Farming and the geography of nutrient production for hanalysis

Lancet Planetary Health, The 1, e33-e42

DOI: 10.1016/s2542-5196(17)30007-4

Citation Report

#	Article	IF	Citations
1	Comparing crop rotations between organic and conventional farming. Scientific Reports, 2017, 7, 13761.	1.6	84
2	From big to small: the significance of smallholder farms in the global food system. Lancet Planetary Health, The, 2017, 1, e15-e16.	5.1	38
3	Nutritional and greenhouse gas impacts of removing animals from US agriculture. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E10301-E10308.	3.3	130
4	Trends in Global Agricultural Land Use: Implications for Environmental Health and Food Security. Annual Review of Plant Biology, 2018, 69, 789-815.	8.6	559
5	The Global Foodâ€Energyâ€Water Nexus. Reviews of Geophysics, 2018, 56, 456-531.	9.0	446
6	Dietary species richness as a measure of food biodiversity and nutritional quality of diets. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 127-132.	3.3	147
7	Assessing the long-term performance of large-scale land transfers: Challenges and opportunities in Malawi's estate sector. World Development, 2018, 104, 281-296.	2.6	49
8	Deforestation and child diet diversity: A geospatial analysis of 15 Sub-Saharan African countries. Health and Place, 2018, 51, 78-88.	1.5	58
9	Measuring nutritional quality of agricultural production systems: Application to fish production. Global Food Security, 2018, 16, 54-64.	4.0	31
10	Contribution of Nutrient Diversity and Food Perceptions to Food and Nutrition Security Among Smallholder Farming Households in Western Kenya: A Case Study. Food and Nutrition Bulletin, 2018, 39, 86-106.	0.5	13
12	A Conceptualization of the Urban Food-Energy-Water Nexus Sustainability Paradigm: Modeling From Theory to Practice. Frontiers in Environmental Science, 2018, 6, .	1.5	28
13	The potential of future foods for sustainable and healthy diets. Nature Sustainability, 2018, 1, 782-789.	11.5	197
14	Multidimensional Framework for Achieving Sustainable and Resilient Food Systems in Nigeria. , 2018, , 1-23.		0
15	What about Gender in Climate Change? Twelve Feminist Lessons from Development. Sustainability, 2018, 10, 627.	1.6	29
16	Human augmentation of ecosystems: objectives for food production and science by 2045. Npj Science of Food, 2018, 2, 16.	2.5	23
17	A framework for priority-setting in climate smart agriculture research. Agricultural Systems, 2018, 167, 161-175.	3.2	95
18	How much of the world's food do smallholders produce?. Global Food Security, 2018, 17, 64-72.	4.0	274
19	Livestock and livelihoods of smallholder cattle-owning households in Cambodia: the contribution of on-farm and off-farm activities to income and food security. Tropical Animal Health and Production, 2018, 50, 1747-1761.	0.5	10

#	Article	IF	Citations
20	The role of farming and rural development as central to our diets. Physiology and Behavior, 2018, 193, 291-297.	1.0	22
21	Is agricultural adaptation to global change in lower-income countries on track to meet the future food production challenge?. Global Environmental Change, 2018, 52, 37-48.	3.6	72
22	Evidence of risks of renal function reduction due to occupational exposure to agrochemicals: A systematic review. Environmental Toxicology and Pharmacology, 2018, 63, 21-28.	2.0	14
23	The science of food security. Npj Science of Food, 2018, 2, 14.	2.5	190
24	Gaps between fruit and vegetable production, demand, and recommended consumption at global and national levels: an integrated modelling study. Lancet Planetary Health, The, 2019, 3, e318-e329.	5.1	176
25	Household-level drivers of dietary diversity in transitioning agricultural systems: Evidence from the Greater Mekong Subregion. Agricultural Systems, 2019, 176, 102657.	3.2	26
27	A Roadmap for Lowering Crop Nitrogen Requirement. Trends in Plant Science, 2019, 24, 892-904.	4.3	89
28	Ravaged landscapes and climate vulnerability: The challenge in achieving food security and nutrition in post-conflict Timor-Leste. Advances in Food Security and Sustainability, 2019, , 97-132.	0.7	3
29	A scalable scheme to implement data-driven agriculture for small-scale farmers. Global Food Security, 2019, 23, 256-266.	4.0	25
30	Crowd-Driven and Automated Mapping of Field Boundaries in Highly Fragmented Agricultural Landscapes of Ethiopia with Very High Spatial Resolution Imagery. Remote Sensing, 2019, 11, 2082.	1.8	14
31	Review: Insects and former foodstuffs for upgrading food waste biomasses/streams to feed ingredients for farm animals. Animal, 2019, 13, 1365-1375.	1.3	87
32	Vegetables: New Zealand Children Are Not Eating Enough. Frontiers in Nutrition, 2018, 5, 134.	1.6	6
33	Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet, The, 2019, 393, 447-492.	6.3	5,421
34	Towards meaningful geographical indications: Validating terroirs on a 200†km2 scale in Australia's lower Hunter Valley. Geoderma Regional, 2019, 16, e00209.	0.9	9
35	Positive outcomes between crop diversity and agricultural employment worldwide. Ecological Economics, 2019, 164, 106358.	2.9	32
36	Intersections between rural livelihood security and animal pollination in Anolaima, Colombia. Geoforum, 2019, 104, 13-24.	1.4	3
37	Unequal Access to Land: Consequences for the Food Security of Smallholder Farmers in Sub Saharan Africa., 2019,, 556-561.		2
38	Regulation on anthocyanins, α-tocopherol and calcium in two water spinach (Ipomoea aquatica) cultivars by NaCl salt elicitor. Scientia Horticulturae, 2019, 249, 390-400.	1.7	8

