Metal–organic frameworks: functional luminescent a applications

Chemical Society Reviews 46, 3242-3285 DOI: 10.1039/c6cs00930a

Citation Report

#	Article	IF	CITATIONS
1	Dye@bio-MOF-1 Composite as a Dual-Emitting Platform for Enhanced Detection of a Wide Range of Explosive Molecules. ACS Applied Materials & amp; Interfaces, 2017, 9, 20076-20085.	4.0	117
2	Supramolecular coordination polymers using a close to â€V-shaped' fluorescent 4-amino-1,8-naphthalimide TrA¶ger's base scaffold. Chemical Communications, 2017, 53, 12512-12515.	2.2	19
3	A stable 3D Cd(<scp>ii</scp>) metal–organic framework for highly sensitive detection of Cu ²⁺ ions and nitroaromatic explosives. RSC Advances, 2017, 7, 49618-49625.	1.7	24
4	Structural Diversity in Six Mixed Ligand Zn(II) Metal–Organic Frameworks Constructed by Rigid and Flexible Dicarboxylates and Different N,N′ Donor Ligands. Crystal Growth and Design, 2017, 17, 6613-6624.	1.4	43
5	Straightforward Loading of Imidazole Molecules into Metal–Organic Framework for High Proton Conduction. Journal of the American Chemical Society, 2017, 139, 15604-15607.	6.6	290
6	Metal-organic frameworks as stationary phase for application in chromatographic separation. Journal of Chromatography A, 2017, 1530, 1-18.	1.8	125
7	Structure―and Temperatureâ€Dependent Luminescence Properties of Threefold Interpenetrated Networks: Coordination Polymers Based on Dinuclear Gridlike Silver(I) Units. European Journal of Inorganic Chemistry, 2017, 2017, 5127-5133.	1.0	13
8	The MOF ⁺ Technique: A Significant Synergic Effect Enables High Performance Chromate Removal. Angewandte Chemie - International Edition, 2017, 56, 16376-16379.	7.2	102
9	A Water-Stable Twofold Interpenetrating Microporous MOF for Selective CO ₂ Adsorption and Separation. Inorganic Chemistry, 2017, 56, 13991-13997.	1.9	88
10	Metal–Organic Framework-Templated PdO-Co ₃ O ₄ Nanocubes Functionalized by SWCNTs: Improved NO ₂ Reaction Kinetics on Flexible Heating Film. ACS Applied Materials & Interfaces, 2017, 9, 40593-40603.	4.0	55
11	Lanthanide-Functionalized Metal–Organic Framework Hybrid Systems To Create Multiple Luminescent Centers for Chemical Sensing. Accounts of Chemical Research, 2017, 50, 2789-2798.	7.6	557
12	Tetraphenylethylene Immobilized Metal–Organic Frameworks: Highly Sensitive Fluorescent Sensor for the Detection of Cr ₂ O ₇ ^{2–} and Nitroaromatic Explosives. Crystal Growth and Design, 2017, 17, 6041-6048.	1.4	239
13	Metal–Organic Frameworks with Internal Urea-Functionalized Dicarboxylate Linkers for SO ₂ and NH ₃ Adsorption. ACS Applied Materials & Interfaces, 2017, 9, 37419-37434.	4.0	130
14	The Impact of Chargeâ€Distribution on Photochromic Properties in 1D Coordination Polymers. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2017, 643, 1766-1770.	0.6	7
15	Evaporationâ€Directed Crackâ€Patterning of Metal–Organic Framework Colloidal Films and Their Application as Photonic Sensors. Angewandte Chemie, 2017, 129, 14199-14203.	1.6	17
16	A versatile covalent organic framework-based platform for sensing biomolecules. Chemical Communications, 2017, 53, 11469-11471.	2.2	148
17	Two-Dimensional Zeolitic Imidazolate Framework/Carbon Nanotube Hybrid Networks Modified Proton Exchange Membranes for Improving Transport Properties. ACS Applied Materials & Interfaces, 2017, 9, 35075-35085.	4.0	111
18	A luminescent cerium metal–organic framework for the turn-on sensing of ascorbic acid. Chemical Communications, 2017, 53, 11221-11224.	2.2	111

#	Article	IF	CITATIONS
19	pH-Stable Eu- and Tb-organic-frameworks mediated by an ionic liquid for the aqueous-phase detection of 2,4,6-trinitrophenol (TNP). Dalton Transactions, 2017, 46, 15434-15442.	1.6	111
20	3-D organic-inorganic hybrid architecture based on Tröger's Base: Synthesis, supramolecular structure, and aggregation-induced emission properties. Inorganic Chemistry Communication, 2017, 86, 145-149.	1.8	1
21	General synthesis of MFe ₂ O ₄ /carbon (M = Zn, Mn, Co, Ni) spindles from mixed metal organic frameworks as high performance anodes for lithium ion batteries. Journal of Materials Chemistry A, 2017, 5, 23641-23650.	5.2	73
22	New lanthanide(<scp>iii</scp>) coordination polymers: synthesis, structural features, and catalytic activity in CO ₂ fixation. Dalton Transactions, 2017, 46, 16426-16431.	1.6	28
23	A luminescent heterometallic metal–organic framework for the naked-eye discrimination of nitroaromatic explosives. Chemical Communications, 2017, 53, 10318-10321.	2.2	78
24	Nitroaromatic sensing with a new lanthanide coordination polymer [Er ₂ (C ₁₀ H ₄ O ₄ S ₂) ₃ (H _{2<!--<br-->assembled by 2,2′-bithiophene-5,5′-dicarboxylate. New Journal of Chemistry, 2017, 41, 10929-10934.}	ˈsub រ @) <su< td=""><td>b>@r/sub>]</td></su<>	b> @r /sub>]
25	Highly Sensitive and Selective Sensing of Free Bilirubin Using Metal–Organic Frameworks-Based Energy Transfer Process. ACS Applied Materials & Interfaces, 2017, 9, 30925-30932.	4.0	168
26	An ultrastable zinc(<scp>ii</scp>)–organic framework as a recyclable multi-responsive luminescent sensor for Cr(<scp>iii</scp>), Cr(<scp>vi</scp>) and 4-nitrophenol in the aqueous phase with high selectivity and sensitivity. Journal of Materials Chemistry A, 2017, 5, 20035-20043.	5.2	215
27	Syntheses, crystal structures and fluorescent properties of three metal- tris(4′-carboxybiphenyl)amine frameworks. Journal of Solid State Chemistry, 2017, 255, 200-205.	1.4	10
28	A series of Mg–Zn heterometallic coordination polymers: synthesis, characterization, and fluorescence sensing for Fe ³⁺ , CS ₂ , and nitroaromatic compounds. Dalton Transactions, 2017, 46, 12597-12604.	1.6	47
29	Rapid and highly sensitive detection of extracellular and intracellular H ₂ S by an azide-functionalized Al(<scp>iii</scp>)-based metal–organic framework. Dalton Transactions, 2017, 46, 12856-12864.	1.6	57
30	A multifunctional three-fold interpenetrated coordination polymer showing excellent luminescent sensing for Cr(VI)/ Fe(III) and photocatalytic properties. Journal of Solid State Chemistry, 2017, 256, 176-183.	1.4	24
31	Benzyl Dihydrazone versus Thiosemicarbazone Schiff Base: Effects on the Supramolecular Arrangement of Cobalt Thiocyanate Complexes and the Generation of CoN ₆ and CoN ₄ S ₂ Coordination Spheres. European Journal of Inorganic Chemistry, 2017, 2017, 4763-4772	1.0	54
32	2D carboxylate-bridged Ln ^{III} coordination polymers: displaying slow magnetic relaxation and luminescence properties in the detection of Fe ³⁺ , Cr ₂ O ₇ ^{2â^'} and nitrobenzene. Dalton Transactions, 2017, 46, 13878-13887	1.6	51
33	Three Cadmium Coordination Polymers with Carboxylate and Pyridine Mixed Ligands: Luminescent Sensors for Fe ^{III} and Cr ^{VI} lons in an Aqueous Medium. Inorganic Chemistry, 2017, 56, 11768-11778.	1.9	167
34	A bifunctional luminescent europium–organic framework for highly selective sensing of nitrobenzene and 4-aminophenol. RSC Advances, 2017, 7, 45029-45033.	1.7	23
35	Evaporationâ€Ðirected Crackâ€Patterning of Metal–Organic Framework Colloidal Films and Their Application as Photonic Sensors. Angewandte Chemie - International Edition, 2017, 56, 14011-14015.	7.2	41
36	Ratiometric Luminescent Detection of Organic Amines Due to the Induced Lactam–Lactim Tautomerization of Organic Linker in a Metal–Organic Framework. ACS Applied Materials & Interfaces, 2017, 9, 31352-31356.	4.0	77

#	Article	IF	Citations
37	Two solvent-induced porous hydrogen-bonded organic frameworks: solvent effects on structures and functionalities. Chemical Communications, 2017, 53, 11150-11153.	2.2	93
38	Recent advances in AlEgen-based luminescent metal–organic frameworks and covalent organic frameworks. Materials Chemistry Frontiers, 2017, 1, 2474-2486.	3.2	136
39	Diverse dissolution–recrystallization structural transformations and sequential Förster resonance energy transfer behavior of a luminescent porous Cd-MOF. Dalton Transactions, 2017, 46, 11656-11663.	1.6	55
40	Porous crystalline materials: closing remarks. Faraday Discussions, 2017, 201, 395-404.	1.6	11
41	A family of ssa-type copper-based MOFs constructed from unsymmetrical diisophthalates: synthesis, characterization and selective gas adsorption. Materials Chemistry Frontiers, 2017, 1, 2283-2291.	3.2	34
42	A novel photo- and hydrochromic europium metal–organic framework with good anion sensing properties. Journal of Materials Chemistry C, 2017, 5, 8999-9004.	2.7	133
43	Syntheses, Crystal Structures and Photophysical Aspects of Discrete and Polymeric Azidoâ€Bridged Zinc(II) and Cadmium(II) Complexes: Sensing Properties and Structural Resemblance. ChemistrySelect, 2017, 2, 11091-11099.	0.7	10
44	Systematic Engineering of Single Substitution in Zirconium Metal–Organic Frameworks toward High-Performance Catalysis. Journal of the American Chemical Society, 2017, 139, 18590-18597.	6.6	102
45	A new Tb(iii)-functionalized layer-like Cd MOF as luminescent probe for high-selectively sensing of Cr3+. CrystEngComm, 2017, 19, 7270-7276.	1.3	33
46	The MOF ⁺ Technique: A Significant Synergic Effect Enables High Performance Chromate Removal. Angewandte Chemie, 2017, 129, 16594-16597.	1.6	12
47	Preparation of Luminescent Metal-Organic Framework Films by Soft-Imprinting for 2,4-Dinitrotoluene Sensing. Materials, 2017, 10, 992.	1.3	25
48	The Tuning of Optical Properties of Nanoscale MOFs-Based Thin Film through Post-Modification. Nanomaterials, 2017, 7, 242.	1.9	24
49	A trichromatic MOF composite for multidimensional ratiometric luminescent sensing. Chemical Science, 2018, 9, 2918-2926.	3.7	96
50	A Multifunctional Nanocage-based MOF with Tri- and Tetranuclear Zinc Cluster Secondary Building Units. Scientific Reports, 2018, 8, 3117.	1.6	16
51	Electronic metal–organic framework sensors. Inorganic Chemistry Frontiers, 2018, 5, 979-998.	3.0	120
52	Poreâ€Environment Engineering with Multiple Metal Sites in Rareâ€Earth Porphyrinic Metal–Organic Frameworks. Angewandte Chemie, 2018, 130, 5189-5193.	1.6	18
53	A Metal–Organic Framework with Optimized Porosity and Functional Sites for High Gravimetric and Volumetric Methane Storage Working Capacities. Advanced Materials, 2018, 30, e1704792.	11.1	109
54	Integration of chromium terephthalate metal-organic frameworks with reduced graphene oxide for voltammetry of 4-nonylphenol. Carbon, 2018, 134, 540-547.	5.4	43

#	Article	IF	CITATIONS
55	Metal–organic framework-derived porous materials for catalysis. Coordination Chemistry Reviews, 2018, 362, 1-23.	9.5	737
56	Assembly of a series of zinc coordination polymers based on 5-functionalized isophthalic acids and dipyridyl. RSC Advances, 2018, 8, 7428-7437.	1.7	13
57	Hydrothermal Preparation of a Series of Luminescent Cadmium(II) and Zinc(II) Coordination Complexes and Enhanced Realâ€ŧime Photo″uminescent Sensing for Benzaldehyde. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2018, 644, 357-366.	0.6	5
58	Rapid Detection of the Biomarkers for Carcinoid Tumors by a Water Stable Luminescent Lanthanide Metal–Organic Framework Sensor. Advanced Functional Materials, 2018, 28, 1707169.	7.8	335
59	Combined Experimental and Computational Study on Catalytic Cyclocoupling of Epoxides and CO2 Using Porphyrin-Based Cu(II) Metal-Organic Frameworks with 2D Coordination Networks. Bulletin of the Chemical Society of Japan, 2018, 91, 383-390.	2.0	5
60	Poreâ€Environment Engineering with Multiple Metal Sites in Rareâ€Earth Porphyrinic Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2018, 57, 5095-5099.	7.2	136
61	A porous and luminescent metal-organic framework containing triazine group for sensing and imaging of Zn2+. Microporous and Mesoporous Materials, 2018, 266, 1-6.	2.2	30
62	Sonochemical synthesis of a multi-responsive regenerable water-stable zinc(II) fluorescent probe for highly selective, sensitive and real-time sensing of benzaldehyde, ferric ion and PH. Ultrasonics Sonochemistry, 2018, 44, 340-349.	3.8	37
63	A uranyl phosphonate framework with a temperature-induced order–disorder transition and temperature-correlated photoluminescence. CrystEngComm, 2018, 20, 3153-3157.	1.3	14
64	Cyclic Structural Transformations from Crystalline to Crystalline to Amorphous Phases and Magnetic Properties of a Mn(II)-Based Metal–Organic Framework. Crystal Growth and Design, 2018, 18, 3360-3365.	1.4	9
65	Structure, color-tunable luminescence, and UV-vis/NIR benzaldehyde detection of lanthanide coordination polymers based on two fluorinated ligands. CrystEngComm, 2018, 20, 3335-3343.	1.3	27
66	A stable electron-deficient metal–organic framework for colorimetric and luminescence sensing of phenols and anilines. Journal of Materials Chemistry A, 2018, 6, 9236-9244.	5.2	127
67	Dual-emission MOF \hat{a} dye sensor for ratiometric fluorescence recognition of RDX and detection of a broad class of nitro-compounds. Journal of Materials Chemistry A, 2018, 6, 9183-9191.	5.2	170
68	A turn-on fluorescence probe based on post-modified metal–organic frameworks for highly selective and fast-response hypochlorite detection. Polyhedron, 2018, 148, 76-80.	1.0	24
69	Three-Dimensional Co(II)/Cd(II) Metal–Organic Frameworks: Luminescent Cd-MOF for Detection and Adsorption of 2,4,6-Trinitrophenol in the Aqueous Phase. Crystal Growth and Design, 2018, 18, 3062-3072.	1.4	106
70	Exploring Lanthanide Doping in UiO-66: A Combined Experimental and Computational Study of the Electronic Structure. Inorganic Chemistry, 2018, 57, 5463-5474.	1.9	51
71	Base-Resistant Ionic Metal-Organic Framework as a Porous Ion-Exchange Sorbent. IScience, 2018, 3, 21-30.	1.9	50
72	Insight into the Metal Content–Structure–Property Relationship in Lanthanide Metal–Organic Frameworks: Optical Studies, Magnetism, and Catalytic Performance. European Journal of Inorganic Chemistry, 2018, 2018, 2452-2460	1.0	20

ARTICLE IF CITATIONS # A luminescent zinc(<scp>ii</scp>) coordination polymer with unusual (3,4,4)-coordinated self-catenated 3D network for selective detection of nitroaromatics and ferric and chromate ions: a 73 1.6 147 versatile luminescent sensor. Dalton Transactions, 2018, 47, 6189-6198. Cooperative and FRETâ€Assisted Brightness Enhancement in Oligo(phenylene ethynylene): Quantum Dot Organic–Inorganic Nanohybrids. Chemistry - an Asian Journal, 2018, 13, 1492-1499. 74 1.7 Quasi-MOF: Exposing Inorganic Nodes to Guest Metal Nanoparticles for Drastically Enhanced 75 5.8 165 Catalytic Activity. CheM, 2018, 4, 845-856. Luminescent metal–organic frameworks as chemical sensors: common pitfalls and proposed best 3.0 129 practices. Inorganic Chemistry Frontiers, 2018, 5, 1493-1511. From 2D â†' 3D interpenetration to packing: N coligand-driven structural assembly and tuning of luminescent sensing activities towards Fe³⁺ and Cr₂O₇^{2a^*} ions. Dalton Transactions, 2018, 47, 6240-6249. 77 1.6 76 A series of Ln₄^{III} clusters: Dy₄ single molecule magnet and Tb₄ multi-responsive luminescent sensor for Fe³⁺, CrO₄^{2â^'}/Cr₂O₇^{2â^'} and 4-nitroaniline. RSC 1.7 Advances, 2018, 8, 12641-12652 Assembly of one novel coordination polymer built from rigid tricarboxylate ligand and bis(imidazole) 79 linker: Synthesis, structure, and fluorescence sensing property. Inorganic Chemistry Communication, 1.8 6 2018, 96, 139-144. Facilely synthesized Eu3+ post-functionalized UiO-66-type metal-organic framework for rapid and highly selective detection of Fe3+ in aqueous solution. Sensors and Actuators B: Chemical, 2018, 267, 4.0 542-548. A new luminescent metalâ€"organic framework based on dicarboxyl-substituted tetraphenylethene for 81 efficient detection of nitro-containing explosives and antibiotics in aqueous media. Journal of 2.7 133 Materials Chemistry C, 2018, 6, 2983-2988. A fluorescent microporous crystalline dendrimer discriminates vapour molecules. Chemical 2.2 Communications, 2018, 54, 2534-2537. Tuning a layer to a three-dimensional cobalt-tris(4â€²-carboxybiphenyl)amine framework by introducing 83 1.8 5 potassium ions. Inorganic Chemistry Communication, 2018, 90, 65-68. Tetranuclear cluster-based Pb(II)-MOF: Synthesis, crystal structure and luminescence sensing for CS2. 1.8 Journal of Molecular Structure, 2018, 1160, 46-49. Detection and removal of antibiotic tetracycline in water with a highly stable luminescent MOF. 85 4.0 225 Sensors and Actuators B: Chemical, 2018, 262, 137-143. Zn-based porous coordination solid as diclofenac sodium carrier. Journal of Solid State Chemistry, 1.4 16 <u>2018, 260, 67-72.</u> The point-of-care colorimetric detection of the biomarker of phenylamine in the human urine based on 87 2.6 44 Tb 3+ functionalized metal-organic framework. Analytica Chimica Acta, 2018, 1012, 82-89. Synthesis of manganese oxide nanorods and its application for potassium ion sensing in water. 5.0 28 Journal of Colloid and Interface Science, 2018, 516, 364-370. Engineering a Zirconium MOF through Tandem "Click―Reactions: A General Strategy for Quantitative 89 1.9 28 Loading of Bifunctional Groups on the Pore Surface. Inorganic Chemistry, 2018, 57, 2288-2295. A fluorescent sensor for selective, sensitive, and recyclable detection of mercury(II) in aqueous 90 1.8 solution based on a zinc(II) coordination polymer. Inorganic Chemistry Communication, 2018, 89, 73-77.

