Facile Synthesis of Large Area Two-Dimensional Layers Their Use as Insertion Electrodes

ACS Energy Letters 2, 1257-1262

DOI: 10.1021/acsenergylett.7b00240

Citation Report

#	Article	IF	CITATIONS
1	Efficient nitrogen fixation to ammonia on MXenes. Physical Chemistry Chemical Physics, 2018, 20, 14504-14512.	1.3	82
2	2D molybdenum nitride nanosheets as anode materials for improved lithium storage. Nanoscale, 2018, 10, 18936-18941.	2.8	61
3	Nitrogen-Doped Graphene-Encapsulated Nickel Cobalt Nitride as a Highly Sensitive and Selective Electrode for Glucose and Hydrogen Peroxide Sensing Applications. ACS Applied Materials & Samp; Interfaces, 2018, 10, 35847-35858.	4.0	75
4	Facile synthesis of VN hollow spheres as an anode for lithium-ion battery. Journal of Electroanalytical Chemistry, 2019, 848, 113360.	1.9	20
5	Surface functionalized 3D carbon fiber boosts the lithium storage behaviour of transition metal oxide nanowires <i>via</i> strong electronic interaction and tunable adsorption energy. Nanoscale Horizons, 2019, 4, 1402-1410.	4.1	19
6	2D Metal Carbides and Nitrides (MXenes). , 2019, , .		240
7	Bottom-Up Synthesis of 2D Transition Metal Carbides and Nitrides. , 2019, , 89-109.		13
8	Synthesis, structure, properties and applications of MXenes: Current status and perspectives. Ceramics International, 2019, 45, 18167-18188.	2.3	371
9	A lowâ€cost and efficient pathway for preparation of 2D MoN nanosheets via Na ₂ CO ₃ â€assisted nitridation of MoS ₂ with NH ₃ . Journal of the American Ceramic Society, 2019, 102, 7178-7186.	1.9	11
10	Overview of the synthesis of MXenes and other ultrathin 2D transition metal carbides and nitrides. Current Opinion in Solid State and Materials Science, 2019, 23, 149-163.	5.6	353
11	Ta4C3 MXene as supercapacitor electrodes. Journal of Alloys and Compounds, 2019, 792, 1230-1238.	2.8	103
12	Modulation engineering of 2D MXene-based compounds for metal-ion batteries. Nanoscale, 2019, 11, 23092-23104.	2.8	36
13	Dual-phase molybdenum nitride nanorambutans for solar steam generation under one sun illumination. Nano Energy, 2019, 57, 842-850.	8.2	96
14	Two-dimensional MoN@N-doped carbon hollow spheres as an anode material for high performance lithium-ion battery. Electrochimica Acta, 2019, 295, 246-252.	2.6	39
15	Chemistry of two-dimensional MXene nanosheets in theranostic nanomedicine. Chinese Chemical Letters, 2020, 31, 937-946.	4.8	52
16	Recent advances of two-dimensional transition metal nitrides for energy storage and conversion applications. FlatChem, 2020, 19, 100149.	2.8	54
17	Synthesis and recent applications of MXenes with Mo, V or Nb transition metals: a review. Tungsten, 2020, 2, 176-193.	2.0	20
18	Effects of charge fluctuation and charge regulation on the phase transitions in stoichiometric VO2. Scientific Reports, 2020, 10, 17121.	1.6	6

