## CITATION REPORT List of articles citing



DOI: 10.1056/nejmoa1611770 New England Journal of Medicine, 2017, 376, 429-439.

Source: https://exaly.com/paper-pdf/66349800/citation-report.pdf

Version: 2024-04-28

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

| #   | Paper                                                                                                                                                                       | IF   | Citations |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 496 | Increased Vasoocclusive Crises in "O" Blood Group Sickle Cell Disease Patients: Association with Underlying Thrombospondin Levels. <b>2017</b> , 9, e2017028                |      | 2         |
| 495 | Go with the Flow. New England Journal of Medicine, 2017, 376, 485-487                                                                                                       | 59.2 | 2         |
| 494 | Unclogging sickle cell anaemia. <b>2017</b> , 18, 214                                                                                                                       |      | 3         |
| 493 | Hypoxia-enhanced adhesion of red blood cells in microscale flow. <b>2017</b> , 24, e12374                                                                                   |      | 28        |
| 492 | Sickle Cell Disease. New England Journal of Medicine, 2017, 376, 1561-1573                                                                                                  | 59.2 | 561       |
| 491 | Heme-mediated cell activation: the inflammatory puzzle of sickle cell anemia. <i>Expert Review of Hematology</i> , <b>2017</b> , 10, 533-541                                | 2.8  | 19        |
| 490 | Crizanlizumab in Sickle Cell Disease. New England Journal of Medicine, 2017, 376, 1795-1796                                                                                 | 59.2 | 9         |
| 489 | [A new therapeutic era in sickle cell disease]. 2017, 38, 569-571                                                                                                           |      |           |
| 488 | Prasugrel hydrochloride for the treatment of sickle cell disease. <b>2017</b> , 26, 865-872                                                                                 |      | 8         |
| 487 | Treating sickle cell disease by targeting HbS polymerization. <i>Blood</i> , <b>2017</b> , 129, 2719-2726                                                                   | 2.2  | 112       |
| 486 | Circulating tumor cells and coagulation-Minireview. <b>2017</b> , 114, 33-42                                                                                                |      | 12        |
| 485 | Pathways to pulmonary hypertension in sickle cell disease: the search for prevention and early intervention. <i>Expert Review of Hematology</i> , <b>2017</b> , 10, 875-890 | 2.8  | 4         |
| 484 | A clinically meaningful fetal hemoglobin threshold for children with sickle cell anemia during hydroxyurea therapy. <b>2017</b> , 92, 1333-1339                             |      | 42        |
| 483 | Failure to Launch: Targeting Inflammation in Acute Coronary Syndromes. 2017, 2, 484-497                                                                                     |      | 29        |
| 482 | Prothrombotic aspects of sickle cell disease. <b>2017</b> , 15, 1307-1316                                                                                                   |      | 29        |
| 481 | Targeting novel mechanisms of pain in sickle cell disease. <i>Blood</i> , <b>2017</b> , 130, 2377-2385                                                                      | 2.2  | 47        |
| 480 | Sickle Mice Are Sensitive to Hypoxia/Ischemia-Induced Stroke but Respond to Tissue-Type Plasminogen Activator Treatment. <b>2017</b> , 48, 3347-3355                        |      | 7         |

| 479 | Reduced toxicity, myeloablative HLA-haploidentical hematopoietic stem cell transplantation with post-transplantation cyclophosphamide for sickle cell disease. <b>2017</b> , 96, 1373-1377 |    | 16  |  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|--|
| 478 | Ser/Thr protein kinase BENADPH oxidase 2 signaling in thromboinflammation. <b>2017</b> , 24, 460-466                                                                                       |    | 3   |  |
| 477 | Targeting novel mechanisms of pain in sickle cell disease. <b>2017</b> , 2017, 546-555                                                                                                     |    | 11  |  |
| 476 | Evolving treatment paradigms in sickle cell disease. <b>2017</b> , 2017, 440-446                                                                                                           |    | 9   |  |
| 475 | Glycoprotein Ib⊞nhibitor (CCP-224) prevents neutrophil-platelet aggregation in Sickle Cell Disease. <i>Blood Advances</i> , <b>2017</b> , 1, 1712-1716                                     | .8 | 13  |  |
| 474 | Pharmacotherapeutical strategies in the prevention of acute, vaso-occlusive pain in sickle cell disease: a systematic review. <i>Blood Advances</i> , <b>2017</b> , 1, 1598-1616           | .8 | 23  |  |
| 473 | Randomized phase 2 trial of regadenoson for treatment of acute vaso-occlusive crises in sickle cell disease. <i>Blood Advances</i> , <b>2017</b> , 1, 1645-1649                            | .8 | 28  |  |
| 472 | Rheumatoid Arthritis in Sickle-Cell Population: Pathophysiologic Insights, Clinical Evaluation and Management. <b>2017</b> , 7,                                                            |    | 6   |  |
| 471 | Predictive Ability of Intermittent Daily Sickle Cell Pain Assessment: The PiSCES Project. <b>2018</b> , 19, 1972-19                                                                        | 81 | O   |  |
| 470 | HemoglobinopathiesBenetically diverse, clinically complex, and globally relevant. 2018, 11, 235-240                                                                                        |    | O   |  |
| 469 | Autonomic nervous system involvement in sickle cell disease. <b>2018</b> , 68, 251-262                                                                                                     |    | 15  |  |
| 468 | Inflammation in sickle cell disease. <b>2018</b> , 68, 263-299                                                                                                                             |    | 76  |  |
| 467 | The Platelet Lifeline to Cancer: Challenges and Opportunities. 2018, 33, 965-983                                                                                                           |    | 202 |  |
| 466 | Sickle Cell Anemia and Its Phenotypes. <b>2018</b> , 19, 113-147                                                                                                                           |    | 34  |  |
| 465 | GATA1 insufficiencies in primary myelofibrosis and other hematopoietic disorders: consequences for therapy. <i>Expert Review of Hematology</i> , <b>2018</b> , 11, 169-184                 | .8 | 17  |  |
| 464 | Mast cell-neural interactions contribute to pain and itch. <b>2018</b> , 282, 168-187                                                                                                      |    | 99  |  |
| 463 | Platelets at the crossroads of thrombosis, inflammation and haemolysis. <i>British Journal of Haematology</i> , <b>2018</b> , 180, 761-767                                                 | .5 | 18  |  |
| 462 | Blockade of placental growth factor reduces vaso-occlusive complications in murine models of sickle cell disease. <b>2018</b> , 60, 73-82.e3                                               |    | 3   |  |

| 461 | Effect of eptifibatide on inflammation during acute pain episodes in sickle cell disease. <b>2018</b> , 93, E99-E1                                                                     | 01  | 3   |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|
| 460 | Antibodies to watch in 2018. <b>2018</b> , 10, 183-203                                                                                                                                 |     | 203 |
| 459 | Novel Sickle Cell Disease Therapies: Targeting Pathways Downstream of Sickling. <b>2018</b> , 55, 68-75                                                                                |     | 9   |
| 458 | Sickle cell disease. <b>2018</b> , 4, 18010                                                                                                                                            |     | 373 |
| 457 | Pathobiology of Sickle Cell Disease Vaso-occlusion and Targeted Therapies. 2018, 41-64                                                                                                 |     | 1   |
| 456 | State of the Art Management of Acute Vaso-occlusive Pain in Sickle Cell Disease. <b>2018</b> , 20, 29-42                                                                               |     | 6   |
| 455 | Ethical Challenges in Hematopoietic Cell Transplantation for Sickle Cell Disease. 2018, 24, 219-227                                                                                    |     | 22  |
| 454 | Current Non-HSCT Treatments for SCD. <b>2018</b> , 65-86                                                                                                                               |     |     |
| 453 | Sickle cell disease: a malady beyond a hemoglobin defect in cerebrovascular disease. <i>Expert Review of Hematology</i> , <b>2018</b> , 11, 45-55                                      | 2.8 | 13  |
| 452 | Clinical and genetic factors are associated with pain and hospitalisation rates in sickle cell anaemia in Cameroon. <i>British Journal of Haematology</i> , <b>2018</b> , 180, 134-146 | 4.5 | 22  |
| 451 | Inflammatory molecule reduction with hydroxyurea therapy in children with sickle cell anemia. <b>2018</b> , 103, e50-e54                                                               |     | 13  |
| 450 | New insights into the pathophysiology and development of novel therapies for sickle cell disease. <b>2018</b> , 2018, 493-506                                                          |     | 14  |
| 449 | Sickle Cell Disease: Advances in Treatment. 2018, 18, 377-389                                                                                                                          |     | 37  |
| 448 | Advances in the Treatment of Sickle Cell Disease. <i>Mayo Clinic Proceedings</i> , <b>2018</b> , 93, 1810-1824                                                                         | 6.4 | 32  |
| 447 | Neutrophils, NETs, and immunothrombosis. <i>Blood</i> , <b>2018</b> , 132, 1360-1361                                                                                                   | 2.2 | 17  |
| 446 | Sickle Cell Disease and Pregnancy. <b>2018</b> , 791-801                                                                                                                               |     |     |
| 445 | How I treat the older adult with sickle cell disease. <i>Blood</i> , <b>2018</b> , 132, 1750-1760                                                                                      | 2.2 | 14  |
| 444 | A dose-ranging study of ticagrelor in children aged 3-17 years with sickle cell disease: A 2-part phase 2 study. <b>2018</b> , 93, 1493-1500                                           |     | 11  |

