ITIC surface modification to achieve synergistic electro planar-type perovskite solar cells with efficiency exceed

Journal of Materials Chemistry A 5, 9514-9522 DOI: 10.1039/c7ta01636k

Citation Report

#	Article	IF	CITATIONS
3	Energy-Down-Shift CsPbCl ₃ :Mn Quantum Dots for Boosting the Efficiency and Stability of Perovskite Solar Cells. ACS Energy Letters, 2017, 2, 1479-1486.	8.8	221
4	High-performance transparent ultraviolet photodetectors based on inorganic perovskite CsPbCl ₃ nanocrystals. RSC Advances, 2017, 7, 36722-36727.	1.7	90
5	Additiveâ€Enhanced Crystallization of Solution Process for Planar Perovskite Solar Cells with Efficiency Exceeding 19 %. Chemistry - A European Journal, 2017, 23, 18140-18145.	1.7	33
6	A low temperature processed fused-ring electron transport material for efficient planar perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 24820-24825.	5.2	46
7	Enhanced performance of perovskite solar cells <i>via</i> anti-solvent nonfullerene Lewis base IT-4F induced trap-passivation. Journal of Materials Chemistry A, 2018, 6, 5919-5925.	5.2	127
8	Single-crystalline perovskite wafers with a Cr blocking layer for broad and stable light detection in a harsh environment. RSC Advances, 2018, 8, 14848-14853.	1.7	9
9	Exploring Inorganic Binary Alkaline Halide to Passivate Defects in Lowâ€Temperatureâ€Processed Planarâ€Structure Hybrid Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1800138.	10.2	186
10	Chelate-Pb Intermediate Engineering for High-Efficiency Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 14744-14750.	4.0	15
11	Flexible perovskite solar cells based on green, continuous roll-to-roll printing technology. Journal of Energy Chemistry, 2018, 27, 971-989.	7.1	55
12	All-Ambient Processed Binary CsPbBr ₃ –CsPb ₂ Br ₅ Perovskites with Synergistic Enhancement for High-Efficiency Cs–Pb–Br-Based Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 7145-7154.	4.0	171
13	Carbon Nanoparticles in Highâ€Performance Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1702719.	10.2	74
14	Shape―and Trapâ€Controlled Nanocrystals for Giantâ€Performance Improvement of Allâ€Inorganic Perovskite Photodetectors. Particle and Particle Systems Characterization, 2018, 35, 1700363.	1.2	24
15	Improving the Optoelectronic Properties of Mesoporous TiO ₂ by Cobalt Doping for High-Performance Hysteresis-free Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 3571-3580.	4.0	78
16	µâ€Graphene Crosslinked CsPbl ₃ Quantum Dots for High Efficiency Solar Cells with Much Improved Stability. Advanced Energy Materials, 2018, 8, 1800007.	10.2	198
17	Interstitial Mn ²⁺ -Driven High-Aspect-Ratio Grain Growth for Low-Trap-Density Microcrystalline Films for Record Efficiency CsPbI ₂ Br Solar Cells. ACS Energy Letters, 2018, 3, 970-978.	8.8	356
18	A novel ball milling technique for room temperature processing of TiO ₂ nanoparticles employed as the electron transport layer in perovskite solar cells and modules. Journal of Materials Chemistry A, 2018, 6, 7114-7122.	5.2	35
19	Polymer Doping for Highâ€Efficiency Perovskite Solar Cells with Improved Moisture Stability. Advanced Energy Materials, 2018, 8, 1701757.	10.2	293
20	Nonâ€Fullerene Organic Electronâ€Transporting Materials for Perovskite Solar Cells. ChemSusChem, 2018, 11, 3882-3892.	3.6	27

