Exciton Migration and Amplified Quenching on Two-Di

Journal of the American Chemical Society 139, 7020-7029

DOI: 10.1021/jacs.7b02470

Citation Report

#	Article	IF	CITATIONS
1	Diverse dissolution–recrystallization structural transformations and sequential Förster resonance energy transfer behavior of a luminescent porous Cd-MOF. Dalton Transactions, 2017, 46, 11656-11663.	3.3	55
2	Electrochemical Exfoliation of Pillared‣ayer Metal–Organic Framework to Boost the Oxygen Evolution Reaction. Angewandte Chemie - International Edition, 2018, 57, 4632-4636.	13.8	275
3	Poreâ€Environment Engineering with Multiple Metal Sites in Rareâ€Earth Porphyrinic Metal–Organic Frameworks. Angewandte Chemie, 2018, 130, 5189-5193.	2.0	18
4	Confinement of Aggregation-Induced Emission Molecular Rotors in Ultrathin Two-Dimensional Porous Organic Nanosheets for Enhanced Molecular Recognition. Journal of the American Chemical Society, 2018, 140, 4035-4046.	13.7	119
5	Electrochemical Exfoliation of Pillared‣ayer Metal–Organic Framework to Boost the Oxygen Evolution Reaction. Angewandte Chemie, 2018, 130, 4722-4726.	2.0	86
6	Poreâ€Environment Engineering with Multiple Metal Sites in Rareâ€Earth Porphyrinic Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2018, 57, 5095-5099.	13.8	136
7	Ultrathin Chiral Metal–Organicâ€Framework Nanosheets for Efficient Enantioselective Separation. Angewandte Chemie, 2018, 130, 6989-6993.	2.0	18
8	Ultrathin Chiral Metal–Organicâ€Framework Nanosheets for Efficient Enantioselective Separation. Angewandte Chemie - International Edition, 2018, 57, 6873-6877.	13.8	115
9	Photochromic 2D Metal-Organic Framework Nanosheets (MONs): Design, Synthesis, and Functional MON-Ormosil Composite. CheM, 2018, 4, 1059-1079.	11.7	71
10	Stable Metal–Organic Frameworks: Design, Synthesis, and Applications. Advanced Materials, 2018, 30, e1704303.	21.0	1,740
11	Improving stability against desolvation and mercury removal performance of Zr(<scp>iv</scp>)–carboxylate frameworks by using bulky sulfur functions. Journal of Materials Chemistry A, 2018, 6, 1648-1654.	10.3	43
12	Adsorptive and photocatalytic removal of Persistent Organic Pollutants (POPs) in water by metal-organic frameworks (MOFs). Chemical Engineering Journal, 2018, 337, 351-371.	12.7	402
13	Enhancing the photoluminescence of surface anchored metal–organic frameworks: mixed linkers and efficient acceptors. Physical Chemistry Chemical Physics, 2018, 20, 11564-11576.	2.8	18
14	A multi-dye@MOF composite boosts highly efficient photodegradation of an ultra-stubborn dye reactive blue 21 under visible-light irradiation. Journal of Materials Chemistry A, 2018, 6, 2148-2156.	10.3	40
15	Photochemistry and photophysics of MOFs: steps towards MOF-based sensing enhancements. Chemical Society Reviews, 2018, 47, 4710-4728.	38.1	478
16	Stable Metal–Organic Frameworks with Group 4 Metals: Current Status and Trends. ACS Central Science, 2018, 4, 440-450.	11.3	382
17	Li6Na3Sr14Al11P22O90: an oxo-centered Al3cluster based phosphate constructed from two types of (3,6)-connected kgd layers. Dalton Transactions, 2018, 47, 298-301.	3.3	7
18	Ultrasonic Exfoliation of Hydrophobic and Hydrophilic Metal–Organic Frameworks To Form Nanosheets. Chemistry - A European Journal, 2018, 24, 17986-17996.	3.3	22