| 443 | Red blood cell transfusion therapy for sickle cell patients with frequent painful events. 2018, 65, e27423                                                                                     | 9   |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 442 | Measuring success: utility of biomarkers in sickle cell disease clinical trials and care. <b>2018</b> , 2018, 482-492                                                                          | 13  |
| 441 | Determinants of hematology-oncology trainees' postfellowship career pathways with a focus on nonmalignant hematology. <i>Blood Advances</i> , <b>2018</b> , 2, 361-369                         | 6   |
| 440 | The platelet NLRP3 inflammasome is upregulated in sickle cell disease via HMGB1/TLR4 and Bruton tyrosine kinase. <i>Blood Advances</i> , <b>2018</b> , 2, 2672-2680                            | 33  |
| 439 | Hematopoietic stem cell transplantation for sickle cell disease: Progress and challenges. 2018, 65, e27263                                                                                     | 19  |
| 438 | How I diagnose and treat venous thromboembolism in sickle cell disease. <i>Blood</i> , <b>2018</b> , 132, 1761-1769 2.2                                                                        | 20  |
| 437 | Sickle Cell Clinical Research and Intervention Program (SCCRIP): A lifespan cohort study for sickle cell disease progression from the pediatric stage into adulthood. <b>2018</b> , 65, e27228 | 34  |
| 436 | A Scientific Renaissance: Novel Drugs in Sickle Cell Disease. <b>2018</b> , 65, 445-464                                                                                                        | 1   |
| 435 | The Epidemiology and Management of Lung Diseases in Sickle Cell Disease: Lessons Learned from Acute and Chronic Lung Disease in Cystic Fibrosis. <b>2018</b> , 65, 481-493                     | 2   |
| 434 | Targeting pain at its source in sickle cell disease. <b>2018</b> , 315, R104-R112                                                                                                              | 14  |
| 433 | Erythrocytes and Vascular Function: Oxygen and Nitric Oxide. <b>2018</b> , 9, 125                                                                                                              | 68  |
| 432 | Haptoglobin and hemopexin inhibit vaso-occlusion and inflammation in murine sickle cell disease: Role of heme oxygenase-1 induction. <i>PLoS ONE</i> , <b>2018</b> , 13, e0196455              | 59  |
| 431 | A Phase 3 Trial of l-Glutamine in Sickle Cell Disease. <i>New England Journal of Medicine</i> , <b>2018</b> , 379, 226-235 <sub>59.2</sub>                                                     | 212 |
| 430 | Advances in new drug therapies for the management of sickle cell disease. <b>2018</b> , 6, 329-343                                                                                             | 9   |
| 429 | The Glycoscience of Immunity. <b>2018</b> , 39, 523-535                                                                                                                                        | 39  |
| 428 | Alternatively-Activated Macrophages Upregulate Mesothelial Expression of P-Selectin to Enhance Adhesion of Ovarian Cancer Cells. <b>2018</b> , 78, 3560-3573                                   | 35  |
| 427 | Glycan Therapeutics: Resurrecting an Almost Pharma-Forgotten Drug Class. 2018, 1, 1800082                                                                                                      | 10  |
| 426 | Emerging disease-modifying therapies for sickle cell disease. <b>2019</b> , 104, 1710-1719                                                                                                     | 32  |

| 425 | New and emerging treatments for vaso-occlusive pain in sickle cell disease. <i>Expert Review of Hematology</i> , <b>2019</b> , 12, 857-872                                                                                                     | 2.8  | 4  |  |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----|--|
| 424 | Accelerating the Science of SCD Therapies-Is a Cure Possible?. <i>JAMA - Journal of the American Medical Association</i> , <b>2019</b> , 322, 921-922                                                                                          | 27.4 | 4  |  |
| 423 | A Growing Population of Older Adults with Sickle Cell Disease. <b>2019</b> , 35, 349-367                                                                                                                                                       |      | 3  |  |
| 422 | Progress in the development of antiplatelet agents: Focus on the targeted molecular pathway from bench to clinic. <b>2019</b> , 203, 107393                                                                                                    |      | 9  |  |
| 421 | "Stuck on sugars - how carbohydrates regulate cell adhesion, recognition, and signaling". <b>2019</b> , 36, 241                                                                                                                                | -257 | 51 |  |
| 420 | Platelet-Neutrophil Crosstalk in Atherothrombosis. <b>2019</b> , 119, 1274-1282                                                                                                                                                                |      | 40 |  |
| 419 | Targeting P-Selectin Adhesion Molecule in Molecular Imaging: P-Selectin Expression as a Valuable Imaging Biomarker of Inflammation in Cardiovascular Disease. <b>2019</b> , 60, 1691-1697                                                      |      | 10 |  |
| 418 | Systematic Review of l-glutamine for Prevention of Vaso-occlusive Pain Crisis in Patients with Sickle Cell Disease. <b>2019</b> , 39, 1095-1104                                                                                                |      | 13 |  |
| 417 | Allogeneic Hematopoietic Stem Cell Transplantation for Adults with Sickle Cell Disease. <i>Journal of Clinical Medicine</i> , <b>2019</b> , 8,                                                                                                 | 5.1  | 3  |  |
| 416 | Vaso-Occlusion in Sickle Cell Disease: Is Autonomic Dysregulation of the Microvasculature the Trigger?. <i>Journal of Clinical Medicine</i> , <b>2019</b> , 8,                                                                                 | 5.1  | 14 |  |
| 415 | Novel Reversible Fluorescent Glycan Linker for Functional Glycomics. <b>2019</b> , 30, 2897-2908                                                                                                                                               |      | 10 |  |
| 414 | Sickle cell disease in the era of precision medicine: looking to the future. <b>2019</b> , 4, 357-367                                                                                                                                          |      | 2  |  |
| 413 | Mechanisms of haemolysis-induced kidney injury. <b>2019</b> , 15, 671-692                                                                                                                                                                      |      | 47 |  |
| 412 | Validation of a composite vascular high-risk profile for adult patients with sickle cell disease. <b>2019</b> , 94, E312-E314                                                                                                                  |      | 2  |  |
| 411 | T-cell deplete versus T-cell replete haploidentical hematopoietic stem cell transplantation for sickle cell disease: where are we?. <i>Expert Review of Hematology</i> , <b>2019</b> , 12, 733-752                                             | 2.8  | 4  |  |
| 410 | Identifying Clinical and Research Priorities in Sickle Cell Lung Disease. An Official American Thoracic Society Workshop Report. <b>2019</b> , 16, e17-e32                                                                                     |      | 15 |  |
| 409 | Ticagrelor versus placebo for the reduction of vaso-occlusive crises in pediatric sickle cell disease:<br>Rationale and design of a randomized, double-blind, parallel-group, multicenter phase 3 study<br>(HESTIA3). <b>2019</b> , 85, 105835 |      | 4  |  |
| 408 | Profile of crizanlizumab and its potential in the prevention of pain crises in sickle cell disease: evidence to date. <b>2019</b> , 10, 307-311                                                                                                |      | 7  |  |

| 407 | Translational glycobiology: from bench to bedside. <b>2019</b> , 112, 424-427                                                                                       | 4  |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 406 | Mechanisms of NRF2 activation to mediate fetal hemoglobin induction and protection against oxidative stress in sickle cell disease. <b>2019</b> , 244, 171-182      | 8  |
| 405 | cGMP modulation therapeutics for sickle cell disease. <b>2019</b> , 244, 132-146                                                                                    | 14 |
| 404 | Insight into the complex pathophysiology of sickle cell anaemia and possible treatment. <b>2019</b> , 102, 319-330                                                  | 18 |
| 403 | Redox Signaling in Sickle Cell Disease. <b>2019</b> , 9, 26-33                                                                                                      | 7  |
| 402 | Epidemiological, clinical, and severity characterization of sickle cell disease in a population from the Brazilian Amazon. <b>2019</b> , 12, 204-210                | 5  |
| 401 | [What's new in diagnostics and treatment of hemoglobinopathies?]. <b>2019</b> , 144, 719-723                                                                        |    |
| 400 | Biologic roles of the ABH and Lewis histo-blood group antigens part II: thrombosis, cardiovascular disease and metabolism. <b>2019</b> , 114, 535-552               | 32 |
| 399 | Sickle cell disease: Clinical presentation and management of a global health challenge. <b>2019</b> , 37, 100580                                                    | 22 |
| 398 | Patrolling monocytes scavenge endothelial-adherent sickle RBCs: a novel mechanism of inhibition of vaso-occlusion in SCD. <i>Blood</i> , <b>2019</b> , 134, 579-590 | 14 |
| 397 | Sickle Cell Disease-Genetics, Pathophysiology, Clinical Presentation and Treatment. <b>2019</b> , 5, 20                                                             | 32 |
| 396 | Mast Cells Induce Blood Brain Barrier Damage in SCD by Causing Endoplasmic Reticulum Stress in the Endothelium. <b>2019</b> , 13, 56                                | 17 |
| 395 | P-selectin plays a role in haem-induced acute lung injury in sickle mice. <i>British Journal of Haematology</i> , <b>2019</b> , 186, 329-333                        | 11 |
| 394 | Ischemia-Reperfusion Injury in Sickle Cell Disease: From Basics to Therapeutics. <b>2019</b> , 189, 706-718                                                         | 19 |
| 393 | P-selectin drives complement attack on endothelium during intravascular hemolysis in TLR-4/heme-dependent manner. <b>2019</b> , 116, 6280-6285                      | 51 |
| 392 | Complement activation during intravascular hemolysis: Implication for sickle cell disease and hemolytic transfusion reactions. <b>2019</b> , 26, 116-124            | 19 |
| 391 | Sickle Cell Disease: Monitoring, Current Treatment, and Therapeutics Under Development. <b>2019</b> , 33, 355-371                                                   | 9  |
| 390 | Population Pharmacokinetics/Pharmacodynamics of Ticagrelor in Children with Sickle Cell Disease. <b>2019</b> , 58, 1295-1307                                        | 6  |

| 389 | From Budd-Chiari syndrome to acquired von Willebrand syndrome: thrombosis and bleeding complications in the myeloproliferative neoplasms. <b>2019</b> , 2019, 397-406                                    | 14 |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 388 | From Budd-Chiari syndrome to acquired von Willebrand syndrome: thrombosis and bleeding complications in the myeloproliferative neoplasms. <i>Blood</i> , <b>2019</b> , 134, 1902-1911                    | 13 |
| 387 | Role of the coagulation system in the pathogenesis of sickle cell disease. <i>Blood Advances</i> , <b>2019</b> , 3, 3170-3/1800                                                                          | 19 |
| 386 | End points for sickle cell disease clinical trials: patient-reported outcomes, pain, and the brain.  **Blood Advances**, <b>2019</b> , 3, 3982-4001**  7.8                                               | 25 |
| 385 | Neutrophil extracellular traps in breast cancer and beyond: current perspectives on NET stimuli, thrombosis and metastasis, and clinical utility for diagnosis and treatment. <b>2019</b> , 21, 145      | 55 |
| 384 | The Sickle Cell Disease Ontology: enabling universal sickle cell-based knowledge representation. <b>2019</b> , 2019,                                                                                     | 6  |
| 383 | Improving the Standards of Reporting of Clinical Trial Data. <b>2019</b> , 2168479019879099                                                                                                              |    |
| 382 | P-Selectin Is Critical for De Novo Pulmonary Arterial Thrombosis Following Blunt Thoracic Trauma. <b>2019</b> , 86, 583-591                                                                              | 8  |
| 381 | Vascular endothelial cell expression of JAK2 is sufficient to promote a pro-thrombotic state due to increased P-selectin expression. <b>2019</b> , 104, 70-81                                            | 49 |
| 380 | Critical role of C5a in sickle cell disease. <b>2019</b> , 94, 327-337                                                                                                                                   | 29 |
| 379 | Smooth Muscle Cells: A Novel Site of P-Selectin Expression with Pathophysiological and Therapeutic Relevance in Pulmonary Hypertension. <b>2019</b> , 199, 1307-1309                                     | 6  |
| 378 | Ticagrelor does not impact patient-reported pain in young adults with sickle cell disease: a multicentre, randomised phase IIb study. <i>British Journal of Haematology</i> , <b>2019</b> , 184, 269-278 | 15 |
| 377 | Anemia in the Young and Old. <b>2019</b> ,                                                                                                                                                               |    |
| 376 | New Therapeutic Options for the Treatment of Sickle Cell Disease. <b>2019</b> , 11, e2019002                                                                                                             | 16 |
| 375 | Factor H interferes with the adhesion of sickle red cells to vascular endothelium: a novel disease-modulating molecule. <b>2019</b> , 104, 919-928                                                       | 22 |
| 374 | New insights into the causes of thrombotic events in patients with myeloproliferative neoplasms raise the possibility of novel therapeutic approaches. <b>2019</b> , 104, 3-6                            | 12 |
| 373 | Therapeutic strategies for sickle cell disease: towards a multi-agent approach. <b>2019</b> , 18, 139-158                                                                                                | 71 |
| 372 | Emerging pharmacotherapeutic approaches for the management of sickle cell disease. <b>2019</b> , 20, 173-186                                                                                             | 11 |

