Non-Ergodic Site Response in Seismic Hazard Analysis

Earthquake Spectra 33, 1385-1414 DOI: 10.1193/081716eqs135m

Citation Report

#	Article	IF	CITATIONS
1	Procedures from International Guidelines for Assessing Seismic Risk to Flood-Control Levees. Earthquake Spectra, 2017, 33, 1191-1218.	1.6	7
2	Supplementing VS30 with H/V Spectral Ratios for Predicting Site Effects. Bulletin of the Seismological Society of America, 2017, 107, 2028-2042.	1.1	37
3	PRENOLIN: International Benchmark on 1D Nonlinear Siteâ€Response Analysis—Validation Phase Exercise. Bulletin of the Seismological Society of America, 2018, , .	1.1	26
4	Cost Savings of Implementing Site-Specific Ground Motion Response Analysis in the Design of Short-Period Mississippi Embayment Bridges. Earthquake Spectra, 2018, 34, 1155-1175.	1.6	4
5	Local Site Effects and Incremental Damage of Buildings during the 2016 Central Italy Earthquake Sequence. Earthquake Spectra, 2018, 34, 1639-1669.	1.6	78
6	Experimental concepts for testing probabilistic earthquake forecasting and seismic hazard models. Geophysical Journal International, 2018, 215, 780-798.	1.0	11
7	Total Stress Analysis of Soft Clay Ground Response in Centrifuge Models. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2019, 145, .	1.5	13
8	Logâ€Logistic Uncertainty Is More Durable Than Lognormal Uncertainty in Groundâ€Motion Prediction Equations. Bulletin of the Seismological Society of America, 2019, 109, 567-574.	1.1	4
9	A Revised Groundâ€Motion Prediction Model for Shallow Crustal Earthquakes in Italy. Bulletin of the Seismological Society of America, 2019, 109, 525-540.	1.1	68
10	Incorporating Nonergodic Path Effects into the NGAâ€West2 Groundâ€Motion Prediction Equations. Bulletin of the Seismological Society of America, 2019, 109, 575-585.	1.1	37
11	Effects of Soil Parameter Variabilities on the Estimation of Ground-Motion Amplification Factors. Earthquake Spectra, 2019, 35, 907-928.	1.6	13
12	Effects of Local Soil, Magnitude and Distance on Empirical Response Spectra for Design. Journal of Earthquake Engineering, 2022, 26, 1117-1144.	1.4	6
13	Empirical Linear Seismic Site Amplification in Central and Eastern North America. Earthquake Spectra, 2019, 35, 849-881.	1.6	28
14	Investigation of the relation between Vs30 and site characteristics of Iran based on horizontal-to-vertical spectral ratios. Soil Dynamics and Earthquake Engineering, 2020, 128, 105899.	1.9	20
15	Seismic reliability assessment and the nonergodicity in the modelling parameter uncertainties. Earthquake Engineering and Structural Dynamics, 2020, 49, 434-457.	2.5	25
16	Ergodic site amplification model for central and eastern North America. Earthquake Spectra, 2020, 36, 42-68.	1.6	48
17	Repeatable Source, Path, and Site Effects from the 2019 MÂ7.1 Ridgecrest Earthquake Sequence. Bulletin of the Seismological Society of America, 2020, 110, 1530-1548.	1.1	23
18	Intensity measure adequacy assessment for nonlinear site response using Information Theory. Soil Dynamics and Earthquake Engineering, 2020, 134, 106144.	1.9	3

#	Article	IF	CITATIONS
19	Modeling nonlinear site effects in physics-based ground motion simulations of the 2010–2011 Canterbury earthquake sequence. Earthquake Spectra, 2020, 36, 856-879.	1.6	12
20	Re-thinking site amplification in regional seismic risk assessment. Earthquake Spectra, 2020, 36, 274-297.	1.6	22
21	Fragility curve modifiers for reinforced concrete dual buildings, including nonlinear site effects and soil–structure interaction. Earthquake Spectra, 2020, 36, 1930-1951.	1.6	25
22	Effect of Earthquake Intensity on Probabilistic Analysis of Dam-Reservoir-Foundation Systems. , 2020, ,		2
23	Comparison of First-Order Second-Moment and Latin Hypercube Sampling Methods on Probabilistic Seismic Hazard Analysis of Dam-Reservoir-Foundation Systems. , 2020, , .		0
24	Guidance on Conducting 2D Linear Viscoelastic Site Response Analysis Using a Finite Element Code. Journal of Earthquake Engineering, 2021, 25, 1153-1170.	1.4	5
25	Impact of partially non-ergodic site-specific probabilistic seismic hazard on risk assessment of single buildings. Earthquake Spectra, 2021, 37, 409-427.	1.6	6
26	Capturing epistemic uncertainty in site response. Earthquake Spectra, 2021, 37, 921-936.	1.6	26
27	Tall building performanceâ€based seismic design using SCEC broadband platform siteâ€specific ground motion simulations. Earthquake Engineering and Structural Dynamics, 2021, 50, 81-98.	2.5	14
28	Epistemic Uncertainty in Site Response as Derived from One-Dimensional Ground Response Analyses. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2021, 147, .	1.5	22
30	Site response analysis for deep and soft sedimentary deposits of Dhaka City, Bangladesh. Natural Hazards, 2021, 106, 2279-2305.	1.6	16
31	Ground motions in urban Los Angeles from the 2019 Ridgecrest earthquake sequence. Earthquake Spectra, 2021, 37, 2493-2522.	1.6	7
32	Mapping Fundamental-Mode Site Periods and Amplifications from Thick Sediments: An Example from the Jackson Purchase Region of Western Kentucky, Central United States. Bulletin of the Seismological Society of America, 0, , .	1.1	4
33	Application of empirical and simulation-based site amplification models for Central and Eastern North America to selected sites. Earthquake Spectra, 2021, 37, 1516-1533.	1.6	1
34	A ground-motion prediction model for small-to-moderate induced earthquakes for Central and Eastern United States. Earthquake Spectra, 2021, 37, 1440-1459.	1.6	3
35	Nonstationary spatial correlation in New Zealand strong groundâ€motion data. Earthquake Engineering and Structural Dynamics, 2021, 50, 3421-3440.	2.5	7
36	NGA-subduction global ground motion models with regional adjustment factors. Earthquake Spectra, 2022, 38, 456-493.	1.6	47
37	On the Comparison of Seismic Ground Motion Simulated by Physics-Based Dynamic Rupture and Predicted by Empirical Attenuation Equations. Bulletin of the Seismological Society of America, 2021, 111, 2595-2616.	1.1	14