#	Article	IF	CITATIONS
91	Two novel penetrating coordination polymers based on flexible S-containing dicarboxylate acid with sensing properties towards Fe3+ and Cr2O72- ions. Journal of Solid State Chemistry, 2018, 261, 75-85.	1.4	44
92	Understanding the effect of an amino group on the selective and ultrafast detection of TNP in water using fluorescent organic probes. Journal of Materials Chemistry C, 2018, 6, 3288-3297.	2.7	70
93	Functionalization of Metal–Organic Frameworks for Photoactive Materials. Advanced Materials, 2018, 30, e1705634.	11.1	133
94	Neutral ligand TIPA-based two 2D metal–organic frameworks: ultrahigh selectivity of C ₂ H ₂ /CH ₄ and efficient sensing and sorption of Cr(<scp>vi</scp>). Dalton Transactions, 2018, 47, 3725-3732.	1.6	99
95	Recent Advances in Microâ€∤Nanostructured Metal–Organic Frameworks towards Photonic and Electronic Applications. Chemistry - A European Journal, 2018, 24, 6484-6493.	1.7	45
96	Tunable Electrochemistry of Electrosynthesized Copper Metal–Organic Frameworks. Advanced Functional Materials, 2018, 28, 1706961.	7.8	94
97	Fluorescent Zn-PDC/Tb ³⁺ Coordination Polymer Nanostructure: A Candidate for Highly Selective Detections of Cefixime Antibiotic and Acetone in Aqueous System. Inorganic Chemistry, 2018, 57, 1417-1425.	1.9	110
98	A 3D Microporous MOF with <i>mab</i> Topology for Selective CO ₂ Adsorption and Separation. ChemistrySelect, 2018, 3, 917-921.	0.7	15
99	Hydrogenâ€Bonded Organic Aromatic Frameworks for Ultralong Phosphorescence by Intralayer π–π Interactions. Angewandte Chemie - International Edition, 2018, 57, 4005-4009.	7.2	207
100	A highly porous acylamide decorated MOF-505 analogue exhibiting high and selective CO ₂ gas uptake capability. CrystEngComm, 2018, 20, 1874-1881.	1.3	40
101	Iridium(III)-Based Metal–Organic Frameworks as Multiresponsive Luminescent Sensors for Fe ³⁺ , Cr ₂ O ₇ ^{2–} , and ATP ^{2–} in Aqueous Media. Inorganic Chemistry, 2018, 57, 1079-1089.	1.9	104
102	<i>Operando</i> study of palladium nanoparticles inside UiO-67 MOF for catalytic hydrogenation of hydrocarbons. Faraday Discussions, 2018, 208, 287-306.	1.6	46
103	Ratiometric luminescence sensing based on a mixed Ce/Eu metal–organic framework. Journal of Materials Chemistry C, 2018, 6, 2054-2059.	2.7	54
104	Novel CO ₂ Fluorescence Turn-On Quantification Based on a Dynamic AlE-Active Metal–Organic Framework. ACS Applied Materials & Interfaces, 2018, 10, 2868-2873.	4.0	37
105	A novel covalent post-synthetically modified MOF hybrid as a sensitive and selective fluorescent probe for Al ³⁺ detection in aqueous media. Dalton Transactions, 2018, 47, 1674-1681.	1.6	112
106	Shape engineering of metal–organic frameworks. Polyhedron, 2018, 145, 1-15.	1.0	172
107	Liquid-free single-crystal to single-crystal transformations in coordination polymers. Inorganic Chemistry Frontiers, 2018, 5, 279-300.	3.0	49
108	Achieving Multicolor Long-Lived Luminescence in Dye-Encapsulated Metal–Organic Frameworks and Its Application to Anticounterfeiting Stamps. ACS Applied Materials & Interfaces, 2018, 10, 1802-1809.	4.0	151

#	Article	IF	CITATIONS
109	Solvent Dependent Luminescence Sensing of Nitroâ€Explosives by a Terbiumâ€Based Metalâ€Organic Complex. ChemistrySelect, 2018, 3, 683-689.	0.7	3
110	Metal–Organic Framework-Based Selective Sensing of Biothiols via Chemidosimetric Approach in Water. ACS Omega, 2018, 3, 254-258.	1.6	36
111	The simultaneous detection and removal of organophosphorus pesticides by a novel Zr-MOF based smart adsorbent. Journal of Materials Chemistry A, 2018, 6, 2184-2192.	5.2	214
112	Aldehyde-functionalized metal–organic frameworks for selective sensing of homocysteine over Cys, GSH and other natural amino acids. Chemical Communications, 2018, 54, 1004-1007.	2.2	55
113	RuCo bimetallic alloy nanoparticles immobilized on multi-porous MIL-53(Al) as a highly efficient catalyst for the hydrolytic reaction of ammonia borane. International Journal of Hydrogen Energy, 2018, 43, 1439-1450.	3.8	33
114	Tunable Emission and Selective Luminescence Sensing in a Series of Lanthanide Metal–Organic Frameworks with Uncoordinated Lewis Basic Triazolyl Sites. Crystal Growth and Design, 2018, 18, 2031-2039.	1.4	57
115	A luminescent metal-organic framework with helical SBUs for highly effective detection of Fe 3+ ions. Inorganic Chemistry Communication, 2018, 93, 52-55.	1.8	9
116	Dielectric Properties of Zeolitic Imidazolate Frameworks in the Broad-Band Infrared Regime. Journal of Physical Chemistry Letters, 2018, 9, 2678-2684.	2.1	31
117	Coordination Polymers with Intriguing Photoluminescence Behavior: The Promising Avenue for Greatest Long‣asting Phosphors. European Journal of Inorganic Chemistry, 2018, 2018, 2155-2174.	1.0	41
118	Structural and luminescent properties of a new 1D Cadmium(II) coordination polymer: A combined effort with experiment & amp; theory. Journal of Molecular Structure, 2018, 1167, 187-193.	1.8	14
119	3D metal-organic frameworks based on lanthanide-seamed dimeric pyrogallol[4]arene nanocapsules. Science China Chemistry, 2018, 61, 664-669.	4.2	16
120	Potential of metal–organic frameworks for adsorptive separation of industrially and environmentally relevant liquid mixtures. Coordination Chemistry Reviews, 2018, 367, 82-126.	9.5	105
121	Mixing Halogens To Assemble an Allâ€Inorganic Layered Perovskite with Warm Whiteâ€Light Emission. Chemistry - A European Journal, 2018, 24, 9243-9246.	1.7	17
122	Four 3D coordination polymers based on layers with single <i>syn</i> – <i>anti</i> carboxylate bridges: synthesis, structures, and magnetic properties. RSC Advances, 2018, 8, 14101-14108.	1.7	13
123	Bulky substituent and solvent-induced alternative nodes for layered Cd–isophthalate/acylhydrazone frameworks. CrystEngComm, 2018, 20, 2841-2849.	1.3	11
124	Ratiometric fluorescence sensing and colorimetric decoding methanol by a bimetallic lanthanide-organic framework. Sensors and Actuators B: Chemical, 2018, 265, 104-109.	4.0	86
125	Photochemistry and photophysics of MOFs: steps towards MOF-based sensing enhancements. Chemical Society Reviews, 2018, 47, 4710-4728.	18.7	478
126	A water stable microporous metal–organic framework based on rod SBUs: synthesis, structure and adsorption properties. CrystEngComm, 2018, 20, 2169-2174.	1.3	8

#	Article	IF	CITATIONS
127	Aqueous phase sensing of bismuth ion using fluorescent metal-organic framework. Sensors and Actuators B: Chemical, 2018, 266, 323-328.	4.0	34
128	A 2D porous pentiptycene-based MOF for efficient detection of Ba ²⁺ and selective adsorption of dyes from water. Inorganic Chemistry Frontiers, 2018, 5, 1314-1320.	3.0	19
129	Hydrogenâ€Bonded Organic Aromatic Frameworks for Ultralong Phosphorescence by Intralayer π–π Interactions. Angewandte Chemie, 2018, 130, 4069-4073.	1.6	61
130	Improving analyte selectivity by post-assembly modification of metal–organic framework based photonic crystal sensors. Nanoscale Horizons, 2018, 3, 383-390.	4.1	33
131	Two luminescent transition-metal–organic frameworks with a predesigned ligand as highly sensitive and selective iron(<scp>iii</scp>) sensors. New Journal of Chemistry, 2018, 42, 6839-6847.	1.4	34
132	Design and Development of Fluorescent Sensors with Mixed Aromatic Bicyclic Fused Rings and Pyridyl Groups: Solid Mediated Selective Detection of 2,4,6-Trinitrophenol in Water. ACS Omega, 2018, 3, 3248-3256.	1.6	17
133	Two novel luminescent Cd(II)/Zn(II) coordination polymers based on 4,4′-(1H-1,2,4-triazol-1-yl)methylene-bis(benzonic acid) for sensing organic molecules and Fe3+ ion. Inorganic Chemistry Communication, 2018, 91, 35-38.	1.8	9
134	A Flexible Fluorescent SCC-MOF for Switchable Molecule Identification and Temperature Display. Chemistry of Materials, 2018, 30, 2160-2167.	3.2	138
135	Sensing and capture of toxic and hazardous gases and vapors by metal–organic frameworks. Chemical Society Reviews, 2018, 47, 4729-4756.	18.7	530
136	Coordination chemistry of flexible benzene-1,3,5-tricarboxamide derived carboxylates; notable structural resilience and vaguely familiar packing motifs. Dalton Transactions, 2018, 47, 5259-5268.	1.6	11
137	Luminescent metal–organic frameworks and coordination polymers as alternative phosphors for energy efficient lighting devices. Coordination Chemistry Reviews, 2018, 373, 116-147.	9.5	169
138	Two 3D metalâ^'organic frameworks as multi-functional materials to detect Fe3+ ions and nitroaromatic explosives and to encapsulate Ln3+ ions for white-light emission. Journal of Solid State Chemistry, 2018, 258, 42-48.	1.4	17
139	Development of photoluminescence metal-organic framework sensors consisting of dual-emission centers. Chinese Chemical Letters, 2018, 29, 823-826.	4.8	21
140	Porous metal–organic frameworks for fuel storage. Coordination Chemistry Reviews, 2018, 373, 167-198.	9.5	211
141	Urea-based flexible dicarboxylate linkers for three-dimensional metal-organic frameworks. Inorganica Chimica Acta, 2018, 475, 35-46.	1.2	8
142	Effect of Linker Substituent on Layers Arrangement, Stability, and Sorption of Zn-Isophthalate/Acylhydrazone Frameworks. Crystal Growth and Design, 2018, 18, 488-497.	1.4	20
143	Porous ionic polymers: Design, synthesis, and applications. Progress in Polymer Science, 2018, 79, 121-143.	11.8	161
144	An Ultrastable Luminescent Metal–Organic Framework for Selective Sensing of Nitroaromatic Compounds and Nitroimidazole-Based Drug Molecules. Crystal Growth and Design, 2018, 18, 431-440.	1.4	115

#	Article	IF	Citations
145	Iodide-Centered Cuprous Octatomic Ring: A Luminescent Molecular Thermometer Exhibiting Dual-Emission Character. Crystal Growth and Design, 2018, 18, 22-26.	1.4	24
146	A facile indicator box based on Eu3+ functionalized MOF hybrid for the determination of 1-naphthol, a biomarker for carbaryl in urine. Sensors and Actuators B: Chemical, 2018, 259, 125-132.	4.0	64
147	Suspending ionic single-atom catalysts in porphyrinic frameworks for highly efficient aerobic oxidation at room temperature. Journal of Catalysis, 2018, 358, 43-49.	3.1	24
148	Selective and reversible adsorption of cationic dyes by mixed ligand Zn(<scp>ii</scp>) coordination polymers synthesized by reactant ratio modulation. Dalton Transactions, 2018, 47, 898-908.	1.6	73
149	A comparison of structural and luminescence properties of lead(II) coordination polymers with isomeric thiophenecarboxylate ligands. Inorganica Chimica Acta, 2018, 471, 446-458.	1.2	20
150	A pair of polymorphous metal–organic frameworks based on an angular diisophthalate linker: synthesis, characterization and gas adsorption properties. Dalton Transactions, 2018, 47, 716-725.	1.6	23
151	A Waterâ€Stable Luminescent Zn ^{II} Metalâ€Organic Framework as Chemosensor for Highâ€Efficiency Detection of Cr ^{VI} â€Anions (Cr ₂ O ₇ ^{2â^'}) Tj E 3192-3198	TQq0 0 0 1.7	rgBT /Overlc
152	Mimetic Ag nanoparticle/Zn-based MOF nanocomposite (AgNPs@ZnMOF) capped with molecularly imprinted polymer for the selective detection of patulin. Talanta, 2018, 179, 710-718.	2.9	139
153	A highly sensitive luminescent metal–organic framework thermometer for physiological temperature sensing. Journal of Rare Earths, 2018, 36, 561-566.	2.5	27
154	Supercritical fluid processing for metal–organic frameworks, porous coordination polymers, and covalent organic frameworks. Journal of Supercritical Fluids, 2018, 134, 197-203.	1.6	33
155	Near-infrared luminescence of Bi2ZnOB2O6:Nd3+/PMMA composite. Optical Materials, 2018, 75, 13-18.	1.7	11
156	Construction of Zeoliteâ€Like Cluster Organic Frameworks from 3 d–4 d/3 d–3 d Heterom Supertetrahedral Secondary Building Units: Syntheses, Structures, and Properties. Chemistry - A European Journal, 2018, 24, 251-258.	etallic 1.7	26
157	A Twoâ€Ðimensional Metal–Organic Framework as a Fluorescent Probe for Ascorbic Acid Sensing. European Journal of Inorganic Chemistry, 2018, 2018, 173-177.	1.0	28
158	Selective and Recyclable Sensing of Aqueous Phase 2,4,6-Trinitrophenol (TNP) Based on Cd(II) Coordination Polymer with Zwitterionic Ligand. Crystals, 2018, 8, 456.	1.0	6
159	Supramolecular Organization in Confined Nanospaces. ChemPhysChem, 2018, 19, 1249-1297.	1.0	60
160	Crystal Structures and Optical Properties of Two Novel 1,3,5-Trisubstituted Pyrazoline Derivatives. Crystals, 2018, 8, 467.	1.0	0
161	Photoactive metal–organic framework as a bifunctional material for 4-hydroxy-4′-nitrobiphenyl detection and photodegradation of methylene blue. Dalton Transactions, 2018, 47, 16551-16557.	1.6	30
162	Iron(<scp>iii</scp>) identification and proton conduction of a luminescent cadmium–organic framework. New Journal of Chemistry, 2018, 42, 20197-20204	1.4	24

#	Article	IF	CITATIONS
163	A new europium metal–organic framework with both high proton conductivity and highly sensitive detection of ascorbic acid. CrystEngComm, 2018, 20, 6989-6994.	1.3	36
164	A novel sponge-like 2D Ni/derivative heterostructure to strengthen microwave absorption performance. Physical Chemistry Chemical Physics, 2018, 20, 28623-28633.	1.3	101
165	Two isostructural Ln-MOFs showing luminescent sensing (Eu) and slow magnetic relaxation (Dy) properties. Dalton Transactions, 2018, 47, 15656-15660.	1.6	9
166	Fluorescent 2D metal–organic framework nanosheets (MONs): design, synthesis and sensing of explosive nitroaromatic compounds (NACs). Nanoscale, 2018, 10, 22389-22399.	2.8	67
167	Synthesis of tetraphenylethylene-based conjugated microporous polymers for detection of nitroaromatic explosive compounds. RSC Advances, 2018, 8, 34291-34296.	1.7	26
168	Exceptional TcO ₄ ^{â^²} sorption capacity and highly efficient ReO ₄ ^{â^²} luminescence sensing by Zr ⁴⁺ MOFs. Journal of Materials Chemistry A, 2018, 6, 20813-20821.	5.2	54
169	Tunability of fluorescent metal–organic frameworks through dynamic spacer installation with multivariate fluorophores. Chemical Communications, 2018, 54, 13666-13669.	2.2	22
170	An ambient-temperature aqueous synthesis of zirconium-based metal–organic frameworks. Green Chemistry, 2018, 20, 5292-5298.	4.6	54
171	Water-stable fluorinated metal–organic frameworks (F-MOFs) with hydrophobic properties as efficient and highly active heterogeneous catalysts in aqueous solution. Green Chemistry, 2018, 20, 5336-5345.	4.6	64
172	Synthesis of spiny metal–phenolic coordination crystals as a sensing platform for sequence-specific detection of nucleic acids. CrystEngComm, 2018, 20, 7626-7630.	1.3	14
173	A highly emissive fluorescent Zn-MOF: molecular decoding strategies for solvents and trace detection of dunnite in water. Journal of Materials Chemistry A, 2018, 6, 21274-21279.	5.2	38
174	Cadmium(<scp>ii</scp>) coordination polymers based on 2-(4-((<i>E</i>)-2-(pyridine-2-yl)vinyl)styryl)pyridine and dicarboxylate ligands as fluorescent sensors for TNP. Journal of Materials Chemistry C, 2018, 6, 12623-12630.	2.7	39
175	Synthesis, structure and temperature sensing of a lanthanide-organic framework constructed from a pyridine-containing tetracarboxylic acid ligand. CrystEngComm, 2018, 20, 7395-7400.	1.3	25
176	Highly selective and sensitive detection of Hg ²⁺ , Cr ₂ O ₇ ^{2â^'} , and nitrobenzene/2,4-dinitrophenol in water <i>via</i> two fluorescent Cd-CPs. New Journal of Chemistry, 2018, 42, 19844-19852.	1.4	40
177	Cocrystals with tunable luminescence colour self-assembled by a predictable method. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2018, 74, 610-617.	0.5	10
178	Discriminative Molecular Detection Based on Competitive Absorption by a Luminescent Metal–Organic Framework. ACS Applied Materials & Interfaces, 2018, 10, 40372-40377.	4.0	16
179	Stable Indium-Pyridylcarboxylate Framework: Selective Gas Capture and Sensing of Fe ³⁺ Ion in Water. Inorganic Chemistry, 2018, 57, 15262-15269.	1.9	53
180	Aptamerâ€modified magnetic metalâ€organic framework MILâ€101 for highly efficient and selective enrichment of ochratoxin A. Journal of Separation Science, 2019, 42, 716-724.	1.3	27

#	Article	IF	CITATIONS
181	DNA-Walker-Induced Allosteric Switch for Tandem Signal Amplification with Palladium Nanoparticles/Metal–Organic Framework Tags in Electrochemical Biosensing. Analytical Chemistry, 2018: 90: 14493-14499	3.2	101
182	Ratiometric Luminescent Sensor of Picric Acid Based on the Dual-Emission Mixed-Lanthanide Coordination Polymer. ACS Applied Materials & Interfaces, 2018, 10, 44109-44115.	4.0	58
183	Water Stable Metal–Organic Framework Based on Phosphono-containing Ligand as Highly Sensitive Luminescent Sensor toward Metal Ions. Crystal Growth and Design, 2018, 18, 7683-7689.	1.4	47
184	Strategic Construction of Highly Stable Metal–Organic Frameworks Combining Both Semi-Rigid Tetrapodal and Rigid Ditopic Linkers: Selective and Ultrafast Sensing of 4-Nitroaniline in Water. ACS Applied Materials & Interfaces, 2018, 10, 42406-42416.	4.0	63
185	Ultrafast Synthesis of Ni-MOF in One Minute by Ball Milling. Nanomaterials, 2018, 8, 1067.	1.9	44
186	New Topologically Unique Metal-Organic Architectures Driven by a Pyridine-Tricarboxylate Building Block. Crystals, 2018, 8, 353.	1.0	5
187	Paddlewheel SBU based Zn MOFs: Syntheses, Structural Diversity, and CO2 Adsorption Properties. Polymers, 2018, 10, 1398.	2.0	6
188	Nonwoven fabric coated with a tetraphenylethene-based luminescent metal–organic framework for selective and sensitive sensing of nitrobenzene and ammonia. Journal of Materials Chemistry C, 2018, 6, 12371-12376.	2.7	28
189	Terbium Oxalatophosphonate as Efficient Multiresponsive Luminescent Sensors for Chromate Anions and Tryptophan Molecules. ACS Omega, 2018, 3, 16735-16742.	1.6	15
190	Switching of Monomer Fluorescence, Chargeâ€Transfer Fluorescence, and Roomâ€Temperature Phosphorescence Induced by Aromatic Guest Inclusion in a Supramolecular Host. Chemistry - A European Journal, 2018, 24, 17487-17496.	1.7	46
191	A Dualâ€Responsive Luminescent Terbium(III) Chain for Selective Sensing of Fe ³⁺ and MnO ₄ [–] Ions. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2018, 644, 1598-1606.	0.6	12
192	Two 3D cadmium(II) coordination polymers modulated by flexible bis(benzimidazole) ligands displaying high photocatalytic activities for degradation of methylene blue and methyl orange. Polyhedron, 2018, 156, 200-207.	1.0	18
193	Robustness, Selective Gas Separation, and Nitrobenzene Sensing on Two Isomers of Cadmium Metal–Organic Frameworks Containing Various Metal–O–Metal Chains. Inorganic Chemistry, 2018, 57, 12961-12968.	1.9	87
194	Light-regulated crystal growth of ï€-conjugated luminophores in an azobenzene matrix. Communications Chemistry, 2018, 1, .	2.0	16
195	Ultrathin Nanosheet Niâ€Metal Organic Framework Assemblies for Highâ€Efficiency Ascorbic Acid Electrocatalysis. ChemElectroChem, 2018, 5, 3859-3865.	1.7	37
196	Rational Design of Three Two-Fold Interpenetrated Metal–Organic Frameworks: Luminescent Zn/Cd-Metal–Organic Frameworks for Detection of 2,4,6-Trinitrophenol and Nitrofurazone in the Aqueous Phase. Crystal Growth and Design, 2018, 18, 7173-7182.	1.4	135
197	<i>stk</i> : A python toolkit for supramolecular assembly. Journal of Computational Chemistry, 2018, 39, 1931-1942.	1.5	49
198	Photoluminescent, upconversion luminescent and nonlinear optical metal-organic frameworks: From fundamental photophysics to potential applications. Coordination Chemistry Reviews, 2018, 377, 259-306.	9.5	151