#	Article	IF	CITATIONS
39	Environmental efficiency in the agricultural sector of Latin America and the Caribbean 1990–2015: Are greenhouse gas emissions reducing while agricultural production is increasing?. Ecological Indicators, 2019, 102, 338-348.	2.6	20
40	Structuring Markets for Resilient Farming Systems. Agronomy for Sustainable Development, 2019, 39, 1.	2.2	47
41	Development pathways toward "zero hunger― World Development, 2019, 118, 1-14.	2.6	97
42	Policies for Ecological Intensification of Crop Production. Trends in Ecology and Evolution, 2019, 34, 282-286.	4.2	103
43	Future global pig production systems according to the Shared Socioeconomic Pathways. Science of the Total Environment, 2019, 665, 739-751.	3.9	55
44	Biodiversity and Ecosystem Services. , 2019, , 137-152.		7
45	Is current agronomy ready to promote sustainable agriculture? Identifying key skills and competencies needed. International Journal of Sustainable Development and World Ecology, 2019, 26, 232-241.	3.2	17
46	A model to examine farm household trade-offs and synergies with an application to smallholders in Vietnam. Agricultural Systems, 2019, 173, 49-63.	3.2	33
47	Subsistence Solidarity and the Extension of Trust: Moral Economies of Organic Farming in Northern China. Journal of Current Chinese Affairs, 2019, 48, 301-321.	0.8	3
48	Genetic strategies for improving crop yields. Nature, 2019, 575, 109-118.	13.7	799
49	SDG 2: Zero Hunger – Challenging the Hegemony of Monoculture Agriculture for Forests and People. , 2019, , 48-71.		8
50	Agricultural intensification, dietary diversity, and markets in the global food security narrative. Global Food Security, 2019, 20, 9-16.	4.0	125
51	Estimating the global distribution of field size using crowdsourcing. Global Change Biology, 2019, 25, 174-186.	4.2	108
52	Concept and Classifications of Farming Systems. , 2019, , 71-80.		0
53	Connecting Diverse Diets With Production Systems: Measures and Approaches for Improved Food and Nutrition Security., 2019,, 209-216.		1
54	Food and agricultural innovation pathways for prosperity. Agricultural Systems, 2019, 172, 1-15.	3.2	65
55	Effect of EDTA enriched diets on farmed fish allergenicity and muscle quality; a proteomics approach. Food Chemistry, 2020, 305, 125508.	4.2	15
56	Doggedness of small farms and productivity among smallholder farmers in Nigeria: Empirical linkage and policy implications for poverty reduction. Business Strategy and Development, 2020, 3, 128-142.	2.2	2

