BN, MoS2 and their heterostructure membranes. Separation and Purification Technology, 2023, 314, 123634.	3.9	2
1463	A TiO2 modified whisker mullite hollow fiber ceramic membrane for high-efficiency oil/water emulsions separation. Journal of the European Ceramic Society, 2023, 43, 4451-4461.	2.8	5
1464	Simultaneous removal of natural organic matters and copper (II) with ultrafiltration for drinking water treatment. Journal of Membrane Science, 2023, 671, 121408.	4.1	8
1465	Polyamide layer modulation for PA-TFC membranes Optimization: Developments, Mechanisms, and implications. Separation and Purification Technology, 2023, 311, 123200.	3.9	11
1466	Preparation of mixed matrix membranes by layered double hydroxides of amino acid intercalation and Pebax for ameliorated CO2 separation. Journal of Environmental Chemical Engineering, 2023, 11, 109399.	3.3	4
1467	Exploring the effect of intra-chain rigidity on mixed-gas separation performance of a Triptycene-Tröger's base ladder polymer (PIM-Trip-TB) by atomistic simulations. Journal of Membrane Science, 2023, 677, 121614.	4.1	4
1468	Hydrophilic-hydrophobic heterogeneous interface enables the formation of a high-performance polyamide membrane for water purification. Separation and Purification Technology, 2023, 316, 123752.	3.9	4
1469	Incorporating ionic carbon dots in polyamide nanofiltration membranes for high perm-selectivity and antifouling performance. Journal of Membrane Science, 2023, 672, 121401.	4.1	12
1470	Correlating the role of nanofillers with active layer properties and performance of thin-film nanocomposite membranes. Desalination, 2023, 550, 116370.	4.0	4
1471	Efficient construction of tubular mullite fiber membrane filter with high gas permeance for gas/solid filtration. Separation and Purification Technology, 2023, 311, 123258.	3.9	6
1472	Introduction to Membrane. , 2023, , 1-5.		0
1473	Membrane Design Criteria and Practical Viability of Pressure-Driven Distillation. Environmental Science & Technology, 2023, 57, 2129-2137.	4.6	3
1474	Polyethylenimine grafted hollow fiber membranes for fast dye separation. Journal of Membrane Science, 2023, 672, 121428.	4.1	7
1475	Hyperaging-induced H2-selective thin-film composite membranes with enhanced submicroporosity toward green hydrogen supply. Journal of Membrane Science, 2023, 672, 121438.	4.1	7
1476	Unveiling the residual membrane foulants in full-scale MBR plant after chemically enhanced backwash: Insights into microbe-associated compounds. Desalination, 2023, 551, 116421.	4.0	6

#	Article	IF	CITATIONS
1477	Cost optimization of low-salt-rejection reverse osmosis. Desalination, 2023, 551, 116407.	4.0	6
1478	Tailoring the microporosity and gas separation property of soluble polybenzoxazole membranes derived from different regioisomer monomers. Separation and Purification Technology, 2023, 311, 123340.	3.9	4
1479	Supercomputing and machine learning-aided optimal design of high permeability seawater reverse osmosis membrane systems. Science Bulletin, 2023, 68, 397-407.	4.3	6
1480	Preparation of high flux organic solvent nanofiltration membrane based on polyimide/Noria composite ultrafiltration membrane. Applied Surface Science, 2023, 618, 156650.	3.1	14
1481	Effect of Laser Parameters on Laser-Induced Graphene Filter Fabrication and Its Performance for Desalination and Water Purification. ACS Applied Materials & amp; Interfaces, 2023, 15, 7899-7910.	4.0	15
1482	Calcium Alginate Production through Forward Osmosis with Reverse Solute Diffusion and Mechanism Analysis. Membranes, 2023, 13, 207.	1.4	4
1483	Discontinuous cooperative imprinting idea based on MXene-nanocomposite membrane for high structurally stable recognition and separation of shikimic acid. Chemical Engineering Journal, 2023, 460, 141891.	6.6	19
1484	Membrane Life Cycle Management: An Exciting Opportunity for Advancing the Sustainability Features of Membrane Separations. Environmental Science & Technology, 2023, 57, 3013-3020.	4.6	13
1485	Highly permeable polyamide-holey graphene oxide composite membrane prepared by pressure spray interface polymerization for desalination. Carbon, 2023, 206, 286-294.	5.4	9
1486	High-Performance Polyamide Reverse Osmosis Membrane Containing Flexible Aliphatic Ring for Water Purification. Polymers, 2023, 15, 944.	2.0	2
1487	Accounting for Ion Pairing Effects on Sulfate Salt Sorption in Cation Exchange Membranes. Journal of Physical Chemistry B, 2023, 127, 1842-1855.	1.2	9