#	Article	IF	CITATIONS
19	Ultrathin two-dimensional metal-organic framework nanosheets for functional electronic devices. Coordination Chemistry Reviews, 2018, 377, 44-63.	18.8	182
20	Tellurophene-based metal-organic framework nanosheets for high-performance organic solar cells. Journal of Power Sources, 2018, 401, 13-19.	7.8	44
21	Synthetic Strategies for Constructing Twoâ€Dimensional Metalâ€Organic Layers (MOLs): A Tutorial Review. Chinese Journal of Chemistry, 2018, 36, 754-764.	4.9	61
22	Two-dimensional metal–organic framework nanosheets: synthesis and applications. Chemical Society Reviews, 2018, 47, 6267-6295.	38.1	978
23	Two-dimensional light-emitting materials: preparation, properties and applications. Chemical Society Reviews, 2018, 47, 6128-6174.	38.1	167
24	Twoâ€Dimensional Metalâ€Organic Framework Nanosheets: A Rapidly Growing Class of Versatile Nanomaterials for Gas Separation, MALDlâ€TOF Matrix and Biomimetic Applications. Chemistry - A European Journal, 2018, 24, 15131-15142.	3.3	65
25	Metal–organic framework nanosheets (MONs): a new dimension in materials chemistry. Journal of Materials Chemistry A, 2018, 6, 16292-16307.	10.3	126
26	Metal–Organic Frameworks in Modern Physics: Highlights and Perspectives. Advanced Science, 2019, 6, 1900506.	11.2	71
27	Energy transfer on a two-dimensional antenna enhances the photocatalytic activity of CO2 reduction by metal–organic layers. Chemical Communications, 2019, 55, 9657-9660.	4.1	23
28	A highly augmented, (12,3)-connected Zr-MOF containing hydrated coordination sites for the catalytic transformation of gaseous CO2 to cyclic carbonates. Dalton Transactions, 2019, 48, 15487-15492.	3.3	18
29	Untwisted restacking of two-dimensional metal-organic framework nanosheets for highly selective isomer separations. Nature Communications, 2019, 10, 2911.	12.8	90
30	On the potential for nanoscale metal–organic frameworks for energy applications. Journal of Materials Chemistry A, 2019, 7, 21545-21576.	10.3	88
31	Luminescence Enhancement of <i>cis</i> -[Ru(bpy) ₂ (py) ₂] ²⁺ via Confinement within a Metalâ€"Organic Framework. Inorganic Chemistry, 2019, 58, 7645-7648.	4.0	10
32	Highly Selective Capture of Monophosphopeptides by Two-Dimensional Metal–Organic Framework Nanosheets. Analytical Chemistry, 2019, 91, 9093-9101.	6.5	30
33	Epitaxial Growth and Integration of Insulating Metal–Organic Frameworks in Electrochemistry. Journal of the American Chemical Society, 2019, 141, 11322-11327.	13.7	98
34	Controlling Multiphoton Absorption Efficiency by Chromophore Packing in Metal–Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 11594-11602.	13.7	56
35	Multilink F* Method for Combined Quantum Mechanical and Molecular Mechanical Calculations of Complex Systems. Journal of Chemical Theory and Computation, 2019, 15, 4208-4217.	5.3	14
36	Rising Up: Hierarchical Metal–Organic Frameworks in Experiments and Simulations. Advanced Materials, 2019, 31, e1901744.	21.0	103