#	Article	IF	Citations
57	Indices to identify and quantify ecosystem services in sustainable food systems., 2020,, 43-71.		6
58	A model-based exploration of farm-household livelihood and nutrition indicators to guide nutrition-sensitive agriculture interventions. Food Security, 2020, 12, 59-81.	2.4	10
59	Human ecology and food discourses in a smallholder agricultural system in Leyte, The Philippines. Agriculture and Human Values, 2020, 37, 719-741.	1.7	7
60	Land use decisions: By whom and to whose benefit? A serious game to uncover dynamics in farm land allocation at household level in Northern Ghana. Land Use Policy, 2020, 91, 104325.	2.5	23
61	Unlocking plant resources to support food security and promote sustainable agriculture. Plants People Planet, 2020, 2, 421-445.	1.6	130
62	Mapping global patterns of land use decision-making. Global Environmental Change, 2020, 65, 102170.	3.6	40
63	Farm-level exploration of economic and environmental impacts of sustainable intensification of rice-wheat cropping systems in the Eastern Indo-Gangetic plains. European Journal of Agronomy, 2020, 121, 126157.	1.9	12
64	A scoping review of research funding for small-scale farmers in water scarce regions. Nature Sustainability, 2020, 3, 836-844.	11.5	28
65	Transformation of agricultural landscapes in the Anthropocene: Nature's contributions to people, agriculture and food security. Advances in Ecological Research, 2020, 63, 193-253.	1.4	56
66	The trade-offs of healthy food from sustainable agriculture in the Global South. Global Food Security, 2020, 26, 100384.	4.0	3
67	Conceptual framework of food systems for children and adolescents. Global Food Security, 2020, 27, 100436.	4.0	41
68	Youth and Food Systems Transformation. Frontiers in Sustainable Food Systems, 2020, 4, .	1.8	23
69	Farming systems' typologies analysis to inform agricultural greenhouse gas emissions potential from smallholder rain-fed farms in Kenya. Scientific African, 2020, 8, e00458.	0.7	24
70	Ecological and Nutritional Functions of Agroecosystems as Indicators of Smallholder Resilience. Frontiers in Sustainable Food Systems, 2020, 4, .	1.8	11
72	Longitudinal Assessment of Childhood Dietary Patterns: Associations with Body Mass Index <i>>z</i> -Score among Children in the Samoan <i>Ola Tuputupua'e</i> (Growing Up) Cohort. Childhood Obesity, 2020, 16, 534-543.	0.8	6
73	Assessing Transitions to Sustainable Agricultural and Food Systems: A Tool for Agroecology Performance Evaluation (TAPE). Frontiers in Sustainable Food Systems, 2020, 4, .	1.8	66
74	Socio-Economic Determinants of Small Family Farms' Resilience in Selected Central and Eastern European Countries. Sustainability, 2020, 12, 10362.	1.6	41
75	Global database of diffuse riverine nitrogen and phosphorus loads and yields. Geoscience Data Journal, 2021, 8, 132-143.	1.8	9

#	Article	IF	Citations
76	Mobile-based traceability system for sustainable food supply networks. Nature Food, 2020, 1, 673-679.	6.2	14
77	Modelling food security: Bridging the gap between the micro and the macro scale. Global Environmental Change, 2020, 63, 102085.	3.6	47
78	Sustainable Agri-food Supply Chain Practices: Few Empirical Evidences from a Developing Economy. Global Business Review, 2023, 24, 451-474.	1.6	31
79	Conceptual Links between Landscape Diversity and Diet Diversity: A Roadmap for Transdisciplinary Research. BioScience, 2020, 70, 563-575.	2.2	28
80	The utilisation of wild foods in Mediterranean Tunisia: commentary on the identification and frequency of consumption of wild edible plants over a year in central Tunisia: a mixed-methods approach (Dop et al., n.d.). Public Health Nutrition, 2020, 23, 956-958.	1.1	1
81	Interplay of trade and food system resilience: Gains on supply diversity over time at the cost of trade independency. Global Food Security, 2020, 24, 100360.	4.0	88
82	Global rangeland production systems and livelihoods at threat under climate change and variability. Environmental Research Letters, 2020, 15, 044021.	2.2	66
83	The Rural Household Multiple Indicator Survey, data from 13,310 farm households in 21 countries. Scientific Data, 2020, 7, 46.	2.4	25
84	Spatiotemporal trends in adequacy of dietary nutrient production and food sources. Global Food Security, 2020, 24, 100355.	4.0	23
85	Scaling agricultural mechanization services in smallholder farming systems: Case studies from sub-Saharan Africa, South Asia, and Latin America. Agricultural Systems, 2020, 180, 102792.	3.2	76
86	A review of inclusive business models and their application in aquaculture development. Reviews in Aquaculture, 2020, 12, 1881-1902.	4.6	29
87	Mining maize diversity and improving its nutritional aspects within agroâ€food systems. Comprehensive Reviews in Food Science and Food Safety, 2020, 19, 1809-1834.	5.9	55
88	The Long New Deal. Journal of Peasant Studies, 2020, 47, 431-463.	3.0	22
89	How Feasible Is the Scaling-Out of Livelihood and Food System Adaptation in Asia-Pacific Islands?. Frontiers in Sustainable Food Systems, 2020, 4, .	1.8	16
90	Food Environment Typology: Advancing an Expanded Definition, Framework, and Methodological Approach for Improved Characterization of Wild, Cultivated, and Built Food Environments toward Sustainable Diets. Foods, 2020, 9, 532.	1.9	197
91	Extending the concept of terroir from grapes to other agricultural commodities: an overview. Current Opinion in Food Science, 2020, 31, 88-95.	4.1	31
92	The global divide in data-driven farming. Nature Sustainability, 2021, 4, 154-160.	11.5	65
93	Agroforestry diversity, indigenous food consumption and nutritional outcomes in Sauria Paharia tribal women of Jharkhand, India. Maternal and Child Nutrition, 2021, 17, e13052.	1.4	14

