Does Task-Specific Training Improve Upper Limb Perfo

Neurorehabilitation and Neural Repair 31, 290-300 DOI: 10.1177/1545968316680493

Citation Report

#	Article	IF	CITATIONS
1	Therapeutic applications of BCI technologies. Brain-Computer Interfaces, 2017, 4, 37-52.	0.9	44
2	Consideration of Dose and Timing When Applying Interventions After Stroke and Spinal Cord Injury. Journal of Neurologic Physical Therapy, 2017, 41, S24-S31.	0.7	24
3	Bimanual coordination: A missing piece of arm rehabilitation after stroke. Restorative Neurology and Neuroscience, 2017, 35, 347-364.	0.4	65
4	A Method for Quantifying Upper Limb Performance in Daily Life Using Accelerometers. Journal of Visualized Experiments, 2017, , .	0.2	53
5	The Evolution of Personalized Behavioral Intervention Technology. Stroke, 2017, 48, 2329-2334.	1.0	19
6	A Mixed Methods Small Pilot Study to Describe the Effects of Upper Limb Training Using a Virtual Reality Gaming System in People with Chronic Stroke. Rehabilitation Research and Practice, 2017, 2017, 1-8.	0.5	12
7	Comparison of Self-Report Versus Sensor-Based Methods for Measuring the Amount of Upper Limb Activity Outside the Clinic. Archives of Physical Medicine and Rehabilitation, 2018, 99, 1913-1916.	0.5	26
8	Closing the Loop: From Motor Neuroscience to Neurorehabilitation. Annual Review of Neuroscience, 2018, 41, 415-429.	5.0	52
9	Accelerating Stroke Recovery: Body Structures and Functions, Activities, Participation, and Quality of Life Outcomes From a Large Rehabilitation Trial. Neurorehabilitation and Neural Repair, 2018, 32, 150-165.	1.4	61
10	Visualisation of upper limb activity using spirals. Prosthetics and Orthotics International, 2018, 42, 37-44.	0.5	20
11	Physical Activity Comparison Between Body Sides in Hemiparetic Patients Using Wearable Motion Sensors in Free-Living and Therapy: A Case Series. Frontiers in Bioengineering and Biotechnology, 2018, 6, 136.	2.0	7
12	Behavioral Outcomes Following Brain–Computer Interface Intervention for Upper Extremity Rehabilitation in Stroke: A Randomized Controlled Trial. Frontiers in Neuroscience, 2018, 12, 752.	1.4	29
13	Wearable Sensors to Monitor, Enable Feedback, and Measure Outcomes of Activity and Practice. Current Neurology and Neuroscience Reports, 2018, 18, 87.	2.0	55
14	Improved quality of life following constraint-induced movement therapy is associated with gains in arm use, but not motor improvement. Topics in Stroke Rehabilitation, 2018, 25, 467-474.	1.0	24
15	Rehabilitation robots for the treatment of sensorimotor deficits: a neurophysiological perspective. Journal of NeuroEngineering and Rehabilitation, 2018, 15, 46.	2.4	240
16	A Dual-Learning Paradigm Simultaneously Improves Multiple Features of Gait Post-Stroke. Neurorehabilitation and Neural Repair, 2018, 32, 810-820.	1.4	16
17	Upper Limb Performance in Daily Life Improves Over the First 12 Weeks Poststroke. Neurorehabilitation and Neural Repair, 2019, 33, 836-847.	1.4	16
18	Egocentric video: a new tool for capturing hand use of individuals with spinal cord injury at home. Journal of NeuroEngineering and Rehabilitation, 2019, 16, 83.	2.4	31

