Thaumarchaeal ecotype distributions across the equator potential roles in nitrification and sinking flux attenuat

Limnology and Oceanography 62, 1984-2003 DOI: 10.1002/lno.10547

Citation Report

#	Article	IF	CITATIONS
1	Freeâ€living chemoautotrophic and particleâ€attached heterotrophic prokaryotes dominate microbial assemblages along a pelagic redox gradient. Environmental Microbiology, 2018, 20, 693-712.	1.8	46
2	Community composition of nitrous oxide reducing bacteria investigated using a functional gene microarray. Deep-Sea Research Part II: Topical Studies in Oceanography, 2018, 156, 44-50.	0.6	6
3	Spatiotemporal Dynamics of Ammonia-Oxidizing Thaumarchaeota in Distinct Arctic Water Masses. Frontiers in Microbiology, 2018, 9, 24.	1.5	48
4	Ecological control of nitrite in the upper ocean. Nature Communications, 2018, 9, 1206.	5.8	107
5	The response of the marine nitrogen cycle to ocean acidification. Global Change Biology, 2018, 24, 5031-5043.	4.2	42
6	Depth distributions of nitrite reductase (<i>nirK</i>) gene variants reveal spatial dynamics of thaumarchaeal ecotype populations in coastal Monterey Bay. Environmental Microbiology, 2019, 21, 4032-4045.	1.8	14
7	Niche Differentiation of Aerobic and Anaerobic Ammonia Oxidizers in a High Latitude Deep Oxygen Minimum Zone. Frontiers in Microbiology, 2019, 10, 2141.	1.5	44
8	Differential Distribution and Determinants of Ammonia Oxidizing Archaea Sublineages in the Oxygen Minimum Zone off Costa Rica. Microorganisms, 2019, 7, 453.	1.6	9
9	Overlooked Genetic Diversity of Ammonia Oxidizing Archaea Lineages in the Global Oceans. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 1799-1811.	1.3	23
10	Vertical distribution of particle-associated and free-living ammonia-oxidizing archaea in Suruga Bay, a deep coastal embayment of Japan. Archives of Microbiology, 2019, 201, 1141-1146.	1.0	4
11	lron requirements and uptake strategies of the globally abundant marine ammonia-oxidising archaeon, <i>Nitrosopumilus maritimus</i> SCM1. ISME Journal, 2019, 13, 2295-2305.	4.4	38
12	Coupled effect of substrate and light on assimilation and oxidation of regenerated nitrogen in the euphotic ocean. Limnology and Oceanography, 2019, 64, 1270-1283.	1.6	21
13	Processes and Microorganisms Involved in the Marine Nitrogen Cycle: Knowledge and Gaps. Frontiers in Marine Science, 2019, 6, .	1.2	85
14	Planktonic Marine Archaea. Annual Review of Marine Science, 2019, 11, 131-158.	5.1	129
15	Microbial oxidation of nitrogen supplied as selected organic nitrogen compounds in the South Atlantic Bight. Limnology and Oceanography, 2019, 64, 982-995.	1.6	25
16	Differential co-occurrence relationships shaping ecotype diversification within <i>Thaumarchaeota</i> populations in the coastal ocean water column. ISME Journal, 2019, 13, 1144-1158.	4.4	80
17	Cyanate and urea are substrates for nitrification by Thaumarchaeota in the marine environment. Nature Microbiology, 2019, 4, 234-243.	5.9	103
18	Discovery of several novel, widespread, and ecologically distinct marine <i>Thaumarchaeota</i> viruses that encode <i>amoC</i> nitrification genes. ISME Journal, 2019, 13, 618-631.	4.4	103

