Burgess Shale fossils illustrate the origin of the mandib

Nature 545, 89-92 DOI: 10.1038/nature22080

Citation Report

#	Article	IF	CITATIONS
1	Palaeontology: The Cause of Jaws and Claws. Current Biology, 2017, 27, R807-R810.	3.9	6
2	The Evolution of Arthropod Body Plans: Integrating Phylogeny, Fossils, and Development—An Introduction to the Symposium. Integrative and Comparative Biology, 2017, 57, 450-454.	2.0	4
3	Inferring Arthropod Phylogeny: Fossils and their Interaction with Other Data Sources. Integrative and Comparative Biology, 2017, 57, 467-476.	2.0	9
4	Exoskeletal transformations in Eriophyoidea: new pseudotagmic taxon Pseudotagmus africanus n. g. & n. sp. from South Africa and remarks on pseudotagmosis in eriophyoid mites. Systematic and Applied Acarology, 2017, 22, 2093.	0.5	3
5	Geochemistry Articles – May 2017. Organic Geochemistry, 2017, 110, e1-e27.	1.8	0
6	Mandibulate convergence in an armoured Cambrian stem chelicerate. BMC Evolutionary Biology, 2017, 17, 261.	3.2	38
7	A New Burgess Shale Polychaete and the Origin of the Annelid Head Revisited. Current Biology, 2018, 28, 319-326.e1.	3.9	18
8	Early Cambrian fuxianhuiids from China reveal origin of the gnathobasic protopodite in euarthropods. Nature Communications, 2018, 9, 470.	12.8	37
9	The gnathobasic spine microstructure of recent and Silurian chelicerates and the Cambrian artiopodan Sidneyia : Functional and evolutionary implications. Arthropod Structure and Development, 2018, 47, 12-24.	1.4	50
10	A redescription of Liangwangshania biloba Chen, 2005, from the Chengjiang biota (Cambrian, China), with a discussion of possible sexual dimorphism in fuxianhuiid arthropods. Arthropod Structure and Development, 2018, 47, 552-561.	1.4	5
11	Cladistical Analysis of the Jovian and Saturnian Satellite Systems. Astrophysical Journal, 2018, 859, 97.	4.5	11
12	<i>Waptia fieldensis</i> Walcott, a mandibulate arthropod from the middle Cambrian Burgess Shale. Royal Society Open Science, 2018, 5, 172206.	2.4	51
13	The Divergent Evolution of Arthropod Brains. , 0, , 31-70.		4
14	A possible case of inverted lifestyle in a new bivalved arthropod from the Burgess Shale. Royal Society Open Science, 2019, 6, 191350.	2.4	8
15	A middle Cambrian arthropod with chelicerae and proto-book gills. Nature, 2019, 573, 586-589.	27.8	39
16	Developing an integrated understanding of the evolution of arthropod segmentation using fossils and evo-devo. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20191881.	2.6	22
17	THE LIMITS OF BURGESS SHALE-TYPE PRESERVATION: ASSESSING THE EVIDENCE FOR PRESERVATION OF THE BLOOD PROTEIN HEMOCYANIN IN THE BURGESS SHALE. Palaios, 2019, 34, 291-299.	1.3	6
18	The Phylogeny and Evolutionary History of Arthropods. Current Biology, 2019, 29, R592-R602.	3.9	155

CITATION REPORT

#	Article	IF	CITATIONS
19	Trilobite compound eyes with crystalline cones and rhabdoms show mandibulate affinities. Nature Communications, 2019, 10, 2503.	12.8	15
20	Reviewing the bases for a nomenclatural uniformization of the highest taxonomic levels in arthropods. Geological Magazine, 2019, 156, 1463-1468.	1.5	11
21	Burgess Shale fossils shed light on the agnostid problem. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20182314.	2.6	16
22	Muscles and muscle scars in fossil malacostracan crustaceans. Earth-Science Reviews, 2019, 194, 306-326.	9.1	9
23	Three-Dimensionally Preserved Appendages in an Early Cambrian Stem-Group Pancrustacean. Current Biology, 2019, 29, 171-177.e1.	3.9	46
24	The trouble with trilobites: classification, phylogeny and the cryptogenesis problem. Geological Magazine, 2020, 157, 35-46.	1.5	17
26	Fossils from South China redefine the ancestral euarthropod body plan. BMC Evolutionary Biology, 2020, 20, 4.	3.2	27
27	Macroevolutionary patterns of body plan canalization in euarthropods. Paleobiology, 2020, 46, 569-593.	2.0	14
28	Arthropod Origins: Integrating Paleontological and Molecular Evidence. Annual Review of Ecology, Evolution, and Systematics, 2020, 51, 1-25.	8.3	30
29	Evolutionary trade-off in reproduction of Cambrian arthropods. Science Advances, 2020, 6, eaaz3376.	10.3	16
30	The Collins' monster, a spinous suspensionâ€feeding lobopodian from the Cambrian Burgess Shale of British Columbia. Palaeontology, 2020, 63, 979-994.	2.2	11
31	The Burgess Shale paleocommunity with new insights from Marble Canyon, British Columbia. Paleobiology, 2020, 46, 58-81.	2.0	47
32	Aquatic stem group myriapods close a gap between molecular divergence dates and the terrestrial fossil record. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 8966-8972.	7.1	27
33	A new early Cambrian bivalved euarthropod from Yunnan, China and general interspecific morphological and size variations in Cambrian hymenocarines. Palaeoworld, 2021, 30, 387-397.	1.1	3
34	Fuxianhuiids are mandibulates and share affinities with total-group Myriapoda. Journal of the Geological Society, 2021, 178, .	2.1	15
35	A new species of the Cambrian bivalved euarthropod Pectocaris with axially differentiated enditic armatures. Papers in Palaeontology, 2021, 7, 1781.	1.5	7
36	Stranger than a scorpion: a reassessment of Parioscorpio venator , a problematic arthropod from the Llandoverian Waukesha LagerstÃ t te. Palaeontology, 2021, 64, 429-474.	2.2	14
37	The origin and evolution of the euarthropod labrum. Arthropod Structure and Development, 2021, 62, 101048.	1.4	26