#	ARTICLE	IF	CITATIONS
19	Quasi-metal Microwave Route to MoN and Mo ₂ C Ultrafine Nanocrystalline Hollow Spheres as Surface-Enhanced Raman Scattering Substrates. ACS Nano, 2020, 14, 13718-13726.	7.3	18
20	Graphdiyne: A Rising Star of Electrocatalyst Support for Energy Conversion. Advanced Energy Materials, 2020, 10, 2000177.	10.2	100
21	Facile synthesis of Mo2N quantum dots embedded N-doped carbon nanosheets composite as advanced anode materials for lithium-ion batteries. Materials Letters, 2020, 276, 128205.	1.3	15
22	Application of polyoxometalate derivatives in rechargeable batteries. Journal of Materials Chemistry A, 2020, 8, 4593-4628.	5.2	94
23	Atomic defects, functional groups and properties in MXenes. Chinese Chemical Letters, 2021, 32, 339-344.	4.8	40
24	Booming development and present advances of two dimensional MXenes for photodetectors. Chemical Engineering Journal, 2021, 403, 126336.	6.6	40
25	Nonlayered 2D ultrathin molybdenum nitride synthesized through the ammonolysis of 2D molybdenum dioxide. Chemical Communications, 2021, 57, 223-226.	2.2	22
26	Review MXenes as a new type of nanomaterial for environmental applications in the photocatalytic degradation of water pollutants. Ceramics International, 2021, 47, 7321-7343.	2.3	88
27	Two-dimensional MXene-based flexible nanostructures for functional nanodevices: a review. Journal of Materials Chemistry A, 2021, 9, 3231-3269.	5.2	97
28	Polyoxometalate@MOF derived porous carbon-supported MoO ₂ /MoS ₂ octahedra boosting high-rate lithium storage. Dalton Transactions, 2021, 50, 14595-14601.	1.6	15
29	Recent advances in biomassâ€derived carbon, mesoporous materials, and transition metal nitrides as new electrode materials for supercapacitor: A short review. International Journal of Energy Research, 2021, 45, 8335-8346.	2.2	50
30	Progress and biomedical applications of MXenes. Nano Select, 2021, 2, 1480-1508.	1.9	100
31	General molten-salt route to three-dimensional porous transition metal nitrides as sensitive and stable Raman substrates. Nature Communications, 2021, 12, 1376.	5.8	27
32	In Situ and Operando Characterizations of 2D Materials in Electrochemical Energy Storage Devices. Small Science, 2021, 1, 2000076.	5.8	50
33	MXene based advanced materials for thermal energy storage: A recent review. Journal of Energy Storage, 2021, 35, 102322.	3.9	64
34	In Situ and Operando Characterizations of 2D Materials in Electrochemical Energy Storage Devices. Small Science, 2021, 1, 2170010.	5.8	13
35	Dual-carbon coupled Co5.47N composites for capacitive lithium-ion storage. Journal of Colloid and Interface Science, 2021, 587, 192-201.	5.0	13
36	Selective Preparation of Mo ₂ N and MoN with High Surface Area for Flexible SERS Sensing. Nano Letters, 2021, 21, 4410-4414.	4.5	33

#	ARTICLE	IF	CITATIONS
37	Transition metal nitride electrodes as future energy storage devices: A review. Materials Today Communications, 2021, 27, 102363.	0.9	25
38	Insight into two-dimensional MXenes for environmental applications: Recent progress, challenges, and prospects. FlatChem, 2021, 28, 100256.	2.8	35
39	MXenes: synthesis, incorporation, and applications in ultrafast lasers. Nanotechnology, 2021, 32, 392003.	1.3	12
40	Ni-FeP @carbon core–shell structure as advanced anode materials for superior lithium storage. Applied Surface Science, 2021, 554, 149666.	3.1	20
41	Molybdenum nitrides from structures to industrial applications. Reviews in Chemical Engineering, 2023, 39, 329-361.	2.3	7
42	Recent progress on 2D metal carbide/nitride (MXene) nanocomposites for lithium-based batteries. FlatChem, 2021, 29, 100281.	2.8	20
43	Host–Guest Intercalation Chemistry in MXenes and Its Implications for Practical Applications. ACS Nano, 2021, 15, 15502-15537.	7.3	38
44	Review on MXenes-based nanomaterials for sustainable opportunities in energy storage, sensing and electrocatalytic reactions. Journal of Molecular Liquids, 2021, 342, 117524.	2.3	35
45	Biomass-based materials for green lithium secondary batteries. Energy and Environmental Science, 2021, 14, 1326-1379.	15.6	157
46	Two-Dimensional Transition Metal Carbides and Nitrides (MXenes): Synthesis to Applications. Engineering Materials, 2021, , 179-199.	0.3	0
47	Recent trends in the development of MXenes and MXene-based composites as anode materials for Li-ion batteries. Journal of Energy Storage, 2022, 47, 103572.	3.9	31
48	Two-dimensional MXenes for electrochemical energy storage applications. Journal of Materials Chemistry A, 2022, 10, 1105-1149.	5.2	63
50	Structure defects and electronic properties of MXenes. , 2022, , 91-129.		3
51	Advances in MXenes-based optical biosensors: A review. Biosensors and Bioelectronics, 2022, 202, 113995.	5.3	52
52	Structures, properties and applications of two-dimensional metal nitrides: from nitride MXene to other metal nitrides. 2D Materials, 2022, 9, 022001.	2.0	19
53	MXenes: Synthesis, properties, and electrochemical performance of titanium, vanadium, and tantalum carbide MXenes as supercapacitor electrodes., 2022,, 387-416.		1
54	Interfacial engineering for metal oxide/nitride nano-heterojunctions towards high-rate lithium-ion storage. Journal of Materials Chemistry A, 2022, 10, 7391-7398.	5. 2	18
55	Prospects of MXenes in energy storage applications. Chemosphere, 2022, 297, 134225.	4.2	50