#	Article	IF	CITATIONS
21	Synergy of Hydrophobic Surface Capping and Lattice Contraction for Stable and Highâ€Efficiency Inorganic CsPbI ₂ Br Perovskite Solar Cells. Solar Rrl, 2018, 2, 1800216.	3.1	68
22	Retardation of Trapâ€Assisted Recombination in Lead Halide Perovskite Solar Cells by a Dimethylbiguanide Anchor Layer. Chemistry - A European Journal, 2018, 25, 1076-1082.	1.7	9
23	lodineâ€Optimized Interface for Inorganic CsPbl ₂ Br Perovskite Solar Cell to Attain High Stabilized Efficiency Exceeding 14%. Advanced Science, 2018, 5, 1801123.	5.6	90
24	Highly efficient and humidity stable perovskite solar cells achieved by introducing perovskite-like metal formate material as the nanocrystal scaffold. Journal of Power Sources, 2018, 402, 229-236.	4.0	7
25	Planar inverted perovskite solar cells based on the electron transport layer of PC61BM:ITIC. Synthetic Metals, 2018, 245, 116-120.	2.1	12
26	Fabrication of [CH(NH ₂) ₂] _{0.8} Cs _{0.2} PbI ₃ Perovskite Thin Films for n-i-p Planar-structure Solar Cells by a One-step Method Using 1-Cyclohexyl-2-pyrrolidone as an Additive. Chemistry Letters, 2018, 47, 905-908.	0.7	7
27	CsPbCl ₃ â€Driven Lowâ€Trapâ€Density Perovskite Grain Growth for >20% Solar Cell Efficiency. Advanced Science, 2018, 5, 1800474.	5.6	65
28	Restrained light-soaking and reduced hysteresis in perovskite solar cells employing a helical perylene diimide interfacial layer. Journal of Materials Chemistry A, 2018, 6, 10379-10387.	5.2	51
29	lonic liquid modified SnO ₂ nanocrystals as a robust electron transporting layer for efficient planar perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 22086-22095.	5.2	66
30	High-performance inverted two-dimensional perovskite solar cells using non-fullerene acceptor as electron transport layer. Organic Electronics, 2018, 62, 189-194.	1.4	13
31	Enhanced electron transport enables over 12% efficiency by interface engineering of non-fullerene organic solar cells. Solar Energy Materials and Solar Cells, 2018, 187, 273-282.	3.0	35
32	Temperature-assisted crystallization for inorganic CsPbI2Br perovskite solar cells to attain high stabilized efficiency 14.81%. Nano Energy, 2018, 52, 408-415.	8.2	186
33	Multifunctional Chemical Linker Imidazoleacetic Acid Hydrochloride for 21% Efficient and Stable Planar Perovskite Solar Cells. Advanced Materials, 2019, 31, e1902902.	11.1	366
34	The efficient and non-hysteresis inverted non-fullerenes/CH3NH3PbI3 planar solar cells. Solar Energy, 2019, 189, 307-313.	2.9	16
35	Scalable Fabrication of Metal Halide Perovskite Solar Cells and Modules. ACS Energy Letters, 2019, 4, 2147-2167.	8.8	161
36	Impact of charge transport layers on the photochemical stability of MAPbI ₃ in thin films and perovskite solar cells. Sustainable Energy and Fuels, 2019, 3, 2705-2716.	2.5	22
37	Cesium Lead Mixed-Halide Perovskites for Low-Energy Loss Solar Cells with Efficiency Beyond 17%. Chemistry of Materials, 2019, 31, 6231-6238.	3.2	76
38	Stable power output (PCE>19%) of planar perovskite solar cells with PbCl2 modification at the interface of SnO2/CH3NH3Pbl3. Organic Electronics, 2019, 74, 52-58.	1.4	10

#	Article	IF	CITATIONS
39	Rhenium diselenide as the broadband saturable absorber for the nanosecond passively Q-switched thulium solid-state lasers. Optical Materials, 2019, 88, 630-634.	1.7	10
40	Chlorine doping for black γ-CsPbI3 solar cells with stabilized efficiency beyond 16%. Nano Energy, 2019, 58, 175-182.	8.2	170
41	Incorporation of two electron acceptors to improve the electron mobility and stability of perovskite solar cells. Journal of Materials Chemistry C, 2019, 7, 8344-8349.	2.7	14
42	Nonfullerene nâ€Type Organic Semiconductors for Perovskite Solar Cells. Advanced Energy Materials, 2019, 9, 1900860.	10.2	63
43	Introducing pyridyl into electron transport materials plays a key role in improving electron mobility and interface properties for inverted perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 16304-16312.	5.2	9
44	Amine-Based Interfacial Engineering in Solution-Processed Organic and Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 16785-16794.	4.0	12
45	Alkali Chlorides for the Suppression of the Interfacial Recombination in Inverted Planar Perovskite Solar Cells. Advanced Energy Materials, 2019, 9, 1803872.	10.2	236
46	Facile synthesis of composite tin oxide nanostructures for high-performance planar perovskite solar cells. Nano Energy, 2019, 60, 275-284.	8.2	57
47	Causes and Solutions of Recombination in Perovskite Solar Cells. Advanced Materials, 2019, 31, e1803019.	11.1	422
48	Lowâ€Temperature In Situ Amino Functionalization of TiO ₂ Nanoparticles Sharpens Electron Management Achieving over 21% Efficient Planar Perovskite Solar Cells. Advanced Materials, 2019, 31, e1806095.	11.1	194
49	High efficiency and negligible hysteresis planar perovskite solar cells based on NiO nanocrystals modified TiO2 electron transport layers. Solar Energy, 2019, 181, 293-300.	2.9	16
50	Nitrogen-doped graphene quantum dots for 80% photoluminescence quantum yield for inorganic γ-CsPbl ₃ perovskite solar cells with efficiency beyond 16%. Journal of Materials Chemistry A, 2019, 7, 5740-5747.	5.2	113
51	Optical Management with Nanoparticles for a Light Conversion Efficiency Enhancement in Inorganic γ-CsPbl ₃ Solar Cells. Nano Letters, 2019, 19, 1796-1804.	4.5	58
52	The humidity-insensitive fabrication of efficient CsPbI ₃ solar cells in ambient air. Journal of Materials Chemistry A, 2019, 7, 26776-26784.	5.2	54
53	Fabrication of Perovskite Films with Long Carrier Lifetime for Efficient Perovskite Solar Cells from Low-Toxicity 1-Ethyl-2-Pyrrolidone. ACS Applied Energy Materials, 2019, 2, 320-327.	2.5	4
54	Metal Halide Perovskite Materials for Solar Cells with Longâ€∓erm Stability. Advanced Energy Materials, 2019, 9, 1802671.	10.2	97
55	High quality perovskite film solar cell using methanol as additive with 19.5% power conversion efficiency. Electrochimica Acta, 2019, 293, 356-363.	2.6	38
56	Dissolution and recrystallization of perovskite induced by N-methyl-2-pyrrolidone in a closed steam annealing method. Journal of Energy Chemistry, 2019, 30, 78-83.	7.1	16