#	Article	IF	CITATIONS
94	Reported U.S. wild game consumption and greenhouse gas emissions savings. Human Dimensions of Wildlife, 2021, 26, 65-75.	1.0	5
95	The Top 100 questions for the sustainable intensification of agriculture in India's rainfed drylands. International Journal of Agricultural Sustainability, 2021, 19, 106-127.	1.3	5
96	Nephrotoxic Effects Caused by Occupational Exposure to Agrochemicals in a Region of Northeastern Brazil: A Crossâ€Sectional Study. Environmental Toxicology and Chemistry, 2021, 40, 1132-1138.	2.2	6
97	Challenges and innovations in achieving zero hunger and environmental sustainability through the lens of sub-Saharan Africa. Outlook on Agriculture, 2021, 50, 141-147.	1.8	4
99	Diagnosing multiple disturbances to irrigation systems in Nepal. , 2021, , 199-217.		0
100	Drivers Shaping Food Systems. Palgrave Studies in Agricultural Economics and Food Policy, 2021, , 85-105.	0.2	1
101	Food Systems, Food Environments, and Consumer Behavior. Palgrave Studies in Agricultural Economics and Food Policy, 2021, , 9-28.	0.2	1
102	Impact of transnational land acquisitions on local food security and dietary diversity. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	51
103	Systematic Review and Meta-analysis: Salmonella spp. prevalence in vegetables and fruits. World Journal of Microbiology and Biotechnology, 2021, 37, 47.	1.7	6
104	Water Availability–Demand Balance under Climate Change Scenarios in an Overpopulated Region of Mexico. International Journal of Environmental Research and Public Health, 2021, 18, 1846.	1.2	4
105	A rapid assessment framework for food system shocks: Lessons learned from COVID-19 in the Indo-Pacific region. Environmental Science and Policy, 2021, 117, 34-45.	2.4	15
106	Complementary mechanisms stabilize national food production. Scientific Reports, 2021, 11, 4922.	1.6	9
107	CROP DIVERSIFICATION, PRODUCTIVITY AND DIETARY DIVERSITY: A GENDER PERSPECTIVE. Review of Agricultural and Applied Economics, 2021, 24, 98-108.	0.1	1
108	Potential Use of Beneficial Microorganisms for Soil Amelioration, Phytopathogen Biocontrol, and Sustainable Crop Production in Smallholder Agroecosystems. Frontiers in Sustainable Food Systems, 2021, 5, .	1.8	54
109	Commoning of territorial heritage and tools of participated sustainability for the production and enhancement of agro-environmental public goods. Agricultural and Food Economics, 2021, 9, .	1.3	6
110	Mitigating sustainability tradeoffs as global fruit and vegetable systems expand to meet dietary recommendations. Environmental Research Letters, 2021, 16, 055010.	2.2	15
111	COVID-19 and small enterprises in the food supply chain: Early impacts and implications for longer-term food system resilience in low- and middle-income countries. World Development, 2021, 141, 105405.	2.6	89
112	Is domestic agricultural production sufficient to meet national food nutrient needs in Brazil?. PLoS ONE, 2021, 16, e0251778.	1.1	3