#	Article	IF	Citations
199	Luminescent Zn(ii) coordination polymers as efficient fluorescent sensors for highly sensitive detection of explosive nitroaromatics. CrystEngComm, 2018, 20, 6762-6774.	1.3	32
200	Cryogenic Luminescent Tb/Eu-MOF Thermometer Based on a Fluorine-Modified Tetracarboxylate Ligand. Inorganic Chemistry, 2018, 57, 12596-12602.	1.9	80
201	Chiral self-sorted multifunctional supramolecular biocoordination polymers and their applications in sensors. Nature Communications, 2018, 9, 3933.	5.8	85
202	A Multifunctional Dual-Luminescent Polyoxometalate@Metal-Organic Framework EuW10@UiO-67 Composite as Chemical Probe and Temperature Sensor. Frontiers in Chemistry, 2018, 6, 425.	1.8	31
203	Metal–Organic Frameworks with Extended Viologen Units: Metal-Dependent Photochromism, Photomodulable Fluorescence, and Sensing Properties. Crystal Growth and Design, 2018, 18, 7191-7198.	1.4	69
204	A novel binary Cu2I2 and Cu6S6 cluster-based red emission compound and sensing of Cr(VI) in water. Inorganic Chemistry Communication, 2018, 98, 154-158.	1.8	9
205	Tunable Aggregation-Induced Multicolor Emission of Organic Nanoparticles by Varying the Substituent in Naphthalene Diimide. Langmuir, 2018, 34, 14328-14341.	1.6	25
206	Two d ¹⁰ Metal–Organic Frameworks as Low-Temperature Luminescent Molecular Thermometers. Crystal Growth and Design, 2018, 18, 7383-7390.	1.4	28
207	Multifunctional Behavior of Sulfonate-Based Hydrolytically Stable Microporous Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2018, 10, 39049-39055.	4.0	18
208	A new twofold interpenetrated two-dimensional cadmium(II) coordination polymer constructed from 2,2′-(benzene-1,4-dicarboxamido)dipropionate. Acta Crystallographica Section C, Structural Chemistry, 2018, 74, 1434-1439.	0.2	1
209	Highly Dynamic and Tunable Behavior of 1D Coordination Polymers Based on the Bispidine Ligand. Chemistry - A European Journal, 2018, 24, 19368-19372.	1.7	11
210	A Novel Magnesium Metal–Organic Framework as a Multiresponsive Luminescent Sensor for Fe(III) Ions, Pesticides, and Antibiotics with High Selectivity and Sensitivity. Inorganic Chemistry, 2018, 57, 13330-13340.	1.9	142
211	Metal–Organic Framework as a Microreactor for in Situ Fabrication of Multifunctional Nanocomposites for Photothermal–Chemotherapy of Tumors in Vivo. ACS Applied Materials & Interfaces, 2018, 10, 38729-38738.	4.0	42
212	Two Zn(II)-based metal-organic frameworks for selective detection of nitroaromatic explosives and Fe3+ ion. Inorganic Chemistry Communication, 2018, 98, 120-126.	1.8	25
213	Interesting pH-Responsive Behavior in Benzothiadiazole-Derived Coordination Polymer Constructed via an in Situ Click Synthesis. Crystal Growth and Design, 2018, 18, 7419-7425.	1.4	17
214	Systematic Tuning of the Luminescence Output of Multicomponent Metal–Organic Frameworks. Journal of the American Chemical Society, 2018, 140, 15470-15476.	6.6	103
215	Anisotropic energy transfer in crystalline chromophore assemblies. Nature Communications, 2018, 9, 4332.	5.8	54
216	Efficient Energy Transfer within Dyes Encapsulated Metal–Organic Frameworks to Achieve High Performance White Lightâ€Emitting Diodes. Advanced Optical Materials, 2018, 6, 1800968.	3.6	62

#	Article	IF	CITATIONS
217	Visibleâ€Lightâ€Responsive 2D Cadmium–Organic Framework Single Crystals with Dual Functions of Water Reduction and Oxidation. Advanced Materials, 2018, 30, e1803401.	11.1	157
218	Detection of Pesticides in Aqueous Medium and in Fruit Extracts Using a Three-Dimensional Metal–Organic Framework: Experimental and Computational Study. Inorganic Chemistry, 2018, 57, 12155-12165.	1.9	47
219	Pillar-layered MOFs: functionality, interpenetration, flexibility and applications. Journal of Materials Chemistry A, 2018, 6, 19288-19329.	5.2	152
220	Bringing Porous Organic and Carbonâ€Based Materials toward Thinâ€Film Applications. Advanced Functional Materials, 2018, 28, 1801545.	7.8	53
221	Post-synthetically modified metal–organic framework as a scaffold for selective bisulphite recognition in water. Polyhedron, 2018, 156, 1-5.	1.0	17
222	A heterometallic microporous MOFs with two types of intrinsic secondary building units for selective gas separation and luminescence property. Polyhedron, 2018, 155, 218-222.	1.0	6
223	Coordination supramolecules with oxazoline-containing ligands. CrystEngComm, 2018, 20, 6109-6121.	1.3	7
224	A 2D water-stable metal–organic framework for fluorescent detection of nitroaromatics. Polyhedron, 2018, 155, 457-463.	1.0	28
225	Syntheses, characterization, and luminescent properties of Ca-based metal–organic frameworks based on 1, 4‑naphthalene dicarboxylate. Inorganic Chemistry Communication, 2018, 97, 69-73.	1.8	7
226	Two-Photon Absorption and Fluorescence in Micrometer-Sized Single Crystals of a Rhodamine B Coordinated Metal–Organic Framework. ACS Applied Nano Materials, 2018, 1, 5408-5413.	2.4	19
227	Biocarbon-templated synthesis of porous Ni–Co-O nanocomposites for room-temperature NH3 sensors. New Journal of Chemistry, 2018, 42, 17606-17614.	1.4	11
228	Two Self-Interpenetrating Copper(II)-Paddlewheel Metal–Organic Frameworks Constructed from Bifunctional Triazolate–Carboxylate Linkers. Crystal Growth and Design, 2018, 18, 6204-6210.	1.4	8
229	Energy Materials Design for Steering Charge Kinetics. Advanced Materials, 2018, 30, e1801988.	11.1	10
230	Structure-Switching Electrochemical Aptasensor for Single-Step and Specific Detection of Trace Mercury in Dairy Products. Journal of Agricultural and Food Chemistry, 2018, 66, 10106-10112.	2.4	49
231	A highly hydrolytically stable lanthanide organic framework as a sensitive luminescent probe for DBP and chlorpyrifos detection. Analyst, The, 2018, 143, 5481-5486.	1.7	23
232	Utilizing an effective framework to dye energy transfer in a carbazole-based metal–organic framework for high performance white light emission tuning. Inorganic Chemistry Frontiers, 2018, 5, 2868-2874.	3.0	38
233	Cluster-Based Metal–Organic Frameworks: Modulated Singlet–Triplet Excited States and Temperature-Responsive Phosphorescent Switch. ACS Applied Materials & Interfaces, 2018, 10, 34377-34384.	4.0	103
234	Incorporating the Thiazolo[5,4-d]thiazole Unit into a Coordination Polymer with Interdigitated Structure. Crystals, 2018, 8, 30.	1.0	19

#	Article	IF	CITATIONS
235	Polymer in MOF Nanospace: from Controlled Chain Assembly to New Functional Materials. Israel Journal of Chemistry, 2018, 58, 995-1009.	1.0	18
236	Synthesis, structure, and fluorescence properties of a calcium-based metal–organic framework. RSC Advances, 2018, 8, 31588-31593.	1.7	22
237	Ultrathin two-dimensional metal-organic framework nanosheets for functional electronic devices. Coordination Chemistry Reviews, 2018, 377, 44-63.	9.5	182
238	Molecular Association-Induced Emission Shifts for <i>E</i> / <i>Z</i> Isomers and Selective Sensing of Nitroaromatic Explosives. Crystal Growth and Design, 2018, 18, 6197-6203.	1.4	17
239	Dual-Emitting Eu(III)–Cu(II) Heterometallic–Organic Framework: Simultaneous, Selective, and Sensitive Detection of Hydrogen Sulfide and Ascorbic Acid in a Wide Range. ACS Applied Materials & Interfaces, 2018, 10, 32698-32706.	4.0	24
240	Polyoxometalate-Based Metal–Organic Frameworks with Conductive Polypyrrole for Supercapacitors. ACS Applied Materials & Interfaces, 2018, 10, 32265-32270.	4.0	159
241	Perovskite ABO ₃ â€Type MOFâ€Derived Carbon Decorated Fe ₃ O ₄ with Enhanced Lithium Storage Performance. ChemElectroChem, 2018, 5, 3426-3436.	1.7	9
242	Construction of five zinc coordination polymers with 4-substituted bis(trizole) and multicarboxylate ligands: Syntheses, structures and properties. Polyhedron, 2018, 155, 223-231.	1.0	10
243	Multistimuli-Responsive Hydrolytically Stable "Smart―Mercury(II) Coordination Polymer. Inorganic Chemistry, 2018, 57, 11369-11381.	1.9	19
244	Efficient heterogeneous catalysis by dual ligand Zn(<scp>ii</scp>)/Cd(<scp>ii</scp>) MOFs for the Knoevenagel condensation reaction: adaptable synthetic routes, characterization, crystal structures and luminescence studies. Inorganic Chemistry Frontiers, 2018, 5, 2630-2640.	3.0	59
245	Micropatterned Ultrathin MOF Membranes with Enhanced Molecular Sieving Property. Angewandte Chemie, 2018, 130, 14088-14092.	1.6	9
246	Micropatterned Ultrathin MOF Membranes with Enhanced Molecular Sieving Property. Angewandte Chemie - International Edition, 2018, 57, 13892-13896.	7.2	44
247	Anionic Lanthanide Metal–Organic Frameworks: Selective Separation of Cationic Dyes, Solvatochromic Behavior, and Luminescent Sensing of Co(II) Ion. Inorganic Chemistry, 2018, 57, 11463-11473.	1.9	88
248	Two luminescent lanthanide(<scp>iii</scp>) metal–organic frameworks as chemosensors for high-efficiency recognition of Cr(<scp>vi</scp>) anions in aqueous solution. Dalton Transactions, 2018, 47, 15694-15702.	1.6	92
249	Topology-Guided Stepwise Insertion of Three Secondary Linkers in Zirconium Metal–Organic Frameworks. Journal of the American Chemical Society, 2018, 140, 7710-7715.	6.6	81
250	A <i>usf</i> Zinc(II) Metal–Organic Framework as a Highly Selective Luminescence Probe for Acetylacetone Detection and Its Postsynthetic Cation Exchange. Crystal Growth and Design, 2018, 18, 3997-4003.	1.4	75
251	Breathing Europium–Terbium Co-doped Luminescent MOF as a Broad-Range Ratiometric Thermometer with a Contrasting Temperature–Intensity Relationship. ACS Omega, 2018, 3, 5754-5760.	1.6	28
252	A robust Zn(<scp>ii</scp>)/Na(<scp>i</scp>)-MOF decorated with [(OAc) ₂ (H ₂ O) ₂] _n ^{2nâ^'} anions for the luminescence sensing of copper ions based on the inner filter effect. Dalton Transactions, 2018, 47,	1.6	43

#	Article	IF	CITATIONS
253	An anionic <i>sod</i> -type terbium-MOF with extra-large cavities for effective anthocyanin extraction and methyl viologen detection. Chemical Communications, 2018, 54, 5972-5975.	2.2	28
254	Two luminescent lanthanide–organic frameworks containing bithiophene groups for the selective detection of nitrobenzene and Fe ³⁺ . CrystEngComm, 2018, 20, 3609-3619.	1.3	29
255	Recent progress in the syntheses of mesoporous metal–organic framework materials. Coordination Chemistry Reviews, 2018, 369, 76-90.	9.5	137
256	Stable dye-encapsulated indium–organic framework as dual-emitting sensor for the detection of Hg ²⁺ /Cr ₂ O ₇ ^{2â°'} and a wide range of nitro-compounds. Journal of Materials Chemistry C, 2018, 6, 6440-6448.	2.7	126
257	Novel 1D coordination polymers built from acyclic cryptate containing bis(1 <i>H</i> -1,2,4-triazole) ligands and featuring coordinated counteranions. New Journal of Chemistry, 2018, 42, 11324-11333.	1.4	6
258	Synergistic weak/strong coupling luminescence in Eu-metal-organic framework/Zn2GeO4:Mn2+ nanocomposites for ratiometric luminescence thermometer. Dyes and Pigments, 2018, 157, 321-327.	2.0	35
259	Dual-Emitting UiO-66(Zr&Eu) Metal–Organic Framework Films for Ratiometric Temperature Sensing. ACS Applied Materials & Interfaces, 2018, 10, 20854-20861.	4.0	76
260	Metal-organic framework (MOF)-based advanced sensing platforms for the detection of hydrogen sulfide. TrAC - Trends in Analytical Chemistry, 2018, 105, 263-281.	5.8	75
261	Direct synthesis of functionalized PCN-333 <i>via</i> linker design for Fe ³⁺ detection in aqueous media. Dalton Transactions, 2018, 47, 11806-11811.	1.6	38
262	Magnetic Metal–Organic Framework Exhibiting Quick and Selective Solvatochromic Behavior along with Reversible Crystal-to-Amorphous-to-Crystal Transformation. Inorganic Chemistry, 2018, 57, 7006-7014.	1.9	38
263	Hierarchical Two-Dimensional Conductive Metal–Organic Framework/Layered Double Hydroxide Nanoarray for a High-Performance Supercapacitor. Inorganic Chemistry, 2018, 57, 6202-6205.	1.9	86
264	Luminescent Coordination Polymers of Naphthalene Based Diamide with Rigid and Flexible Dicarboxylates: Sensing of Nitro Explosives, Fe(III) Ion, and Dyes. Crystal Growth and Design, 2018, 18, 3683-3692.	1.4	66
265	Lanthanide-Based Porous Coordination Polymers: Syntheses, Slow Relaxation of Magnetization, and Magnetocaloric Effect. Inorganic Chemistry, 2018, 57, 6584-6598.	1.9	38
266	Insight Studies on Metal-Organic Framework Nanofibrous Membrane Adsorption and Activation for Heavy Metal Ions Removal from Aqueous Solution. ACS Applied Materials & Interfaces, 2018, 10, 18619-18629.	4.0	347
267	Two luminescent cobalt(II) coordination polymers for selective sensing of MnO4â^' in water. Transition Metal Chemistry, 2018, 43, 597-604.	0.7	5
268	Tuning the Photoinduced Electron Transfer in a Zrâ€MOF: Toward Solidâ€State Fluorescent Molecular Switch and Turnâ€On Sensor. Advanced Materials, 2018, 30, e1802329.	11.1	120
269	Syntheses, structures, and luminescence of a series of novel trimetallic coordination polymers constructed by Cu-I clusters and alkaline-carboxyl- alkaline-earth building units. Journal of Solid State Chemistry, 2018, 265, 393-401.	1.4	2
270	Multifunctional luminescent Cd (II)-based metal-organic framework material for highly selective and sensitive sensing 2,4,6-trinitrophenol (TNP) and Fe3+ cation. Microporous and Mesoporous Materials, 2018, 272, 177-183.	2.2	64

#	Article	IF	CITATIONS
271	Detection of Cu2+ metals by luminescent sensor based on sulfonated poly(arylene ether nitrile)/ metal-organic frameworks. Materials Today Communications, 2018, 16, 258-263.	0.9	11
272	Microwave-assisted dry-gel conversion-a new sustainable route for the rapid synthesis of metal–organic frameworks with solvent re-use. Dalton Transactions, 2018, 47, 9850-9860.	1.6	43
273	Porous 10- and 12-vertex (bi)-p-dicarba-closo-boranedicarboxylates of cobalt and their gas adsorptive properties. Microporous and Mesoporous Materials, 2018, 271, 284-294.	2.2	8
274	Monte Carlo Simulations to Examine the Role of Pore Structure on Ambient Air Separation in Metal–Organic Frameworks. Industrial & Engineering Chemistry Research, 2018, 57, 9240-9253.	1.8	14
275	Ln(III)-MOFs (Ln = Tb, Eu, Dy, and Sm) based on triazole carboxylic ligand with carboxylate and nitrogen donors with applications as chemical sensors and magneticÂmaterials. Journal of Coordination Chemistry, 2018, 71, 2702-2713.	0.8	10
276	Oxidative deoximation reaction induced recognition of hypochlorite based on a new fluorescent lanthanide-organic framework. Chemical Engineering Journal, 2018, 351, 364-370.	6.6	63
277	A robust two-dimensional zirconium-based luminescent coordination polymer built on a V-shaped dicarboxylate ligand for vapor phase sensing of volatile organic compounds. Chemical Communications, 2018, 54, 8088-8091.	2.2	40
278	Novel luminescent lanthanide(<scp>iii</scp>) hybrid materials: fluorescence sensing of fluoride ions and <i>N</i> , <i>N</i> -dimethylformamide. Dalton Transactions, 2018, 47, 11530-11538.	1.6	17
279	Carbon nanodots in ZIF-8: synthesis, tunable luminescence and temperature sensing. Inorganic Chemistry Frontiers, 2018, 5, 2739-2745.	3.0	38
280	Twoâ€Dimensional Metalâ€Organic Framework Nanosheets: A Rapidly Growing Class of Versatile Nanomaterials for Gas Separation, MALDIâ€TOF Matrix and Biomimetic Applications. Chemistry - A European Journal, 2018, 24, 15131-15142.	1.7	65
281	Lanthanide Doped Near Infrared Active Upconversion Nanophosphors: Fundamental Concepts, Synthesis Strategies, and Technological Applications. Small, 2018, 14, e1801304.	5.2	103
282	Beyond pristine metal-organic frameworks: Preparation and application of nanostructured, nanosized, and analogous MOFs. Coordination Chemistry Reviews, 2018, 376, 20-45.	9.5	121
283	Visual detection of peroxide-based explosives using novel mimetic Ag nanoparticle/ZnMOF nanocomposite. Journal of Hazardous Materials, 2018, 360, 233-242.	6.5	49
284	A semiconductor and fluorescence dual-mode room-temperature ammonia sensor achieved by decorating hydroquinone into a metal–organic framework. Chemical Communications, 2018, 54, 9789-9792.	2.2	55
285	Fluorescence sensing of fluoride ions and N, N- dimethylformamide by novel luminescent lanthanide(III) xerogels. Journal of Luminescence, 2018, 204, 169-175.	1.5	6
286	Four New Stable Lanthanide Organic Frameworks: Highly Selective Luminescent Sensing and Magnetic Properties. ChemistrySelect, 2018, 3, 3214-3220.	0.7	6
287	Self-assembly of luminescent 12-metal Zn–Ln planar nanoclusters with sensing properties towards nitro explosives. Journal of Materials Chemistry C, 2018, 6, 8513-8521.	2.7	56
288	Structure and LIBs Anode Material Application of Novel Wells–Dawson Polyoxometalate-Based Metal Organic Frameworks with Different Helical Channels. Crystal Growth and Design, 2018, 18, 5564-5572.	1.4	19