TATION RED

#	Article	IF	CITATIONS
19	Plasticity and recovery of function. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2019, 163, 473-483.	1.0	4
20	Predicting Improved Daily Use of the More Affected Arm Poststroke Following Constraint-Induced Movement Therapy. Physical Therapy, 2019, 99, 1667-1678.	1.1	31
21	Dynamic bimanual force control in chronic stroke: contribution of non-paretic and paretic hands. Experimental Brain Research, 2019, 237, 2123-2133.	0.7	9
22	Self-efficacy and Reach Performance in Individuals With Mild Motor Impairment Due to Stroke. Neurorehabilitation and Neural Repair, 2019, 33, 319-328.	1.4	19
23	Wristband Accelerometers to motiVate arm Exercises after Stroke (WAVES): a pilot randomized controlled trial. Clinical Rehabilitation, 2019, 33, 1391-1403.	1.0	24
24	Sensor Measures of Symmetry Quantify Upper Limb Movement in the Natural Environment Across the Lifespan. Archives of Physical Medicine and Rehabilitation, 2019, 100, 1176-1183.	0.5	25
25	Changes in actual arm-hand use in stroke patients during and after clinical rehabilitation involving a well-defined arm-hand rehabilitation program: A prospective cohort study. PLoS ONE, 2019, 14, e0214651.	1.1	25
26	Effectiveness of a multifactorial context-enhancing functional therapy to promote functional arm use and recovery of stroke survivors: study protocol for a clinical trial. BMJ Open, 2019, 9, e023963.	0.8	1
27	Belief, Confidence, and Motivation to Use the Paretic Upper Limb in Daily Life Over the First 24 Weeks After Stroke. Journal of Neurologic Physical Therapy, 2019, 43, 197-203.	0.7	15
28	"Remind-to-Move―for Promoting Upper Extremity Recovery Using Wearable Devices in Subacute Stroke: A Multi-Center Randomized Controlled Study. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27, 51-59.	2.7	17
29	Research in the Acute Rehabilitation Setting: a Bridge Too Far?. Current Neurology and Neuroscience Reports, 2019, 19, 4.	2.0	5
30	How does context influence arm use after stroke? A qualitative content analysis among rural community-dwelling stroke survivors. Brazilian Journal of Physical Therapy, 2020, 24, 61-68.	1.1	1
31	Recovery of upper limb function is greatest early after stroke but does continue to improve during the chronic phase: a two-year, observational study. Physiotherapy, 2020, 107, 216-223.	0.2	29
32	Effect of Physical Therapy Dosage on Functional Recovery Following TBI. Journal of Acute Care Physical Therapy, 2020, 11, 139-150.	0.0	0
33	The Digital Health Revolution and People with Disabilities: Perspective from the United States. International Journal of Environmental Research and Public Health, 2020, 17, 381.	1.2	31
34	A step toward the future of seamless measurement with wearable sensors in pediatric populations with neuromuscular diseases. Muscle and Nerve, 2020, 61, 265-267.	1.0	4
35	Impaired Motor Control and Neurologic Rehabilitation in Older Adults. , 2020, , 379-399.		0
36	What are physiotherapists and occupational therapists doing in services that replace acute hospital admission? A systematic review. International Journal of Clinical Practice, 2020, 74, e13462.	0.8	1

#	Article	IF	CITATIONS
37	Effectiveness of Virtual Reality- and Gaming-Based Interventions for Upper Extremity Rehabilitation Poststroke: A Meta-analysis. Archives of Physical Medicine and Rehabilitation, 2020, 101, 885-896.	0.5	83
38	Using accelerometry for measurement of motor behavior in children: Relationship of real-world movement to standardized evaluation. Research in Developmental Disabilities, 2020, 96, 103546.	1.2	12
39	Effect of investigator observation on gait parameters in individuals with stroke. Journal of Biomechanics, 2020, 100, 109602.	0.9	15
40	Day-to-Day Variability of Walking Performance Measures in Individuals Poststroke and Individuals With Parkinson Disease. Journal of Neurologic Physical Therapy, 2020, 44, 241-247.	0.7	12
41	Relationships between accelerometry and general compensatory movements of the upper limb after stroke. Journal of NeuroEngineering and Rehabilitation, 2020, 17, 138.	2.4	19
42	Relationship between physical activity levels during rehabilitation hospitalization and life-space mobility following discharge in stroke survivors: A multicenter prospective study. Topics in Stroke Rehabilitation, 2021, 28, 481-487.	1.0	6
43	Functional implications of impaired bimanual force coordination in chronic stroke. Neuroscience Letters, 2020, 738, 135387.	1.0	7
44	Towards Clustering Hand Grasps of Individuals with Spinal Cord Injury in Egocentric Video. , 2020, 2020, 2020, 2151-2154.		5
45	Improving Accelerometry-Based Measurement of Functional Use of the Upper Extremity After Stroke: Machine Learning Versus Counts Threshold Method. Neurorehabilitation and Neural Repair, 2020, 34, 1078-1087.	1.4	30
46	Implementation of Wearable Sensing Technology for Movement: Pushing Forward into the Routine Physical Rehabilitation Care Field. Sensors, 2020, 20, 5744.	2.1	51
47	Effects of a Soft Robotic Glove using a High Repetition Protocol in Chronic Stroke: A Pilot Study. , 2020, , .		6
48	Predictors of Arm Nonuse in Chronic Stroke: A Preliminary Investigation. Neurorehabilitation and Neural Repair, 2020, 34, 512-522.	1.4	25
49	Design and validation of a smart garment to measure positioning practices of parents with young infants. , 2021, 62, 101530.		9
50	Capturing hand use of individuals with spinal cord injury at home using egocentric video: a feasibility study. Spinal Cord Series and Cases, 2021, 7, 17.	0.3	8
51	Making Decision-Making Visible—Teaching the Process of Evaluating Interventions. International Journal of Environmental Research and Public Health, 2021, 18, 3635.	1.2	4
52	A Novel Combination of Accelerometry and Ecological Momentary Assessment for Post-Stroke Paretic Arm/Hand Use: Feasibility and Validity. Journal of Clinical Medicine, 2021, 10, 1328.	1.0	8
53	Perspectives and recommendations of individuals with tetraplegia regarding wearable cameras for monitoring hand function at home: Insights from a community-based study. Journal of Spinal Cord Medicine, 2021, 44, S173-S184.	0.7	9
54	A Novel 3-RRR Spherical Parallel Instrument for Daily Living Emulation (SPINDLE) for Functional Rehabilitation of Patients with Stroke. International Journal of Advanced Robotic Systems, 2021, 18, 172988142110123.	1.3	6