## (2020-2019)

| 371 | Effect of crizanlizumab on pain crises in subgroups of patients with sickle cell disease: A SUSTAIN study analysis. <b>2019</b> , 94, 55-61                                                    | 50           |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| 370 | Hemostatic Aspects of Sickle Cell Disease. <b>2019</b> , 819-842                                                                                                                               |              |
| 369 | Not all red cells sickle the same: Contributions of the reticulocyte to disease pathology in sickle cell anemia. <b>2020</b> , 40, 100637                                                      | 6            |
| 368 | Intestinal pathophysiological and microbial changes in sickle cell disease: Potential targets for therapeutic intervention. <i>British Journal of Haematology</i> , <b>2020</b> , 188, 488-493 | 9            |
| 367 | Innovations in Targeted Anti-Adhesion Treatment for Sickle Cell Disease. 2020, 107, 140-146                                                                                                    | 3            |
| 366 | Treating sickle cell anemia: A new era dawns. <b>2020</b> , 95, 338-342                                                                                                                        | 10           |
| 365 | Longitudinal RNA-Seq Analysis of the Repeatability of Gene Expression and Splicing in Human Platelets Identifies a Platelet Splice QTL. <b>2020</b> , 126, 501-516                             | 15           |
| 364 | Emerging drugs in randomized controlled trials for sickle cell disease: are we on the brink of a new era in research and treatment?. <b>2020</b> , 29, 23-31                                   | 9            |
| 363 | [Advances in sickle cell disease treatments: Towards targeted therapies]. 2020, 41, 73-77                                                                                                      | 1            |
| 362 | Passive Monoclonal and Polyclonal Antibody Therapies. <b>2020</b> , 251-348                                                                                                                    | 5            |
| 361 | Pro-inflammatory cytokines associate with NETosis during sickle cell vaso-occlusive crises. <b>2020</b> , 127, 154933                                                                          | 18           |
| 360 | Managing patients with sickle cell disease in primary care. <b>2020</b> , 33, 21-28                                                                                                            | 1            |
| 359 | Gene Therapy of the Hemoglobinopathies. <b>2020</b> , 4, e479                                                                                                                                  | 9            |
| 358 | Non-hematopoietic deficiency of proprotein convertase subtilisin/kexin type 9 deficiency leads to more severe anemia in a murine model of sickle cell disease. <b>2020</b> , 10, 16514         | 2            |
| 357 | Severe infusion-related reaction to crizanlizumab in an adolescent with sickle cell disease. <b>2020</b> , 95, E338-E33                                                                        | 3 <b>9</b> 5 |
| 356 | Douleur aigu[ <b>2020</b> , 21, S1-S5                                                                                                                                                          |              |
| 355 | Polymorphisms in Inflammatory Genes Modulate Clinical Complications in Patients With Sickle Cell Disease. <b>2020</b> , 11, 2041                                                               | 5            |
| 354 | Parents of Children with Sickle Cell Disease Are Interested in Preimplantation Genetic Testing. <b>2020</b> , 223, 178-182.e2                                                                  | 5            |

| 353 | What is the future of patient-reported outcomes in sickle-cell disease?. <i>Expert Review of Hematology</i> , <b>2020</b> , 13, 1165-1173                                                     | 2.8 | 2  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|
| 352 | Current and novel therapies for the prevention of vaso-occlusive crisis in sickle cell disease. <b>2020</b> , 11, 2040620720955000                                                            |     | 7  |
| 351 | Comparison of US Federal and Foundation Funding of Research for Sickle Cell Disease and Cystic Fibrosis and Factors Associated With Research Productivity. <b>2020</b> , 3, e201737           |     | 37 |
| 350 | Exploration of Structure-Activity Relationship of Aromatic Aldehydes Bearing Pyridinylmethoxy-Methyl Esters as Novel Antisickling Agents. <b>2020</b> , 63, 14724-14739                       |     | 2  |
| 349 | An Investigation of Structure-Activity Relationships of Azolylacryloyl Derivatives Yielded Potent and Long-Acting Hemoglobin Modulators for Reversing Erythrocyte Sickling. <b>2020</b> , 10, |     | 3  |
| 348 | Hydroxyurea treatment is associated with reduced degree of oxidative perturbation in children and adolescents with sickle cell anemia. <b>2020</b> , 10, 18982                                |     | 1  |
| 347 | The role of haematopoietic stem cell transplantation for sickle cell disease in the era of targeted disease-modifying therapies and gene editing. <b>2020</b> , 7, e902-e911                  |     | 3  |
| 346 | HRI depletion cooperates with pharmacologic inducers to elevate fetal hemoglobin and reduce sickle cell formation. <i>Blood Advances</i> , <b>2020</b> , 4, 4560-4572                         | 7.8 | 8  |
| 345 | Curative vs targeted therapy for SCD: does it make more sense to address the root cause than target downstream events?. <i>Blood Advances</i> , <b>2020</b> , 4, 3457-3465                    | 7.8 | 5  |
| 344 | Novel Approaches to Fine-Tune Therapeutic Targeting of Platelets in Atherosclerosis: A Critical Appraisal. <b>2020</b> , 120, 1492-1504                                                       |     | 3  |
| 343 | Intestinal epithelial glycosylation in homeostasis and gut microbiota interactions in IBD. <b>2020</b> , 17, 597-                                                                             | 617 | 45 |
| 342 | Effect of Inhaled Cannabis for Pain in Adults With Sickle Cell Disease: A Randomized Clinical Trial. <b>2020</b> , 3, e2010874                                                                |     | 15 |
| 341 | The Gut Microbiome Regulates Psychological-Stress-Induced Inflammation. 2020, 53, 417-428.e4                                                                                                  |     | 29 |
| 340 | Sickle Cell Disease: A Paradigm for Venous Thrombosis Pathophysiology. <b>2020</b> , 21,                                                                                                      |     | 4  |
| 339 | Repurposing pyridoxamine for therapeutic intervention of intravascular cell-cell interactions in mouse models of sickle cell disease. <b>2020</b> , 105, 2407-2419                            |     | 1  |
| 338 | Red blood cell adhesion to ICAM-1 is mediated by fibrinogen and is associated with right-to-left shunts in sickle cell disease. <i>Blood Advances</i> , <b>2020</b> , 4, 3688-3698            | 7.8 | 11 |
| 337 | Efficacy and safety of recently approved drugs for sickle cell disease: a review of clinical trials. <b>2020</b> , 92, 11-18.e1                                                               |     | 12 |
| 336 | Crizanlizumab and comparators for adults with sickle cell disease: a systematic review and network meta-analysis. <b>2020</b> , 10, e034147                                                   |     | 4  |

| 335 | Interleukin-1 receptor inhibition reduces stroke size in a murine model of sickle cell disease. <b>2021</b> , 106, 2469-2477                                                                     |        | 1      |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|
| 334 | The molecular basis for the prothrombotic state in sickle cell disease. <b>2020</b> , 105, 2368-2379                                                                                             |        | 12     |
| 333 | MEMSID: Results From a Phase 2 Pilot Study on Memantine Treatment for Sickle Cell Disease. <b>2020</b> , 4, e452                                                                                 |        | 1      |
| 332 | Assessment of Patient and Caregiver Attitudes and Approaches to Decision-Making Regarding Bone Marrow Transplant for Sickle Cell Disease: A Qualitative Study. <b>2020</b> , 3, e206742          |        | 6      |
| 331 | Vaso-occlusive crises and costs of sickle cell disease in patients with commercial, Medicaid, and Medicare insurance - the perspective of private and public payers. <b>2020</b> , 23, 1345-1355 |        | 7      |
| 330 | Integrin VLA-4 as a PET imaging biomarker of hyper-adhesion in transgenic sickle mice. <i>Blood Advances</i> , <b>2020</b> , 4, 4102-4112                                                        | 7.8    | 4      |
| 329 | Challenges in the Management of Sickle Cell Disease During SARS-CoV-2 Pandemic. <b>2020</b> , 26, 1076029                                                                                        | 62095! | 52⁄340 |
| 328 | VZHE-039, a novel antisickling agent that prevents erythrocyte sickling under both hypoxic and anoxic conditions. <b>2020</b> , 10, 20277                                                        |        | 4      |
| 327 | Cadherins, Selectins, and Integrins in CAM-DR in Leukemia. <b>2020</b> , 10, 592733                                                                                                              |        | 9      |
| 326 | Sickle cell disease as a vascular disorder. Expert Review of Hematology, 2020, 13, 645-653                                                                                                       | 2.8    | 2      |
| 325 | Thrombin activation of PAR-1 contributes to microvascular stasis in mouse models of sickle cell disease. <i>Blood</i> , <b>2020</b> , 135, 1783-1787                                             | 2.2    | 19     |
| 324 | Sickle cell vaso-occlusion: the clot thickens. <i>Blood</i> , <b>2020</b> , 135, 1726-1727                                                                                                       | 2.2    |        |
| 323 | Plasma microparticles of sickle patients during crisis or taking hydroxyurea modify endothelium inflammatory properties. <i>Blood</i> , <b>2020</b> , 136, 247-256                               | 2.2    | 11     |
| 322 | P-selectin blockade in COVID-19-related ARDS. <b>2020</b> , 318, L1237-L1238                                                                                                                     |        | 24     |
| 321 | Crizanlizumab. <b>2020</b> , 001857872092537                                                                                                                                                     |        | 1      |
| 320 | Small molecule therapeutics to treat the Eglobinopathies. <b>2020</b> , 27, 129-140                                                                                                              |        | 6      |
| 319 | Advances in Sickle Cell Disease Management. <b>2020</b> , 67, 57-71                                                                                                                              |        | 3      |
| 318 | Recent Advances in the Treatment of Sickle Cell Disease. <b>2020</b> , 11, 435                                                                                                                   |        | 40     |