#	Article	IF	CITATIONS
289	Two metal–organic frameworks based on pyridyl–tricarboxylate ligands as size-selective catalysts for solvent-free cyanosilylation reaction. CrystEngComm, 2018, 20, 6070-6076.	1.3	9
290	Structural diversity, magnetic properties, and luminescence sensing of five 3D coordination polymers derived from designed 3,5-di(2′,4′-dicarboxylphenyl)benozoic acid. CrystEngComm, 2018, 20, 4752-4762.	1.3	69
291	Four different dimensional Zn(II) coordination polymers as fluorescent sensor for detecting Hg2+, Cr2O72- in aqueous solution. Journal of Solid State Chemistry, 2018, 266, 181-188.	1.4	19
292	Flexible Metal–Organic Frameworkâ€Based Mixedâ€Matrix Membranes: A New Platform for H ₂ S Sensors. Small, 2018, 14, e1801563.	5.2	88
293	Photonic functional metal–organic frameworks. Chemical Society Reviews, 2018, 47, 5740-5785.	18.7	528
294	Eine Calixarenâ€basierte Metallâ€organische Gerüstverbindung für den hoch selektiven NO ₂ â€Nachweis. Angewandte Chemie, 2018, 130, 13143-13147.	1.6	9
295	Two new alkaline earth metal organic frameworks with the diamino derivative of biphenyl-4,4â€2-dicarboxylate as bridging ligand: Structures, fluorescence and quenching by gas phase aldehydes. Polyhedron, 2018, 153, 173-180.	1.0	8
296	A luminescent Cd(II)-MOF as recyclable bi-responsive sensor for detecting TNP and iron(III)/silver(I) with high selectivity and sensitivity. Polyhedron, 2018, 153, 261-267.	1.0	38
297	Synthesis and crystal structure of a Zn(II) metal-organic framework based on 1,3,5-benzenetricarboxylate and 4,4′-bis(1-imidazolyl)biphenyl ligands: selective sensing of Mn ²⁺ and Fe ³⁺ ions in aqueous solution. Journal of Coordination Chemistry, 2018, 71, 2674-2690.	0.8	7
298	Synthesis and Crystal Structure of a Zn(II)-Based MOF Bearing Neutral N-Donor Linker and SiF62â^' Anion. Crystals, 2018, 8, 37.	1.0	16
299	Construction of a three-dimensional supramolecular framework based on an anionic cadmium(II) coordination network and protonated dipyridine organic cations. Acta Crystallographica Section C, Structural Chemistry, 2018, 74, 889-893.	0.2	0
300	Indium Phosphiteâ€Based Porous Solids Exhibiting Organic Sensing and a Facile Route to Superhydrophobicity. Chemistry - A European Journal, 2018, 24, 12474-12479.	1.7	8
301	Cu MOF-based catalytic sensing for formaldehyde. Journal of Materials Chemistry C, 2018, 6, 8105-8114.	2.7	55
302	Luminescent Lanthanide MOFs: A Unique Platform for Chemical Sensing. Materials, 2018, 11, 572.	1.3	145
303	A 3D Stable Metal–Organic Framework for Highly Efficient Adsorption and Removal of Drug Contaminants from Water. Polymers, 2018, 10, 209.	2.0	48
304	A difunctional metal–organic framework with Lewis basic sites demonstrating turn-off sensing of Cu ²⁺ and sensitization of Ln ³⁺ . Journal of Materials Chemistry C, 2018, 6, 7874-7879.	2.7	24
305	Metal–Organic Framework-Based Sensors for Environmental Contaminant Sensing. Nano-Micro Letters, 2018, 10, 64.	14.4	389
306	A luminescent turn-up metal–organic framework sensor for tryptophan based on singlet–singlet Förster energy transfer. Journal of Materials Chemistry B. 2018, 6, 5174-5180.	2.9	61

#	Article	IF	CITATIONS
307	A novel double-walled Cd(II) metal–organic framework as highly selective luminescent sensor for Cr2O72â^' anion. Polyhedron, 2018, 153, 110-114.	1.0	21
308	Highly Luminescent Metal–Organic Frameworks Based on an Aggregation-Induced Emission Ligand as Chemical Sensors for Nitroaromatic Compounds. Crystal Growth and Design, 2018, 18, 5166-5173.	1.4	46
309	Three isostructural azo-functionalized 3D Cd(II)-coordination polymers for solvent dependent photoluminescence study. Polyhedron, 2018, 153, 115-121.	1.0	5
310	The Effect of Graphene Oxide Concentration on Luminescence Properity of Tb3+-Complexes. Journal of Inorganic and Organometallic Polymers and Materials, 2018, 28, 2596-2602.	1.9	7
311	A Multifunctional Lanthanide Carbonate Cluster Based Metal–Organic Framework Exhibits High Proton Transport and Magnetic Entropy Change. Inorganic Chemistry, 2018, 57, 9020-9027.	1.9	47
312	A Calixareneâ€Based Metal–Organic Framework for Highly Selective NO ₂ Detection. Angewandte Chemie - International Edition, 2018, 57, 12961-12965.	7.2	78
313	Crystalline to Crystalline Phase Transformations in Six Two-Dimensional Dynamic Metal–Organic Frameworks: Syntheses, Characterizations, and Sorption Studies. Crystal Growth and Design, 2018, 18, 5231-5244.	1.4	8
314	Treatment of hyperphosphatemia based on specific interactions between phosphorus and Zr(<scp>iv</scp>) active centers of nano-MOFs. Chemical Science, 2018, 9, 7483-7487.	3.7	16
315	A bi-metallic MOF catalyst <i>via</i> sensitive detection & adsorption of Fe ³⁺ ions for size-selective reaction prompting. Dalton Transactions, 2018, 47, 9267-9273.	1.6	19
316	A series of porous interpenetrating metal–organic frameworks based on fluorescent ligands for nitroaromatic explosive detection. Inorganic Chemistry Frontiers, 2018, 5, 1622-1632.	3.0	51
317	Luminescence properties of mechanochemically synthesized lanthanide containing MIL-78 MOFs. Dalton Transactions, 2018, 47, 7594-7601.	1.6	53
318	Selective chiral symmetry breaking and luminescence sensing of a Zn(<scp>ii</scp>) metal–organic framework. Dalton Transactions, 2018, 47, 7934-7940.	1.6	14
319	A 2D zinc coordination polymer constructed from long and flexible N -containing tricarboxylate ligand for encapsulating Ln 3+ ions and luminescent sensing. Inorganica Chimica Acta, 2018, 479, 213-220.	1.2	6
320	Zr(IV)-Based Metal-Organic Framework with T-Shaped Ligand: Unique Structure, High Stability, Selective Detection, and Rapid Adsorption of Cr ₂ O ₇ ^{2–} in Water. ACS Applied Materials & Interfaces, 2018, 10, 16650-16659.	4.0	219
321	Dual-Emission SG7@MOF Sensor via SC–SC Transformation: Enhancing the Formation of Excimer Emission and the Range and Sensitivity of Detection. ACS Applied Materials & Interfaces, 2018, 10, 18012-18020.	4.0	68
322	A Ni-based redox-active metal-organic framework for sensitive and non-enzymatic detection of glucose. Journal of Electroanalytical Chemistry, 2018, 822, 43-49.	1.9	72
323	A Trichromatic and Whiteâ€Lightâ€Emitting MOF Composite for Multiâ€Dimensional and Multiâ€Response Ratiometric Luminescent Sensing. Chemistry - A European Journal, 2018, 24, 9555-9564.	1.7	33
324	Yb(III)-based MOFs with different bulky backbone ligands for optical detection and degradation of organic molecules in wastewater. Polyhedron, 2018, 154, 411-419.	1.0	7

#	Article	IF	CITATIONS
325	MIP-capped terbium MOF-76 for the selective fluorometric detection of cefixime after its preconcentration with magnetic graphene oxide. Sensors and Actuators B: Chemical, 2018, 275, 145-154.	4.0	55
326	Benchmarking of GGA density functionals for modeling structures of nanoporous, rigid and flexible MOFs. Journal of Chemical Physics, 2018, 149, 064110.	1.2	23
327	Luminescent Metal–Organic Framework Thin Films: From Preparation to Biomedical Sensing Applications. Crystals, 2018, 8, 338.	1.0	30
328	Determination of carbamazepine in urine and water samples using amino-functionalized metal–organic framework as sorbent. Chemistry Central Journal, 2018, 12, 77.	2.6	29
329	The insights from X-ray absorption spectroscopy into the local atomic structure and chemical bonding of Metal–organic frameworks. Polyhedron, 2018, 155, 232-253.	1.0	34
330	Two near white light emitting Pb(II) or Cd(II) complexes. Inorganic Chemistry Communication, 2018, 96, 116-118.	1.8	2
331	The interlocked <i>in situ</i> fabrication of graphene@prussian blue nanocomposite as high-performance supercapacitor. Dalton Transactions, 2018, 47, 13126-13134.	1.6	28
332	Three Co(II) metal-organic frameworks based on a substituted thiophene carboxylic acid ligand with semiconductive properties. Journal of Solid State Chemistry, 2018, 267, 68-75.	1.4	5
333	Enhancing the Lithium Storage Capacities of Coordination Compounds for Advanced Lithium-Ion Battery Anodes via a Coordination Chemistry Approach. Inorganic Chemistry, 2018, 57, 10640-10648.	1.9	20
334	Photocatalytic Hydrogen Generation from a Visible-Light-Responsive Metal–Organic Framework System: Stability versus Activity of Molybdenum Sulfide Cocatalysts. ACS Applied Materials & Interfaces, 2018, 10, 30035-30039.	4.0	71
335	Tuning the gate opening pressure of a flexible doubly interpenetrated metal–organic framework through ligand functionalization. Dalton Transactions, 2018, 47, 13158-13163.	1.6	24
336	Single-Phase White-Light-Emitting and Photoluminescent Color-Tuning Coordination Assemblies. Chemical Reviews, 2018, 118, 8889-8935.	23.0	444
337	Recent Development and Application of Conductive MOFs. Israel Journal of Chemistry, 2018, 58, 1010-1018.	1.0	50
338	Lanthanide(<scp>iii</scp>) coordination polymers for luminescence detection of Fe(<scp>iii</scp>) and picric acid. New Journal of Chemistry, 2018, 42, 15306-15310.	1.4	12
339	Chemical Reactions at Isolated Single-Sites Inside Metal–Organic Frameworks. Catalysis Letters, 2018, 148, 2201-2222.	1.4	33
340	Hydro/solvo-thermal syntheses and characterization of a series of Cull and Cul coordination polymers with an asymmetric semi-rigid Bi-functional ligand: Temperature induced polymorphism and photo-luminescent sensing. Dyes and Pigments, 2018, 159, 187-197.	2.0	3
341	A new anionic metal-organic framework based on tetranuclear zinc clusters: Selective absorption of CO2 and luminescent response to lanthanide (III) ions. Inorganica Chimica Acta, 2018, 482, 154-159.	1.2	5
342	Single crystal fluorescence behavior of a new HOF material: a potential candidate for a new LED. Journal of Materials Chemistry C, 2018, 6, 6929-6939.	2.7	33

#	Article	IF	CITATIONS
343	Chiral coordination polymers based on d ¹⁰ metals and 2-aminonicotinate with blue fluorescent/green phosphorescent anisotropic emissions. Dalton Transactions, 2018, 47, 8746-8754.	1.6	12
344	Terminal Molecular Isomer-Effect on Supramolecular Self-Assembly System Based on Naphthalimide Derivative and Its Sensing Application for Mercury(II) and Iron(III) Ions. Langmuir, 2018, 34, 7404-7415.	1.6	33
345	Solventâ€Triggered Reversible Phase Changes in Two Manganeseâ€Based Metal–Organic Frameworks and Associated Sensing Events. Chemistry - A European Journal, 2018, 24, 13231-13237.	1.7	15
346	A Porous Framework as a Variable Chemosensor: From the Response of a Specific Carcinogenic Alkylâ€Aromatic to Selective Detection of Explosive Nitroaromatics. Chemistry - A European Journal, 2018, 24, 11033-11041.	1.7	19
347	Three ligand-originated MOF isomers: the positional effect of the methyl group on structures and selective C ₂ H ₂ /CH ₄ and CO ₂ /CH ₄ adsorption properties. Dalton Transactions, 2018, 47, 8983-8991.	1.6	23
348	Coordination polymers and metal-organic frameworks built up with poly(tetrazolate) ligands. Coordination Chemistry Reviews, 2018, 372, 1-30.	9.5	74
349	Dual-emission and thermochromic luminescence alkaline earth metal coordination polymers and their blend films with polyvinylidene fluoride for detecting nitrobenzene vapor. Journal of Materials Chemistry C, 2018, 6, 7030-7041.	2.7	40
350	Dual-emissive ratiometric fluorescent probe based on Eu3+/C-dots@MOF hybrids for the biomarker diaminotoluene sensing. Sensors and Actuators B: Chemical, 2018, 272, 510-517.	4.0	95
351	Morphology-dependent electrochemical sensing performance of metal (Ni, Co, Zn)-organic frameworks. Analytica Chimica Acta, 2018, 1031, 60-66.	2.6	45
352	A new Cd2+-dihydroxyterephthalate MOF: Synthesis, crystal structure and detailed photophysical studies. Polyhedron, 2018, 151, 401-406.	1.0	3
353	Diverse cobalt(<scp>ii</scp>) coordination polymers for water/ethanol separation and luminescence for water sensing applications. CrystEngComm, 2018, 20, 3891-3897.	1.3	15
354	Nanoscale zeolitic imidazole framework-90: selective, sensitive and dual-excitation ratiometric fluorescent detection of hazardous Cr(<scp>vi</scp>) anions in aqueous media. New Journal of Chemistry, 2018, 42, 12549-12556.	1.4	24
355	ESIPT Fluorescent Chromism and Conformational Change of 3-(2-Benzothiazolyl)-4-hydroxy-benzenesulfonic acid by Amine Sorption. Journal of Physical Chemistry C, 2018, 122, 16249-16255.	1.5	25
356	A 2D metal–thiacalix[4]arene porous coordination polymer with 1D channels: gas absorption/separation and frequency response. Dalton Transactions, 2018, 47, 9008-9013.	1.6	21
357	TbCo and Tb0.5Dy0.5Co layered cyanido-bridged frameworks for construction of colorimetric and ratiometric luminescent thermometers. Journal of Materials Chemistry C, 2018, 6, 8372-8384.	2.7	48
358	Ultrathin Metal–Organic Framework: An Emerging Broadband Nonlinear Optical Material for Ultrafast Photonics. Advanced Optical Materials, 2018, 6, 1800561.	3.6	268
359	Conformation versatility of ligands in coordination polymers: From structural diversity to properties and applications. Coordination Chemistry Reviews, 2018, 375, 558-586.	9.5	93
360	Ln(III)-Functionalized Metal–Organic Frameworks Hybrid System: Luminescence Properties and Sensor for <i>trans</i> , <i>trans</i> -Muconic Acid as a Biomarker of Benzene. Inorganic Chemistry, 2018, 57, 7815-7824.	1.9	76

#	Article	IF	CITATIONS
361	Phosphorescence emission and fine structures observed respectively under ambient conditions and at <i>ca.</i> 55 K in a coordination polymer of lead(<scp>ii</scp>)-thiophenedicarboxylate. Dalton Transactions, 2018, 47, 9334-9340.	1.6	12
362	A Trifunctional Luminescent 3D Microporous MOF with Potential for CO ₂ Separation, Selective Sensing of a Metal Ion, and Recognition of a Small Organic Molecule. European Journal of Inorganic Chemistry, 2018, 2018, 2785-2792.	1.0	28
363	A new water stable zinc metal organic framework as an electrode material for hydrazine sensing. New Journal of Chemistry, 2018, 42, 12486-12491.	1.4	32
364	Two azo-functionalized luminescent 3D Cd(<scp>ii</scp>) MOFs for highly selective detection of Fe ³⁺ and Al ³⁺ . New Journal of Chemistry, 2018, 42, 12865-12871.	1.4	69
365	A Co(<scp>ii</scp>) framework derived from a tris(4-(triazol-1-yl)phenyl)amine redox-active linker: an electrochemical and magnetic study. Dalton Transactions, 2018, 47, 9341-9346.	1.6	10
366	Multifunctional Ln–MOF Luminescent Probe for Efficient Sensing of Fe ³⁺ , Ce ³⁺ , and Acetone. ACS Applied Materials & Interfaces, 2018, 10, 23976-23986.	4.0	307
367	Rational synthesis of a luminescent uncommon (3,4,6)-c connected Zn(<scp>ii</scp>) MOF: a dual channel sensor for the detection of nitroaromatics and ferric ions. Dalton Transactions, 2018, 47, 9627-9633.	1.6	92
368	A water-stable lanthanide-coordination polymer with free Lewis site for fluorescent sensing of Fe3+. Chinese Chemical Letters, 2019, 30, 75-78.	4.8	19
369	Secondary omponent Incorporated Hollow MOFs and Derivatives for Catalytic and Energyâ€Related Applications. Advanced Materials, 2019, 31, e1800743.	11.1	129
370	Controlled synthesis of NbO-type metal-organic framework nano/microcrystals with superior capacity and selectivity for dye adsorption from aqueous solution. Microporous and Mesoporous Materials, 2019, 273, 60-66.	2.2	29
371	Highly selective and sensitive detection of Pb2+ and UO22+ ions based on a carboxyl-functionalized Zn(II)-MOF platform. Dyes and Pigments, 2019, 160, 159-164.	2.0	56
372	Structural Modulation of Coordination Polymers by Heterometallic Approach. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2019, 645, 1062-1066.	0.6	0
373	Density Functional Theory Analysis of Host–Guest Interactions in Cu(II)-Based Metal–Organic Frameworks for Pesticide Detection. ACS Applied Nano Materials, 2019, 2, 5469-5474.	2.4	18
374	Multiresponsive UV-One-Photon Absorption, Near-Infrared-Two-Photon Absorption, and X/γ-Photoelectric Absorption Luminescence in One [Cu ₄ I ₄] Compound. Inorganic Chemistry, 2019, 58, 10736-10742.	1.9	27
375	Strategies to fabricate metal–organic framework (MOF)-based luminescent sensing platforms. Journal of Materials Chemistry C, 2019, 7, 10743-10763.	2.7	273
376	A Microporous Co-MOF for Highly Selective CO ₂ Sorption in High Loadings Involving Aryl C–H···Oâ•Câ•O Interactions: Combined Simulation and Breakthrough Studies. Inorganic Chemistry, 2019, 5 11553-11560.	8,1.9	23
377	Luminescence sensing, electrochemical, and magenetic properties of 2D coordination polymers based on the mixed ligands <i>p</i> -terphenyl-2,2′′,5′′,5′′′′′a€²a€²a€²a€²a€²a€²a€²a€²a€²a€²a€²a€²a€	nroline. Ne	W48
378	Proton coupled electron transfer: novel photochromic performance in a host–guest collaborative MOF. Chemical Communications, 2019, 55, 10948-10951.	2.2	36

#	Article	IF	CITATIONS
379	Three Models To Encapsulate Multicomponent Dyes into Nanocrystal Pores: A New Strategy for Generating High-Quality White Light. Journal of the American Chemical Society, 2019, 141, 14807-14813.	6.6	116
380	Hysteretic four-step spin-crossover in a 3D Hofmann-type metal–organic framework with aromatic guest. Chemical Communications, 2019, 55, 11033-11036.	2.2	47
381	Three-Dimensional Co(II)-Metal–Organic Frameworks with Varying Porosities and Open Metal Sites toward Multipurpose Heterogeneous Catalysis under Mild Conditions. Crystal Growth and Design, 2019, 19, 5343-5353.	1.4	41
382	A Naphthalimide-Benzothiazole Conjugate as Colorimetric and Fluorescent Sensor for Selective Trinitrophenol Detection. Chemosensors, 2019, 7, 38.	1.8	17
383	A ratiometric multicolor fluorescence biosensor for visual detection of alkaline phosphatase activity via a smartphone. Biosensors and Bioelectronics, 2019, 143, 111605.	5.3	89
384	Crystal Structure of Coordination Polymers Based on Scandium and 2,5-Pyrazinedicarboxylic Acid. Journal of Structural Chemistry, 2019, 60, 823-829.	0.3	2
385	Structural Diversity in Luminescent MOFs Containing a Bent Electronâ€rich Dicarboxylate Linker and a Flexible Capping Ligand: Selective Detection of 4â€Nitroaniline in Water. Chemistry - an Asian Journal, 2019, 14, 3712-3720.	1.7	16
386	Tailor-made porous polymer and silica monolithic designs as probe anchoring templates for the solid-state naked eye sensing and preconcentration of hexavalent chromium. Sensors and Actuators B: Chemical, 2019, 298, 126896.	4.0	21
387	The Growth of Photoactive Porphyrin-Based MOF Thin Films Using the Liquid-Phase Epitaxy Approach and their Optoelectronic Properties. Materials, 2019, 12, 2457.	1.3	11
388	Photo-induced electron transfer in a metal–organic framework: a new approach towards a highly sensitive luminescent probe for Fe ³⁺ . Chemical Communications, 2019, 55, 11231-11234.	2.2	55
389	Post-imparting BrÃ,nsted acidity into an amino-functionalized MOF as a bifunctional luminescent turn-ON sensor for the detection of aluminum ions and lysine. Dalton Transactions, 2019, 48, 13834-13840.	1.6	50
390	A Recyclable biâ€functional Luminescent Zinc (II) metal–organic framework as highly selective and sensitive sensing probe for nitroaromatic explosives and Fe ³⁺ ions. Applied Organometallic Chemistry, 2019, 33, e5109.	1.7	12
391	A naphthalenediimide-based Co-MOF as naked-eye colorimetric sensor to humidity. Journal of Solid State Chemistry, 2019, 277, 658-664.	1.4	18
392	Highly sensitive and selective fluorescent detection of phosphate in water environment by a functionalized coordination polymer. Water Research, 2019, 163, 114883.	5.3	48
393	Cycloaddition of CO ₂ with an Epoxide-Bearing Oxindole Scaffold by a Metal–Organic Framework-Based Heterogeneous Catalyst under Ambient Conditions. Inorganic Chemistry, 2019, 58, 10084-10096.	1.9	65
394	Detoxification and Sensing of Organophosphate-Based Pesticides and Preservatives in Beverages. , 2019, , 467-510.		1
395	Freestanding laser induced graphene paper based liquid sensors. Carbon, 2019, 153, 472-480.	5.4	37
396	Tunable Emission in Heteroepitaxial Ln URMOFs. Advanced Functional Materials, 2019, 29, 1903086.	7.8	40