3

#	Article	IF	Citations
37	Structural Engineering of Lowâ€Dimensional Metal–Organic Frameworks: Synthesis, Properties, and Applications. Advanced Science, 2019, 6, 1802373.	11.2	214
38	Selective photocatalytic conversion of alcohol to aldehydes by singlet oxygen over Bi-based metal-organic frameworks under UV–vis light irradiation. Applied Catalysis B: Environmental, 2019, 254, 463-470.	20.2	83
39	Dye-insertion dynamic breathing MOF as dual-emission platform for antibiotics detection and logic molecular operation. Sensors and Actuators B: Chemical, 2019, 288, 307-315.	7.8	32
40	Metal-organic framework nanosheets: Preparation and applications. Coordination Chemistry Reviews, 2019, 388, 79-106.	18.8	167
41	Highly stable Ru-complex-grafted 2D metal-organic layer with superior electrochemiluminescent efficiency as a sensing platform for simple and ultrasensitive detection of mucin 1. Biosensors and Bioelectronics, 2019, 135, 95-101.	10.1	55
42	A FRET biosensor based on MnO2 nanosphere/copper nanocluster complex: From photoluminescence quenching to recovery and magnification. Sensors and Actuators B: Chemical, 2019, 290, 535-543.	7.8	37
43	Highly Efficient One-Dimensional Triplet Exciton Transport in a Palladium–Porphyrin-Based Surface-Anchored Metal–Organic Framework. ACS Applied Materials & Interfaces, 2019, 11, 15688-15697.	8.0	46
44	Two-Dimensional Excitonic Metal–Organic Framework: Design, Synthesis, Regulation, and Properties. Inorganic Chemistry, 2019, 58, 3145-3155.	4.0	17
45	Hydrothermal synthesis and characterization of two dimensional coordination polymers with 2,2′-dimethylglutarate and 1,2-bis(imidazol-1-ylmethyl)benzene. Inorganica Chimica Acta, 2019, 488, 229-237.	2.4	9
46	Metal–organic frameworks: Structures and functional applications. Materials Today, 2019, 27, 43-68.	14.2	627
47	Metal-Organic Frameworks: New Functional Materials and Applications. , 2019, , 35-54.		2
48	Goal-directed design of metal–organic frameworks for liquid-phase adsorption and separation. Coordination Chemistry Reviews, 2019, 378, 310-332.	18.8	82
49	Regulating Hydrogenation Chemoselectivity of α,βâ€Unsaturated Aldehydes by Combination of Transfer and Catalytic Hydrogenation. ChemSusChem, 2020, 13, 1746-1750.	6.8	16
50	Amplified luminescence quenching effect upon binding of nitrogen doped carbon nanodots to transition metal ions. Photochemical and Photobiological Sciences, 2020, 19, 207-216.	2.9	8
51	A Decade of UiO-66 Research: A Historic Review of Dynamic Structure, Synthesis Mechanisms, and Characterization Techniques of an Archetypal Metal–Organic Framework. Crystal Growth and Design, 2020, 20, 1347-1362.	3.0	306
52	2D Metalâ€Organic Framework Materials for Membraneâ€Based Separation. Advanced Materials Interfaces, 2020, 7, 1901514.	3.7	80
53	Electronic Devices Using Open Framework Materials. Chemical Reviews, 2020, 120, 8581-8640.	47.7	185
54	Photocatalytic Molecular Oxygen Activation by Regulating Excitonic Effects in Covalent Organic Frameworks. Journal of the American Chemical Society, 2020, 142, 20763-20771.	13.7	321

#	Article	IF	CITATIONS
55	Nonlinear Ion Transport through Ultrathin Metal–Organic Framework Nanosheet. Advanced Functional Materials, 2020, 30, 2004854.	14.9	22
56	Photodynamical behaviour of MOFs and related composites: Relevance to emerging photon-based science and applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2020, 44, 100355.	11.6	32
57	Metal–Organic Layers for Electrocatalysis and Photocatalysis. ACS Central Science, 2020, 6, 2149-2158.	11.3	54
58	Tunable photoluminescence in flexible carboxylate ligand-based coordination polymers with interesting topologies and Fe3+ sensitivity. CrystEngComm, 2020, 22, 6713-6719.	2.6	7
59	Graphene Oxide-Supported Lanthanide Metal–Organic Frameworks with Boosted Stabilities and Detection Sensitivities. Analytical Chemistry, 2020, 92, 15550-15557.	6.5	38
60	A 3D Adenineâ€based Cdâ€MOF: Synthesis, Structure and Photoluminescent Sensing for an Aromatic Azo Compound. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2020, 646, 1911-1915.	1.2	6
61	The function of metal–organic frameworks in the application of MOF-based composites. Nanoscale Advances, 2020, 2, 2628-2647.	4.6	136
62	A new anionic metal–organic framework with suitable pore and PtS-type topology for selective adsorption and separation of cationic dyes. Chemical Papers, 2020, 74, 4003-4008.	2.2	4
63	Coordination tailoring of water-labile 3D MOFs to fabricate ultrathin 2D MOF nanosheets. Nanoscale, 2020, 12, 12767-12772.	5.6	40
64	Performance enhancement of oxygen evolution reaction through incorporating bimetallic electrocatalysts in two-dimensional metal–organic frameworks. Catalysis Science and Technology, 2020, 10, 3897-3903.	4.1	34
65	Photoresponsive 2D polymeric Langmuir–Blodgett films of 2,3,6,7,10,11-hexaiminotriphenylene. New Journal of Chemistry, 2020, 44, 5656-5660.	2.8	9
66	Metal–Organic Framework Hexagonal Nanoplates: Bottom-up Synthesis, Topotactic Transformation, and Efficient Oxygen Evolution Reaction. Journal of the American Chemical Society, 2020, 142, 7317-7321.	13.7	140
67	Application of Various Metal-Organic Frameworks (MOFs) as Catalysts for Air and Water Pollution Environmental Remediation. Catalysts, 2020, 10, 195.	3.5	35
68	Coordination assembly of 2D ordered organic metal chalcogenides with widely tunable electronic band gaps. Nature Communications, 2020, 11, 261.	12.8	52
69	Ultrathin two-dimensional metal-organic framework nanosheets decorated with tetra-pyridyl calix[4]arene: Design, synthesis and application in pesticide detection. Sensors and Actuators B: Chemical, 2020, 310, 127819.	7.8	97
70	Magnetocaloric Effect and Slow Magnetic Relaxation on Two-Dimensional Layered 3d-4f Cluster-Based Metal–Organic Frameworks. Crystal Growth and Design, 2020, 20, 4005-4012.	3.0	20
71	Cerium-Based Metal–Organic Layers Catalyze Hydrogen Evolution Reaction through Dual Photoexcitation. Journal of the American Chemical Society, 2020, 142, 6866-6871.	13.7	49
72	Thin metal organic layer derived Co/Co ₉ S ₈ /N,S co-doped carbon nanosheets synthesized by the space confinement effect of montmorillonite for oxygen electrocatalysis. New Journal of Chemistry, 2020, 44, 9522-9529.	2.8	5