| 317 | Randomized phase 2 trial of Intravenous Gamma Globulin (IVIG) for the treatment of acute vaso-occlusive crisis in patients with sickle cell disease: Lessons learned from the midpoint analysis. <b>2020</b> , 52, 102481 |      | 1  |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----|
| 316 | American Society of Hematology 2020 guidelines for sickle cell disease: management of acute and chronic pain. <i>Blood Advances</i> , <b>2020</b> , 4, 2656-2701                                                          | 7.8  | 53 |
| 315 | Leukocyte adhesion to P-selectin and the inhibitory role of Crizanlizumab in sickle cell disease: A standardized microfluidic assessment. <b>2020</b> , 83, 102424                                                        |      | 17 |
| 314 | Pathophysiology and recent therapeutic insights of sickle cell disease. <b>2020</b> , 99, 925-935                                                                                                                         |      | 7  |
| 313 | Emerging therapies in sickle cell disease. British Journal of Haematology, 2020, 190, 149-172                                                                                                                             | 4.5  | 16 |
| 312 | Is sickle cell disease-related neurotoxicity a systemic endotheliopathy?. <b>2020</b> , 13, 111-115                                                                                                                       |      |    |
| 311 | Haploidentical bone marrow transplant with posttransplant cyclophosphamide for sickle cell disease: An update. <b>2020</b> , 13, 91-97                                                                                    |      | 1  |
| 310 | A Comprehensive Review of the Treatment and Management of Pain in Sickle Cell Disease. <b>2020</b> , 24, 17                                                                                                               |      | 2  |
| 309 | Mechanisms underlying priapism in sickle cell disease: targeting and key innovations on the preclinical landscape. <b>2020</b> , 24, 439-450                                                                              |      | 4  |
| 308 | Treating sickle cell anemia. <b>2020</b> , 367, 1198-1199                                                                                                                                                                 |      | 16 |
| 307 | Improved health care utilization and costs in transplanted versus non-transplanted adults with sickle cell disease. <i>PLoS ONE</i> , <b>2020</b> , 15, e0229710                                                          | 3.7  | 5  |
| 306 | Cardiac causes of hypoxia in sickle cell disease. <b>2020</b> , 56, 101192                                                                                                                                                |      |    |
| 305 | Crizanlizumab: First Approval. <b>2020</b> , 80, 79-84                                                                                                                                                                    |      | 18 |
| 304 | Blood rheology biomarkers in sickle cell disease. <b>2020</b> , 245, 155-165                                                                                                                                              |      | 8  |
| 303 | Innate immune cells, major protagonists of sickle cell disease pathophysiology. <b>2020</b> , 105, 273-283                                                                                                                |      | 11 |
| 302 | The Evolving Pharmacotherapeutic Landscape for the Treatment of Sickle Cell Disease. <b>2020</b> , 12, e2020                                                                                                              | 0010 | 20 |
| 301 | Systematic Review of Voxelotor: A First-in-Class Sickle Hemoglobin Polymerization Inhibitor for Management of Sickle Cell Disease. <b>2020</b> , 40, 525-534                                                              |      | 5  |
| 300 | Tandem P-selectin glycoprotein ligand immunoglobulin prevents lung vaso-occlusion in sickle cell disease mice. <b>2020</b> , 84, 1-6.e1                                                                                   |      | 2  |

| 299         | Systematic Review of Crizanlizumab: A New Parenteral Option to Reduce Vaso-occlusive Pain Crises in Patients with Sickle Cell Disease. <b>2020</b> , 40, 535-543                                                                                                                            | 8   |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 298         | Improving the Standards of Reporting of Clinical Trial Data. <b>2020</b> , 54, 717-722                                                                                                                                                                                                      |     |
| 297         | The vaso-occlusive pain crisis in sickle cell disease: Definition, pathophysiology, and management. <b>2020</b> , 105, 237-246                                                                                                                                                              | 33  |
| 296         | Update in Pulmonary Vascular Diseases and Right Ventricular Dysfunction 2019. <b>2020</b> , 202, 22-28                                                                                                                                                                                      | 3   |
| 295         | P-selectin-deficient mice to study pathophysiology of sickle cell disease. <i>Blood Advances</i> , <b>2020</b> , 4, 266-27 <del>3</del> 8                                                                                                                                                   | 14  |
| 294         | An Analysis of Racial and Ethnic Backgrounds Within the CASiRe International Cohort of Sickle Cell Disease Patients: Implications for Disease Phenotype and Clinical Research. <b>2021</b> , 8, 99-106                                                                                      | 4   |
| 293         | Evaluation of Longitudinal Pain Study in Sickle Cell Disease (ELIPSIS) by patient-reported outcomes, actigraphy, and biomarkers. <i>Blood</i> , <b>2021</b> , 137, 2010-2020                                                                                                                | 4   |
| 292         | Clinical insights into the origins of thrombosis in myeloproliferative neoplasms. <i>Blood</i> , <b>2021</b> , 137, 1145-1 <u>4</u> . <u>5</u> 3                                                                                                                                            | 16  |
| 291         | CRISPR-Cas9 Gene Editing for Sickle Cell Disease and EThalassemia. <i>New England Journal of Medicine</i> , <b>2021</b> , 384, 252-260                                                                                                                                                      | 292 |
| <b>2</b> 90 | Xanthine Oxidase Drives Hemolysis and Vascular Malfunction in Sickle Cell Disease. <b>2021</b> , 41, 769-782                                                                                                                                                                                | 6   |
| 289         | L-glutamine use in adults with sickle cell disease: Clinical trials where success meets reality. <b>2021</b> , 96, E38-E40                                                                                                                                                                  | 7   |
| 288         | Systematic Review/Meta-Analysis on Efficacy of Allogeneic Hematopoietic Cell Transplantation in Sickle Cell Disease: An International Effort on Behalf of the Pediatric Diseases Working Party of European Society for Blood and Marrow Transplantation and the Sickle Cell Transplantation | 1   |
| 287         | A pilot study of procoagulant platelet extracellular vesicles and P-selectin increase during induction treatment in acute lymphoblastic leukaemia paediatric patients: two new biomarkers of thrombogenic risk?. <b>2021</b> , 51, 711-719                                                  | 1   |
| 286         | PF-07059013: A Noncovalent Modulator of Hemoglobin for Treatment of Sickle Cell Disease. <b>2021</b> , 64, 326-342                                                                                                                                                                          | 10  |
| 285         | Oxygen gradient ektacytometry-derived biomarkers are associated with vaso-occlusive crises and correlate with treatment response in sickle cell disease. <b>2021</b> , 96, E29-E32                                                                                                          | 9   |
| 284         | What are the key considerations when prescribing pharmacotherapy for sickle cell anemia?. <b>2021</b> , 22, 5-8                                                                                                                                                                             |     |
| 283         | Can red blood cell function assays assess response to red cell-modifying therapies?. 2021,                                                                                                                                                                                                  | 1   |
| 282         | The Worst Things in Life are Free: The Role of Free Heme in Sickle Cell Disease. <b>2020</b> , 11, 561917                                                                                                                                                                                   | 15  |

| 281         | Endothelial TLR4 Expression Mediates Vaso-Occlusive Crisis in Sickle Cell Disease. <b>2020</b> , 11, 613278                                                                                                                        | 9  |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| <b>2</b> 80 | Voxelotor: alteration of sickle cell disease pathophysiology by a first-in-class polymerization inhibitor. <b>2021</b> , 12, 20406207211001136                                                                                     | 2  |
| 279         | Lipids   Glycan-Dependent Cell Adhesion Processes. <b>2021</b> , 654-662                                                                                                                                                           |    |
| 278         | The clinical impact of glycobiology: targeting selectins, Siglecs and mammalian glycans. <b>2021</b> , 20, 217-243                                                                                                                 | 60 |
| 277         | Therapeutic gene editing strategies using CRISPR-Cas9 for the Ehemoglobinopathies. 2020, 35, 115-134                                                                                                                               | 2  |
| 276         | Prevention and Management of Thrombosis in BCR/ABL-Negative Myeloproliferative Neoplasms. <b>2021</b> , 41, 48-57                                                                                                                  | 6  |
| 275         | Non-myeloablative human leukocyte antigen-matched related donor transplantation in sickle cell disease: outcomes from three independent centres. <i>British Journal of Haematology</i> , <b>2021</b> , 192, 761-768 <sup>4.5</sup> | 9  |
| 274         | Hematopoietic-Stem-Cell-Targeted Gene-Addition and Gene-Editing Strategies for Ehemoglobinopathies. <b>2021</b> , 28, 191-208                                                                                                      | 4  |
| 273         | Sulfated non-anticoagulant heparin derivative modifies intracellular hemoglobin, inhibits cell sickling, and prolongs survival of sickle cell mice under hypoxia. <b>2021</b> ,                                                    |    |
| 272         | Stroke and presence of patent foramen ovale in sickle cell disease. <b>2021</b> , 52, 889-897                                                                                                                                      | 2  |
| 271         | Determinants of Use of Biotherapeutics in sub-Saharan Africa. 2021, 42, 75-84                                                                                                                                                      | 3  |
| 270         | Pharmacokinetics and safety of ticagrelor in infants and toddlers with sickle cell disease aged . <b>2021</b> , 68, e28977                                                                                                         | O  |
| 269         | Management of Sickle Cell Disease Complications Beyond Acute Chest Syndrome. <b>2021</b> , 12, 101-114                                                                                                                             | 2  |
| 268         | Biophysical and rheological biomarkers of red blood cell physiology and pathophysiology. <b>2021</b> , 28, 138-149                                                                                                                 | 5  |
| 267         | Gene therapy for hemoglobinopathies. <b>2021</b> , 60, 103061                                                                                                                                                                      | 0  |
| 266         | P-Selectin Blockade in the Treatment of Painful Vaso-Occlusive Crises in Sickle Cell Disease: A Spotlight on Crizanlizumab. <b>2021</b> , 14, 849-856                                                                              | 6  |
| 265         | Longitudinal Assessment of Retinal Thinning in Adults With and Without Sickle Cell Retinopathy Using Spectral-Domain Optical Coherence Tomography. <b>2021</b> , 139, 330-337                                                      | 3  |
| 264         | American Society of Hematology 2020 Podcast Collection: Sickle Cell Anaemia. <b>2021</b> , 38, 1-7                                                                                                                                 |    |