#	Article	IF	CITATIONS
397	Metal-organic frameworks for detection and desensitization of environmentally hazardous nitro-explosives and related high energy materials. , 2019, , 231-283.		4
398	Three d10 based metal-organic frameworks constructed from 2-(3',4'-dicarboxylphenoxy) isophthalic acid: Dual-functional luminescent sensors for Cu2+, Fe3+ cations and Aspartic acid. Journal of Solid State Chemistry, 2019, 277, 564-574.	1.4	11
399	Fabrication of hydrogen-bonded metal-complex frameworks for capturing iodine. Journal of Solid State Chemistry, 2019, 277, 525-530.	1.4	7
400	Target-Architecture Engineering of a Novel Two-dimensional Metal–Organic Framework for High Catalytic Performance. Crystal Growth and Design, 2019, 19, 4239-4245.	1.4	14
401	Quasi metal organic framework with highly concentrated Cr2O3 molecular clusters as the efficient catalyst for dehydrofluorination of 1,1,1,3,3-pentafluoropropane. Applied Catalysis B: Environmental, 2019, 257, 117939.	10.8	28
402	A nanoporous metal–organic framework as a renewable size-selective hydrogen-bonding catalyst in water. Dalton Transactions, 2019, 48, 11855-11861.	1.6	8
403	Metal-organic frameworks for recognition and sequestration of toxic anionic pollutants. , 2019, , 95-140.		6
404	Metal-organic frameworks for capture and degradation of organic pollutants. , 2019, , 203-229.		6
405	Four alkaline earth metal (Mg, Ca, Sr, Ba)-based MOFs as multiresponsive fluorescent sensors for Fe3+, Pb2+ and Cu2+ ions in aqueous solution. Journal of Solid State Chemistry, 2019, 277, 636-647.	1.4	23
406	A cationic tetrahedral Zn(<scp>ii</scp>) cluster based on a new salicylamide imine multidentate ligand: synthesis, structure and fluorescence sensing study. Dalton Transactions, 2019, 48, 12326-12335.	1.6	14
407	Synthesis, structure and photocatalytic degradation of organic dyes of a copper(II) metal–organic framework (Cu–MOF) with a 4-coordinated three-dimensional CdSO ₄ topology. Acta Crystallographica Section C, Structural Chemistry, 2019, 75, 1053-1059.	0.2	9
408	Effect of arrangement of functional groups on stability and gas adsorption properties in two regioisomeric copper bent diisophthalate frameworks. CrystEngComm, 2019, 21, 4820-4827.	1.3	22
409	Post-modified metal-organic framework as a turn-on fluorescent probe for potential diagnosis of neurological diseases. Microporous and Mesoporous Materials, 2019, 288, 109610.	2.2	27
410	Bimetallic-based food sensors for meat spoilage: Effects of the accepting metallic unit in Fe(II) C N MA (MA = Pt(II) or Au(I)) on device selectivity and sensitivity. Food Chemistry, 2019, 300, 125190.	4.2	1
411	Recent Progress in Metal–Organic Framework (MOF) Based Luminescent Chemodosimeters. Nanomaterials, 2019, 9, 974.	1.9	52
412	Thermal and stress tension dual-responsive photonic crystal nanocomposite hydrogels. RSC Advances, 2019, 9, 21202-21205.	1.7	9
413	Seven new complexes based on various coordination modes of bifunctional ligand: Luminescent sensing and magnetic properties. Inorganica Chimica Acta, 2019, 495, 118971.	1.2	8
414	All Roads Lead to Rome: Tuning the Luminescence of a Breathing Catenated Zr-MOF by Programmable Multiplexing Pathways. Chemistry of Materials, 2019, 31, 5550-5557.	3.2	30

#	Article	IF	CITATIONS
415	Amino-Incorporated Tricarboxylate Metal–Organic Framework for the Sensitive Fluorescence Detection of Heavy Metal Ions with Insights into the Origin of Photoluminescence Response. Inorganic Chemistry, 2019, 58, 10671-10679.	1.9	64
416	Two Stable Terbium–Organic Frameworks Based on Predesigned Functionalized Ligands: Selective Sensing of Fe3+ lons and C2H2/CH4 Separation. Inorganic Chemistry, 2019, 58, 10295-10303.	1.9	50
417	Single Crystal Perovskite Microplate for Highâ€Order Multiphoton Excitation. Small Methods, 2019, 3, 1900396.	4.6	17
418	A dual fluorescent/phosphorescent zincophosphite with interesting water adsorption and structural transformation properties. Dalton Transactions, 2019, 48, 14294-14298.	1.6	5
419	MILâ€53(Al) as a Versatile Platform for Ionicâ€Liquid/MOF Composites to Enhance CO ₂ Selectivity over CH ₄ and N ₂ . Chemistry - an Asian Journal, 2019, 14, 3655-3667.	1.7	44
420	Optical Properties of Azo-Benzothiazole Side Chain Liquid Crystalline Polymers: Effect of Solvents, Substituents and Temperatures. Journal of Fluorescence, 2019, 29, 1049-1056.	1.3	1
421	Selective detection of two representative organic arsenic compounds in aqueous medium with metal–organic frameworks. Environmental Science: Nano, 2019, 6, 2759-2766.	2.2	33
422	Control of the nucleation and growth processes of metal–organic frameworks using a metal ion-doped polymer substrate for the construction of continuous films. CrystEngComm, 2019, 21, 4851-4854.	1.3	2
423	Electronic, Structural and Functional Versatility in Tetrathiafulvalene‣anthanide Metal–Organic Frameworks. Chemistry - A European Journal, 2019, 25, 12636-12643.	1.7	40
424	Defective hierarchical porous copper-based metal-organic frameworks synthesised via facile acid etching strategy. Scientific Reports, 2019, 9, 10887.	1.6	37
425	Zn(<scp>ii</scp>)-based coordination polymer: An emissive signaling platform for the recognition of an explosive and a pesticide in an aqueous system. Dalton Transactions, 2019, 48, 12382-12385.	1.6	21
426	Pressureâ€Induced Multiphoton Excited Fluorochromic Metal–Organic Frameworks for Improving MPEF Properties. Angewandte Chemie, 2019, 131, 14517-14523.	1.6	12
427	Pressureâ€induced Multiphoton Excited Fluorochromic Metal–Organic Frameworks for Improving MPEF Properties. Angewandte Chemie - International Edition, 2019, 58, 14379-14385.	7.2	53
428	MIP-coated Eu(BTC) for the fluorometric determination of lincomycin in eggs. Analytical Methods, 2019, 11, 4501-4510.	1.3	9
429	Unravelling Why and to What Extent the Topology of Similar Ceâ€Based MOFs Conditions their Photodynamic: Relevance to Photocatalysis and Photonics. Advanced Science, 2019, 6, 1901020.	5.6	34
430	Metal-organic frameworks for the sorption of acetone and isopropanol in exhaled breath of diabetics prior to quantitation by gas chromatography. Mikrochimica Acta, 2019, 186, 588.	2.5	25
431	Competitive electrochemical immunosensor for maduramicin detection by multiple signal amplification strategy via hemin@Fe-MIL-88NH2/AuPt. Biosensors and Bioelectronics, 2019, 142, 111554.	5.3	45
432	Fluorescence sensing of H2O in alcohols solvents based on instability of the by-product from synthesis of metal-organic framework. Microporous and Mesoporous Materials, 2019, 290, 109624.	2.2	5

#	Article	IF	CITATIONS
433	Aqueous-Phase Differentiation and Speciation of Fe ³⁺ and Fe ²⁺ Using Water-Stable Photoluminescent Lanthanide-Based Metal–Organic Framework. ACS Applied Nano Materials, 2019, 2, 5169-5178.	2.4	41
434	Modulating Excitation Energy of Luminescent Metal–Organic Frameworks for Detection of Cr(VI) in Water. ACS Applied Nano Materials, 2019, 2, 4646-4654.	2.4	68
435	Metal-organic framework-derived materials for electrochemical energy applications. EnergyChem, 2019, 1, 100001.	10.1	438
436	Metal-organic framework film for fluorescence turn-on H2S gas sensing and anti-counterfeiting patterns. Science China Materials, 2019, 62, 1445-1453.	3.5	31
437	Zn(II)-based metal-organic frameworksderived from dicarboxylate ligand and N-donor ligands as luminescent sensors for selective detection of picric acid. Journal of Molecular Structure, 2019, 1196, 194-200.	1.8	10
438	Molecular chains of coordinated dimolybdenum isonicotinate paddlewheel clusters. RSC Advances, 2019, 9, 16492-16495.	1.7	5
439	l-Proline functionalized metal-organic framework PCN-261 as catalyst for aldol reaction. Inorganic Chemistry Communication, 2019, 107, 107448.	1.8	13
440	Mixed-ligand lanthanide complexes constructed by flexible 1,3-propanediaminetetraacetate and rigid terephthalate. Journal of Coordination Chemistry, 2019, 72, 1547-1559.	0.8	6
441	Persistent luminescent metal-organic frameworks with long-lasting near infrared emission for tumor site activated imaging and drug delivery. Biomaterials, 2019, 217, 119332.	5.7	85
442	Concurrent Modulation of Competitive Mechanisms to Design Stimuliâ€Responsive Lnâ€MOFs: A Lightâ€Operated Dualâ€Mode Assay for Oxidative DNA Damage. Advanced Functional Materials, 2019, 29, 1903058.	7.8	42
443	Designing an "Off–On―Fluorescence Sensor Based on Cluster-Based Ca ^{II} -Metal–Organic Frameworks for Detection of <scp>I</scp> -Cysteine in Biological Fluids. Langmuir, 2019, 35, 9885-9895.	1.6	32
444	[2 + 2] cycloaddition reaction and luminescent sensing of Fe ³⁺ and Cr ₂ O ₇ ^{2â^'} ions by a cadmium-based coordination polymer. Dalton Transactions, 2019, 48, 12159-12167.	1.6	18
445	A dye@MOF crystalline probe serving as a platform for ratiometric sensing of trichloroacetic acid (TCA), a carcinogen metabolite in human urine. CrystEngComm, 2019, 21, 4637-4643.	1.3	27
446	Two zinc(<scp>ii</scp>) coordination polymers based on flexible co-ligands featuring assembly imparted sensing abilities for Cr ₂ O ₇ ^{2â^'} and <i>o</i> NP. RSC Advances, 2019, 9, 21086-21094.	1.7	14
447	The difference of La and Ce as additives of electrical conductivity aluminum alloys. Materials Characterization, 2019, 158, 109963.	1.9	26
448	Solvent-Assisted, Thermally Triggered Structural Transformation in Flexible Mesoporous Metal–Organic Frameworks. Chemistry of Materials, 2019, 31, 8787-8793.	3.2	30
449	Loading Photochromic Molecules into a Luminescent Metal–Organic Framework for Information Anticounterfeiting. Angewandte Chemie - International Edition, 2019, 58, 18025-18031.	7.2	205
450	Solvoâ€thermal Preparation of One Novel Cadmium(II) Coordination Polymer with 1â€(4â€Aminobenzyl)â€1,2,4â€Triazole and Biâ€functional Photoâ€Luminescent Sensing for Acetone and Dichromate. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2019, 645, 1324-1333.	0.6	5

#	Article	IF	CITATIONS
451	Factors influencing thermal solidification of bent-core trimers. Journal of Chemical Physics, 2019, 151, 134501.	1.2	5
452	Syntheses, structure, photocatalytic degradation for methylene blue of Co(II)-Based coordination polymers. Journal of Solid State Chemistry, 2019, 279, 120932.	1.4	10
453	Tetra(4-imidazoylphenyl)ethylene based metal-organic frameworks for highly selective detection of TNP and Fe3+. Journal of Solid State Chemistry, 2019, 280, 120993.	1.4	20
454	Light-Switchable One-Dimensional Photonic Crystals Based on MOFs with Photomodulatable Refractive Index. Journal of Physical Chemistry Letters, 2019, 10, 6626-6633.		17
455	White Light Emission Properties of Defect Engineered Metal–Organic Frameworks by Encapsulation of Eu ³⁺ and Tb ³⁺ . Crystal Growth and Design, 2019, 19, 6339-6350.	1.4	35
456	A new luminescent anionic metal–organic framework based on heterometallic zinc(II)–barium(II) for selective detection of Fe ³⁺ and Cu ²⁺ ions in aqueous solution. Acta Crystallographica Section C, Structural Chemistry, 2019, 75, 1372-1380.	0.2	5
457	Tailoring Coordination Polymers by Substituent Effect: A Bifunctional Co II â€Doped 1Dâ€Coordination Network with Electrochemical Water Oxidation and Nitroaromatics Sensing. Chemistry - an Asian Journal, 2019, 14, 3742-3747.	1.7	17
458	Recent Advances in Preparation and Applications of Magnetic Framework Composites. Chemistry - an Asian Journal, 2019, 14, 3515-3530.	1.7	35
459	Visualizing Platinum Supraparticle Formation with Liquid Cell Electron Microscopy and Correlative Investigation of Catalytic Activity. Microscopy and Microanalysis, 2019, 25, 2026-2027.	0.2	0
460	A heterometallic metal–organic framework based on multi-nuclear clusters exhibiting high stability and selective gas adsorption. Dalton Transactions, 2019, 48, 278-284.	1.6	23
461	A fluorescent pillarene coordination polymer. Polymer Chemistry, 2019, 10, 2980-2985.	1.9	38
462	Study on selenium accumulation characteristics of Lycopersicon esculentum, Solanum melongena and Solanum nigrum. IOP Conference Series: Earth and Environmental Science, 2019, 310, 042065.	0.2	1
463	An Ionâ€Exchangeable MOF with Reversible Dehydration and Dynamic Structural Behavior (NH 4) 2 [Zn 2 (O 3 PCH 2 CH 2 COO) 2]â‹5 H 2 O (BIRMâ€1). Chemistry - A European Journal, 2019, 25, 13865-13868.	1.7	1
464	Superior relationâ€based firefly algorithm for superior solution set search problem. IEEJ Transactions on Electrical and Electronic Engineering, 2019, 14, 1796-1804.	0.8	3
465	3D Cadmium(II)â€Based Coordination Polymer Constructed from Vâ€Shaped Semirigid Ligand: Selective Detection of Oxoanion Pollutants CrO ₄ ^{2–} , Cr ₂ O ₇ ^{2–} , MnO ₄ [–] in Water. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2019, 645, 1358-1364.	0.6	56
466	Cd ^{II} â€Organic Frameworks Fabricated with a Nâ€Rich Ligand and Flexible Dicarboxylates: Structural Diversity and Multiâ€Responsive Luminescent Sensing for Toxic Anions and Ethylenediamine. Chemistry - an Asian Journal, 2019, 14, 4420-4428.	1.7	31
467	Lanthanide Coordination Polymer-Based Composite Films for Selective and Highly Sensitive Detection of Cr ₂ O ₇ ^{2–} in Aqueous Media. Inorganic Chemistry, 2019, 58, 15118-15125.	1.9	41
468	Blue-Light-Excitable, Quantum Yield Enhanced, Yellow-Emitting, Zirconium-Based Metal–Organic Framework Phosphors Formed by Immobilizing Organic Chromophores. Crystal Growth and Design, 2019, 19, 6850-6854.	1.4	13

#	Article	IF	CITATIONS
469	Probing the Role of Anions in Influencing the Structure, Stability, and Properties in Neutral N-Donor Linker Based Metal–Organic Frameworks. Crystal Growth and Design, 2019, 19, 7046-7054.	1.4	23
470	Dual-Functionalized Fluorescent Cationic Organic Network: Highly Efficient Detection and Removal of Dichromate from Water. ACS Applied Materials & amp; Interfaces, 2019, 11, 46197-46204.	4.0	21
471	On the Use of MOFs and ALD Layers as Nanomembranes for the Enhancement of Gas Sensors Selectivity. Nanomaterials, 2019, 9, 1552.	1.9	11
472	Fixing Flexible Arms of Core-Shared Ligands to Enhance the Stability of Metal–Organic Frameworks. Inorganic Chemistry, 2019, 58, 15909-15916.	1.9	14
473	Metal organic frameworks (MOFs): Current trends and challenges in control and management of air quality. Korean Journal of Chemical Engineering, 2019, 36, 1839-1853.	1.2	22
474	Bioelectricity, Its Fundamentals, Characterization Methodology, and Applications in Nanoâ€Bioprobing and Cancer Diagnosis. Advanced Biology, 2019, 3, e1900101.	3.0	18
475	Loading Photochromic Molecules into a Luminescent Metal–Organic Framework for Information Anticounterfeiting. Angewandte Chemie, 2019, 131, 18193-18199.	1.6	62
476	Zn―and Cdâ€based Coordination Polymers Offering Hâ€Bonding Cavities: Highly Selective Sensing of S ₂ O ₇ ^{2â^'} and Fe ³⁺ lons. Chemistry - an Asian Journal, 2019, 14, 4594-4600.	1.7	20
477	Fluorescent "Turnâ€on―Sensing Based on Metal–Organic Frameworks (MOFs). Chemistry - an Asian Journal, 2019, 14, 4506-4519.	1.7	140
478	Coordination Polymers and Clusters Based on the Versatile Mercaptonicotinate Ligands. European Journal of Inorganic Chemistry, 2019, 2019, 4607-4620.	1.0	3
479	Lanthanide coordination polymers constructed from the asymmetrical N-heterocyclic rigid carboxylate: Synthesis, crystal structures, luminescence properties and magnetic properties. Polyhedron, 2019, 161, 47-55.	1.0	64
480	In-situ S/TEM Probing of the Coupling among Electrochemical, Thermal, and Mechanical Effect in Rechargeable Batteries. Microscopy and Microanalysis, 2019, 25, 2164-2165.	0.2	0
481	High Energy Density Asymmetric Supercapacitor Based on NiCo ₂ S ₄ /CNTs Hybrid and Carbon Nanotube Paper Electrodes. Journal of Molecular and Engineering Materials, 2019, 07, .	0.9	24
482	A stable zirconium based metal-organic framework for specific recognition of representative polychlorinated dibenzo-p-dioxin molecules. Nature Communications, 2019, 10, 3861.	5.8	164
483	The synthetic strategies of metal–organic framework membranes, films and 2D MOFs and their applications in devices. Journal of Materials Chemistry A, 2019, 7, 21004-21035.	5.2	94
484	Recent advances in covalent organic frameworks (COFs) as a smart sensing material. Chemical Society Reviews, 2019, 48, 5266-5302.	18.7	630
485	Tracking the Multistep Formation of Ln(III) Complexes with in situ Schiff Base Exchange Reaction and its Highly Selective Sensing of Dichloromethane. Scientific Reports, 2019, 9, 12231.	1.6	17
486	Hybrid MOFs-graphene composites: Correlation between thermal transport and kinetics of hydrogen adsorption. International Journal of Heat and Mass Transfer, 2019, 143, 118539.	2.5	10

#	Article	IF	CITATIONS
487	A highly selective and sensitive fluorescent sensor based on Tb ³⁺ -functionalized MOFs to determine arginine in urine: a potential application for the diagnosis of cystinuria. Analyst, The, 2019, 144, 5875-5881.	1.7	32
488	Pyrazinyl-functionalized Zr(<scp>iv</scp>)-MOF for ultrasensitive detection of tyrosine/TNP and efficient CO ₂ /N ₂ separation. Journal of Materials Chemistry C, 2019, 7, 11851-11857.	2.7	31
489	Trinuclear Ni(ii) oriented highly dense packing and π-conjugation degree of metal–organic frameworks for efficient water oxidation. CrystEngComm, 2019, 21, 5862-5866.	1.3	23
490	Structure-Driven Photoluminescence Enhancement in a Zn-Based Metal–Organic Framework. Chemistry of Materials, 2019, 31, 7933-7940.	3.2	21
491	Assembly of Metal–Organic Frameworks of SiF ₆ ^{2–} in Situ Formed from Borosilicate Glass. Inorganic Chemistry, 2019, 58, 12501-12505.	1.9	5
492	Dual-Emissive Metal–Organic Framework as a Fluorescent "Switch―for Ratiometric Sensing of Hypochlorite and Ascorbic Acid. Inorganic Chemistry, 2019, 58, 13360-13369.	1.9	94
493	Alkaline Hydrolysis Behavior of Metal–Organic Frameworks NH ₂ -MIL-53(Al) Employed for Sensitive Immunoassay via Releasing Fluorescent Molecules. ACS Applied Materials & Interfaces, 2019, 11, 35597-35603.	4.0	45
494	Tb post-functionalized La (III) metal organic framework hybrid probe for simple and highly sensitive detection of acetaldehyde. Sensors and Actuators B: Chemical, 2019, 300, 126985.	4.0	34
495	Development and Applications of MOFs Derivative One-Dimensional Nanofibers via Electrospinning:A Mini-Review. Nanomaterials, 2019, 9, 1306.	1.9	38
496	A Robust Multifunctional Eu ₆ -Cluster Based Framework for Gas Separation and Recognition of Small Molecules and Heavy Metal Ions. Crystal Growth and Design, 2019, 19, 6381-6387.	1.4	26
497	Host–Guest Interaction between Methanol and Metal–Organic Framework Cu _{3–<i>x</i>} Zn _{<i>x</i>} (btc) ₂ as Revealed by Solid-State NMR. Journal of Physical Chemistry C, 2019, 123, 24062-24070.	1.5	12
498	Assembly of Two Isostructural Metal-organic Frameworks Based on Hetero-N,O Donor Ligand for Detecting Nitro Explosives. Chemical Research in Chinese Universities, 2019, 35, 762-766.	1.3	3
499	Ligand Excess "Inverse-Defected―Zr ₆ Tetrahedral Tetracarboxylate Framework and Its Thermal Transformation. Inorganic Chemistry, 2019, 58, 12786-12797.	1.9	3
500	Synthesis of Two Mononuclear Schiff Base Metal (M = Fe, Cu) Complexes: MOF Structure, Dye Degradation, H ₂ O ₂ Sensing, and DNA Binding Property. ACS Omega, 2019, 4, 16068-16079.	1.6	62
501	LCOFs: Role of the excited state hydrogen bonding in the detection for nitro-explosives. Journal of Luminescence, 2019, 215, 116733.	1.5	7
502	A ciprofloxacin based 1D Cd(II) coordination polymer with highly efficient humidity sensing performance. Inorganic Chemistry Communication, 2019, 108, 107541.	1.8	9
503	Recent advances in luminescent metal-organic frameworks for chemical sensors. Science China Materials, 2019, 62, 1655-1678.	3.5	132
504	Metal-organic frameworks as materials for applications in sensors. Mendeleev Communications, 2019, 29, 361-368.	0.6	33