#	Article	IF	CITATIONS
113	Is rural food security primarily associated with smallholder agriculture or with commercial agriculture?: An approach to the case of Mexico using structural equation modeling. Agricultural Systems, 2021, 190, 103091.	3.2	23
114	Farms worldwide: 2020 and 2030 outlook. Outlook on Agriculture, 2021, 50, 221-229.	1.8	6
115	Exploring climate change adaptation practices and household food security in the Middle Eastern context: a case of small family farms in Central Bekaa, Lebanon. Food Security, 2021, 13, 1029-1047.	2.4	9
116	COVID-19 and food systems in Pacific Island Countries, Papua New Guinea, and Timor-Leste: Opportunities for actions towards the sustainable development goals. Agricultural Systems, 2021, 191, 103137.	3.2	37
117	Which farms feed the world and has farmland become more concentrated?. World Development, 2021, 142, 105455.	2.6	128
118	Combined application of the EM-DEA and EX-ACT approaches for integrated assessment of resource use efficiency, sustainability and carbon footprint of smallholder maize production practices in sub-Saharan Africa. Journal of Cleaner Production, 2021, 302, 126132.	4.6	15
119	Agricultural land resource allocation to develop food crop commodities: lesson from Indonesia. Heliyon, 2021, 7, e07520.	1.4	16
120	Food Systems and Land Use. , 2021, , 310-359.		0
121	A Brief Journey into the History of and Future Sources and Uses of Fatty Acids. Frontiers in Nutrition, 2021, 8, 570401.	1.6	16
122	Labor, energy, and ecosocialist futures. Political Geography, 2021, 89, 102424.	1.3	1
123	Reconciling regionally-explicit nutritional needs with environmental protection by means of nutritional life cycle assessment. Journal of Cleaner Production, 2021, 312, 127696.	4.6	19
124	Global patterns of adaptation to climate change by Indigenous Peoples and local communities. A systematic review. Current Opinion in Environmental Sustainability, 2021, 51, 55-64.	3.1	35
125	Global Burden of Animal Diseases: a novel approach to understanding and managing disease in livestock and aquaculture. OIE Revue Scientifique Et Technique, 2021, 40, 567-584.	0.5	22
126	The role of soil in the contribution of food and feed. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200181.	1.8	29
127	Construction and Interpretation of Production and Market Metrics Used to Understand Relationships with Dietary Diversity of Rural Smallholder Farming Households. Agriculture (Switzerland), 2021, 11, 749.	1.4	3
128	A review of global gridded cropping system data products. Environmental Research Letters, 2021, 16, 093005.	2.2	26
129	Farming with Alternative Pollinators benefits pollinators, natural enemies, and yields, and offers transformative change to agriculture. Scientific Reports, 2021, 11, 18206.	1.6	8
130	Values-Based Scenarios of Water Security: Rights to Water, Rights of Waters, and Commercial Water Rights. BioScience, 2021, 71, 1157-1170.	2.2	7

#	Article	IF	CITATIONS
131	Human Settlements: Urban Challenges and Future Development. Advances in 21st Century Human Settlements, 2022, , 3-27.	0.3	0
132	LCA and nutritional assessment of southern Benin market vegetable gardening across the production continuum. International Journal of Life Cycle Assessment, 2021, 26, 1977-1997.	2.2	6
133	How necessary and feasible are reductions of methane emissions from livestock to support stringent temperature goals?. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200452.	1.6	49
134	The future of farming: Who will produce our food?. Food Security, 2021, 13, 1073-1099.	2.4	167
135	Measures to Increase Local Food Supply in the Context of European Framework Scenarios for the Agri-Food Sector. Sustainability, 2021, 13, 10019.	1.6	3
136	Assessing food availability: A novel approach for the quantitative estimation of the contribution of small farms in regional food systems in Europe. Global Food Security, 2021, 30, 100555.	4.0	6
137	Global relationships between crop diversity and nutritional stability. Nature Communications, 2021, 12, 5310.	5.8	21
138	Understanding the impacts of the COVID-19 pandemic on sustainable agri-food system and agroecosystem decarbonization nexus: A review. Journal of Cleaner Production, 2021, 318, 128451.	4.6	40
139	Health impacts of climate change on smallholder farmers. One Health, 2021, 13, 100258.	1.5	26
140	Transformations Across Diets and Food Systems. Palgrave Studies in Agricultural Economics and Food Policy, 2021, , 71-84.	0.2	3
141	Aquaponics: Closing the Cycle on Limited Water, Land and Nutrient Resources., 2019,, 19-34.		24
142	Ever-increasing agricultural land and water productivity: a global multi-crop analysis. Environmental Research Letters, 2020, 15, 0940a2.	2.2	8
143	Effects of environmental change on agriculture, nutrition and health: A framework with a focus on fruits and vegetables. Wellcome Open Research, 2017, 2, 21.	0.9	34
144	Biodiversity in Tomatoes: Is It Reflected in Nutrient Density and Nutritional Yields Under Organic Outdoor Production?. Frontiers in Plant Science, 2020, 11, 589692.	1.7	13
145	Food Access Deficiencies in Sub-saharan Africa: Prevalence and Implications for Agricultural Interventions. Frontiers in Sustainable Food Systems, 2019, 3, .	1.8	85
146	Generating a rule-based global gridded tillage dataset. Earth System Science Data, 2019, 11, 823-843.	3.7	32
148	HyNutri: Estimating the Nutritional Composition of Wheat from Multi-Temporal Prisma Data., 2021,,.		1
149	Varietal Threat Index for Monitoring Crop Diversity on Farms in Five Agro-Ecological Regions in India. Diversity, 2021, 13, 514.	0.7	4