| 263 | The impact of vaso-occlusive crises and disease severity on quality of life and productivity among patients with sickle cell disease in the US. <b>2021</b> , 37, 761-768  | 1              |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| 262 | Voxelotor for the treatment of sickle cell disease. <i>Expert Review of Hematology</i> , <b>2021</b> , 14, 253-262 2.8                                                     | 1              |
| 261 | Automated Oxygen Gradient Ektacytometry: A Novel Biomarker in Sickle Cell Anemia. <b>2021</b> , 12, 636609                                                                 | 1              |
| 260 | Medical treatment of recurrent ischaemic priapism: a review of current molecular therapeutics and a new clinical management paradigm. <b>2021</b> , 127, 498-506           | 2              |
| 259 | Pathogenesis of cardiovascular events in BCR-ABL1-negative myeloproliferative neoplasms. <b>2021</b> , 35, 935-955                                                         | 4              |
| 258 | Cardiac pathophysiology in sickle cell disease. <b>2021</b> , 52, 248-259                                                                                                  | 1              |
| 257 | MetAP2 inhibition modifies hemoglobin S to delay polymerization and improves blood flow in sickle cell disease. <i>Blood Advances</i> , <b>2021</b> , 5, 1388-1402         | 1              |
| 256 | Quantification of intermittent retinal capillary perfusion in sickle cell disease. <b>2021</b> , 12, 2825-2840                                                             | O              |
| 255 | Current Clinical Investigations in Myelofibrosis. <b>2021</b> , 35, 353-373                                                                                                | 2              |
| 254 | Targeting Neutrophil Adhesive Events to Address Vaso-Occlusive Crisis in Sickle Cell Patients. <b>2021</b> , 12, 663886                                                    | 1              |
| 253 | Preclinical evaluation for engraftment of CD34 cells gene-edited at the sickle cell disease locus in xenograft mouse and non-human primate models. <b>2021</b> , 2, 100247 | 4              |
| 252 | Vasculopathy in Sickle Cell Disease: From Red Blood Cell Sickling to Vascular Dysfunction. <b>2021</b> , 11, 1785-180                                                      | 3 <sub>5</sub> |
| 251 | Advances in Sickle Cell Disease Treatments. <b>2021</b> , 28, 2008-2032                                                                                                    | 3              |
| 250 | 2019-2020 Drug Updates in Hematologic Malignancies. <b>2021</b> , 12, 279-283                                                                                              | 1              |
| 249 | Therapeutic Strategies for the Treatment of Sickle Cell Disease. 1-31                                                                                                      | 1              |
| 248 | Novel Pathophysiological Mechanisms of Thrombosis in Myeloproliferative Neoplasms. <b>2021</b> , 16, 304-313                                                               | 9              |
| 247 | Crizanlizumab for the Prevention of Vaso-Occlusive Pain Crises in Sickle Cell Disease. <b>2021</b> , 37, 209-215                                                           | 1              |
| 246 | Thrombotic, Vascular, and Bleeding Complications of the Myeloproliferative Neoplasms. <b>2021</b> , 35, 305-324                                                            | 1              |

| 245 | Sickle cell vaso-occlusion: The dialectic between red cells and white cells. <b>2021</b> , 246, 1458-1472                                                                                     |       | 3  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----|
| 244 | P-selectin deficiency promotes liver senescence in sickle cell disease mice. <i>Blood</i> , <b>2021</b> , 137, 2676-2680                                                                      | 2.2   | 4  |
| 243 | Disease severity impacts plerixafor-mobilized stem cell collection in patients with sickle cell disease. <i>Blood Advances</i> , <b>2021</b> , 5, 2403-2411                                   | 7.8   | 6  |
| 242 | Sevuparin for the treatment of acute pain crisis in patients with sickle cell disease: a multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. <b>2021</b> , 8, e334-e343 |       | 7  |
| 241 | Sevuparin trial for acute pain in sickle cell disease: the dog that did not bark. 2021, 8, e307-e309                                                                                          |       | O  |
| 240 | P-selectin and sickle cell disease: a balancing act. <i>Blood</i> , <b>2021</b> , 137, 2573-2574                                                                                              | 2.2   | 1  |
| 239 | A long-half-life, high-affinity P-selectin inhibitor. <i>Blood</i> , <b>2021</b> , 138, 1096-1097                                                                                             | 2.2   | 1  |
| 238 | Gene therapy as the new frontier for Sickle Cell Disease. 2021,                                                                                                                               |       | 1  |
| 237 | A PSGL-1 glycomimetic reduces thrombus burden without affecting hemostasis. <i>Blood</i> , <b>2021</b> , 138, 1182-                                                                           | 1.193 | 3  |
| 236 | Cost-effectiveness of a hypothetical cell or gene therapy cure for sickle cell disease. <b>2021</b> , 11, 10838                                                                               |       | 3  |
| 235 | Contemporary Management and Prevention of Vaso-Occlusive Crises (VOCs) in Adults With Sickle Cell Disease. <b>2021</b> , 8971900211026644                                                     |       | 1  |
| 234 | The European Medicines Agency Review of Crizanlizumab for the Prevention of Recurrent Vaso-Occlusive Crises in Patients With Sickle Cell Disease. <b>2021</b> , 5, e604                       |       | 1  |
| 233 | Selectins impair regulatory T cell function and contribute to systemic lupus erythematosus pathogenesis. <b>2021</b> , 13,                                                                    |       | 6  |
| 232 | Innovative Treatments for Rare Anemias. <b>2021</b> , 5, e576                                                                                                                                 |       | O  |
| 231 | Microvascular thrombosis and clinical implications. <b>2021</b> , 156, 609-614                                                                                                                |       |    |
| 230 | Development of Eglobin gene correction in human hematopoietic stem cells as a potential durable treatment for sickle cell disease. <b>2021</b> , 13,                                          |       | 12 |
| 229 | Research in Sickle Cell Disease: From Bedside to Bench to Bedside. <b>2021</b> , 5, e584                                                                                                      |       | 5  |
| 228 | Inflammation, Infection and Venous Thromboembolism. <b>2021</b> , 128, 2017-2036                                                                                                              |       | 23 |

| 227         | Manifestations of HbSE sickle cell disease: a systematic review. <b>2021</b> , 19, 262                                                                                                         |     | 4 |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|
| 226         | [Microvascular thrombosis and clinical implications]. 2021, 156, 609-614                                                                                                                       |     | 3 |
| 225         | Plasma P-selectin is an early marker of thromboembolism in COVID-19. <b>2021</b> ,                                                                                                             |     | 1 |
| 224         | Biomarkers for the central nervous system complications of sickle cell disease: are we there yet?. <b>2021</b> , 15, e2100026                                                                  |     |   |
| 223         | Gene therapy for sickle cell disease: moving from the bench to the bedside. <i>Blood</i> , <b>2021</b> , 138, 932-941                                                                          | 2.2 | 8 |
| 222         | A polygenic score for acute vaso-occlusive pain in pediatric sickle cell disease. <i>Blood Advances</i> , <b>2021</b> , 5, 2839-2851                                                           | 7.8 | 2 |
| 221         | Allogeneic hematopoietic stem cell transplant for sickle cell disease: The why, who, and what. <b>2021</b> , 50, 100868                                                                        |     | 1 |
| 220         | Real-Life experience with hydroxyurea in patients with sickle cell disease: Results from the prospective ESCORT-HU cohort study. <b>2021</b> , 96, 1223-1231                                   |     | 6 |
| 219         | Benserazide racemate and enantiomers induce fetal globin gene expression in vivo: Studies to guide clinical development for beta thalassemia and sickle cell disease. <b>2021</b> , 89, 102561 |     | 5 |
| 218         | Content validation of a self-report daily diary in patients with sickle cell disease. <b>2021</b> , 5, 63                                                                                      |     | O |
| 217         | Antibiotics to modify sickle cell disease vaso-occlusive crisis?. <b>2021</b> , 50, 100867                                                                                                     |     | 1 |
| 216         | Complement in sickle cell disease and targeted therapy: I know one thing, that I know nothing. <b>2021</b> , 48, 100805                                                                        |     | 3 |
| 215         | Improving the Solubility and Oral Bioavailability of a Novel Aromatic Aldehyde Antisickling Agent (PP10) for the Treatment of Sickle Cell Disease. <b>2021</b> , 13,                           |     | 2 |
| 214         | Pain in sickle cell disease: current and potential translational therapies. <b>2021</b> , 234, 141-158                                                                                         |     | O |
| 213         | Blood and Marrow Transplant Clinical Trials Network State of the Science Symposium 2021: Looking Forward as the Network Celebrates its 20th Year. <b>2021</b> , 27, 885-907                    |     | 0 |
| 212         | Hemolysis: Mechanism and clinico-biological consequences. <b>2021</b> , 28, 364-366                                                                                                            |     | O |
| 211         | The gut microbiome in sickle cell disease: Characterization and potential implications. <i>PLoS ONE</i> , <b>2021</b> , 16, e0255956                                                           | 3.7 | 2 |
| <b>2</b> 10 | Vaso-occlusive crisis in sickle cell disease: a vicious cycle of secondary events. <b>2021</b> , 19, 397                                                                                       |     | 5 |

| 209 | Neutrophil extracellular traps: a role in inflammation and dysregulated hemostasis as well as in patients with COVID-19 and severe obstetric pathology. <b>2021</b> , 15, 335-350         | 2  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 208 | A reanalysis of pain crises data from the pivotal l-glutamine in sickle cell disease trial. <b>2021</b> , 110, 106546                                                                     | 0  |
| 207 | Management of refractory chronic pain in sickle cell disease with intrathecal drug delivery system. <b>2021</b> ,                                                                         |    |
| 206 | How I approach disease-modifying therapy in children with sickle cell disease in an era of novel therapies. <b>2021</b> , 68, e29363                                                      | 1  |
| 205 | Flow adhesion of whole blood to P-selectin: a prognostic biomarker for vaso-occlusive crisis in sickle cell disease. <i>British Journal of Haematology</i> , <b>2021</b> , 194, 1074-1082 | 1  |
| 204 | P-selectin targeted RAGE-shRNA lipoplexes alleviate atherosclerosis-associated inflammation. <b>2021</b> , 338, 754-772                                                                   | 4  |
| 203 | Sickle cell disease in sub-Saharan Africa: transferable strategies for prevention and care. <b>2021</b> , 8, e744-e755                                                                    | 2  |
| 202 | Les traitements de la drpanocytose : hydroxyure, allogreffe et nouvelles approches. <b>2021</b> , 2, 397-397                                                                              |    |
| 201 | Global geographic differences in healthcare utilization for sickle cell disease pain crises in the CASiRe cohort. <b>2021</b> , 92, 102612                                                | 0  |
| 200 | RNA binding proteins: Linking mechanotransduction and tumor metastasis. <b>2021</b> , 496, 30-40                                                                                          | 4  |
| 199 | Sickle cell disease: progress towards combination drug therapy. <i>British Journal of Haematology</i> , <b>2021</b> , 194, 240-251                                                        | 4  |
| 198 | Sickle cell disease in pregnancy and anaesthetic implications: A narrative review. <b>2021</b> , 11, 70                                                                                   | 1  |
| 197 | Effect of Natural Products on Improvement of Blood Pathophysiology for Management of Sickle Cell Anemia. <b>2020</b> , 51-65                                                              | 2  |
| 196 | Targeting protein disulfide isomerase with the flavonoid isoquercetin to improve hypercoagulability in advanced cancer. <b>2019</b> , 4,                                                  | 59 |
| 195 | Activated signature of antiphospholipid syndrome neutrophils reveals potential therapeutic target. <b>2017</b> , 2,                                                                       | 43 |
| 194 | Intravascular hemolysis activates complement via cell-free heme and heme-loaded microvesicles. <b>2018</b> , 3,                                                                           | 87 |
| 193 | The multifaceted role of ischemia/reperfusion in sickle cell anemia. <b>2020</b> , 130, 1062-1072                                                                                         | 24 |
| 192 | Mechanisms of pain in sickle cell disease. <b>2021</b> , 15, 213-220                                                                                                                      | 4  |