#	Article	IF	CITATIONS
73	Applications of reticular diversity in metal–organic frameworks: An ever-evolving state of the art. Coordination Chemistry Reviews, 2021, 430, 213655.	18.8	56
74	Linker Deficiency, Aromatic Ring Fusion, and Electrocatalysis in a Porous Ni ₈ -Pyrazolate Network. Inorganic Chemistry, 2021, 60, 161-166.	4.0	12
75	Throwing light on the current developments of two-dimensional metal–organic framework nanosheets (2D MONs). Materials Advances, 2021, 2, 4914-4944.	5.4	15
76	Hafnium., 2021,, 197-236.		0
77	Two-Dimensional Metal-Organic Framework Materials: Synthesis, Structures, Properties and Applications. Chemical Reviews, 2021, 121, 3751-3891.	47.7	442
78	Single-Crystalline Ultrathin 2D Porous Nanosheets of Chiral Metal–Organic Frameworks. Journal of the American Chemical Society, 2021, 143, 3509-3518.	13.7	80
79	Excited State Energy Transfer in Metalâ€Organic Frameworks. Advanced Materials, 2021, 33, e2005819.	21.0	34
80	Cobalt(II)â€dianthracene Frameworks: Assembly, Exfoliation and Properties. Chemistry - an Asian Journal, 2021, 16, 1456-1465.	3.3	8
81	Metalâ€Organic Frameworks Nanocomposites with Different Dimensionalities for Energy Conversion and Storage. Advanced Energy Materials, 2022, 12, 2100346.	19.5	86
82	Incorporating Photochromic Triphenylamine into a Zirconium–Organic Framework for Highly Effective Photocatalytic Aerobic Oxidation of Sulfides. ACS Applied Materials & Diterfaces, 2021, 13, 20137-20144.	8.0	50
83	Metal–Organic Framework Nanosheets: Programmable 2D Materials for Catalysis, Sensing, Electronics, and Separation Applications. Advanced Functional Materials, 2021, 31, 2103723.	14.9	77
84	The chemistry and applications of hafnium and cerium(<scp>iv</scp>) metal–organic frameworks. Chemical Society Reviews, 2021, 50, 4629-4683.	38.1	135
85	Amino-functionalized Cu metal–organic framework nanosheets as fluorescent probes for detecting TNP. Analytical Methods, 2021, 13, 5328-5334.	2.7	4
86	Assembling Silver Cluster-Based Organic Frameworks for Higher-Performance Hypergolic Properties. Jacs Au, 2021, 1, 2202-2207.	7.9	11
87	Few-Layered Metal–Organic Framework Nanosheets as Catalysts for the Synthesis of 2,3-Dihydroquinazolinone and Propargylamines. ACS Applied Nano Materials, 2021, 4, 12108-12118.	5.0	3
88	Luminescence Properties. Acta Chimica Sinica, 2021, 79, 1409.	1.4	2
89	A novel core-shell coordination assembled hybrid via postsynthetic metal exchange for simultaneous detection and removal of tetracycline. Analytica Chimica Acta, 2022, 1190, 339247.	5.4	10
90	A {Ni ₁₂ }â€Wheelâ€Based Metal–Organic Framework for Coordinative Binding of Sulphur Dioxide and Nitrogen Dioxide. Angewandte Chemie - International Edition, 2022, 61, e202115585.	13.8	12