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
38	Near-Fault Forward Directivity Effect on the Estimation of Ground Motion Amplification Factors. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2021, 147, .	1.5	4
39	Hazard characterization for alternative intensity measures using the total probability theorem. Earthquake Spectra, 0, , 875529302110492.	1.6	0
40	Ground Response Analyses for a Zoned Earth Dam Site in Southern Italy. Lecture Notes in Civil Engineering, 2020, , 148-154.	0.3	0
41	PSHA Compatible Probabilistic Seismic Site Response Analysis for Oslo, Norway. Bulletin of the Seismological Society of America, 2021, 111, 206-225.	1.1	0
42	Seismic and Structural Analyses of the Eastern Anatolian Region (Turkey) Using Different Probabilities of Exceedance. Applied System Innovation, 2021, 4, 89.	2.7	11
43	Within-site variability in earthquake site response. Geophysical Journal International, 2022, 229, 1268-1281.	1.0	9
44	Empirical Map-Based Nonergodic Models of Site Response in the Greater Los Angeles Area. Bulletin of the Seismological Society of America, 2022, 112, 1607-1629.	1.1	10
45	Validating predicted site response in sedimentary basins from 3D ground motion simulations. Earthquake Spectra, 2022, 38, 2135-2161.	1.6	5
46	Region-specific linear site amplification model for peaty organic soil sites in Hokkaido, Japan. Earthquake Spectra, 2022, 38, 2207-2234.	1.6	1
47	Comparison of State-of-the-Art Approaches Used to Account for Spatial Variability in 1D Ground Response Analyses. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2022, 148, .	1.5	10
48	Development of a Generalized Cross-Building Structural Response Reconstruction Model Using Strong Motion Data. Journal of Structural Engineering, 2022, 148, .	1.7	5
49	On the ergodicity assumption in Performance-Based engineering. Structural Safety, 2022, 97, 102218.	2.8	9
50	Ergodic site response model for subduction zone regions. Earthquake Spectra, 2022, 38, 841-864.	1.6	5
51	Relational Database for Horizontal-to-Vertical Spectral Ratios. Seismological Research Letters, 2022, 93, 1075-1088.	0.8	10
52	Spatial correlation of systematic effects of non-ergodic ground motion models in the Ridgecrest area. Bulletin of Earthquake Engineering, 2023, 21, 5319-5345.	2.3	2
53	How well can we predict earthquake site response so far? Machine learning vs physics-based modeling. Earthquake Spectra, 2023, 39, 478-504.	1.6	7
54	Overview and introduction to development of non-ergodic earthquake ground-motion models. Bulletin of Earthquake Engineering, 2023, 21, 5121-5150.	2.3	15
55	Seismic Response of Inhomogeneous Soil Deposits with Exponentially Varying Stiffness. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2022, 148, .	1.5	1

CITATION REPORT

#	Article	IF	CITATIONS
56	Integrating Local Site Response Evaluations in Seismic Hazard Assessments. Geotechnical, Geological and Earthquake Engineering, 2022, , 792-800.	0.1	0
57	Lessons learned from applying varying coefficient model to controlled simulation datasets. Bulletin of Earthquake Engineering, 2023, 21, 5151-5174.	2.3	3
58	Summary of the Abrahamson and Gulerce NGA-SUB ground-motion model for subduction earthquakes. Earthquake Spectra, 2022, 38, 2638-2681.	1.6	18
59	Ground motion prediction equation for the vertical component of 5%-damped spectral acceleration (0.01–10Âs) in western China. Journal of Seismology, 0, , .	0.6	0
60	Linear site responses from U.S. borehole arrays: Primary site-response parameters and proxies. Soil Dynamics and Earthquake Engineering, 2023, 164, 107578.	1.9	1
62	Modelling site response at regional scale for the 2020 European Seismic Risk Model (ESRM20). Bulletin of Earthquake Engineering, 2023, 21, 665-714.	2.3	8
63	Identification Protocols for Horizontal-to-Vertical Spectral Ratio Peaks. Bulletin of the Seismological Society of America, 2023, 113, 782-803.	1.1	5
64	Peculiar characteristics of ground motions in Southern Italy: Insights from global and regional ground motion models. Earthquake Spectra, 2023, 39, 577-595.	1.6	0
65	Comparison of Nonergodic Ground-Motion Components from CyberShake and NGA-West2 Datasets in California. Bulletin of the Seismological Society of America, 2023, 113, 1152-1175.	1.1	4
66	High-Pass Corner Frequency Selection for Implementation in the USGS Automated Ground Motion Processing Tool. , 2023, , .		2
67	Role of Uncertainties in Site Response Analysis and Their Incorporation in Seismic Hazard Workflow. Springer Tracts in Civil Engineering, 2023, , 85-97.	0.3	0
75	Assessment of Seismic Ground Response Analysis Modeling Uncertainty at Christchurch Hospital, New Zealand. , 2024, , .		0