| 191 | Optimal disease management and health monitoring in adults with sickle cell disease. <b>2019</b> , 2019, 505-512                                                                                                          | 4  |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 190 | Drug Therapies for the Management of Sickle Cell Disease. <b>2020</b> , 9,                                                                                                                                                | 12 |
| 189 | Targeting P-selectin blocks neuroblastoma growth. 2017, 8, 86657-86670                                                                                                                                                    | 10 |
| 188 | Factors Influencing Motivation and Engagement in Mobile Health Among Patients With Sickle Cell Disease in Low-Prevalence, High-Income Countries: Qualitative Exploration of Patient Requirements. <b>2020</b> , 7, e14599 | 8  |
| 187 | MEK1/2 as a Therapeutic Target in Sickle Cell Disease. <b>2019</b> , 6,                                                                                                                                                   | 2  |
| 186 | Thromboinflammatory mechanisms in sickle cell disease - challenging the hemostatic balance. <b>2020</b> , 105, 2380-2390                                                                                                  | 16 |
| 185 | Therapeutic advances in sickle cell disease in the last decade. <b>2017</b> , 145, 708-712                                                                                                                                | 2  |
| 184 | Sickle cell disease: Progress made & challenges ahead. <b>2020</b> , 151, 505-508                                                                                                                                         | 4  |
| 183 | coreSCD: multi-stakeholder consensus on core outcomes for sickle cell disease clinical trials. <b>2021</b> , 21, 219                                                                                                      | 0  |
| 182 | Alemtuzumab clearance, lymphocyte count, and T-cell chimerism after hematopoietic stem cell transplant in sickle cell disease. <b>2021</b> ,                                                                              | О  |
| 181 | Long-term biological effects in sickle cell disease: insights from a post-crizanlizumab study. <i>British Journal of Haematology</i> , <b>2021</b> , 195, e150-e153                                                       | 0  |
| 180 | Modulating hemoglobin allostery for treatment of sickle cell disease: current progress and intellectual property. <b>2021</b> , 1-16                                                                                      | O  |
| 179 | Casting a NET on cancer: the multiple roles for neutrophil extracellular traps in cancer. <b>2022</b> , 29, 53-62                                                                                                         | 1  |
| 178 | Anemia at the Extremes of Life: Congenital Hemolytic Anemia. <b>2019</b> , 95-135                                                                                                                                         |    |
| 177 | Sickle Cell Anemia: A review on the most severe form of Sickle Cell Disease. <b>2019</b> , 02,                                                                                                                            |    |
| 176 | Factors Influencing Motivation and Engagement in Mobile Health Among Patients With Sickle Cell Disease in Low-Prevalence, High-Income Countries: Qualitative Exploration of Patient Requirements (Preprint).              |    |
| 175 | Pyridoxamine: another vitamin for sickle cell disease?. <b>2020</b> , 105, 2348-2350                                                                                                                                      | 1  |
| 174 | Sickle Cell Disease. <b>2021</b> , 65-89                                                                                                                                                                                  |    |

| 173 | Red blood cell alloimmunization and sickle cell disease: a narrative review on antibody induction. <b>2020</b> , 5,                                                                                           | 2   |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 172 | The Anti-Sickling Properties of Medicinal Plants, Insights in Botanical Medicine*. <b>2021</b> , 11, 165-189                                                                                                  |     |
| 171 | Neugeborenenscreening auf Sichelzellkrankheit in Deutschland. 2021, 81, 1197-1199                                                                                                                             |     |
| 170 | Five Diseases That Are Devastating the African American Population. <b>2020</b> , 1-31                                                                                                                        |     |
| 169 | Anemias hemolticas adquiridas y congliitas. <b>2020</b> , 13, 1201-1209                                                                                                                                       |     |
| 168 | Review of Medication Therapy for the Prevention of Sickle Cell Crisis. <b>2018</b> , 43, 417-437                                                                                                              | 4   |
| 167 | Voxelotor: A Hemoglobin S Polymerization Inhibitor for the Treatment of Sickle Cell Disease. <b>2020</b> , 11, 873-877                                                                                        |     |
| 166 | Anemia. <b>2021</b> ,                                                                                                                                                                                         |     |
| 165 | Novel histone deacetylase inhibitor CT-101 induces Eglobin gene expression in sickle erythroid progenitors with targeted epigenetic effects. <b>2021</b> , 93, 102626                                         | 1   |
| 164 | A randomised controlled provider-blinded trial of community health workers in sickle cell anaemia: effects on haematologic variables and hydroxyurea adherence. <i>British Journal of Haematology</i> , 2021, | 5 2 |
| 163 | Nationwide retrospective study of critically ill adults with sickle cell disease in France. <b>2021</b> , 11, 23132                                                                                           | 1   |
| 162 | Acute Chest Syndrome in Sickle Cell Disease: Clinical Presentation and Outcomes. The Experience of a Single Thalassemia and Sickle Cell Unit in a University Hospital. <b>2021</b> , 1-6                      |     |
| 161 | Neutrophil DREAM promotes neutrophil recruitment in vascular inflammation. 2022, 219,                                                                                                                         | 1   |
| 160 | Unterarmschmerzen bei einem Jungen aus dem Irak. 1                                                                                                                                                            |     |
| 159 | Dietary alpha-linolenic acid reduces platelet activation and collagen-mediated cell adhesion in sickle cell disease mice. <b>2021</b> ,                                                                       | 1   |
| 158 | Mucin-Type O-GalNAc Glycosylation in Health and Disease. <b>2021</b> , 1325, 25-60                                                                                                                            | 5   |
| 157 | l-glutamine, crizanlizumab, voxelotor, and cell-based therapy for adult sickle cell disease: Hype or hope?. <b>2022</b> , 100925                                                                              | О   |
| 156 | Voxelotor: A Hemoglobin S Polymerization Inhibitor for the Treatment of Sickle Cell Disease. <b>2020</b> , 11, 873-877                                                                                        | 0   |

| 155 | Effect of Crizanlizumab, a P-Selectin Inhibitor, in COVID-19: A Placebo-Controlled, Randomized Trial <b>2021</b> , 6, 935-945                                                           |          | 2 |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---|
| 154 | Computational Genomics in the Era of Precision Medicine: Applications to Variant Analysis and Gene Therapy <b>2022</b> , 12,                                                            |          | O |
| 153 | Etavopivat, a Pyruvate Kinase Activator in Red Blood Cells, for the Treatment of Sickle Cell Disease <b>2022</b> ,                                                                      |          | 2 |
| 152 | Incorporation of novel therapies for the management of sickle cell disease: A pharmacist's perspective <b>2022</b> , 10781552211072468                                                  |          |   |
| 151 | Evolving Strategies in the Management of Sickle Cell Disease in the 21st Century and the Role of the Pediatrician <b>2022</b> , 51, e34-e39                                             |          |   |
| 150 | Cost analysis of acute care resource utilization among individuals with sickle cell disease in a middle-income country <b>2022</b> , 22, 42                                             |          | 1 |
| 149 | Influence of Haptoglobin Polymorphism on Stroke in Sickle Cell Disease Patients 2022, 13,                                                                                               |          | О |
| 148 | Neutrophil-Platelet Interactions as Novel Treatment Targets in Cardiovascular Disease <b>2021</b> , 8, 824112                                                                           |          | 3 |
| 147 | Clinical impact of glycans in platelet and megakaryocyte biology <i>Blood</i> , <b>2022</b> , 2.2                                                                                       | <u>!</u> | 1 |
| 146 | Plasma-Derived Hemopexin as a Candidate Therapeutic Agent for Acute Vaso-Occlusion in Sickle Cell Disease: Preclinical Evidence <i>Journal of Clinical Medicine</i> , <b>2022</b> , 11, | -        | 3 |
| 145 | Long-term outcomes of lentiviral gene therapy for the Ehemoglobinopathies: the HGB-205 trial <b>2022</b> ,                                                                              |          | 8 |
| 144 | Pregnancy Outcomes with Hydroxyurea Use in Women with Sickle Cell Disease 2022,                                                                                                         |          | 3 |
| 143 | Acute chest syndrome of sickle cell disease: genetics, risk factors, prognosis and management  Expert Review of Hematology, 2022,                                                       | 3        | 1 |
| 142 | Can galectin-3 be used to predict the severity of vasoocclusive crisis in patients with sickle cell anaemia?. <b>2022</b> , 9,                                                          |          |   |
| 141 | Neugeborenenscreening auf Sichelzellkrankheit. <b>2022</b> , 22, 09-15                                                                                                                  |          |   |
| 140 | A randomized, placebo-controlled, double-blind trial of canakinumab in children and young adults with sickle cell anemia <i>Blood</i> , <b>2022</b> ,                                   | 2        | 3 |
| 139 | Expanded eligibility for emerging therapies in sickle cell disease in the UK - crizanlizumab and voxelotor <i>British Journal of Haematology</i> , <b>2022</b> ,                        | 5        |   |
| 138 | Voxelotor: A new kid on the block in the treatment of sickle cell disease 2022,                                                                                                         |          |   |