#	Article	IF	CITATIONS
38	Exceptional multifunctionality in the feeding apparatus of a mid-Cambrian radiodont. Paleobiology, 0, , 1-21.	2.0	16
39	A Burgess Shale mandibulate arthropod with a pygidium: a case of convergent evolution. Papers in Palaeontology, 2021, 7, 1877.	1.5	9
40	Through a glass darkly, but with more understanding of arthropod origin. France Biotechnologies, 0,	0.0	0
41	An early Cambrian euarthropod with radiodont-like raptorial appendages. Nature, 2020, 588, 101-105.	27.8	37
42	Brachiopod-dominated communities and depositional environment of the Guanshan Konservat-LagerstÃ ¤ te, eastern Yunnan, China. Journal of the Geological Society, 2021, 178, .	2.1	10
43	The Deep-Water Crustacean and Pycnogonid Fauna of the Americas in a Global Context. , 2020, , 1-24.		2
44	The soft-bodied biota of the Cambrian Series 2 Parker Quarry LagerstÃ t e of northwestern Vermont, USA. Journal of Paleontology, 2022, 96, 770-790.	0.8	7
45	A new marrellomorph arthropod from southern Ontario: a rare case of soft-tissue preservation on a Late Ordovician open marine shelf. Journal of Paleontology, 2022, 96, 859-874.	0.8	4
46	Ediacaran survivors in the Cambrian: suspicions, denials and a smoking gun. Geological Magazine, 2022, 159, 1210-1219.	1.5	6
47	The origin and early evolution of arthropods. Biological Reviews, 2022, 97, 1786-1809.	10.4	13
48	Extreme multisegmentation in a giant bivalved arthropod from the Cambrian Burgess Shale. IScience, 2022, , 104675.	4.1	3
49	A three-eyed radiodont with fossilized neuroanatomy informs the origin of the arthropod head and segmentation. Current Biology, 2022, 32, 3302-3316.e2.	3.9	18
50	Functional importance of the mandibular skeleto-muscular system in the bivalved arthropod Heterocypris incongruens (Crustacea, Ostracoda, Cyprididae). Die Naturwissenschaften, 2022, 109, .	1.6	0
51	A new species of early Cambrian arthropod reconstructed from exceptionally preserved mandibles and associated small carbonaceous fossils (SCFs). Papers in Palaeontology, 2022, 8, .	1.5	4
52	<i>Innovatiocaris</i> , a complete radiodont from the early Cambrian Chengjiang LagerstÃ æ te and its implications for the phylogeny of Radiodonta. Journal of the Geological Society, 2023, 180, .	2.1	4
53	Description of <i>Acheronauta</i> gen. nov., a possible mandibulate from the Silurian Waukesha Lagerstäte, Wisconsin, USA. Journal of Systematic Palaeontology, 2022, 20, 1-24.	1.5	4
54	New fossil assemblages from the Early Ordovician Fezouata Biota. Scientific Reports, 2022, 12, .	3.3	14
55	The problematic Cambrian arthropod <i>Tuzoia</i> and the origin of mandibulates revisited. Royal Society Open Science, 2022, 9, .	2.4	7

CITATION REPORT

#	Article	IF	CITATIONS
56	Interpreting fossilized nervous tissues. BioEssays, 2023, 45, .	2.5	3
57	Three-dimensional morphology of the biramous appendages in <i>Isoxys</i> from the early Cambrian of South China, and its implications for early euarthropod evolution. Proceedings of the Royal Society B: Biological Sciences, 2023, 290, .	2.6	2
58	New soft-bodied panarthropods from diverse Spence Shale (Cambrian; Miaolingian; Wuliuan) depositional environments. Journal of Paleontology, 2023, 97, 1025-1048.	0.8	1
59	A possibly deep branching artiopodan arthropod from the lower Cambrian Sirius Passet LagerstÃ t te (North Greenland). Papers in Palaeontology, 2023, 9, .	1.5	1
60	A quantitative assessment of ontogeny and molting in a Cambrian radiodont and the evolution of arthropod development. Paleobiology, 2024, 50, 54-69.	2.0	3
61	Early developmental stages of a Lower Ordovician marrellid from Morocco suggest simple ontogenetic niche differentiation in early euarthropods. Frontiers in Ecology and Evolution, 0, 11, .	2.2	1
62	A network analysis of early arthropod evolution and the potential of the primitive. Scientific Reports, 2024, 14, .	3.3	0
63	The Main Line of the Evolution of Articulata—From Polychaetes to Insects. Paleontological Journal, 2023, 57, 1286-1297.	0.5	0