Daily suspended sediment concentration simulation us River Basin, India

Computers and Electronics in Agriculture 138, 20-28 DOI: 10.1016/j.compag.2017.04.005

Citation Report

#	Article	IF	CITATIONS
1	Monthly pan-evaporation estimation in Indian central Himalayas using different heuristic approaches and climate based models. Computers and Electronics in Agriculture, 2017, 143, 302-313.	7.7	67
2	Modeling daily suspended sediment load using improved support vector machine model and genetic algorithm. Environmental Science and Pollution Research, 2018, 25, 35693-35706.	5.3	22
3	Rainfall-runoff modeling in hilly watershed using heuristic approaches with gamma test. Arabian Journal of Geosciences, 2018, 11, 1.	1.3	37
4	Daily Pan Evaporation Estimation Using Heuristic Methods with Gamma Test. Journal of Irrigation and Drainage Engineering - ASCE, 2018, 144, .	1.0	45
5	Why and How Do We Study Sediment Transport? Focus on Coastal Zones and Ongoing Methods. Water (Switzerland), 2018, 10, 390.	2.7	50
6	Estimation of monthly reference evapotranspiration using novel hybrid machine learning approaches. Hydrological Sciences Journal, 2019, 64, 1824-1842.	2.6	97
7	The viability of co-active fuzzy inference system model for monthly reference evapotranspiration estimation: case study of Uttarakhand State. Hydrology Research, 2019, 50, 1623-1644.	2.7	49
8	Evaluating the performance of four different heuristic approaches with Gamma test for daily suspended sediment concentration modeling. Environmental Science and Pollution Research, 2019, 26, 22670-22687.	5.3	48
9	Simulation of daily suspended sediment load using an improved model of support vector machine and genetic algorithms and particle swarm. Arabian Journal of Geosciences, 2019, 12, 1.	1.3	29
10	Performance comparison between genetic programming and sediment rating curve for suspended sediment prediction. African Journal of Science, Technology, Innovation and Development, 2019, 11, 843-859.	1.6	5
11	Interdisciplinary application of numerical and machine-learning-based models to predict half-hourly suspended sediment concentrations during typhoons. Journal of Hydrology, 2019, 573, 661-675.	5.4	20
12	Reference evapotranspiration estimation and modeling of the Punjab Northern India using deep learning. Computers and Electronics in Agriculture, 2019, 156, 387-398.	7.7	156
13	Estimation of Daily Stage–Discharge Relationship by Using Data-Driven Techniques of a Perennial River, India. Sustainability, 2020, 12, 7877.	3.2	28
14	Support vector regression optimized by meta-heuristic algorithms for daily streamflow prediction. Stochastic Environmental Research and Risk Assessment, 2020, 34, 1755-1773.	4.0	87
15	Application of newly developed ensemble machine learning models for daily suspended sediment load prediction and related uncertainty analysis. Hydrological Sciences Journal, 2020, 65, 2022-2042.	2.6	58
16	Meteorological drought prediction using heuristic approaches based on effective drought index: a case study in Uttarakhand. Arabian Journal of Geosciences, 2020, 13, 1.	1.3	40
17	Pan Evaporation Estimation in Uttarakhand and Uttar Pradesh States, India: Validity of an Integrative Data Intelligence Model. Atmosphere, 2020, 11, 553.	2.3	29
18	Optimal design of groundwater monitoring networks using gamma test theory. Hydrogeology Journal, 2020, 28, 1389-1402.	2.1	8