#	Article	IF	CITATIONS
57	Interconnected SnO ₂ Nanocrystals Electron Transport Layer for Highly Efficient Flexible Perovskite Solar Cells. Solar Rrl, 2020, 4, 1900229.	3.1	31
58	Inhibited aggregation of lithium salt in spiro-OMeTAD toward highly efficient perovskite solar cells. Nano Energy, 2020, 70, 104483.	8.2	64
59	Performance improvement of planar perovskite solar cells with cobalt-doped interface layer. Applied Surface Science, 2020, 507, 145081.	3.1	22
60	In Situ-Formed and Low-Temperature-Deposited Nb:TiO2 Compact-Mesoporous Layer for Hysteresis-Less Perovskite Solar Cells with High Performance. Nanoscale Research Letters, 2020, 15, 135.	3.1	1
61	Film Deposition Techniques Impact the Defect Density and Photostability of MAPbI ₃ Perovskite Films. Journal of Physical Chemistry C, 2020, 124, 21378-21385.	1.5	22
62	Recent advances of non-fullerene organic electron transport materials in perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 20819-20848.	5.2	29
63	Decreasing energy loss and optimizing band alignment for high performance CsPbI ₃ solar cells through guanidine hydrobromide post-treatment. Journal of Materials Chemistry A, 2020, 8, 10346-10353.	5.2	40
64	Efficient Trap Passivation of MAPbI ₃ via Multifunctional Anchoring for Highâ€Performance and Stable Perovskite Solar Cells. Advanced Sustainable Systems, 2020, 4, 2000078.	2.7	42
65	Progress in Materials Development for the Rapid Efficiency Advancement of Perovskite Solar Cells. Small, 2020, 16, e1907531.	5.2	23
66	Porous Anatase TiO ₂ Nanocrystal Derived from the Metal–Organic Framework as Electron Transport Material for Carbon-Based Perovskite Solar Cells. ACS Applied Energy Materials, 2020, 3, 6180-6187.	2.5	20
67	Molecular materials as interfacial layers and additives in perovskite solar cells. Chemical Society Reviews, 2020, 49, 4496-4526.	18.7	130
68	Non-Fullerene Small Molecule Electron-Transporting Materials for Efficient p-i-n Perovskite Solar Cells. Nanomaterials, 2020, 10, 1082.	1.9	4
69	Unveiling the Effects of Hydrolysisâ€Derived DMAI/DMAPbI <i>_x</i> Intermediate Compound on the Performance of CsPbI ₃ Solar Cells. Advanced Science, 2020, 7, 1902868.	5.6	97
70	High-efficiency and UV-stable flexible perovskite solar cells enabled by an alkaloid-doped C ₆₀ electron transport layer. Journal of Materials Chemistry C, 2020, 8, 10401-10407.	2.7	9
71	Surface Modification of TiO2 for Perovskite Solar Cells. Trends in Chemistry, 2020, 2, 148-162.	4.4	91
72	Application of perovskite nanocrystals (NCs)/quantum dots (QDs) in solar cells. Nano Energy, 2020, 73, 104757.	8.2	77
73	Cadmium doping for improving the efficiency and stability of carbon-based CsPbIBr ₂ all-inorganic perovskite solar cells. New Journal of Chemistry, 2021, 45, 9243-9250.	1.4	12
74	Polyacetylene derivatives in perovskite solar cells: from defect passivation to moisture endurance. Journal of Materials Chemistry A, 2021, 9, 13220-13230.	5.2	15