| 137 | Black Americans' willingness to participate in pediatric sickle cell clinical trials: A retrospective, systematic review <b>2022</b> , e29580 |   |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------|---|
| 136 | A Vascular Necrosis of Femoral Head in Sickle Cell Anemia.                                                                                    |   |
| 135 | The nephropathy of sickle cell trait and sickle cell disease 2022,                                                                            | 1 |
| 134 | Hemoglobinopathies. <b>2022</b> , 68, 3-11                                                                                                    |   |
| 133 | P- and E- selectin in Venous Thrombosis and Non-Venous Pathologies <b>2022</b> ,                                                              | 0 |
| 132 | Advances in the Management of Sickle Cell Disease: New Concepts and Future Horizons <b>2022</b> , 27, 206-213                                 | O |
| 131 | Knowledge and Awareness of Sickle Cell Anemia: Cross Sectional Study among the General Population in Saudi Arabia. 69-74                      |   |
| 130 | Targeting cancer-associated glycans as a therapeutic strategy in leukemia. <b>2022</b> , 15, 378-433                                          | О |
| 129 | Possible Role of P-selectin Adhesion in Long-COVID: A Comparative Analysis of a Long-COVID Case Versus an Asymptomatic Post-COVID Case.       |   |
| 128 | Microfluidic Methods to Advance Mechanistic Understanding and Translational Research in Sickle Cell Disease <b>2022</b> ,                     |   |
| 127 | Renin-Angiotensin Blockade Reduces Readmission for Acute Chest Syndrome in Sickle Cell Disease <b>2022</b> , 14, e23567                       |   |
| 126 | Advances in the diagnosis and treatment of sickle cell disease <b>2022</b> , 15, 20                                                           | 4 |
| 125 | Treatment of sickle cell disease: Beyond hydroxyurea. 1-6                                                                                     |   |
| 124 | Impact of hydroxyurea dose and adherence on hematologic outcomes for children with sickle cell anemia <b>2022</b> , e29607                    | O |
| 123 | Regional anesthesia for sickle cell disease vaso-occlusive crisis: A single-center case series <b>2022</b> , e29695                           | 1 |
| 122 | Why medicines work <b>2022</b> , 238, 108175                                                                                                  | 1 |
| 121 | A critical evaluation of crizanlizumab for the treatment of sickle cell disease Expert Review of Hematology, <b>2021</b> , 1-9                | 0 |
| 120 | MPN and thrombosis was hard enough .´.` now there's COVID-19 thrombosis too. <b>2021</b> , 2021, 710-717                                      | О |

| 119 | Patient-focused inquiry on hydroxyurea therapy adherence and reasons for discontinuation in adults with sickle cell disease <b>2021</b> ,                                                     |     | 1 |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|
| 118 | Salubrinal induces fetal hemoglobin expression via the stress-signaling pathway in human sickle erythroid progenitors and sickle cell disease mice.                                           |     |   |
| 117 | Strategies to increase access to basic sickle cell disease care in low- and middle-income countries <i>Expert Review of Hematology</i> , <b>2022</b> , 1-12                                   | 2.8 | O |
| 116 | Assessment of Reticulocyte and Erythrocyte Parameters From Automated Blood Counts in Vaso-Occlusive Crisis on Sickle Cell Disease <b>2022</b> , 9, 858911                                     |     | O |
| 115 | High-Throughput Assay to Screen Small Molecules for Their Ability to Prevent Sickling of Red Blood Cells <b>2022</b> , 7, 14009-14016                                                         |     | О |
| 114 | Image_1.jpg. <b>2020</b> ,                                                                                                                                                                    |     |   |
| 113 | lmage_2.jpg. <b>2020</b> ,                                                                                                                                                                    |     |   |
| 112 | Image_3.jpg. <b>2020</b> ,                                                                                                                                                                    |     |   |
| 111 | Image_4.jpg. <b>2020</b> ,                                                                                                                                                                    |     |   |
| 110 | Image_5.jpg. <b>2020</b> ,                                                                                                                                                                    |     |   |
| 109 | lmage_6.jpg. <b>2020</b> ,                                                                                                                                                                    |     |   |
| 108 | HEhatologie und Onkologie. <b>2022</b> , 229-289                                                                                                                                              |     |   |
| 107 | Extinguishing the fire in sickle cell anemia <i>Blood</i> , <b>2022</b> , 139, 2578-2580                                                                                                      | 2.2 |   |
| 106 | Comparing the Safety and Efficacy of L-Glutamine, Voxelotor, and Crizanlizumab for Reducing the Frequency of Vaso-Occlusive Crisis in Sickle Cell Disease: A Systematic Review. <b>2022</b> , |     | O |
| 105 | Protocol for "Genetic composition of sickle cell disease in the Arab population: A systematic review" <i>Health Science Reports</i> , <b>2022</b> , 5, e450                                   | 2.2 | О |
| 104 | Design, Synthesis, and Antisickling Investigation of a Nitric Oxide-Releasing Prodrug of 5HMF for the Treatment of Sickle Cell Disease. <b>2022</b> , 12, 696                                 |     | O |
| 103 | Carbon Monoxide and Sickle Cell Disease. <b>2022</b> , 482-496                                                                                                                                |     |   |
| 102 | Validation of Patient-reported Vaso-occlusive Crisis Day as an Endpoint in Sickle Cell Disease Studies <b>2022</b> ,                                                                          |     |   |

| 101 | A Phase 1 Dose Escalation Study of the Pyruvate Kinase Activator Mitapivat (AG-348) in Sickle Cell Disease <i>Blood</i> , <b>2022</b> ,                                                                                            | 2.2 | 3 |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|
| 100 | Long-Term Health Effects of Curative Therapies on Heart, Lungs, and Kidneys for Individuals with Sickle Cell Disease Compared to Those with Hematologic Malignancies. <i>Journal of Clinical Medicine</i> , <b>2022</b> , 11, 3118 | 5.1 | 1 |
| 99  | Sickle Cell Disease, a Review. <b>2022</b> , 3, 341-366                                                                                                                                                                            |     |   |
| 98  | Functional foods: promising therapeutics for Nigerian Children with sickle cell diseases. <b>2022</b> , 8, e0963                                                                                                                   | 30  |   |
| 97  | Clonal Hematopoiesis and the Risk of Hematologic Malignancies after Curative Therapies for Sickle Cell Disease. <i>Journal of Clinical Medicine</i> , <b>2022</b> , 11, 3160                                                       | 5.1 |   |
| 96  | 28-Year-Old Man With Joint Pain. <i>Mayo Clinic Proceedings</i> , <b>2022</b> , 97, 1188-1193                                                                                                                                      | 6.4 |   |
| 95  | Hematopoietic Stem Cell Gene-Addition/Editing Therapy in Sickle Cell Disease. Cells, 2022, 11, 1843                                                                                                                                | 7.9 | 2 |
| 94  | Sickle Cell Disease. <i>In Clinical Practice</i> , <b>2022</b> , 227-243                                                                                                                                                           | O   |   |
| 93  | Salubrinal induces fetal hemoglobin expression via the stress-signaling pathway in human sickle erythroid progenitors and sickle cell disease mice. <i>PLoS ONE</i> , <b>2022</b> , 17, e0261799                                   | 3.7 | 0 |
| 92  | Sickle cell disease in children: an update of the evidence for WHO guideline development. <i>Archives of Disease in Childhood</i> , archdischild-2021-323633                                                                       | 2.2 |   |
| 91  | The oral ferroportin inhibitor vamifeport improved hemodynamics in a mouse model of sickle cell disease. <i>Blood</i> ,                                                                                                            | 2.2 | 3 |
| 90  | Voxelotor for the treatment of sickle cell disease in pediatric patients. <i>Expert Review of Hematology</i> , <b>2022</b> , 15, 485-492                                                                                           | 2.8 | О |
| 89  | Multiple and Single Reaction Monitoring Mass Spectrometry for Absolute Quantitation of Proteins. <i>Biochemistry</i> ,                                                                                                             |     |   |
| 88  | Voxelotor versus other therapeutic options for sickle cell disease: Are we still lagging behind in treating the disease?. <i>Health Science Reports</i> , <b>2022</b> , 5,                                                         | 2.2 |   |
| 87  | Management of acute chest syndrome in patients with sickle cell disease: a systematic review of randomized clinical trials. <i>Expert Review of Hematology</i> , <b>2022</b> , 15, 547-558                                         | 2.8 |   |
| 86  | Liver to lung microembolic NETs promote Gasdermin-D-dependent inflammatory lung injury in Sickle Cell Disease. <i>Blood</i> ,                                                                                                      | 2.2 | 7 |
| 85  | Molecular Mechanisms of Hepatic Dysfunction in Sickle Cell Disease: Lessons From The Townes Mouse Model. <i>American Journal of Physiology - Cell Physiology</i> ,                                                                 | 5.4 |   |
| 84  | Safe use of hydroxycarbamide in sickle cell disease patients hospitalized for painful vaso-occlusive episodes during the randomized, open-label HELPS study. <i>British Journal of Haematology</i> ,                               | 4.5 |   |

## (2023-2022)

| 83 | Recent advances in Bickle and nichelfesearch - Tribute to Dr. Paul S Frenette Stem Cell Reports, <b>2022</b> , 17, 1509-1535                                                                         | 8    | О |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---|
| 82 | Incidence and Predictors of Priapism Events in a Sickle Cell Anemia: A Diary-Based Analysis. <i>Blood Advances</i> ,                                                                                 | 7.8  | Ο |
| 81 | Sickle Cell Disease. JAMA - Journal of the American Medical Association, 2022, 328, 57                                                                                                               | 27.4 | 5 |
| 80 | Reduced red cell transfusions and hospitalizations in sickle cell patients treated with voxelotor Experience from a single center. <i>Transfusion</i> , <b>2022</b> , 62, 1462-1464                  | 2.9  | Ο |
| 79 | Across the Myeloablative Spectrum: Hematopoietic Cell Transplant Conditioning Regimens for Pediatric Patients with Sickle Cell Disease. <i>Journal of Clinical Medicine</i> , <b>2022</b> , 11, 3856 | 5.1  |   |
| 78 | Ticagrelor versus placebo for the reduction of vaso-occlusive crises in pediatric sickle cell disease: the HESTIA3 study. <i>Blood</i> ,                                                             | 2.2  | 2 |
| 77 | Emerging drugs for the treatment of sickle cell disease: a review of phase II/III trials. 2022, 27, 211-224                                                                                          |      | Ο |
| 76 | Fluorescence Lifetime Measurement of Prefibrillar Sickle Hemoglobin Oligomers as a Platform for Drug Discovery in Sickle Cell Disease.                                                               |      |   |
| 75 | Real-World data on efficacy of L-glutamine in preventing sickle cell disease-related complications in pediatric and adult patients. 9,                                                               |      | Ο |
| 74 | Barriers to hydroxyurea use from the perspectives of providers, individuals with sickle cell disease, and families: Report from a U.S. regional collaborative. 13,                                   |      | 1 |
| 73 | Endothelial VWF is critical for the pathogenesis of vaso-occlusive episode in a mouse model of sickle cell disease. <b>2022</b> , 119,                                                               |      | 1 |
| 72 | A Randomized Clinical Trial of the Efficacy and Safety of Rivipansel for Sickle Cell Vaso-occlusive Crisis (VOC).                                                                                    |      | 1 |
| 71 | Precision Medicine and Sickle Cell Disease. <b>2022</b> , 6, e762                                                                                                                                    |      | Ο |
| 70 | Effective therapies for sickle cell disease: are we there yet?. 2022,                                                                                                                                |      | Ο |
| 69 | Novel Strategies for the Treatment of COVID-19.                                                                                                                                                      |      | 2 |
| 68 | Cardiovascular consequences of sickle cell disease. <b>2022</b> , 3, 031302                                                                                                                          |      |   |
| 67 | Splanchnic vein thrombosis associated with myeloproliferative neoplasms. <b>2022</b> , 218, 8-16                                                                                                     |      | 3 |
| 66 | Hemoglobinopathies and Thalassemias. <b>2023</b> , 143-172                                                                                                                                           |      |   |