#	Article	IF	CITATIONS
19	Two decades on the artificial intelligence models advancement for modeling river sediment concentration: State-of-the-art. Journal of Hydrology, 2020, 588, 125011.	5.4	20
20	Suspended sediment yield modeling in Mahanadi River, India by multi-objective optimization hybridizing artificial intelligence algorithms. International Journal of Sediment Research, 2021, 36, 76-91.	3.5	29
21	Energy Dissipation in Rough Chute: Experimental Approach Versus Artificial Intelligence Modeling. Springer Transactions in Civil and Environmental Engineering, 2021, , 227-249.	0.4	1
22	Hybrid artificial intelligence models for predicting daily runoff. , 2021, , 305-329.		3
23	Prediction of Multi-Scalar Standardized Precipitation Index by Using Artificial Intelligence and Regression Models. Climate, 2021, 9, 28.	2.8	24
24	Estimation of Daily Suspended Sediment Load Using a Novel Hybrid Support Vector Regression Model Incorporated with Observer-Teacher-Learner-Based Optimization Method. Complexity, 2021, 2021, 1-13.	1.6	16
25	A new approach for suspended sediment load calculation based on generated flow discharge considering climate change. Water Science and Technology: Water Supply, 2021, 21, 2400-2413.	2.1	12
26	Artificial intelligence for suspended sediment load prediction: a review. Environmental Earth Sciences, 2021, 80, 1.	2.7	39
27	Evaluation of stacking and blending ensemble learning methods for estimating daily reference evapotranspiration. Computers and Electronics in Agriculture, 2021, 184, 106039.	7.7	74
28	Prediction of suspended sediment concentration using hybrid SVM-WOA approaches. Geocarto International, 2022, 37, 5609-5635.	3.5	25
29	A hybrid statistical regression technical for prediction wastewater inflow. Computers and Electronics in Agriculture, 2021, 184, 106115.	7.7	5
30	Prediction of aeration efficiency of Parshall and Modified Venturi flumes: application of soft computing versus regression models. Water Science and Technology: Water Supply, 2021, 21, 4068-4085.	2.1	16
31	Artificial intelligence models versus empirical equations for modeling monthly reference evapotranspiration. Environmental Science and Pollution Research, 2020, 27, 30001-30019.	5.3	83
32	Hybrid models for suspended sediment prediction: optimized random forest and multi-layer perceptron through genetic algorithm and stochastic gradient descent methods. Neural Computing and Applications, 2022, 34, 3033-3051.	5.6	13
33	DAILY SUSPENDED SEDIMENT LOAD ESTIMATION USING MULTIVARIATE HYDROLOGICAL DATA. International Journal of GEOMATE, 2020, 18, .	0.3	0
34	Seasonal Groundwater Table Depth Prediction Using Fuzzy Logic and Artificial Neural Network in Gangetic Plain, India. Lecture Notes in Civil Engineering, 2022, , 549-564.	0.4	0
35	Modeling of stage-discharge using back propagation ANN-, ANFIS-, and WANN-based computing techniques. Theoretical and Applied Climatology, 2022, 147, 867-889.	2.8	24
36	On the capability of preprocessing techniques for suspended sediment load prediction using artificial intelligence methods. Hydrological Sciences Journal, 2022, 67, 369-384.	2.6	2

CITATION REPORT

#	Article	IF	CITATIONS
37	A physics-informed statistical learning framework for forecasting local suspended sediment concentrations in marine environment. Water Research, 2022, 218, 118518.	11.3	15
38	Estimating rainfall depth from satellite-based soil moisture data: A new algorithm by integrating SM2RAIN and the analytical net water flux models. Journal of Hydrology, 2022, 610, 127868.	5.4	6
39	A Review on the Application of Machine Learning Methods in Tropical Cyclone Forecasting. Frontiers in Earth Science, 0, 10, .	1.8	10
40	Capability and Robustness of Novel Hybridized Artificial Intelligence Technique for Sediment Yield Modeling in Godavari River, India. Water (Switzerland), 2022, 14, 1917.	2.7	14
41	An Integrated Statistical-Machine Learning Approach for Runoff Prediction. Sustainability, 2022, 14, 8209.	3.2	46
42	Modeling of surface sediment concentration in the Doce River basin using satellite remote sensing. Journal of Environmental Management, 2022, 323, 116207.	7.8	3
43	Support vector regression model optimized with GWO versus GA algorithms: Estimating daily pan-evaporation. , 2023, , 357-373.		1
44	Past, Present, and Future of Using Neuro-Fuzzy Systems for Hydrological Modeling and Forecasting. Hydrology, 2023, 10, 36.	3.0	1
45	Application of Computational Intelligence Methods in Agricultural Soil–Machine Interaction: A Review. Agriculture (Switzerland), 2023, 13, 357.	3.1	3
46	Machine learning-based modeling of surface sediment concentration in Doce river basin. Journal of Hydrology, 2023, 619, 129320.	5.4	3
47	Three-phase data augmentation for the prediction of sediment flux in mountain basins during typhoon events. Journal of Hydroinformatics, 2023, 25, 1054-1071.	2.4	0
48	A Novel Smoothing-Based Deep Learning Time-Series Approach for Daily Suspended Sediment Load Prediction. Water Resources Management, 2023, 37, 4271-4292.	3.9	3
49	Ensemble and optimized hybrid algorithms through Runge Kutta optimizer for sewer sediment transport modeling using a data pre-processing approach. International Journal of Sediment Research, 2023, , .	3.5	0
50	Data-driven approaches for sustainable agri-food: coping with sustainability and interpretability. Journal of Ambient Intelligence and Humanized Computing, 0, , .	4.9	0
51	Estimation of daily suspended sediment concentration in the Ca River Basin using a sediment rating curve, multiple regression, and long short-term memory model. Journal of Water and Climate Change, 2023, 14, 4356-4375.	2.9	0
52	Daily suspended sediment yield estimation using soft-computing algorithms for hilly watersheds in a data-scarce situation: a case study ofÂBino watershed, Uttarakhand. Theoretical and Applied Climatology, 2024, 155, 4023-4047.	2.8	0

CITATION REPORT