#	Article	IF	CITATIONS
505	Luminescent metal-organic frameworks as potential sensory materials for various environmental toxic agents. Coordination Chemistry Reviews, 2019, 401, 213065.	9.5	173
506	Magnesium based coordination polymers: Syntheses, structures, properties and applications. Coordination Chemistry Reviews, 2019, 399, 213025.	9.5	17
507	Tunable excitation-dependent emissions in mixed-ligand Cd(II) complexes. Polyhedron, 2019, 171, 338-343.	1.0	4
508	Effect of the change of the ancillary carboxylate bridging ligand on the SMM and luminescence properties of a series of carboxylate-diphenoxido triply bridged dinuclear ZnLn and tetranuclear Zn2Ln2 complexes (Ln = Dy, Er). Dalton Transactions, 2019, 48, 190-201.	1.6	13
509	A heterometallic sodium(<scp>i</scp>)–europium(<scp>iii</scp>)-organic layer exhibiting dual-responsive luminescent sensing for nitrofuran antibiotics, Cr ₂ O ₇ ^{2â^`} and MnO ₄ ^{â^`} anions. Dalton Transactions, 2019, 48, 1823-1834.	1.6	90
510	A rationally designed vapoluminescent compound with adsorptive channels and responsive luminophores for volatile organic compounds (VOCs). Dalton Transactions, 2019, 48, 1179-1183.	1.6	6
511	A rational design and green synthesis of 3D metal organic frameworks containing a rigid heterocyclic nitrogen-rich dicarboxylate: structural diversity, CO ₂ sorption and selective sensing of 2,4,6-TNP in water. Dalton Transactions, 2019, 48, 2388-2398.	1.6	37
512	Two unique copper cluster-based metal–organic frameworks with high performance for CO ₂ adsorption and separation. Inorganic Chemistry Frontiers, 2019, 6, 556-561.	3.0	23
513	Five coordination polymers of Cd(II) and Co(II) using 3,3′-azobispyridine and different dicarboxylates: Synthesis, structures and adsorption properties. Polyhedron, 2019, 161, 289-297.	1.0	11
514	A robust and water-stable two-fold interpenetrated metal–organic framework containing both rigid tetrapodal carboxylate and rigid bifunctional nitrogen linkers exhibiting selective CO ₂ capture. Dalton Transactions, 2019, 48, 415-425.	1.6	20
515	A carbazole-functionalized metal–organic framework for efficient detection of antibiotics, pesticides and nitroaromatic compounds. Dalton Transactions, 2019, 48, 2683-2691.	1.6	99
516	Soft material nanoarchitectonics at interfaces: molecular assembly, nanomaterial synthesis, and life control. Molecular Systems Design and Engineering, 2019, 4, 49-64.	1.7	30
517	Zinc-based CPs for effective detection of Fe3+ and Cr2O72â ^{~,} ions. New Journal of Chemistry, 2019, 43, 1494-1504.	1.4	26
518	Zinc(<scp>ii</scp>)–organic framework as a multi-responsive photoluminescence sensor for efficient and recyclable detection of pesticide 2,6-dichloro-4-nitroaniline, Fe(<scp>iii</scp>) and Cr(<scp>vi</scp>). New Journal of Chemistry, 2019, 43, 2353-2361.	1.4	113
519	Making Prussian blue analogues nanoparticles luminescent: effect of the luminophore confinement over the properties. Nanoscale, 2019, 11, 7097-7101.	2.8	8
520	Block co-polyMOFs: morphology control of polymer–MOF hybrid materials. Chemical Science, 2019, 10, 1746-1753.	3.7	68
521	A Zn based metal organic framework as a heterogeneous catalyst for C–C bond formation reactions. New Journal of Chemistry, 2019, 43, 3793-3800.	1.4	55
522	La(III)-based MOFs with 5-aminoisophthalic acid for optical detection and degradation of organic molecules in water. Polyhedron, 2019, 162, 255-262.	1.0	15

#		IF	CITATIONS
π	Lanthanide cation encapsulated in a metal–organic framework as a white LED and selective naked-eve		CHAHONS
523	reversible HCl sensor. Journal of Materials Chemistry C, 2019, 7, 2880-2885.	2.7	29
524	Effect of charge transfer and structural rigidity on divergent luminescence response of a metal organic framework towards different metal ions: luminescence lifetime decay experiments and DFT calculations. Photochemical and Photobiological Sciences, 2019, 18, 1110-1121.	1.6	29
525	Stable Cd(II)-MOF as a fluorescent sensor for efficient detection of uranyl ions. Materials Letters, 2019, 241, 184-186.	1.3	16
526	Robust synthesis routes and porosity of the Al-based metal–organic frameworks Al-fumarate, CAU-10-H and MIL-160. Dalton Transactions, 2019, 48, 2967-2976.	1.6	70
527	Space-confined indicator displacement assay inside a metal–organic framework for fluorescence turn-on sensing. Chemical Science, 2019, 10, 3307-3314.	3.7	62
528	Three resorcin[4]arene-based lanthanide-coordination polymers with multifunctional photoluminescence sensing properties. RSC Advances, 2019, 9, 3647-3652.	1.7	3
529	A luminescent terbium metal-organic framework for highly sensitive and selective detection of uric acid in aqueous media. Journal of Solid State Chemistry, 2019, 272, 55-61.	1.4	21
530	8-Hydroxyquinolinate-Based Metal–Organic Frameworks: Synthesis, Tunable Luminescent Properties, and Highly Sensitive Detection of Small Molecules and Metal Ions. Inorganic Chemistry, 2019, 58, 2444-2453.	1.9	72
531	Isostructural Tb ³⁺ /Eu ³⁺ Co-Doped Metal–Organic Framework Based on Pyridine-Containing Dicarboxylate Ligands for Ratiometric Luminescence Temperature Sensing. Inorganic Chemistry, 2019, 58, 2637-2644.	1.9	111
532	3D Porous Heterometallic Coordination Polymer for the Detection of Nitroaromatic Explosives and Inhibiting Human Cancer Cells Growth. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2019, 645, 87-91.	0.6	5
533	A Novel Zinc Luminescent Coordination Polymer Based on a Tetracarboxylate Acid Ligand for the Detection of Nitrobenzene. Crystal Research and Technology, 2019, 54, 1800155.	0.6	9
534	Water Contaminant Elimination Based on Metal–Organic Frameworks and Perspective on Their Industrial Applications. ACS Sustainable Chemistry and Engineering, 2019, 7, 4548-4563.	3.2	165
535	Bifunctional photo- and vapochromic behaviors of a novel porous zwitterionic metal–organic framework. New Journal of Chemistry, 2019, 43, 3428-3431.	1.4	18
536	Solvent-induced terbium metal–organic frameworks for highly selective detection of manganese(<scp>ii</scp>) ions. Dalton Transactions, 2019, 48, 2569-2573.	1.6	25
537	Anion-directed structures and luminescences of two Cu(I) coordination polymers based on bipyrazole. Inorganic Chemistry Communication, 2019, 101, 121-124.	1.8	6
538	Coordinated imidazolyl group site-directed assembly of Cd(II) coordination polymers based on tri-imidazolyl ligands. Journal of Solid State Chemistry, 2019, 271, 222-229.	1.4	1
539	Co(II)-based Metal–Organic Frameworks and Their Application in Gas Sorption and Solvatochromism. Crystal Growth and Design, 2019, 19, 1640-1648.	1.4	25
540	Porous flower-like superstructures based on self-assembled colloidal quantum dots for sensing. Scientific Reports, 2019, 9, 617.	1.6	2

#	Article	IF	CITATIONS
541	Building Block and Directional Bonding Approaches for the Synthesis of {DyMn ₄ } _{<i>n</i>} (<i>n</i> = 2, 3) Metallacrown Assemblies. Crystal Growth and Design, 2019, 19, 1896-1902.	1.4	23
542	Polyoxometalate-based metal–organic framework NENU-5 hybrid materials for photoluminescence tuning by introducing lanthanide ions and their functionalized soft ionogel/thin film. CrystEngComm, 2019, 21, 1186-1192.	1.3	17
543	Synthesis, structure and selective luminescence sensing for iron(III) ions of a three-dimensional zinc(II) (4,6)-connected coordination network. Acta Crystallographica Section C, Structural Chemistry, 2019, 75, 141-149.	0.2	12
544	Tunable Light Emission and Multiresponsive Luminescent Sensitivities in Aqueous Solutions of Two Series of Lanthanide Metal–Organic Frameworks Based on Structurally Related Ligands. ACS Applied Materials & Interfaces, 2019, 11, 7914-7926.	4.0	198
545	Quenching of photoluminescence in a Zn-MOF sensor by nitroaromatic molecules. Journal of Materials Chemistry C, 2019, 7, 2625-2632.	2.7	54
546	A multifunctional anionic 3D Cd(II)-MOF derived from 2D layers catenation: Organic dyes adsorption, cycloaddition of CO2 with epoxides and luminescence. Inorganic Chemistry Communication, 2019, 101, 184-187.	1.8	18
547	Metal–organic framework-based fluorescent sensing of tetracycline-type antibiotics applicable to environmental and food analysis. Analyst, The, 2019, 144, 1916-1922.	1.7	102
548	Selective CO ₂ adsorption and theoretical simulation of a stable Co(<scp>ii</scp>)-based metal–organic framework with tunable crystal size. CrystEngComm, 2019, 21, 1564-1569.	1.3	3
549	A water-stable Eu ^{III} -based MOF as a dual-emission luminescent sensor for discriminative detection of nitroaromatic pollutants. Dalton Transactions, 2019, 48, 1843-1849.	1.6	95
550	MOFs containing a linear bis-pyridyl-tris-amide and angular carboxylates: exploration of proton conductivity, water vapor and dye sorptions. Inorganic Chemistry Frontiers, 2019, 6, 184-191.	3.0	41
551	NIR luminescence for the detection of metal ions and nitro explosives based on a grape-like nine-nuclear Nd(<scp>iii</scp>) nanocluster. Inorganic Chemistry Frontiers, 2019, 6, 550-555.	3.0	20
552	Efficient catalytic conversion of terminal/internal epoxides to cyclic carbonates by porous Co(<scp>ii</scp>) MOF under ambient conditions: structure–property correlation and computational studies. Journal of Materials Chemistry A, 2019, 7, 2884-2894.	5.2	96
553	Stimuli-responsive multifunctional metal–organic framework nanoparticles for enhanced chemo-photothermal therapy. Journal of Materials Chemistry B, 2019, 7, 994-1004.	2.9	83
554	Metal-organic frameworks based fluorescent sensor array for discrimination of flavonoids. Talanta, 2019, 203, 248-254.	2.9	24
555	A water-stable luminescent Zn(II) coordination polymer based on 5-sulfosalicylic acid and 1,4-bis(1H-imidazol-1-yl)benzene for highly sensitive and selective sensing of Fe3+ ion. Inorganica Chimica Acta, 2019, 493, 72-80.	1.2	14
556	A recyclable post-synthetically modified Al(<scp>iii</scp>) based metal–organic framework for fast and selective fluorogenic recognition of bilirubin in human biofluids. Dalton Transactions, 2019, 48, 9266-9275.	1.6	38
557	Crystallization of high aspect ratio HKUST-1 thin films in nanoconfined channels for selective small molecule uptake. Nanoscale Advances, 2019, 1, 2946-2952.	2.2	15
558	An adjustable dual-emission fluorescent metal-organic framework: Effective detection of multiple metal ions, nitro-based molecules and DMA. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 223, 117283.	2.0	27

#	Article	IF	CITATIONS
559	Spectroelectrochemical studies of the redox active tris[4-(triazol-1-yl)phenyl]amine linker and redox state manipulation of Mn(<scp>ii</scp>)/Cu(<scp>ii</scp>) coordination frameworks. Dalton Transactions, 2019, 48, 10122-10128.	1.6	9
560	Construction of (3,8)-connected three-dimensional cobalt(II) and copper(II) coordination polymers with 1,3-bis[(1,2,4-triazol-4-yl)methyl]benzene and benzene-1,3,5-tricarboxylate ligands. Acta Crystallographica Section C, Structural Chemistry, 2019, 75, 960-968.	0.2	2
561	Photocatalytic and Ferric Ion Sensing Properties of a New Three-Dimensional Metal–Organic Framework Based on Cuboctahedral Secondary Building Units. ACS Omega, 2019, 4, 10775-10783.	1.6	78
562	Suspending Ion Electrocatalysts in Charged Metal–Organic Frameworks to Improve the Conductivity and Selectivity in Electroorganic Synthesis. Chemistry - an Asian Journal, 2019, 14, 3627-3634.	1.7	9
563	Cluster-based Call, MgII and CdII coordination polymers based on amino-functionalized tri-phenyl tetra-carboxylate: Bi-functional photo-luminescent sensing for Fe3+ and antibiotics. Dyes and Pigments, 2019, 170, 107631.	2.0	28
564	A Polyhedron-Based Heterometallic MOF Constructed by HSAB Theory and SBB Strategy: Synthesis, Structure, and Adsorption Properties. Crystal Growth and Design, 2019, 19, 4571-4578.	1.4	26
565	A Robust Tb ^{III} -MOF for Ultrasensitive Detection of Trinitrophenol: Matched Channel Dimensions and Strong Host–Guest Interactions. Inorganic Chemistry, 2019, 58, 8198-8207.	1.9	58
566	Highly sensitive and selective detect of <i>p</i> â€arsanilic acid with a new waterâ€stable europium metal–organic framework. Applied Organometallic Chemistry, 2019, 33, e5021.	1.7	19
567	Highly luminescent sensing for nitrofurans and tetracyclines in water based on zeolitic imidazolate framework-8 incorporated with dyes. Talanta, 2019, 204, 344-352.	2.9	71
568	A Bifunctional Luminescent Metal–Organic Framework for the Sensing of Paraquat and Fe ³⁺ lons in Water. Chemistry - an Asian Journal, 2019, 14, 3611-3619.	1.7	58
569	A Ni3(OH)(COO)6 â^'based MOF from C3 symmetric ligands: Structure and heterogeneous catalytic activities in one-pot synthesis of imine. Microporous and Mesoporous Materials, 2019, 287, 152-158.	2.2	10
570	Strategies for Overcoming Defects of HKUSTâ€l and Its Relevant Applications. Advanced Materials Interfaces, 2019, 6, 1900423.	1.9	22
571	Novel solvent-triggered transformation of Cu-based metal-organic gels to highly monodisperse metal-organic frameworks with controllable shapes. Chemical Engineering Journal, 2019, 374, 1231-1240.	6.6	24
572	Post-synthetic modification of a Tb-based metal–organic framework for highly selective and sensitive detection of metal ions in aqueous solution. New Journal of Chemistry, 2019, 43, 10232-10236.	1.4	13
573	The surface chemistry of metal–organic frameworks and their applications. Dalton Transactions, 2019, 48, 9037-9042.	1.6	58
574	Light-Responsive Metal–Organic Framework as an Oxidase Mimic for Cellular Glutathione Detection. Analytical Chemistry, 2019, 91, 8170-8175.	3.2	171
575	Rational Construction of Breathing Metal–Organic Frameworks through Synergy of a Stretchy Ligand and Highly Variable π–π Interaction. ACS Applied Materials & Interfaces, 2019, 11, 20995-21003.	4.0	13
576	A novel multi-purpose Zn-MOF fluorescent sensor for 2,4-dinitrophenylhydrazine, picric acid, La3+ and Ca2+: Synthesis, structure, selectivity, sensitivity and recyclability. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 222, 117207.	2.0	22

#	Article	IF	CITATIONS
577	Sensitive detection of glyphosate based on a Cu-BTC MOF/g-C3N4 nanosheet photoelectrochemical sensor. Electrochimica Acta, 2019, 317, 341-347.	2.6	93
578	Incorporating Three Chiral Channels into an In-MOF for Excellent Gas Absorption and Preliminary Cu ²⁺ Ion Detection. Crystal Growth and Design, 2019, 19, 3860-3868.	1.4	26
579	Photofunctional MOF-based hybrid materials for the chemical sensing of biomarkers. Journal of Materials Chemistry C, 2019, 7, 8155-8175.	2.7	104
580	Aqueous Phase Sensing of Fe ³⁺ and Ascorbic Acid by a Metal–Organic Framework and Its Implication in the Construction of Multiple Logic Gates. Chemistry - an Asian Journal, 2019, 14, 2822-2830.	1.7	44
581	Waterâ€&table Coordination Polymers as Dual Fluorescent Sensors for Highly Oxidizing Anions Cr ₂ O ₇ ^{2â^'} and MnO ₄ ^{â^'} . Chemistry - an Asian Journal, 2019, 14, 3620-3626.	1.7	42
582	Synergistically Directed Assembly of Aromatic Stacks Based Metalâ€Organic Frameworks by Donorâ€Acceptor and Coordination Interactions. Chinese Journal of Chemistry, 2019, 37, 871-877.	2.6	28
583	Structural variation of transition metal–organic frameworks using deep eutectic solvents with different hydrogen bond donors. Dalton Transactions, 2019, 48, 10199-10209.	1.6	57
584	Selfâ€Assembly of Hexanuclear Lanthanide Carboxylate Clusters of Three Architectures. European Journal of Inorganic Chemistry, 2019, 2019, 3103-3111.	1.0	21
585	N-donor linker based metal-organic frameworks (MOFs): Advancement and prospects as functional materials. Coordination Chemistry Reviews, 2019, 395, 146-192.	9.5	98
586	A novel luminescent cadmium(II) MOFs exhibiting a sensitive and selective detection of trace amounts of nitroaromatics with excellent recyclability. Inorganica Chimica Acta, 2019, 494, 266-270.	1.2	12
587	Assembly of porous lanthanide metal–organic frameworks constructed by chalcone dicarboxylic acid and exploration of their properties. Polyhedron, 2019, 169, 24-31.	1.0	19
588	Fluorescent Zr(IV) Metal–Organic Frameworks Based on an Excited-State Intramolecular Proton Transfer-Type Ligand. Inorganic Chemistry, 2019, 58, 6918-6926.	1.9	13
589	<i>Quo vadis niobium</i> ? Divergent coordination behavior of early-transition metals towards MOF-5. Chemical Science, 2019, 10, 5906-5910.	3.7	15
590	Hydrophobic metal-organic frameworks: Potential toward emerging applications. APL Materials, 2019, 7, 050701.	2.2	40
591	Multi-component luminescence responsive Eu3+/Tb3+ hybrids based with metal-organic frameworks and zeolites A. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 220, 117107.	2.0	8
592	Enhanced photocatalytic performance of a Ti-based metal-organic framework for hydrogen production: Hybridization with ZnCr-LDH nanosheets. Scientific Reports, 2019, 9, 7584.	1.6	39
593	Insights into the Fluorescence Sensing Mechanism of Scandiumâ€Based Metalâ€Organic Frameworks by Solidâ€State NMR Spectroscopy. ChemistrySelect, 2019, 4, 5291-5299.	0.7	8
594	Dicarboxylate-Induced Structural Diversity of Luminescent Zn(II)/Cd(II) Metal-Organic Frameworks Based on the 2,5-Bis(4-pyridyl)thiazolo[5,4-d]thiazole Ligand. European Journal of Inorganic Chemistry, 2019, 2019, 2725-2734.	1.0	17