		CHATION REPORT		
#	Article	IF	CITATIONS	
19	Distribution of mercury ycling genes in the Arctic and equatorial Pacific Oceans and their relationship to mercury speciation. Limnology and Oceanography, 2020, 65, S310.	1.6	43	
20	Hurricane Disturbance Stimulated Nitrification and Altered Ammonia Oxidizer Community Structure in Lake Okeechobee and St. Lucie Estuary (Florida). Frontiers in Microbiology, 2020, 11, 1541.	1.5	15	
21	Simulation of Enhanced Growth of Marine Group II Euryarchaeota From the Deep Chlorophyll Maximum of the Western Pacific Ocean: Implication for Upwelling Impact on Microbial Functions in the Photic Zone. Frontiers in Microbiology, 2020, 11, 571199.	1.5	3	
22	Abundant nitrite-oxidizing metalloenzymes in the mesopelagic zone of the tropical Pacific Ocean. Nature Geoscience, 2020, 13, 355-362.	5.4	41	
23	Characterization of the Fe metalloproteome of a ubiquitous marine heterotroph, <i>Pseudoalteromonas</i> (BB2-AT2): multiple bacterioferritin copies enable significant Fe storage. Metallomics, 2020, 12, 654-667.	1.0	16	
24	Time series assessment of <i>Thaumarchaeota</i> ecotypes in Monterey Bay reveals the importance of water column position in predicting distribution–environment relationships. Limnology and Oceanography, 2020, 65, 2041-2055.	1.6	21	
25	Nitrifier adaptation to low energy flux controls inventory of reduced nitrogen in the dark ocean. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 4823-4830.	3.3	72	
26	Major imprint of surface plankton on deep ocean prokaryotic structure and activity. Molecular Ecology, 2020, 29, 1820-1838.	2.0	39	
27	Nitrification and Nitrous Oxide Production in the Offshore Waters of the Eastern Tropical South Pacific. Global Biogeochemical Cycles, 2021, 35, e2020GB006716.	1.9	25	
28	Microbial perspective on the giant carbonate ridge Alpha Crucis (Southwestern Atlantic upper slope). FEMS Microbiology Ecology, 2021, 97, .	1.3	2	
29	Marine ammonia-oxidising archaea and bacteria occupy distinct iron and copper niches. ISME Communications, 2021, 1, .	1.7	15	
30	Genomes of Thaumarchaeota from deep sea sediments reveal specific adaptations of three independently evolved lineages. ISME Journal, 2021, 15, 2792-2808.	4.4	27	
32	Seasonal Prokaryotic Community Linkages Between Surface and Deep Ocean Water. Frontiers in Marine Science, 2021, 8, .	1.2	10	
33	Microbes mediating the sulfur cycle in the Atlantic Ocean and their link to chemolithoautotrophy. Environmental Microbiology, 2021, 23, 7152-7167.	1.8	3	
34	Influence of organic particle addition on nitrification rates and ammonium oxidiser abundances in Baltic seawater. Marine Ecology - Progress Series, 2021, 674, 59-72.	0.9	3	
35	Dynamic prokaryotic communities in the dark western Mediterranean Sea. Scientific Reports, 2021, 11, 17859.	1.6	3	
36	Nitrification and nitrous oxide dynamics in the Southern California Bight. Limnology and Oceanography, 2021, 66, 1099-1112.	1.6	13	
39	Regional patterns in ammonia-oxidizing communities throughout Chukchi Sea waters from the Bering Strait to the Beaufort Sea. Aquatic Microbial Ecology, 2017, 79, 273-286.	0.9	9	

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
40	Hydrothermal trace metal release and microbial metabolism in the northeastern Lau Basin of the South Pacific Ocean. Biogeosciences, 2021, 18, 5397-5422.	1.3	11
41	Assimilation and oxidation of ureaâ€derived nitrogen in the summer Arctic Ocean. Limnology and Oceanography, 2021, 66, 4159-4170.	1.6	6
42	New insight to niche partitioning and ecological function of ammonia oxidizing archaea in subtropical estuarine ecosystem. Biogeosciences, 2020, 17, 6017-6032.	1.3	4
44	Biogeography of Southern Ocean prokaryotes: a comparison of the Indian and Pacific sectors. Environmental Microbiology, 2022, 24, 2449-2466.	1.8	6
45	Phosphonate production by marine microbes: Exploring new sources and potential function. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2113386119.	3.3	31
46	Quantification of archaea-driven freshwater nitrification from single cell to ecosystem levels. ISME Journal, 2022, 16, 1647-1656.	4.4	10
60	Distribution and Oxidation Rates of Ammonia-Oxidizing Archaea Influenced by the Coastal Upwelling off Eastern Hainan Island. Microorganisms, 2022, 10, 952.	1.6	1
61	Pathway-Centric Analysis of Microbial Metabolic Potential and Expression Along Nutrient and Energy Gradients in the Western Atlantic Ocean. Frontiers in Marine Science, 2022, 9, .	1.2	1
62	Effects of iron and light on microbial nitrogen cycles in the primary nitrite maxima of the eastern Indian Ocean. Deep-Sea Research Part I: Oceanographic Research Papers, 2022, 185, 103808.	0.6	1
63	Marine Microeukaryote Metatranscriptomics: Sample Processing and Bioinformatic Workflow Recommendations for Ecological Applications. Frontiers in Marine Science, 0, 9, .	1.2	8
64	Prokaryotic Life in the Deep Ocean's Water Column. Annual Review of Marine Science, 2023, 15, 461-483.	5.1	20
65	Ammonia-oxidizing archaea and ammonium concentration as drivers of nitrification in a protected freshwater lake. Freshwater Science, 0, , 000-000.	0.9	1
66	Microbial functional diversity across biogeochemical provinces in the central Pacific Ocean. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	9
67	Epipelagic nitrous oxide production offsets carbon sequestration by the biological pump. Nature Geoscience, 2023, 16, 29-36.	5.4	7
68	Controls on the relative abundances and rates of nitrifying microorganisms in the ocean. Biogeosciences, 2022, 19, 5401-5418.	1.3	5
69	Metatranscriptomes reveal the diverse responses of <scp> <i>Thaumarchaeota</i> </scp> ecotypes to environmental variations in the northern slope of the South China Sea. Environmental Microbiology, 0, , .	1.8	2
70	Network analysis of 16S rRNA sequences suggests microbial keystone taxa contribute to marine N2O cycling. Communications Biology, 2023, 6, .	2.0	0
71	Impact of particle flux on the vertical distribution and diversity of size-fractionated prokaryotic communities in two East Antarctic polynyas. Frontiers in Microbiology, 0, 14, .	1.5	1

ARTICLE

IF CITATIONS