#	Article	IF	CITATIONS
150	Agricultural expansion and the ecological marginalization of forest-dependent people. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	3.3	25
151	Integrating satellite-derived climatic and vegetation indices to predict smallholder maize yield using deep learning. Agricultural and Forest Meteorology, 2021, 311, 108666.	1.9	42
153	Multidimensional Framework for Achieving Sustainable and Resilient Food Systems in Nigeria. , 2020, , $1137-1159$.		0
155	Growth of Food Security of the Southern Federal District. Regionalnaya Ekonomika Yug Rossii, 2020, , 148-157.	0.0	0
156	Family farming in times of Covid-19. Revista De Nutricao, 0, 33, .	0.4	13
157	Climate-Resilient Agricultural Development in the Global South. , 2021, , 1-24.		2
158	Do Sustainability Standards Exclude Small Farms? Modelling the Kenyan Floricultural Sector. Earth, 2021, 2, 871-893.	0.9	0
159	Benchmarking statistical modelling approaches with multi-source remote sensing data for millet yield monitoring: a case study of the groundnut basin in central Senegal. International Journal of Remote Sensing, 2021, 42, 9285-9308.	1.3	3
160	Editorial: Resetting Power in Global Food Governance: The UN Food Systems Summit. Development, 2021, 64, 153-161.	0.5	15
162	Mapping of Agriculture Productivity Variability for the SAARC Nations in Response to Climate Change Scenario for the Year 2050., 2021,, 249-262.		1
164	Exploring the agricultural landscape diversity-food security nexus: an analysis in two contrasted parklands of Central Senegal. Agricultural Systems, 2022, 196, 103312.	3.2	17
165	Phosphorus for Sustainable Development Goal target of doubling smallholder productivity. Nature Sustainability, 2022, 5, 57-63.	11.5	45
166	Seed value chain development in the Global South: Key issues and new directions for public breeding programs. Outlook on Agriculture, 2021, 50, 366-377.	1.8	25
167	Can agroecology help in meeting our 2050 protein requirements?. Livestock Science, 2022, 256, 104822.	0.6	18
168	Toward resilient food systems after COVID-19. Current Research in Environmental Sustainability, 2022, 4, 100110.	1.7	3
169	Drivers and constraints of on-farm diversity. A review. Agronomy for Sustainable Development, 2022, 42, 1.	2.2	9
170	Is small beautiful? Techinical efficiency and environmental sustainability of small-scale family farms under the conditions of agricultural policy support. Journal of Rural Studies, 2022, 89, 235-247.	2.1	25
171	Climate-Resilient Agricultural Development in the Global South. , 2021, , 555-578.		0