		CITATION REPORT		
#	Article		IF	Citations
595	Advances in DNA/RNA detection using nanotechnology. Advances in Clinical Chemistry, 20)19, 91, 31-98.	1.8	16
596	Deciphering the Relations between Pore Structure and Adsorption Behavior in Metal–On Frameworks: Unexpected Lessons from Argon Adsorption on Copper–Benzene-1,3,5-tric Journal of the American Chemical Society, 2019, 141, 8397-8401.	rganic carboxylate.	6.6	30
597	Highly Protonâ€Conductive Zinc Metalâ€Organic Framework Based On Nickel(II) Porphyri Chemistry - A European Journal, 2019, 25, 10552-10556.	nylphosphonate.	1.7	28
598	Thermo-sensitive luminescence of lanthanide complexes, clusters, coordination polymers a metal–organic frameworks with organic photosensitizers. Journal of Materials Chemistry 7494-7511.	and y C, 2019, 7,	2.7	156
599	Solid-Solution Mixed-Linker Synthesis of Isoreticular Al-Based MOFs for an Easy Hydrophili in Water-Sorption Heat Transformations. Chemistry of Materials, 2019, 31, 4051-4062.	city Tuning	3.2	47
600	Facile one-step solvothermal synthesis of a luminescent europium metal-organic framewo and selective sensing of uranyl ions. Analytical and Bioanalytical Chemistry, 2019, 411, 42	rk for rapid 13-4220.	1.9	30
601	1-D multifunctional Ln-CPs: Luminescence probes for Fe3+ and Cr(VI) and uncommon disc detection between Cr2O72â^' and CrO42â^' of Tb-CP in various media. Journal of Lumines 140-150.	riminative cence, 2019, 213,	1.5	28
602	A New Pathway to 2-Arylbenzoxazoles and 2-Arylbenzothiazoles Via One-Pot Oxidative Cy Reactions Under Iron-Organic Framework Catalysis. Catalysis Letters, 2019, 149, 2053-20	clization 63.	1.4	7
603	A dual-functional 3D coordination polymer as a luminescent sensor for acetone in an aque medium and detecting the temperature. Inorganic Chemistry Communication, 2019, 105,	ous 13-19.	1.8	25
604	Kinetic Control of Interpenetration in Fe–Biphenyl-4,4′-dicarboxylate Metal–Organ Coordination and Oxidation Modulation. Journal of the American Chemical Society, 2019, 8346-8357.	c Frameworks by 141,	6.6	58
605	Structural Engineering of Lowâ€Dimensional Metal–Organic Frameworks: Synthesis, Pro Applications. Advanced Science, 2019, 6, 1802373.	operties, and	5.6	214
606	Highly selective detection of Fe3+, Cd2+ and CH2Cl2 based on a fluorescent Zn-MOF with azine-decorated pores. Journal of Solid State Chemistry, 2019, 275, 131-140.		1.4	71
607	Application of surface molecular imprinted magnetic graphene oxide and high performanc behavior of bi-metal ZnCo MOF for determination of atropine in human serum. Talanta, 20 286-294.	e mimetic)19, 201,	2.9	57
608	Three Co(II) Metal–Organic Frameworks with Diverse Architectures for Selective Gas So Magnetic Studies. Inorganic Chemistry, 2019, 58, 6246-6256.	rption and	1.9	34
609	Enhancement of Intrinsic Proton Conductivity and Aniline Sensitivity by Introducing Dye N into the MOF Channel. ACS Applied Materials & Interfaces, 2019, 11, 16490-16495.	10lecules	4.0	65
610	Coordination preference of 1,2-bis((1H-imidazole-1-yl)methyl)benzene and different carbo with transition metal ions directed by weak interactions. Journal of Solid State Chemistry, 124-130.	xylate ligands 2019, 275,	1.4	4
611	{Zn ₆ } Cluster Based Metal–Organic Framework with Enhanced Room-Tem Phosphorescence and Optoelectronic Performances. Inorganic Chemistry, 2019, 58, 6215	perature -6221.	1.9	231
612	Cobalt(II) Coordination Polymers Assembled from Unexplored Pyridine-Carboxylic Acids: S Diversity and Catalytic Oxidation of Alcohols. Inorganic Chemistry, 2019, 58, 5875-5885.	tructural	1.9	120

#	Article	IF	CITATIONS
613	Two novel metal–organic frameworks based on pyridyl-imidazole-carboxyl multifunctional ligand: selective CO ₂ capture and multiresponsive luminescence sensor. Dalton Transactions, 2019, 48, 10892-10900.	1.6	70
614	Alkaline-earth and aminonicotinate based coordination polymers with combined fluorescence/long-lasting phosphorescence and metal ion sensing response. Journal of Materials Chemistry C, 2019, 7, 6997-7012.	2.7	21
615	Multivariable Sieving and Hierarchical Recognition for Organic Toxics in Nonhomogeneous Channel of MOFs. CheM, 2019, 5, 1337-1350.	5.8	59
616	Salting-in species induced self-assembly of stable MOFs. Chemical Science, 2019, 10, 5743-5748.	3.7	36
617	Structural tuning of zinc–porphyrin frameworks <i>via</i> auxiliary nitrogen-containing ligands towards selective adsorption of cationic dyes. Chemical Communications, 2019, 55, 6527-6530.	2.2	23
618	Two copper-based MOFs constructed from a linear diisophthalate linker: supramolecular isomerism and gas adsorption properties. CrystEngComm, 2019, 21, 3192-3198.	1.3	11
619	Two metal-carboxylate-azide coordination networks derived from 1,4-bis(3-carboxylatopyridinium-1-methylene)benzene: Synthesis, structure and properties. Journal of Solid State Chemistry, 2019, 275, 88-94.	1.4	4
620	Switching the Zinc Diphosphonates from 1D Chain to 2D Layer and 3D Framework by the Modulation of a Flexible Organic Amine. Crystal Growth and Design, 2019, 19, 2919-2926.	1.4	15
621	A thermo-responsive adsorbent-heater-thermometer nanomaterial for controlled drug release: (ZIF-8,EuxTby)@AuNP core-shell. Materials Science and Engineering C, 2019, 102, 578-588.	3.8	36
622	Strategies for Improving the Performance and Application of MOFs Photocatalysts. ChemCatChem, 2019, 11, 2978-2993.	1.8	46
623	A highly catalytically active Hf(IV) metal-organic framework for Knoevenagel condensation. Microporous and Mesoporous Materials, 2019, 284, 459-467.	2.2	47
624	Recent advances in the synthesis of spherical and nanoMOF-derived multifunctional porous carbon for nanomedicine applications. Coordination Chemistry Reviews, 2019, 391, 69-89.	9.5	58
625	Advanced Porous Materials for Sensing, Capture and Detoxification of Organic Pollutants toward Water Remediation. ACS Sustainable Chemistry and Engineering, 2019, 7, 7456-7478.	3.2	189
626	Understanding Quantitative Relationship between Methane Storage Capacities and Characteristic Properties of Metal–Organic Frameworks Based on Machine Learning. Journal of Physical Chemistry C, 2019, 123, 8550-8559.	1.5	49
627	An indium–organic framework for the efficient storage of light hydrocarbons and selective removal of organic dyes. Dalton Transactions, 2019, 48, 5527-5533.	1.6	34
628	Rapid in situ microwave synthesis of Fe3O4@MIL-100(Fe) for aqueous diclofenac sodium removal through integrated adsorption and photodegradation. Journal of Hazardous Materials, 2019, 373, 408-416.	6.5	148
629	Fluorescent pH nanosensors: Design strategies and applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2019, 39, 76-141.	5.6	85
630	Thermodynamically Controlled Linker Installation in Flexible Zirconium Metal–Organic Frameworks. Crystal Growth and Design, 2019, 19, 2069-2073.	1.4	13
#	Article	IF	CITATIONS
-----	--	-----	-----------
631	Metal-Organic Frameworks for Nanoarchitectures: Nanoparticle, Composite, Core-Shell, Hierarchical, and Hollow Structures. , 2019, , 151-194.		1
632	Supramolecular strategy for smart windows. Chemical Communications, 2019, 55, 4137-4149.	2.2	85
633	Composite multilayer films based on polyelectrolytes and in situ â€formed carbon nanostructures with enhanced photoluminescence and conductivity properties. Journal of Applied Polymer Science, 2019, 136, 47718.	1.3	9
634	Label-free electrochemical immunosensor based on AuNPs/Zn/Ni-ZIF-8-800@graphene composites for sensitive detection of monensin in milk. Sensors and Actuators B: Chemical, 2019, 288, 571-578.	4.0	50
635	A Flexible and Stable Interpenetrated Indium Pyridylcarboxylate Framework with Breathing Behaviors and Highly Selective Adsorption of Cationic Dyes. Inorganic Chemistry, 2019, 58, 4019-4025.	1.9	22
636	Bio-related applications of porous organic frameworks (POFs). Journal of Materials Chemistry B, 2019, 7, 2398-2420.	2.9	34
637	A multifunctional Zn(II)-based four-fold interpenetrated metal-organic framework for highly sensitive sensing 2,4,6-trinitrophenol (TNP), nitrofurazone (NFZ) and nitrofurantoin (NFT). Inorganic Chemistry Communication, 2019, 103, 21-24.	1.8	15
638	Ultrasonic-Assisted Synthesis of a Zn(II) Coordination Polymer in Aqueous Media and Its High-Performance Luminescent Sensing for 2,4,6-Trinitrophenol. Crystal Growth and Design, 2019, 19, 2139-2148.	1.4	26
639	A Pillar-Layered Zn-LMOF with Uncoordinated Carboxylic Acid Sites: High Performance for Luminescence Sensing Fe ³⁺ and TNP. Inorganic Chemistry, 2019, 58, 4026-4032.	1.9	105
640	Two alkynyl functionalized Co(II)-MOFs as fluorescent sensors exhibiting selectivity and sensitivity for Fe3+ and nitroaromatic compounds. Chinese Chemical Letters, 2019, 30, 1440-1444.	4.8	19
641	Highly selective and rapid detection of pentachlorophenol in aqueous solution with metalloporphyrinic MOFs. Microporous and Mesoporous Materials, 2019, 284, 36-42.	2.2	18
642	Tetracycline Generated Red Luminescence Based on a Novel Lanthanide Functionalized Layered Double Hydroxide Nanoplatform. Journal of Agricultural and Food Chemistry, 2019, 67, 3871-3878.	2.4	25
643	Mechanistic insight into the sensing of nitroaromatic compounds by metal-organic frameworks. Communications Chemistry, 2019, 2, .	2.0	82
644	Hybrid MOF-808-Tb nanospheres for highly sensitive and selective detection of acetone vapor and Fe ³⁺ in aqueous solution. Chemical Communications, 2019, 55, 4727-4730.	2.2	61
645	Two Cu _x I _y -based copper–organic frameworks with multiple secondary building units (SBUs): structure, gas adsorption and impressive ability of I ₂ sorption and release. Inorganic Chemistry Frontiers, 2019, 6, 1261-1266.	3.0	18
646	Structural Control of Metal–Organic Framework Bearing N-Heterocyclic Imidazolium Cation and Generation of Highly Stable Porous Structure. Inorganic Chemistry, 2019, 58, 6619-6627.	1.9	13
647	Pyrene-based MOFs as fluorescent sensors for PAHs: an energetic pathway of the backbone structure effect on response. Dalton Transactions, 2019, 48, 5705-5712.	1.6	20
648	Get the light out: nanoscaling MOFs for luminescence sensing and optical applications. Chemical Communications, 2019, 55, 4647-4650.	2.2	38

#	Article	IF	CITATIONS
649	Colorimetric analysis: A new strategy to improve ratiometric temperature sensing performance of lanthanide benzenedicarboxylates. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 377, 167-172.	2.0	2
650	Lanthanide Organic Framework as a Reversible Luminescent Sensor for Sulfamethazine Antibiotics. Inorganic Chemistry, 2019, 58, 4223-4229.	1.9	89
651	Crystals of Sb3+-coordination complexes exhibiting yellowish green emissions with outstanding lifetimes. Journal of Solid State Chemistry, 2019, 274, 69-74.	1.4	7
652	Luminescent Lanthanide Metal Organic Frameworks as Chemosensing Platforms towards Agrochemicals and Cations. Sensors, 2019, 19, 1260.	2.1	22
653	A novel photochromic metal–organic framework with good anion and amine sensing. Dalton Transactions, 2019, 48, 6558-6563.	1.6	57
654	Near-infrared-emissive metal–organic frameworks. Dalton Transactions, 2019, 48, 6669-6675.	1.6	24
655	Nanoscaled luminescent terbium metal–organic frameworks for measuring and scavenging reactive oxygen species in living cells. Journal of Materials Chemistry B, 2019, 7, 3027-3033.	2.9	23
656	Metal-organic framework (MOF-5) coated SERS active gold gratings: A platform for the selective detection of organic contaminants in soil. Analytica Chimica Acta, 2019, 1068, 70-79.	2.6	77
657	Solvo-thermal synthesis of an ultra-stable 3D luminescent zinc(II) coordination material and its application as a bi-functional re-generable visual fluorescent probe for Nicotinamide and Tetraphenylboron anion. Dyes and Pigments, 2019, 167, 51-59.	2.0	3
658	Transformation of Metalâ€Organic Frameworks into Stable Organic Frameworks with Inherited Skeletons and Catalytic Properties. Angewandte Chemie, 2019, 131, 8203-8207.	1.6	31
659	Transformation of Metalâ€Organic Frameworks into Stable Organic Frameworks with Inherited Skeletons and Catalytic Properties. Angewandte Chemie - International Edition, 2019, 58, 8119-8123.	7.2	41
660	Amphipathic Pentiptycene-Based Water-Resistant Cu-MOF for Efficient Oil/Water Separation. Inorganic Chemistry, 2019, 58, 5384-5387.	1.9	23
661	Coating a DNA self-assembled monolayer with a metal organic framework-based exoskeleton for improved sensing performance. Analyst, The, 2019, 144, 3539-3545.	1.7	6
662	Fe(III) porphyrin metal–organic framework as an artificial enzyme mimics and its application in biosensing of glucose and H2O2. Journal of Porous Materials, 2019, 26, 1507-1521.	1.3	41
663	Unambiguous Discrimination and Detection of Controlled Chemical Vapors by a Filmâ€Based Fluorescent Sensor Array. Advanced Materials Technologies, 2019, 4, 1800644.	3.0	27
664	Multi-emissive room temperature phosphorescence of a two-dimensional metal-organic framework. Inorganic Chemistry Communication, 2019, 104, 119-123.	1.8	6
665	pH-Modulated luminescence switching in a Eu-MOF: rapid detection of acidic amino acids. Journal of Materials Chemistry A, 2019, 7, 11127-11133.	5.2	108
666	Light Management with Patterned Micro―and Nanostructure Arrays for Photocatalysis, Photovoltaics, and Optoelectronic and Optical Devices. Advanced Functional Materials, 2019, 29, 1807275.	7.8	115

#	Article	IF	CITATIONS
667	Dynamic coordination of natural amino acids-lanthanides to control reversible luminescent switching of hybrid hydrogels and anti-counterfeiting. Dyes and Pigments, 2019, 166, 375-380.	2.0	28
668	A manganese-based metal-organic framework electrochemical sensor for highly sensitive cadmium ions detection. Journal of Solid State Chemistry, 2019, 275, 38-42.	1.4	38
669	Novel Synthesis of Cuâ€Schiff Base Complex@Metalâ€Organic Framework MILâ€101 via a Mild Method: A Comparative Study for Rapid Catalytic Effects. ChemistryOpen, 2019, 8, 333-338.	0.9	8
670	Three water soluble coordination polymers: Synthesis, crystal structure and luminescent sensing for Cr(VI) and MnO4â^ ions in the aqueous phase. Polyhedron, 2019, 166, 60-64.	1.0	13
671	Selective, sensitive, and recyclable sensing of ascorbic acid in water based on a water-stable Zn (II) coordination polymer. Inorganic Chemistry Communication, 2019, 104, 129-133.	1.8	9
672	Hollow Functional Materials Derived from Metal–Organic Frameworks: Synthetic Strategies, Conversion Mechanisms, and Electrochemical Applications. Advanced Materials, 2019, 31, e1804903.	11.1	370
673	Optical properties of Sm3+ and Tb3+ co-doped CaMoO4 phosphor for temperature sensing. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 214, 537-543.	2.0	33
674	Facile Fabrication of a Multifunctional Metal–Organic Framework-based Sensor Exhibiting Exclusive Solvochromic Behaviors toward Ketone Molecules. ACS Applied Materials & Interfaces, 2019, 11, 8227-8233.	4.0	22
675	Assembly of metalâ \in organic frameworks based on 4-connected 3,3â \in 2,5,5â \in 2-azobenzenetetracarboxylic acid: structures, magnetic properties, and sensing of Fe ³⁺ ions. New Journal of Chemistry, 2019, 43, 4226-4234.	1.4	8
676	Structural tuning of coordination polymers by 4-connecting metal node and secondary building process. Chinese Chemical Letters, 2019, 30, 1297-1301.	4.8	1
677	A series of two-dimensional lanthanide coordination polymers: synthesis, structures, magnetism and selective luminescence detection for heavy metal ions and toxic solvents. Acta Crystallographica Section C, Structural Chemistry, 2019, 75, 221-230.	0.2	5
678	Morphology transformation and self-selective etching of ZnO nanostructures under centralized polarization field. Functional Materials Letters, 2019, 12, 1850096.	0.7	1
679	Copper-Based SURMOFs for Nitric Oxide Generation: Hemocompatibility, Vascular Cell Growth, and Tissue Response. ACS Applied Materials & amp; Interfaces, 2019, 11, 7872-7883.	4.0	42
680	Water-assisted proton conductivity of two highly stable imidazole multi-carboxylate-based MOFs. New Journal of Chemistry, 2019, 43, 4859-4866.	1.4	28
681	Amino functionalized Zn/Cd-metal–organic frameworks for selective CO ₂ adsorption and Knoevenagel condensation reactions. Dalton Transactions, 2019, 48, 4007-4014.	1.6	47
682	Cadmiumâ€Based Coordination Polymers from 1D to 3D: Synthesis, Structures, and Photoluminescent and Electrochemiluminescent Properties. ChemPlusChem, 2019, 84, 190-202.	1.3	28
683	Progress and challenges of graphene oxide/metal-organic composites. Coordination Chemistry Reviews, 2019, 387, 262-272.	9.5	99
684	Luminescent Metal–Organic Framework for Lithium Harvesting Applications. ACS Sustainable Chemistry and Engineering, 2019, 7, 6561-6568.	3.2	21

#	Article	IF	Citations
685	Two triphenylamine-based luminescent metal–organic frameworks as a dual-functional sensor for the detection of nitroaromatic compounds and ofloxacin antibiotic. CrystEngComm, 2019, 21, 2559-2570.	1.3	53
686	A stable mixed lanthanide metal–organic framework for highly sensitive thermometry. Dalton Transactions, 2019, 48, 3723-3729.	1.6	59
687	Electrocatalysis of Cuâ [^] 'MOF/Graphene Composite and its Sensing Application for Electrochemical Simultaneous Determination of Dopamine and Paracetamol. Electroanalysis, 2019, 31, 1002-1008.	1.5	72
688	Dual-Emitting EY@Zr-MOF Composite as Self-Calibrating Luminescent Sensor for Selective Detection of Inorganic lons and Nitroaromatics. ACS Sustainable Chemistry and Engineering, 2019, 7, 6196-6203.	3.2	96
689	A Highly Redâ€Emissive Leadâ€Free Indiumâ€Based Perovskite Single Crystal for Sensitive Water Detection. Angewandte Chemie - International Edition, 2019, 58, 5277-5281.	7.2	310
690	Recent advances in the rational synthesis and sensing applications of metal-organic framework biocomposites. Coordination Chemistry Reviews, 2019, 387, 60-78.	9.5	172
691	Functional microscale single-phase white emission lanthanide MOF for tunable fluorescent sensing and water quality monitoring. Journal of Materials Chemistry C, 2019, 7, 3598-3606.	2.7	47
692	A Highly Redâ€Emissive Leadâ€Free Indiumâ€Based Perovskite Single Crystal for Sensitive Water Detection. Angewandte Chemie, 2019, 131, 5331-5335.	1.6	57
693	One-pot doping platinum porphyrin recognition centers in Zr-based MOFs for ratiometric luminescent monitoring of nitric oxide in living cells. Talanta, 2019, 200, 472-479.	2.9	27
694	Leveraging Fluorescent Emission to Unitary Yield: Dimerization of Polycyclic Aromatic Hydrocarbons. Helvetica Chimica Acta, 2019, 102, e1900004.	1.0	3
695	Integration of Metal Nanoparticles into Metal–Organic Frameworks for Composite Catalysts: Design and Synthetic Strategy. Small, 2019, 15, e1804849.	5.2	67
696	Syntheses, structures and properties of structural diversity of 3D coordination polymers based on bis(imidazole) and dicarboxylate. Polyhedron, 2019, 162, 303-310.	1.0	14
697	A Photoluminescent Cd(II) Coordination Polymer with Highly Selective Detection for Nitrophenol. Russian Journal of Inorganic Chemistry, 2019, 64, 1769-1774.	0.3	1
698	Hydrothermal synthesis and crystal structure of <i>cylo</i> [tetraaqua-bis(î¼ ₂ -1,4-bis(1 <i>H</i> -benzo[<i>d</i>]imidazol-1-yl)but-2-ene-Î ^o ^{2 C₂₆H₂₃N₅O₈Ni. Zeitschrift Fur Kristallographie -}) Tj I 0.1	ETQq1 1 0.78 0
699	New Crystal Structures, 2019, 234, 983-986. Two mixed-ligand Cd(<scp>ii</scp>)–organic frameworks with unique topologies: selective luminescence sensing of TNP and Cu ²⁺ ions with recyclable performances. New Journal of Chemistry, 2019, 43, 16078-16088.	1.4	20
700	A novel 3D Cd-based luminescent coordination polymer for selective sensing of 4-NP and NZF. New Journal of Chemistry, 2019, 43, 16853-16859.	1.4	20
701	Self-assembly and photo-responsive behavior of bis-terpyridyl Eu3+-complex L1. New Journal of Chemistry, 2019, 43, 19355-19364.	1.4	3
702	Green-light-induced melting of self-assembled azobenzene nano/microstructures. New Journal of Chemistry, 2019, 43, 19014-19019.	1.4	8