| 65 | Hematologic Diseases. <b>2022</b> , 38-43                                                                                                                                       | O |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 64 | Acute and chronic pain management in patients with sickle cell disease in the modern era: A comprehensive review. <b>2022</b> , 103533                                          | O |
| 63 | Aberrant Sialylation in Cancer: Therapeutic Opportunities. 2022, 14, 4248                                                                                                       | 3 |
| 62 | Under the hood: The molecular biology driving gene therapy for the treatment of sickle cell disease. <b>2022</b> , 103566                                                       | O |
| 61 | Sickle cell disease in the new era: Advances in drug treatment. 2022, 103555                                                                                                    | 0 |
| 60 | Crizanlizumab to prevent crises in sickle cell disease. <b>2022</b> , 33, 34-35                                                                                                 | O |
| 59 | Hydroxyurea (hydroxycarbamide) for sickle cell disease. <b>2022</b> , 2022,                                                                                                     | 3 |
| 58 | Recent Advances in Sickle-Cell Disease Therapies: A Review of Voxelotor, Crizanlizumab, and L-glutamine. <b>2022</b> , 10, 123                                                  | O |
| 57 | Comprehensive guide to managing a chronic automated red cell exchange program in sickle cell disease. <b>2022</b> , 37, 497-506                                                 | 0 |
| 56 | Rates of Opioid Misuse Amongst Patients Receiving Pain Management for Sickle Cell Disease in An<br>Urban Setting. 089719002211283                                               | O |
| 55 | NETs in sickle cell disease, quo vadis?. <b>2022</b> , 140, 938-939                                                                                                             | O |
| 54 | Antiplatelet therapy for patients with COVID-19: Systematic review and meta-analysis of observational studies and randomized controlled trials. 9,                              | 1 |
| 53 | Global perspectives on cellular therapy for children with sickle cell disease. <b>2022</b> , 29, 275-280                                                                        | 2 |
| 52 | Investigation of thrombin generation assay to predict vaso-occlusive crisis in adulthood with sickle cell disease. 9,                                                           | O |
| 51 | Building a better NET: Neutrophil extracellular trap targeted therapeutics in the treatment of infectious and inflammatory disorders. <b>2022</b> , 6,                          | 1 |
| 50 | Preclinical studies on the use of a P-selectin-blocking monoclonal antibody to halt progression of myelofibrosis in the Gata1 mouse model. <b>2022</b> ,                        | O |
| 49 | Sickle Cell Disease in Children and Adolescents: A Review of the Historical, Clinical, and Public Health Perspective of Sub-Saharan Africa and Beyond. <b>2022</b> , 2022, 1-26 | 0 |
| 48 | Genetic Testing to Inform Epilepsy Treatment Management From an International Study of Clinical Practice.                                                                       | O |

| 47 | Design, Synthesis, and Investigation of Novel Nitric Oxide (NO)-Releasing Aromatic Aldehydes as Drug Candidates for the Treatment of Sickle Cell Disease. <b>2022</b> , 27, 6835   | Ο |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 46 | Neutrophils as drivers of vascular injury in sickle cell disease.                                                                                                                  | 1 |
| 45 | An Overview of Solid Organ Transplantation in Patients With Sickle Cell Disease. Publish Ahead of Print,                                                                           | 0 |
| 44 | Update on Treatment Options for Stuttering Priapism.                                                                                                                               | О |
| 43 | Novel approaches to antiplatelet therapy. <b>2022</b> , 206, 115297                                                                                                                | О |
| 42 | Analytical comparability demonstrated for an IgG4 molecule, inclacumab, following transfer of manufacturing responsibility from Roche to Global Blood Therapeutics. 1-12           | O |
| 41 | Sickle Cell Disease Pathophysiology and Related Molecular and Biophysical Biomarkers. <b>2022</b> , 36, 1077-1095                                                                  | 0 |
| 40 | Sickle Cell Disease and the Kidney. <b>2022</b> , 36, 1239-1254                                                                                                                    | Ο |
| 39 | Genetic Modifiers of Sickle Cell Disease. <b>2022</b> , 36, 1097-1124                                                                                                              | О |
| 38 | The Evolving Landscape of Drug Therapies for Sickle Cell Disease. <b>2022</b> , 36, 1285-1312                                                                                      | O |
| 37 | Applications and challenges for CRISPR/Cas9-mediated gene editing. 2022,                                                                                                           | 0 |
| 36 | The interplay of sleep disordered breathing, nocturnal hypoxemia, and endothelial dysfunction in sickle cell disease. <b>2023</b> , 68, 101602                                     | O |
| 35 | Short- and long-term follow-up and additional benefits in a sickle cell disease patient experienced severe crizanlizumab infusion-related vaso-occlusive crisis: A case report. 9, | 0 |
| 34 | Development of curative therapies for sickle cell disease. 9,                                                                                                                      | 1 |
| 33 | Plasma levels of E-selectin are associated with retinopathy in sickle cell disease.                                                                                                | О |
| 32 | Can Crude Oil Exploration Influence the Phytochemicals and Bioactivity of Medicinal Plants? A Case of Nigerian Vernonia amygdalina and Ocimum gratissimum. <b>2022</b> , 27, 8372  | Ο |
| 31 | UK media reporting of NICE recommendation of crizanlizumab for patients with sickle cell disease.                                                                                  | 0 |
| 30 | Adhesion molecules and cerebral microvascular hemodynamic abnormalities in sickle cell disease.<br>13,                                                                             | 0 |

| 29 | Population Pharmacokinetics and Pharmacodynamics of Crizanlizumab in Healthy Subjects and Patients with Sickle Cell Disease.                                                    | 0 |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 28 | Risk of vaso-occlusive episodes in patients with sickle cell disease exposed to systemic corticosteroids: a comprehensive review. <b>2022</b> , 15, 1045-1054                   | Ο |
| 27 | Epidemiology and treatment of priapism in sickle cell disease. <b>2022</b> , 2022, 450-458                                                                                      | 0 |
| 26 | Restoring the biological activity of crizanlizumab at physiological conditions through a pH-dependent aspartic acid isomerization reaction. <b>2023</b> , 15,                   | O |
| 25 | Delayed haemolytic transfusion reaction in paediatric patients with sickle cell disease: A retrospective study in a French national reference centre.                           | 0 |
| 24 | Evidence-Based Minireview: How to utilize new therapies for sickle cell disease. <b>2022</b> , 2022, 283-285                                                                    | O |
| 23 | Rise of the planet of rare anemias: An update on emerging treatment strategies. 9,                                                                                              | 0 |
| 22 | Inflammatory status in pediatric sickle cell disease: Unravelling the role of immune cell subsets. 9,                                                                           | O |
| 21 | Design of an adaptive randomized clinical trial of intravenous citrulline for sickle cell pain crisis in the emergency department. <b>2023</b> , 32, 101077                     | О |
| 20 | Outcomes and Barriers to Use of Novel Sickle Cell Therapeutic Agents in a Community Health<br>Center. 8, 1-5                                                                    | O |
| 19 | Gene editing for sickle cell disease and transfusion dependent thalassemias- A cure within reach. <b>2022</b> ,                                                                 | 0 |
| 18 | Thrombo-Inflammation in COVID-19 and Sickle Cell Disease: Two Faces of the Same Coin. <b>2023</b> , 11, 338                                                                     | O |
| 17 | Stem Cell-Based Therapeutic Approaches in Genetic Diseases. 2023,                                                                                                               | 0 |
| 16 | The Kidney in Sickle Cell Disease. <b>2023</b> , 849-863                                                                                                                        | O |
| 15 | The Prevalence of Cardiovascular Manifestations in Pediatric Sickle Cell Anemia Patients in a Large Tertiary Care Hospital in the Western Region of Saudi Arabia. <b>2023</b> , | О |
| 14 | The role of platelets in immune-mediated inflammatory diseases.                                                                                                                 | O |
| 13 | Targeting SELPLG/ P-selectin glycoprotein ligand 1 in preclinical ARDS: Genetic and epigenetic regulation of the SELPLG promoter. <b>2023</b> , 13,                             | Ο |
| 12 | Emerging drug targets for sickle cell disease: shedding light on new knowledge and advances at the molecular level. <b>2023</b> , 27, 133-149                                   | O |

## CITATION REPORT

| 11 | A Lack of Diversity, Equity, and Inclusion in Clinical Research Has Direct Impact on Patient Care. <b>2023</b> , 7, e842                                                                                        | О |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 10 | Allogeneic hematopoietic stem cell transplantation to cure sickle cell disease: A review. 10,                                                                                                                   | O |
| 9  | In Humanized Sickle Cell Mice, Imatinib Protects Against Sickle Cell <b>R</b> elated Injury. <b>2023</b> , 7, e848                                                                                              | O |
| 8  | Management of Older Adults with Sickle Cell Disease: Considerations for Current and Emerging Therapies. <b>2023</b> , 40, 317-334                                                                               | O |
| 7  | Real-world characteristics of patients with sickle cell disease who initiated crizanlizumab therapy. <b>2023</b> , 39, 555-565                                                                                  | O |
| 6  | A Review of CRISPR Cas9 for SCA: Treatment Strategies and Could Target Eglobin Gene and BCL11A Gene using CRISPR Cas9 Prevent the Patient from Sickle Cell Anemia?. <b>2023</b> , 11, 1-12                      | O |
| 5  | Therapeutic perspective for children and young adults living with thalassemia and sickle cell disease.                                                                                                          | O |
| 4  | Guidelines on the Use of Therapeutic Apheresis in Clinical Practice Evidence-Based Approach from the Writing Committee of the American Society for Apheresis: The Ninth Special Issue. <b>2023</b> , 38, 77-278 | O |
| 3  | Open-label, Multicenter, Phase 2 Study of a Food Enriched with Docosahexaenoic Acid in Adults with Sickle Cell Disease. <b>2023</b> , 102574                                                                    | O |
| 2  | Recent progress in the treatment of sickle cell disease: an up-to-date review. <b>2023</b> , 12,                                                                                                                | O |
| 1  | Effects of GBT1118, a voxelotor analog, on intestinal pathophysiology in sickle cell disease.                                                                                                                   | 0 |