#	Article	IF	CITATIONS
91	A {Ni ₁₂ }â€Wheelâ€Based Metal–Organic Framework for Coordinative Binding of Sulphur Dioxide and Nitrogen Dioxide. Angewandte Chemie, 2022, 134, .	2.0	1
92	Symmetry-Guided Synthesis of <i>N,N′</i> -Bicarbazole and Porphyrin-Based Mixed-Ligand Metal–Organic Frameworks: Light Harvesting and Energy Transfer. Journal of the American Chemical Society, 2021, 143, 20411-20418.	13.7	37
93	Excellent quantum yield enhancement in luminescent metal-organic layer for sensitive detection of antibiotics in aqueous medium. Dyes and Pigments, 2022, 198, 109961.	3.7	6
94	Uranyl phosphonates: crystalline materials and nanosheets for temperature sensing. Dalton Transactions, 2021, 50, 17129-17139.	3.3	9
95	Modeling energy transfer and absorption spectra in layered metal-organic frameworks based on a Frenkel-Holstein Hamiltonian. Journal of Chemical Physics, 2022, 156, 044109.	3.0	1
96	Fluorescent sensing using metal-organic and covalent-organic framework nanosheets. , 2022, , 143-174.		1
97	Fabrication of Two-Dimensional Metal–Organic Framework Nanosheets through Crystal Dissolution–Growth Kinetics. ACS Applied Materials & Early; Interfaces, 2022, 14, 7192-7199.	8.0	13
98	Twoâ€Dimensional Metal–Organic Framework Nanosheets: Synthesis and Applications in Electrocatalysis and Photocatalysis. ChemSusChem, 2022, 15, .	6.8	33
100	Luminescent Two-Dimensional Metal–Organic Framework Nanosheets with Large π-Conjugated System: Design, Synthesis, and Detection of Anti-Inflammatory Drugs and Pesticides. Inorganic Chemistry, 2022, 61, 982-991.	4.0	19
101	A Zr-MOF nanoflower sensor and its mixed-matrix membrane for the highly sensitive detection of nitroaromatics. Journal of Materials Chemistry C, 2022, 10, 7469-7475.	5 . 5	105
102	Heterometallic Metal-Organic Framework Based on [Cu4I4] and [Hf6O8] Clusters for Adsorption of lodine. Frontiers in Chemistry, 2022, 10, 864131.	3.6	11
103	Programming a Metal–Organic Framework toward Excellent Hypergolicity. ACS Applied Materials & Interfaces, 2022, 14, 23909-23915.	8.0	9
104	Interfacing DNA nanotechnology and biomimetic photonic complexes: advances and prospects in energy and biomedicine. Journal of Nanobiotechnology, 2022, 20, .	9.1	9
105	In-situ encapsulation of oil soluble carbon nanoclusters in ZIF-8 and applied as bifunctional recyclable stable sensing material of nitrofurazone and lysine and fluorescent ink. Journal of Molecular Structure, 2022, 1269, 133766.	3.6	1
106	Dimensionality Mediated Highly Repeatable and Fast Transformation of Coordination Polymer Single Crystals for All-Optical Data Processing. Nano Letters, 2022, 22, 6972-6981.	9.1	18
107	A layered Y(III)-viologen framework for efficient detection of nitrofurazone. Journal of Solid State Chemistry, 2022, 316, 123617.	2.9	1
108	Twoâ€Dimensional Excitonic Networks Directed by DNA Templates as an Efficient Model Lightâ€Harvesting and Energy Transfer System. Angewandte Chemie - International Edition, 2022, 61, .	13.8	9
109	Twoâ€Dimensional Excitonic Networks Directed by DNA Templates as an Efficient Model Lightâ€Harvesting and Energy Transfer System. Angewandte Chemie, 0, , .	2.0	0