#	ARTICLE	IF	CITATIONS
56	Synthesis, Toxicity Assessment, Environmental and Biomedical Applications of MXenes: A Review. Nanomaterials, 2022, 12, 1797.	1.9	32
57	Syntheses and electronic structure engineering of transition metal nitrides for supercapacitor applications. Journal of Materials Chemistry A, 2022, 10, 14655-14673.	5.2	40
58	Fabrication of Fep-Based Composite Via N-Doping into Amorphous Carbon and Graphene-Protecting Strategy for Lithium-Ion Batteries. SSRN Electronic Journal, 0, , .	0.4	0
59	Recent advances and trends in the applications of MXene nanomaterials for tissue engineering and regeneration. Journal of Biomedical Materials Research - Part A, 2022, 110, 1840-1859.	2.1	21
60	A review on the synthesis of transition metal nitride nanostructures and their energy related applications. Green Energy and Environment, 2023, 8, 406-437.	4.7	34
61	Headway towards contemporary 2D MXene-based hybrid electrodes for alkali-ion batteries. Energy Advances, 2022, 1, 950-979.	1.4	3
62	Bioactive inorganic compound MXene and its application in tissue engineering and regenerative medicine. Journal of Industrial and Engineering Chemistry, 2023, 117, 38-53.	2.9	8
63	Recent progress in synthesis and applications of MXene-based nanomaterials (MBNs) for (bio)sensing of microbial toxins, pathogenic bacteria in food matrices. Microchemical Journal, 2022, 183, 108121.	2.3	6
64	MXenes: Advances in the synthesis and application in supercapacitors and batteries. Journal of Materials Research, 2022, 37, 3865-3889.	1.2	4
65	Next generation 2D materials for anodes in battery applications. Journal of Power Sources, 2023, 556, 232256.	4.0	15
66	Fabrication of FeP-based composite via N-doping into amorphous carbon and graphene-protecting strategy for lithium-ion batteries. Journal of Solid State Chemistry, 2023, 320, 123831.	1.4	1
67	Molybdenum Nitride and Oxide Quantum Dot @ Nitrogen-Doped Graphene Nanocomposite Material for Rechargeable Lithium Ion Batteries. Batteries, 2023, 9, 32.	2.1	0
68	A review on 2D transition metal nitrides: Structural and morphological impacts on energy storage and photocatalytic applications. Journal of Alloys and Compounds, 2023, 950, 169888.	2.8	12
69	Metal nitrides nanostructures: Properties, synthesis and conceptualization in analytical methods developments for chemical analysis and separation, and in energy storage applications. Coordination Chemistry Reviews, 2023, 481, 215046.	9.5	9
70	Recent Progress and Challenges in MXene-Based Phase Change Material for Solar and Thermal Energy Applications. Energies, 2023, 16, 1977.	1.6	5
74	Progresses and Challenges in 2D MXenes: Synthesis, Intercalation/Delamination, and Storage. ACS Symposium Series, 0, , 101-141.	0.5	1
75	Recent trends in synthesis of 2D MXene-based materials for sustainable environmental applications. Emergent Materials, 2024, 7, 35-62.	3.2	1