1488	Machine Learning Interatomic Potentials and Long-Range Physics. Journal of Physical Chemistry A, 2023, 127, 2417-2431.	1.1	19
1489	Extreme pHâ€Resistant, Highly Cationâ€Selective Poly(Quaternary Ammonium) Membranes Fabricated via Menshutkin Reactionâ€Based Interfacial Polymerization. Advanced Functional Materials, 2023, 33, .	7.8	8
1490	Supramolecular framework membrane for precise sieving of small molecules, nanoparticles and proteins. Nature Communications, 2023, 14, .	5.8	17
1491	Towards the realisation of high permi-selective MoS2 membrane for water desalination. Npj Clean Water, 2023, 6, .	3.1	10
1492	Charged Boron Nitride Nanosheet Membranes for Improved Organic Solvent Nanofiltration. ACS Applied Materials & Interfaces, 2023, 15, 12524-12533.	4.0	6
1493	Pyrolysis temperature-regulated gas transport and aging properties in 6FDA-DAM polyimide-derived carbon molecular sieve membranes. Separation and Purification Technology, 2023, 313, 123459.	3.9	9
1494	Nanovehicle-assisted monomer shuttling enables highly permeable and selective nanofiltration membranes for water purification. , 2023, 1, 281-290.		27

#	Article	IF	CITATIONS
1495	Polyamide membranes with nanoscale ordered structures for fast permeation and highly selective ion-ion separation. Nature Communications, 2023, 14, .	5.8	35
1496	Water's motions in x-y and z directions of 2D nanochannels: Entirely different but tightly coupled. Nano Research, 2023, 16, 6298-6307.	5.8	6
1497	Polymer-Infiltrated Metal–Organic Frameworks for Thin-Film Composite Mixed-Matrix Membranes with High Gas Separation Properties. Membranes, 2023, 13, 287.	1.4	4
1498	Realizing high performance gas filters through nano-particle deposition. Physical Chemistry Chemical Physics, 2023, 25, 9300-9310.	1.3	2
1499	Tunable nanostructured stainless-steel coating for high-selective and high-permeable separation membranes for oil/water emulsions. Npj Clean Water, 2023, 6, .	3.1	8
1500	Scalable basswood-based PDA/GO-embedded self-assembly membrane within multilayered artemisinin-imprinted nanocage for high-selectivity cascading adsorption and transport. Chemical Engineering Journal, 2023, 462, 142277.	6.6	14
1501	Confined mass transfer mechanism and preparation strategies of separation membranes: A review. Materials and Design, 2023, 227, 111805.	3.3	1
1502	Nanoconfined MXene-MOF Nanolaminate Film for Molecular Removal/Collection and Multiple Sieving. ACS Applied Materials & Interfaces, 2023, 15, 17222-17232.	4.0	9
1503	Ultrathin bimodal porous membranes with uniform small pores separated by laminated large pores for efficient water separation. Materials and Design, 2023, 227, 111809.	3.3	2
1504	Isomeric Aromatic Polyimides Containing Biphenyl Moieties for Gas Separation Applications. Polymers, 2023, 15, 1333.	2.0	1
1505	Fluids and Electrolytes under Confinement in Single-Digit Nanopores. Chemical Reviews, 2023, 123, 2737-2831.	23.0	32
1506	Computational Investigation on Water and Ion Transport in MoS ₂ Nanoporous Membranes: Implications for Water Desalination. ACS Applied Nano Materials, 2023, 6, 4465-4476.	2.4	1
1507	Ligand Substitution: An Effective Way for Tuning Structures of ZIF-7 Nanoparticles (NPs) and Improving Energy Recovery Performance of ZIF/PA TFN Membranes. ACS Applied Materials & Interfaces, 0, , .	4.0	1
1508	Ultrathin ionic COF Membrane via Polyelectrolyteâ€Mediated Assembly for Efficient CO ₂ Separation. Advanced Functional Materials, 2023, 33, .	7.8	21
1509	Smart Solvent-Responsive Covalent Organic Framework Membranes with Self-regulating Pore Size. ACS Applied Polymer Materials, 2023, 5, 3043-3054.	2.0	6
1510	Continuous-imprinted-layer nanofiber membrane with MXene-based precise-designed nanocages for high-accuracy recognition and separation of shikimic acid. Journal of Colloid and Interface Science, 2023, 641, 875-892.	5.0	4
1511	Aligned Metal–Organic Framework Nanoplates in Mixedâ€Matrix Membranes for Highly Selective CO ₂ /CH ₄ Separation. Advanced Materials Interfaces, 2023, 10, .	1.9	3
1512	Nanofluidic membrane for confined ion transport: From uniform to composite strategy. Materials Today, 2023, 65, 189-206.	8.3	3

#	Article	IF	CITATIONS
1513	Electrically Modulated Nanofiltration Membrane Based on an Arch-Bridged Graphene Structure for Multicomponent Molecular Separation. ACS Nano, 2023, 17, 6627-6637.	7.3	4
1514	Progress towards Stable and High-Performance Polyelectrolyte Multilayer Nanofiltration Membranes for Future Wastewater Treatment Applications. Membranes, 2023, 13, 368.	1.4	6