#	Article	IF	Citations
172	Do not transform food systems on the backs of the rural poor. Food Security, 2022, 14, 729-740.	2.4	18
173	Perceived effects of COVID-19 restrictions on smallholder farmers: Evidence from seven lower- and middle-income countries. Agricultural Systems, 2022, 198, 103367.	3 . 2	19
174	Recent Patterns in Maize Yield and Harvest Area across Africa. Agronomy, 2022, 12, 374.	1.3	10
175	Perspective: The gap between intent and climate action in agriculture. Global Food Security, 2022, 32, 100612.	4.0	9
176	Food systems and rural wellbeing: challenges and opportunities. Food Security, 2022, 14, 1099-1121.	2.4	15
177	Reshaping Food Policy and Governance to Incentivize and Empower Disadvantaged Groups for Improving Nutrition. Nutrients, 2022, 14, 648.	1.7	8
178	Farm Size in Organic Agriculture: Analysis of European Countries and Russia. Environmental Footprints and Eco-design of Products and Processes, 2022, , 189-199.	0.7	0
179	Considering Ecosystem Services in Food System Resilience. International Journal of Environmental Research and Public Health, 2022, 19, 3652.	1.2	4
180	Geographical patterns in food availability from pollinator-dependent crops: Towards a Pollinator Threat Index of food security. Global Food Security, 2022, 32, 100614.	4.0	3
181	An Object-Based Genetic Programming Approach for Cropland Field Extraction. Remote Sensing, 2022, 14, 1275.	1.8	14
182	Livestock water and land productivity in Kenya and their implications for future resource use. Heliyon, 2022, 8, e09006.	1.4	3
183	Strategic land-use planning instruments in tropical regions: state of the art and future research. Journal of Land Use Science, 2021, 16, 479-497.	1.0	5
184	The role of holistic nutritional properties of diets in the assessment of food system and dietary sustainability. Critical Reviews in Food Science and Nutrition, 2023, 63, 5117-5137.	5.4	6
185	Fruit and vegetable biodiversity for nutritionally diverse diets: Challenges, opportunities, and knowledge gaps. Global Food Security, 2022, 33, 100618.	4.0	6
193	Trends and challenges on fruit and vegetable processing: Insights into sustainable, traceable, precise, healthy, intelligent, personalized and local innovative food products. Trends in Food Science and Technology, 2022, 125, 12-25.	7.8	33
194	Transdisciplinary agroecological research on biodiversity and ecosystem services for sustainable and climate resilient farming systems in Malawi. Advances in Ecological Research, 2022, , .	1.4	4
195	Lessons learned in developing reference data sets with the contribution of citizens: the Geo-Wiki experience. Environmental Research Letters, 2022, 17, 065003.	2.2	10
196	De Novo Domestication in the Multi-Omics Era. Plant and Cell Physiology, 0, , .	1.5	4

#	Article	IF	CITATIONS
197	Small-scale farms in the environmental sustainability of rural areas. Opinions of farmers from Poland, Romania and Lithuania., 2022, 81, 168-185.		2
198	A systematic map of within-plantation oil palm management practices reveals a rapidly growing but patchy evidence base., 2022, 1, e0000023.		2
199	Sustainable agrifood systems for a post-growth world. Nature Sustainability, 2022, 5, 1011-1017.	11.5	63
200	The link between agriculture and rural food security in the ecoregions of Mexico: path diagrams and underlying datasets. Data in Brief, 2022, , 108543.	0.5	0
201	Market access and dietary diversity: A spatially explicit multi-level analysis in Southern and Western Kenya. Frontiers in Sustainable Food Systems, 0, 6, .	1.8	2
202	Financial profitability of diversified farming systems: A global meta-analysis. Ecological Economics, 2022, 201, 107595.	2.9	25
203	Unlocking Early-Stage Financing for SDG Partnerships., 0,,.		1
204	Finding food in the hunger season: A mixed methods approach to understanding wild plant foods in relation to food security and dietary diversity in southeastern Madagascar. Frontiers in Sustainable Food Systems, 0, 6, .	1.8	7
205	Complex agricultural landscapes host more biodiversity than simple ones: A global meta-analysis. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	59
206	Global food systems transitions have enabled affordable diets but had less favourable outcomes for nutrition, environmental health, inclusion and equity. Nature Food, 2022, 3, 764-779.	6.2	34
207	Future Food Security in Africa Under Climate Change. Earth's Future, 2022, 10, .	2.4	7
208	Gridded 5 arcmin datasets for simultaneously farm-size-specific and crop-specific harvested areas in 56 countries. Earth System Science Data, 2022, 14, 4397-4418.	3.7	1
209	Crossover-Use of Human Antibiotics in Livestock in Agricultural Communities: A Qualitative Cross-Country Comparison between Uganda, Tanzania and India. Antibiotics, 2022, 11, 1342.	1.5	12
210	Global trends of cropland phosphorus use and sustainability challenges. Nature, 2022, 611, 81-87.	13.7	69
211	Reprise de terrain: un mouvement social pour des systèmes alimentaires durables à Java, Indonésie. Anthropology of Food, 0, , .	0.1	1
212	Harnessing the Opportunities for Sustainable Small-Scale Rural Farming Towards Attaining Food Security in Southern Africa., 2023,, 307-328.		0
213	Organic soil amendments and food security: Evidence from Cameroon. Land Degradation and Development, 2023, 34, 1159-1170.	1.8	4
214	The cost of diversity in livestock feed rations. PLoS ONE, 2022, 17, e0277817.	1.1	1