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
75	The roles of fused-ring organic semiconductor treatment on SnO ₂ in enhancing perovskite solar cell performance. RSC Advances, 2021, 11, 3792-3800.	1.7	8
76	A Facile Surface Passivation Enables Thermally Stable and Efficient Planar Perovskite Solar Cells Using a Novel IDTTâ€Based Small Molecule Additive. Advanced Energy Materials, 2021, 11, 2003829.	10.2	72
77	Origin, Influence, and Countermeasures of Defects in Perovskite Solar Cells. Small, 2021, 17, e2005495.	5.2	61
78	Interface engineering of high performance all-inorganic perovskite solar cells via low-temperature processed TiO2 nanopillar arrays. Nano Research, 2021, 14, 3431-3438.	5.8	22
79	Unfused Electronic Acceptor-Based Polymers as Interfacial Materials for Efficient Inverted Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 33328-33334.	4.0	5
80	Benzo[ghi]perylenetriimide derivatives as effective interfacial passivation and electron transporting layers for inverted perovskite solar cells. Dyes and Pigments, 2021, 192, 109385.	2.0	2
81	Defect Passivation for Perovskite Solar Cells: from Molecule Design to Device Performance. ChemSusChem, 2021, 14, 4354-4376.	3.6	43
82	Recent advances in carbon nanomaterial-optimized perovskite solar cells. Materials Today Energy, 2021, 21, 100769.	2.5	14
83	Fused-ring electron acceptor as an efficient interfacial material for planar and flexible perovskite solar cells. Organic Electronics, 2021, 98, 106293.	1.4	4
84	Performance improvement of inverted two-dimensional perovskite solar cells using a non-fullerene acceptor as the trap passivator. Sustainable Energy and Fuels, 2021, 5, 2354-2361.	2.5	3
85	Suppression of surface defects to achieve hysteresis-free inverted perovskite solar cells <i>via</i> quantum dot passivation. Journal of Materials Chemistry A, 2020, 8, 5263-5274.	5.2	67
86	HI hydrolysis-derived intermediate as booster for CsPbI ₃ perovskite: from crystal structure, film fabrication to device performance. Journal of Semiconductors, 2020, 41, 051202.	2.0	19
87	A Regularityâ€Based Fullerene Interfacial Layer for Efficient and Stable Perovskite Solar Cells via Bladeâ€Coating. Advanced Functional Materials, 2022, 32, 2105917.	7.8	14
88	First-principles calculations of electronic and optical properties in the bulk and on the (001) surface of CsPbCl3. Journal of Physics: Conference Series, 2021, 2070, 012014.	0.3	0
89	The Role of Ending Groups in Nonâ€Fullerene Acceptors for Interfacial Modification in Perovskite Solar Cells. Solar Rrl, 0, , .	3.1	1
90	Strain relaxation and domain enlargement <i>via</i> phase transition towards efficient CsPbl ₂ Br solar cells. Journal of Materials Chemistry A, 2022, 10, 3513-3521.	5.2	11
91	Bi- or multi-functional charge transporting materials for perovskite solar cells. Dyes and Pigments, 2022, 200, 110102.	2.0	3
92	Postâ€Treatment Passivation by Quaternary Ammonium Chloride Zwitterion for Efficient and Stable Perovskite Solar Cells. Solar Rrl, 2022, 6, .	3.1	3

#	Article	IF	CITATIONS
93	Coevaporation of Doped Inorganic Carrierâ€Selective Layers for Highâ€Performance Inverted Planar Perovskite Solar Cells. Solar Rrl, 2022, 6, .	3.1	4
94	Experimental investigation of the mobility in the ITIC single crystal based field-effect transistor. Organic Electronics, 2022, 104, 106469.	1.4	0
95	Large-scale continuous preparation of highly stable l±-CsPbI ₃ /m-SiO ₂ nanocomposites by a microfluidics reactor for solid state lighting application. CrystEngComm, 2022, 24, 3852-3858.	1.3	4
96	Functionalized BODIPYs as Tailorâ€Made and Universal Interlayers for Efficient and Stable Organic and Perovskite Solar Cells. Advanced Materials Interfaces, 0, , 2102324.	1.9	3
97	A Geometrically Well-Defined and Systematically Tunable Experimental Model to Transition from Planar to Mesoporous Perovskite Solar Cells. ACS Applied Energy Materials, 2022, 5, 11977-11986.	2.5	2
98	Numerical simulation and optimization of a CsPbI ₃ -based perovskite solar cell to enhance the power conversion efficiency. New Journal of Chemistry, 2023, 47, 4801-4817.	1.4	74
99	Surface modification of titanium dioxide. Journal of Materials Science, 2023, 58, 6887-6930.	1.7	5