1515	Boosting membrane carbon capture via multifaceted polyphenol-mediated soldering. Nature Communications, 2023, 14, .	5.8	32
1516	Incorporation of Different Polymeric Additives for Polyvinylidene Fluoride Membrane Fabrication and Its Performance on Methylene Blue Rejection and Antifouling Improvement. Journal of Polymers and the Environment, 2023, 31, 3466-3479.	2.4	3
1517	Internal Concentration Polarization in the Polyamide Active Layer of Thin-Film Composite Membranes. Environmental Science & Technology, 2023, 57, 5999-6007.	4.6	4
1518	Establishing gas transport highways in MOF-based mixed matrix membranes. Science Advances, 2023, 9, .	4.7	12
1519	Retarding the diffusion rate of piperazine through the interface of aqueous/organic phase: Bis-tris propane tuned the trans-state of ultra-low concentration piperazine. Journal of Membrane Science, 2023, 677, 121627.	4.1	1
1520	Donnan Effect-Engineered Covalent Organic Framework Membranes toward Size- and Charge-Based Precise Molecular Sieving. ACS Applied Materials & Interfaces, 2023, 15, 18550-18558.	4.0	5
1521	2D Covalent Organic Framework Membranes for Liquidâ€Phase Molecular Separations: State of the Field, Common Pitfalls, and Future Opportunities. Advanced Materials, 2024, 36, .	11.1	17
1522	Engineering silica membranes for separation performance, hydrothermal stability, and production scalability. , 2023, 3, 100064.		1
1523	Highly tunable structure-by-design polymer brush membranes for organic solvent nanofiltration. Journal of Membrane Science, 2023, 678, 121656.	4.1	3
1524	Grand Challenges in Membrane Applications—Gas and Vapor. , 0, 1, .		1
1525	Cation Exchange Membranes with Biâ€Functional Sites Induced Synergistic Hydrophilic Networks for Selective Proton Transport. Advanced Functional Materials, 2023, 33, .	7.8	5
1526	Designing of the green Î ³ -AlOOH@Naringin thin film composite PVDF based nanofiltration membrane and application for pharmaceutical wastewater treatment. Journal of Environmental Chemical Engineering, 2023, 11, 109952.	3.3	5
1527	Carbon molecular sieve membranes derived from hydrogen-bonded organic frameworks for CO2/CH4 separation. Journal of Membrane Science, 2023, 678, 121674.	4.1	6
1528	Carbon molecular sieve membranes fabricated at low carbonization temperatures with novel polymeric acid porogen for light gas separation. Separation and Purification Technology, 2023, 317, 123883.	3.9	7
1529	Water Purification by 2â€Dimensional Dodecagonal Nitride and Graphenylene via First Principles Calculations. ChemPhysChem, 2023, 24, .	1.0	1
1538	Nanotools for bioanalysis. , 2023, , 297-333.		0

	Сіта	CITATION REPORT	
#	Article	IF	Citations
1556	Zr-MOF membranes with ultra-fast water-selective permeation towards intensification of esterification reaction. Chemical Communications, 2023, 59, 8075-8078.	2.2	3
1583	Advanced stimuli-responsive membranes for smart separation. Chemical Society Reviews, 2023, 52, 4173-4207.	18.7	12
1588	Single-Molecule Fluorescence Investigations of Solute Transport Dynamics in Nanostructured Membrane Separation Materials. Journal of Physical Chemistry B, 2023, 127, 5733-5741.	1.2	0
1593	Transport and fouling in desalination membranes. , 2024, , 670-684.		0
1629	Tailor-made β-ketoenamine-linked covalent organic polymer nanofilms for precise molecular sieving. Materials Horizons, 2023, 10, 5133-5142.	6.4	1
1691	Potential Application of Porous Membrane from Blends of Homopolymer for Industrial Water Treatment. , 2023, , .		0
1696	Mechanisms and models for water transport in reverse osmosis membranes: history, critical assessment, and recent developments. Chemical Society Reviews, 2023, 52, 8455-8480.	18.7	4
1749	Carbon Capture With Fixed-Carrier Membranes. , 2023, , .		0
1771	Recognition and detection technology for microplastic, its source and health effects. Environmental Science and Pollution Research, 2024, 31, 11428-11452.	2.7	0
1795	Review on polymeric membrane materials for gas separations which are stated above the Robeson's trade-off upper bound. , 2024, , 3-28.		0
1798	Occurrence and fate of microplastics in urban water management systems. , 2024, , 181-228.		0
1809	Nanomaterials in gas separations. , 2024, , 579-605.		0
1813	Machine learning for membrane design in energy production, gas separation, and water treatment: a review. Environmental Chemistry Letters, 2024, 22, 505-560.	8.3	0
1818	Ion transport in nanofluidics under external fields. Chemical Society Reviews, 2024, 53, 2972-3001.	18.7	0