#	Article	IF	CITATIONS
215	Impact of land acquisition for large-scale agricultural investments on food security status of displaced households: The case of Ethiopia. Land Use Policy, 2023, 126, 106507.	2.5	5
216	Consider the risks of bottom-up approaches for climate change adaptation. Nature Climate Change, 2023, 13, 2-3.	8.1	1
217	The True Cost of Food: A Preliminary Assessment. , 2023, , 581-601.		5
218	Ensuring Access to Safe and Nutritious Food for All Through the Transformation of Food Systems. , 2023, , 31-58.		2
219	Fruits and Vegetables for Healthy Diets: Priorities for Food System Research and Action., 2023,, 87-104.		4
220	A Shift to Healthy and Sustainable Consumption Patterns. , 2023, , 59-85.		1
221	Livestock and Sustainable Food Systems: Status, Trends, and Priority Actions., 2023, , 375-399.		2
222	The Future of Small Farms: Innovations for Inclusive Transformation. , 2023, , 191-205.		3
223	Perspective: What might it cost to reconfigure food systems?. Global Food Security, 2023, 36, 100669.	4.0	3
224	Looking Forward to When it is Over: Reactions and Short-Term Coping Micro-Strategies of Polish Fruit and Vegetable Farmers during the Covid-19 Pandemic. European Countryside, 2022, 14, 770-789.	0.5	0
227	Can cereal-legume intercrop systems contribute to household nutrition in semi-arid environments: A systematic review and meta-analysis. Frontiers in Nutrition, 0, 10 , .	1.6	2
228	Mixed farming systems: potentials and barriers for climate change adaptation in food systems. Current Opinion in Environmental Sustainability, 2023, 62, 101270.	3.1	6
229	A Geospatial Approach to Assessing the Impact of Agroecological Knowledge and Practice on Crop Health in a Smallholder Agricultural Context. Professional Geographer, 0 , 1 -18.	1.0	0
230	Sustainable aquatic food systems: Multisectoral analysis of determinants of child nutrition in coastal Kenya. Frontiers in Sustainable Food Systems, 0, 7, .	1.8	2
231	The impact of food insecurity on health outcomes: empirical evidence from sub-Saharan African countries. BMC Public Health, 2023, 23, .	1.2	9
232	Agriculture and Food Problems and Solutions: Challenges and Capacity of the Capitalist System in the Twenty-First Century., 2023,, 59-79.		0
233	The Sustainable Niche for Vegetable Production within the Contentious Sustainable Agriculture Discourse: Barriers, Opportunities and Future Approaches. Sustainability, 2023, 15, 4747.	1.6	1
234	Local rice cultivar diversity and household food security in northern Iran. Environment, Development and Sustainability, 2024, 26, 7799-7814.	2.7	0

#	Article	IF	CITATIONS
235	Global modeling of SDG indicators related to small-scale farmers: testing in a changing climate. Environmental Research Communications, 2023, 5, 031006.	0.9	2
236	The next era of crop domestication starts now. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	10
237	Forgotten food crops in sub-Saharan Africa for healthy diets in a changing climate. Proceedings of the National Academy of Sciences of the United States of America, 2023 , 120 , .	3.3	8
238	Validating a semi-quantitative food frequency questionnaire to assess regional diet in a study of cancer in South West Nigeria. Cancer Causes and Control, 0, , .	0.8	1
239	Exploring scenarios for the food system–zoonotic risk interface. Lancet Planetary Health, The, 2023, 7, e329-e335.	5.1	2
251	Integrated aquaculture–agriculture production supports food and nutrition security in Bangladesh. Nature Food, 2023, 4, 833-834.	6.2	1
254	Why Agroecology, Why Systems, Why Now?. , 2023, , 3-41.		0
264	Opportunities for Achieving Climate Neutrality Through Circular Agriculture in Southeast Asia. , 2024, , 1-8.		O