#	Article	IF	CITATIONS
55	Restoration of motor function after CNS damage: is there a potential beyond spontaneous recovery?. Brain Communications, 2021, 3, fcab171.	1.5	1
56	Efficacy and Safety Study of Wearable Cyborg HAL (Hybrid Assistive Limb) in Hemiplegic Patients With Acute Stroke (EARLY GAIT Study): Protocols for a Randomized Controlled Trial. Frontiers in Neuroscience, 2021, 15, 666562.	1.4	4
57	Development of an Inexpensive Harnessing System Allowing Independent Gardening for Balance Training for Mobility Impaired Individuals. Sensors, 2021, 21, 5610.	2.1	0
58	Role of Self-efficacy in the Predictive Relationship of Motor Ability to Functional Performance After Task-Related Training in Stroke: A Secondary Analysis of Longitudinal Data. Archives of Physical Medicine and Rehabilitation, 2021, 102, 1588-1594.	0.5	2
59	Using Subthreshold Vibratory Stimulation During Poststroke Rehabilitation Therapy: A Case Series. OTJR Occupation, Participation and Health, 2022, 42, 30-39.	0.4	6
60	HoMEcare aRm rehabiLItatioN (MERLIN): preliminary evidence of long term effects of telerehabilitation using an unactuated training device on upper limb function after stroke. Journal of NeuroEngineering and Rehabilitation, 2021, 18, 141.	2.4	8
61	Upper Limb Performance in Daily Life Approaches Plateau Around Three to Six Weeks Post-stroke. Neurorehabilitation and Neural Repair, 2021, 35, 903-914.	1.4	27
62	Electromyography Recordings Detect Muscle Activity Before Observable Contractions in Acute Stroke Care. Archives of Rehabilitation Research and Clinical Translation, 2021, 3, 100136.	0.5	4
63	A simulation-based framework with a proprioceptive musculoskeletal model for evaluating the rehabilitation exoskeleton system. Computer Methods and Programs in Biomedicine, 2021, 208, 106270.	2.6	6
64	Daily Life Upper Limb Activity for Patients with Match and Mismatch between Observed Function and Perceived Activity in the Chronic Phase Post Stroke. Sensors, 2021, 21, 5917.	2.1	9
65	Rehabilitation and Recovery of the Patient With Stroke. , 2022, , 879-887.e2.		1
66	Early-phase dose articulation trials are underutilized for post-stroke motor recovery: A systematic scoping review. Annals of Physical and Rehabilitation Medicine, 2022, 65, 101487.	1.1	4
68	Activity Level and Intensity of Older Adults in Skilled Nursing Rehabilitation Measured via Actigraphy. Journal of Geriatric Physical Therapy, 2021, 44, 45-50.	0.6	4
69	Measuring Reliability of Movement With Accelerometry: Fitbit® Versus ActiGraph® . American Journal of Occupational Therapy, 2019, 73, 7302205150p1-7302205150p6.	0.1	9
70	Updates in Motor Learning: Implications for Physical Therapist Practice and Education. Physical Therapy, 2022, 102, .	1.1	36
71	Sensor-Based Categorization of Upper Limb Performance in Daily Life of Persons With and Without Neurological Upper Limb Deficits. Frontiers in Rehabilitation Sciences, 2021, 2, .	0.5	8
73	Comparing Home Upper Extremity Activity With Clinical Evaluations of Arm Function in Chronic Stroke. Archives of Rehabilitation Research and Clinical Translation, 2020, 2, 100048.	0.5	8
75	Failure to Compensate: Patients With Nerve Injury Use Their Injured Dominant Hand, Even When Their Nondominant Is More Dexterous. Archives of Physical Medicine and Rehabilitation, 2022, 103, 899-907.	0.5	7