#	Article	IF	CITATIONS
110	Ultrathin Metal-Organic Framework Nanosheets as Building Blocks of Lamellar Nanofilms for Ultrafast Molecular Sieving. Nanoscale, 0, , .	5.6	0
111	Terbium-modified two-dimensional zirconium-based metal–organic frameworks for photoluminescence detection of nitrite. Molecular Systems Design and Engineering, 2023, 8, 330-340.	3.4	5
112	Connecting the dots for fundamental understanding of structure–photophysics–property relationships of COFs, MOFs, and perovskites using a Multiparticle Holstein Formalism. Chemical Science, 2023, 14, 1040-1064.	7.4	2
113	Enhancing Dynamic Spectral Diffusion in Metal–Organic Frameworks through Defect Engineering. Journal of the American Chemical Society, 2023, 145, 1072-1082.	13.7	16
114	Metal-organic layers: Preparation and applications. Science China Materials, 2023, 66, 839-858.	6.3	3
115	Designing Singleâ€Atom Active Sites on sp ² â€Carbon Linked Covalent Organic Frameworks to Induce Bacterial Ferroptosisâ€Like for Robust Antiâ€Infection Therapy. Advanced Science, 2023, 10, .	11.2	20
116	Activating photocatalytic hydrogen evolution by constructing Ni-based organic layers and tailoring its crystal facets. Materials Chemistry Frontiers, 2023, 7, 2651-2660.	5.9	2
117	Dimensional Reduction of Metal–Organic Frameworks for Enhanced Cryopreservation of Red Blood Cells. Angewandte Chemie - International Edition, 2023, 62, .	13.8	3
118	Dimensional Reduction of Metalâ^'Organic Frameworks for Enhanced Cryopreservation of Red Blood Cells. Angewandte Chemie, 0, , .	2.0	0
119	Stepwise Assembly of Quinary Multivariate Metal–Organic Frameworks via Diversified Linker Exchange and Installation. Journal of the American Chemical Society, 2023, 145, 13929-13937.	13.7	3
120	Theoretical identifying the superior anchoring effect and electrochemical performance of Ti2CS2 by single atom Zn doping for lithium-sulfur batteries. Physical Chemistry Chemical Physics, 0, , .	2.8	0
122	Strong Host–Guest Dependence on the Emissive Properties of MOF-5 and [Zn ₂ (BTTB)(DMF) ₂ •(H ₂ O) ₃] _{<i>n</i>>lnorganic Chemistry, 2023, 62, 13757-13764.}	4.0	0
123	Regulating the generation of reactive oxygen species for photocatalytic oxidation by metalloporphyrinic covalent organic frameworks. Chemical Engineering Journal, 2023, 476, 146623.	12.7	1
124	An ultra-sensitive fluorescent Aptamer sensor based on 2D MOF for detection of HER2 in serum. Microchemical Journal, 2023, 195, 109426.	4.5	0
125	Recent advances in nanomaterial-enhanced persulfate activation for organic pollutants removal: Electron transfer, surface reactions, and radical generation. Journal of Environmental Chemical Engineering, 2023, 11, 111511.	6.7	1
126	Turning on Singlet Oxygen Generation by Outerâ€Sphere Microenvironment Modulation in Porphyrinic Covalent Organic Frameworks for Photocatalytic Oxidation. Angewandte Chemie - International Edition, 2024, 63, .	13.8	3
127	Turning on Singlet Oxygen Generation by Outerâ€Sphere Microenvironment Modulation in Porphyrinic Covalent Organic Frameworks for Photocatalytic Oxidation. Angewandte Chemie, 2024, 136, .	2.0	0
128	Ternary electrochemiluminescence quenching effects of CuFe2O4@PDA-MB towards self-enhanced Ru(dcbpy)32+ functionalized 2D metal-organic layer and application in carcinoembryonic antigen immunosensing. Analytica Chimica Acta, 2024, 1287, 342091.	5.4	2

#	ARTICLE	IF	CITATIONS
129	Optimizing Porous Metal–Organic Layers for Stable Zinc Anodes. ACS Applied Materials & Distribution (Interfaces, 0, , .	8.0	0
130	Unraveling Valence Electron Number Dependent Excitonic Effects over M ₁ -N ₃ C ₁ Sites in Single-Atom Catalysts. ACS Nano, 2024, 18, 6579-6590.	14.6	0
131	Two-Dimensional Sulfonate-Functionalized Metal–Organic Framework Membranes for Efficient Lithium-Ion Sieving. Nano Letters, 2024, 24, 2782-2788.	9.1	0
132	Time-Resolved Spectroscopy for Dynamic Investigation of Photoresponsive Metal–Organic Frameworks. Journal of Physical Chemistry Letters, 2024, 15, 3390-3403.	4.6	0
133	Recent advancements in the specific determination of carcinoembryonic antigens using MOF-based immunosensors. RSC Advances, 2024, 14, 9571-9586.	3.6	0
134	[001]-Oriented heteroepitaxy for fabricating emissive surface mounted metal–organic frameworks. Journal of Materials Chemistry C, 2024, 12, 5496-5505.	5 . 5	0