#	Article	IF	CITATIONS
76	Reward and plasticity: Implications for neurorehabilitation. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2022, 184, 331-340.	1.0	5
77	Leveraging Factors of Self-Efficacy and Motivation to Optimize Stroke Recovery. Frontiers in Neurology, 2022, 13, 823202.	1.1	14
78	Relationship Between Body-Specific Attention to a Paretic Limb and Real-World Arm Use in Stroke Patients: A Longitudinal Study. Frontiers in Systems Neuroscience, 2021, 15, 806257.	1.2	5
79	Determinants of Different Aspects of Upper-Limb Activity after Stroke. Sensors, 2022, 22, 2273.	2.1	3
80	Evolution and prediction of mismatch between observed and perceived upper limb function after stroke: a prospective, longitudinal, observational cohort study. BMC Neurology, 2021, 21, 488.	0.8	3
83	Gains in Daily Stepping Activity in People With Chronic Stroke After High-Intensity Gait Training in Variable Contexts. Physical Therapy, 2022, 102, .	1.1	6
84	Measuring Hand Use in the Home after Cervical Spinal Cord Injury Using Egocentric Video. Journal of Neurotrauma, 2022, 39, 1697-1707.	1.7	6
85	Improvement in the Capacity for Activity Versus Improvement in Performance of Activity in Daily Life During Outpatient Rehabilitation. Journal of Neurologic Physical Therapy, 2023, 47, 16-25.	0.7	18
86	Wearable Robotics for Impaired Upper-Limb Assistance and Rehabilitation: State of the Art and Future Perspectives. IEEE Access, 2022, 10, 106117-106134.	2.6	8
87	Effectiveness of home-based upper limb rehabilitation in stroke survivors: A systematic review and meta-analysis. Frontiers in Neurology, 0, 13, .	1.1	6
88	Classification of functional and non-functional arm use by inertial measurement units in individuals with upper limb impairment after stroke. Frontiers in Physiology, 0, 13, .	1.3	5
89	Perspectives and expectations of stroke survivors using egocentric cameras for monitoring hand function at home: a mixed methods study. Disability and Rehabilitation: Assistive Technology, 0, , 1-11.	1.3	1
90	Recovery of Sensorimotor Functions After Stroke and SCI: Neurophysiological Basis of Rehabilitation Technology. , 2022, , 41-53.		0
91	Use of Technology in the Assessment and Rehabilitation of the Upper Limb After Cervical Spinal Cord Injury. , 2022, , 57-87.		1
92	Wearable Sensors for Stroke Rehabilitation. , 2022, , 467-507.		0
93	Does clinically measured walking capacity contribute to real-world walking performance in Parkinson's disease?. Parkinsonism and Related Disorders, 2022, 105, 123-127.	1.1	0
94	Task-specificity and transfer of skills in school-aged children with and without developmental coordination disorder. Research in Developmental Disabilities, 2023, 133, 104399.	1.2	0
95	Robot-assisted therapy for upper limb paresis after stroke: Use of robotic algorithms in advanced practice. NeuroRehabilitation, 2022, 51, 577-593.	0.5	2

IF ARTICLE CITATIONS # Opportunities for Improving Motor Assessment and Rehabilitation After Stroke by Leveraging Video-Based Pose Estimation. American Journal of Physical Medicine and Rehabilitation, 2023, 102, 96 0.7 5 S68-S74. Control of paretic and non-paretic upper extremity during bimanual reaching after stroke. Journal of Motor Behavior, 2023, 55, 513-524. Additional therapy promotes a continued pattern of improvement in upper-limb function and 98 0.7 0 independence post-stroke. Journal of Stroke and Cerebrovascular Diseases, 2023, 32, 106995. Predicting Arm Nonuse in Individuals with Good Arm Motor Function after Stroke Rehabilitation: A Machine Learning Study. International Journal of Environmental Research and Public Health, 2023, 20, 4123. Effects of a remote-handling-concept–based task-oriented arm training (ReHab-TOAT) on arm-hand skill performance in chronic stroke: a study protocol for a two-armed randomized controlled trial. Trials, 2023, 24, . 100 0.7 1 Providing Hand Use Context for Outpatient Neurorehabilitation with Egocentric Object Detection., 2023,,.

CITATION REPORT