#	Article	IF	CITATIONS
703	Improving LMOF luminescence quantum yield through guest-mediated rigidification. Journal of Materials Chemistry C, 2019, 7, 14739-14744.	2.7	17
704	Large Ln ₄₂ coordination nanorings: NIR luminescence sensing of metal ions and nitro explosives. Chemical Communications, 2019, 55, 13116-13119.	2.2	44
705	A new type of composite MOFs based on high-valent Sb(<scp>v</scp>)-based units and cuprous-halide clusters. Chemical Communications, 2019, 55, 15113-15116.	2.2	9
706	A pyrazine core-based luminescent Zr(<scp>iv</scp>) organic framework for specific sensing of Fe ³⁺ , picric acid and Cr ₂ O ₇ ^{2â^'} . CrystEngComm, 2019, 21, 6252-6260.	1.3	26
707	Structure and electronic properties of rare earth DOBDC metal–organic-frameworks. Physical Chemistry Chemical Physics, 2019, 21, 23085-23093.	1.3	24
708	A smart nanoprobe based on a gadolinium complex encapsulated by ZIF-8 with enhanced room temperature phosphorescence for synchronous oxygen sensing and photodynamic therapy. Dalton Transactions, 2019, 48, 16952-16960.	1.6	16
709	Eu-based coordination polymer microrods for low-loss optical waveguiding application. Nanoscale, 2019, 11, 21061-21067.	2.8	5
710	Coordination polymer-based conductive materials: ionic conductivity <i>vs.</i> electronic conductivity. Journal of Materials Chemistry A, 2019, 7, 24059-24091.	5.2	90
711	Self-assembly of luminescent 42-metal lanthanide nanowheels with sensing properties towards metal ions and nitro explosives. Journal of Materials Chemistry C, 2019, 7, 13425-13431.	2.7	23
713	A stable pillared metal–organic framework constructed by H 4 TCPP ligand as luminescent sensor for selective detection of TNP and Fe 3+ ions. Applied Organometallic Chemistry, 2019, 33, e5243.	1.7	15
714	Fluorescence Turn-On Response Amplified by Space Confinement in Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2019, 11, 47112-47120.	4.0	26
715	Sensitive and selective fluorometric determination of DNA by using layered hexagonal nanosheets of a covalent organic framework prepared from p-phenylenediamine and benzene-1,3,5-tricarboxaldehyde. Mikrochimica Acta, 2019, 186, 833.	2.5	21
716	Dye-Modified Metal–Organic Framework as a Recyclable Luminescent Sensor for Nicotine Determination in Urine Solution and Living Cell. ACS Applied Materials & Interfaces, 2019, 11, 47253-47258.	4.0	45
717	A Luminescent Lanthanideâ€Functionalized Metalâ€Organic Framework as a Highly Selective and Sensitive Chemical Sensor for Dopamine. ChemistrySelect, 2019, 4, 12573-12579.	0.7	7
718	A Thiophene-2-carboxamide-Functionalized Zr(IV) Organic Framework as a Prolific and Recyclable Heterogeneous Catalyst for Regioselective Ring Opening of Epoxides. Inorganic Chemistry, 2019, 58, 16581-16591.	1.9	16
719	Giant and Multistage Nonlinear Optical Response in Porphyrin-Based Surface-Supported Metal–Organic Framework Nanofilms. Nano Letters, 2019, 19, 9095-9101.	4.5	61
720	Impact of Pressure and Temperature on the Broadband Dielectric Response of the HKUST-1 Metal–Organic Framework. Journal of Physical Chemistry C, 2019, 123, 29427-29435.	1.5	14
721	A novel (3,6)-connected Cd ^{II} coordination polymer based on an ether-linked tricarboxylate ligand: synthesis, topology and luminescence sensing properties in aqueous solution. Acta Crystallographica Section C, Structural Chemistry, 2019, 75, 1666-1674.	0.2	0

#	ARTICLE	IF	CITATIONS
722	Modern Approaches to the Tuning of the Lanthanide(3+) Coordination Compound Luminescent Characteristics: A Review. Theoretical and Experimental Chemistry, 2019, 55, 293-315.	0.2	12
723	Thiazole- and Thiadiazole-Based Metal–Organic Frameworks and Coordination Polymers for Luminescent Applications. Inorganics, 2019, 7, 144.	1.2	22
724	Band gap, sorption properties and fluorescence sensing behaviour of a novel 1D→2D cathenane-like cobalt(II)–organic framework. Acta Crystallographica Section C, Structural Chemistry, 2019, 75, 1593-1604.	0.2	3
725	A Highly Stable Luminescent Euâ€MOF Exhibiting Efficient Response to Nitrofuran Antibiotics through the Inner Filter Effect and Photoinduced Electron Transfer. European Journal of Inorganic Chemistry, 2019, 2019, 5077-5084.	1.0	38
726	A tri-functional metal–organic framework heterogeneous catalyst for efficient conversion of CO ₂ under mild and co-catalyst free conditions. Chemical Communications, 2019, 55, 14347-14350.	2.2	43
727	A water-stable zinc(<scp>ii</scp>)–organic framework as a multiresponsive luminescent sensor for toxic heavy metal cations, oxyanions and organochlorine pesticides in aqueous solution. Dalton Transactions, 2019, 48, 16776-16785.	1.6	71
728	Near-white photoluminescence in paramagnetic Gd ₆ O ₅ F ₈ nanoparticles. CrystEngComm, 2019, 21, 6313-6318.	1.3	1
729	Insight into the structure and bonding of copper(i) iodide clusters and a cluster-based coordination polymer. New Journal of Chemistry, 2019, 43, 16176-16187.	1.4	4
730	Chemically modified electrodes with MOFs for the determination of inorganic and organic analytes <i>via</i> voltammetric techniques: a critical review. Inorganic Chemistry Frontiers, 2019, 6, 3440-3455.	3.0	38
731	Two-dimensional Cd(<scp>ii</scp>) coordination polymer encapsulated by Tb ³⁺ as a reversible luminescent probe for Fe ³⁺ . RSC Advances, 2019, 9, 34949-34957.	1.7	3
732	Recent advances in metallopolymer-based drug delivery systems. RSC Advances, 2019, 9, 37009-37051.	1.7	18
733	Temperature-induced structural diversity of metal–organic frameworks and their applications in selective sensing of nitrobenzene and electrocatalyzing the oxygen evolution reaction. RSC Advances, 2019, 9, 33890-33897.	1.7	15
734	Efficient detection of a biomarker for infant jaundice by a europium(<scp>iii</scp>)-organic framework luminescence sensor. RSC Advances, 2019, 9, 37584-37593.	1.7	17
735	Three new coordination polymers based on bis(4-(4 <i>H</i> -1,2,4-triazol-4-yl)phenyl)methane: syntheses, structures, multiresponsive luminescent sensitive detection for antibiotics and pesticides, and antitumor activities. RSC Advances, 2019, 9, 42272-42283.	1.7	8
736	Improving MOF stability: approaches and applications. Chemical Science, 2019, 10, 10209-10230.	3.7	855
737	Nanoarchitectonicâ€Based Material Platforms for Environmental and Bioprocessing Applications. Chemical Record, 2019, 19, 1891-1912.	2.9	17
738	Syntheses, structures and magnetic properties of three cobalt(II) coordination polymers based on flexible itaconic acid ligands. Transition Metal Chemistry, 2019, 44, 89-97.	0.7	10
739	Five isomorphic lanthanide metal-organic frameworks constructed from 5-(3-carboxy-phenyl)-pyridine-2-carboxylic acid and oxalate: Synthesis, crystal structures and selective fluorescence sensing for aniline. Journal of Solid State Chemistry, 2019, 269, 43-50.	1.4	14

#	Article	IF	Citations
740	A multi-responsive luminescent sensor based on flexible and ultrastable Zn-MOF@SWCNT hybrid nanocomposite film. Polyhedron, 2019, 160, 68-73.	1.0	5
741	Cobalt(II)-Based Metal–Organic Framework as Bifunctional Materials for Ag(I) Detection and Proton Reduction Catalysis for Hydrogen Production. Inorganic Chemistry, 2019, 58, 924-931.	1.9	33
742	A highly selective turn-on luminescent logic gates probe based on post-synthetic MOF for aspartic acid detection. Sensors and Actuators B: Chemical, 2019, 284, 91-95.	4.0	74
743	Two 2D Zinc(II) Coordination Polymers and Their Orange IV Composites: Preparation, Structures, and Photocurrent Responses. Crystal Growth and Design, 2019, 19, 211-218.	1.4	14
744	Syntheses, Gas Adsorption, and Sensing Properties of Solvent-Controlled Zn(II) Pseudo-Supramolecular Isomers and Pb(II) Supramolecular Isomers. Crystal Growth and Design, 2019, 19, 630-637.	1.4	52
745	Chemical Detection Using a Metal–Organic Framework Single Crystal Coupled to an Optical Fiber. ACS Applied Materials & Interfaces, 2019, 11, 4393-4398.	4.0	42
746	3-D lanthanide coordination polymers with the flexible 1,3-phenylenediacetate linker: Spectroscopic, structural and thermal investigations. Polyhedron, 2019, 159, 93-101.	1.0	8
747	Metal–Organic Frameworks for Photocatalysis and Photothermal Catalysis. Accounts of Chemical Research, 2019, 52, 356-366.	7.6	880
748	Highly sensitive and recyclable sensing of Fe3+ ions based on a luminescent anionic [Cd(DMIPA)]2- framework with exposed thioether group in the snowflake-like channels. Journal of Solid State Chemistry, 2019, 270, 493-499.	1.4	31
749	Mixed-Ligand Metal–Organic Framework for Two-Photon Responsive Photocatalytic C–N and C–C Coupling Reactions. ACS Catalysis, 2019, 9, 422-430.	5.5	88
750	Carbon dot-decorated porous organic cage as fluorescent sensor for rapid discrimination of nitrophenol isomers and chiral alcohols. Analytica Chimica Acta, 2019, 1050, 146-153.	2.6	52
751	A Versatile Metalloporphyrinic Framework Platform for Highly Efficient Bioinspired, Photo―and Asymmetric Catalysis. Angewandte Chemie - International Edition, 2019, 58, 168-172.	7.2	25
752	A Versatile Metalloporphyrinic Framework Platform for Highly Efficient Bioinspired, Photo―and Asymmetric Catalysis. Angewandte Chemie, 2019, 131, 174-178.	1.6	4
753	Luminescent sensing and photocatalytic degradation in a new 3D Zn(II)-based highly luminescent metalâ^'organic framework. Journal of Molecular Structure, 2019, 1179, 612-617.	1.8	24
754	Metal–organic frameworks: Structures and functional applications. Materials Today, 2019, 27, 43-68.	8.3	627
755	Luminescent MOF nanosheets for enzyme assisted detection of H2O2 and glucose and activity assay of glucose oxidase. Sensors and Actuators B: Chemical, 2019, 282, 443-448.	4.0	59
756	Guestâ€Triggered Aggregationâ€Induced Emission in Silver Chalcogenolate Cluster Metal–Organic Frameworks. Advanced Science, 2019, 6, 1801304.	5.6	120
757	A hydrostable Cadmium–Organic Framework for Highly Selective and Sensitive Luminescence Sensing of Al3+ Ion. Journal of Inorganic and Organometallic Polymers and Materials, 2019, 29, 1829-1837.	1.9	6

#	Article	IF	Citations
758	Green Synthesis of Self Assembled Nanospherical Dysprosium MOFs: Selective and Efficient Detection of Picric Acid in Aqueous and Gas Phase. ACS Sustainable Chemistry and Engineering, 2019, 7, 819-830.	3.2	45
759	Metal–organic frameworks in Germany: From synthesis to function. Coordination Chemistry Reviews, 2019, 380, 378-418.	9.5	91
760	Colorimetric hydrazine detection and fluorescent hydrogen peroxide imaging by using a multifunctional chemical probe. Analytica Chimica Acta, 2019, 1052, 137-144.	2.6	32
761	Tunable multi-color luminescence and white emission in lanthanide ion functionalized polyoxometalate-based metal–organic frameworks hybrids and fabricated thin films. Journal of Alloys and Compounds, 2019, 777, 415-422.	2.8	17
762	Crystal structure, thermal stability and photoluminesence properties of five new Zn(II) coordination polymers constructed from mixed ligand; N-donor pyridine ligands and bis(4-carboxylphenyl)phosphinic acid. Journal of Molecular Structure, 2019, 1180, 63-71.	1.8	9
763	Structural, electronic, and dielectric properties of a large random network model of amorphous zeolitic imidazolate frameworks and its analogues. Journal of the American Ceramic Society, 2019, 102, 4602-4611.	1.9	13
764	White-Light-Emitting Decoding Sensing for Eight Frequently-Used Antibiotics Based on a Lanthanide Metal-Organic Framework. Polymers, 2019, 11, 99.	2.0	21
765	Synthesis of g-C3N4@CuMOFs nanocomposite with superior peroxidase mimetic activity for the fluorometric measurement of glucose. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 213, 28-36.	2.0	34
766	Functional Two-Dimensional Coordination Polymer Exhibiting Luminescence Detection of Nitroaromatics. Crystal Growth and Design, 2019, 19, 1172-1182.	1.4	64
767	Water-stable lanthanide-based metal-organic frameworks for rapid and sensitive detection of nitrobenzene derivatives. Journal of Solid State Chemistry, 2019, 270, 463-469.	1.4	38
768	Coll Complexes with a Tripyridine Ligand, Containing a 2,6-Di-tert-butylphenolic Fragment: Synthesis, Structure, and Formation of Stable Radicals. ACS Omega, 2019, 4, 203-213.	1.6	3
769	Versatile and Switchable Responsive Properties of a Lanthanideâ€Viologen Metal–Organic Framework. Small, 2019, 15, e1803468.	5.2	88
770	Photosensitizing single-site metalâ^'organic framework enabling visible-light-driven CO2 reduction for syngas production. Applied Catalysis B: Environmental, 2019, 245, 496-501.	10.8	119
771	Chance-constrained stochastic congestion management of power systems considering uncertainty of wind power and demand side response. International Journal of Electrical Power and Energy Systems, 2019, 107, 703-714.	3.3	47
772	A functional anionic metal–organic framework for selective adsorption and separation of organic dyes. Polyhedron, 2019, 161, 71-77.	1.0	24
773	Flexible and breathing metal–organic framework with high and selective carbon dioxide storage versus nitrogen. Polyhedron, 2019, 161, 56-62.	1.0	16
774	Structure and Emission Modulation of a Series of Cd(II) Luminescent Coordination Polymers through Guest Dependent Donor–Acceptor Interaction. Crystal Growth and Design, 2019, 19, 1391-1398.	1.4	27
775	MIL-53(Al)/Carbon Films for CO ₂ -Sensing at High Pressure. ACS Sustainable Chemistry and Engineering, 2019, 7, 4012-4018.	3.2	38

			2
#		IF	CITATIONS
776	Graphene Aerogela€"Metala€"Organic Framework-Based Electrochemical Method for Simultaneous Detection of Multiple Heavy-Metal Ions. Analytical Chemistry, 2019, 91, 888-895.	3.2	333
777	Four new water-stable metal-organic frameworks based on diverse metal clusters: Syntheses, structures, and luminescent sensing properties. Journal of Solid State Chemistry, 2019, 269, 386-395.	1.4	10
778	Synthesis and photo-physics of red emitting europium complexes: An estimation of the role of ancillary ligand by chemical partition of radiative decay rate. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 370, 135-144.	2.0	34
779	Synthesis and structural elucidation of neutral N-donor linker based bi-porous isostructural cationic metal-organic frameworks. Inorganica Chimica Acta, 2019, 486, 401-405.	1.2	3
780	Modulating photoelectronic performance of metal–organic frameworks for premium photocatalysis. Coordination Chemistry Reviews, 2019, 380, 201-229.	9.5	112
781	Metal-Organic Frameworks: New Functional Materials and Applications. , 2019, , 35-54.		2
782	Detection of pesticide using the large stokes shift of luminescence of a mixed lanthanide co-doped metal–organic framework. Polyhedron, 2019, 158, 277-282.	1.0	19
783	Fluorescent Cadmium Bipillared‣ayer Open Frameworks: Synthesis, Structures, Sensing of Nitro Compounds, and Capture of Volatile Iodine. Chemistry - A European Journal, 2019, 25, 1337-1344.	1.7	23
784	Five new Cd(II) coordination polymers constructed from 4,4′-(hydroxyphosphoryl)dibenzoic acid and N-donor pyridine ligands. Polyhedron, 2019, 158, 144-153.	1.0	10
785	Selective adsorption and removal of drug contaminants by using an extremely stable Cu(II)-based 3D metal-organic framework. Chemosphere, 2019, 215, 524-531.	4.2	104
786	Matrix Coordination Induced Emission in a Threeâ€Dimensional Silver Clusterâ€Assembled Material. Chemistry - A European Journal, 2019, 25, 2750-2756.	1.7	38
787	Two Stable Zn-Cluster-Based Metal–Organic Frameworks with Breathing Behavior: Synthesis, Structure, and Adsorption Properties. Inorganic Chemistry, 2019, 58, 391-396.	1.9	26
788	Continuous multi-channel sensing of volatile acid and organic amine gases using a fluorescent self-assembly system. Journal of Materials Chemistry C, 2019, 7, 133-142.	2.7	45
789	Large Pore Isoreticular Strontium-Organic Frameworks: Syntheses, Crystal Structures, and Thermal and Luminescent Properties. Crystal Growth and Design, 2019, 19, 268-274.	1.4	10
790	A mixed valence Tb(III)/Tb(IV) metal–organic framework: Crystal structure, luminescence property and selective detection of naproxen. Polyhedron, 2019, 159, 298-307.	1.0	23
791	Stable Tb(III)-Based Metal–Organic Framework: Structure, Photoluminescence, and Chemical Sensing of 2-Thiazolidinethione-4-carboxylic Acid as a Biomarker of CS ₂ . Inorganic Chemistry, 2019, 58, 524-534.	1.9	76
792	Cucurbit[6]uril-based supramolecular assemblies incorporating metal complexes with multiaromatic ligands as structure-directing agent for detection of aromatic amines and nitroaromatic compounds. Sensors and Actuators B: Chemical, 2019, 282, 844-853.	4.0	50
793	Tritopic Triazatruxene Ligands for Multicomponent Metalâ€Organic Frameworks. Chemistry - an Asian Journal, 2019, 14, 1167-1174.	1.7	13

#	Article	IF	Citations
794	Fluorene – Triazine conjugated porous organic polymer framework for superamplified sensing of nitroaromatic explosives. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 371, 414-422.	2.0	26
795	Effect of nitrogen-position on the structures and magnetic properties of diazole-containing tripodal coordination compounds. Polyhedron, 2019, 159, 159-166.	1.0	1
796	Lanthanideâ€Based Thermometers: At the Cuttingâ€Edge of Luminescence Thermometry. Advanced Optical Materials, 2019, 7, 1801239.	3.6	631
797	Synthetic Strategies and Structural Arrangements of Isoreticular Mixed omponent Metal–Organic Frameworks. Chemistry - A European Journal, 2019, 25, 1866-1882.	1.7	58
798	Temperature- and solvent-dependent structures of three zinc(II) metal-organic frameworks for nitroaromatic explosives detection. Journal of Solid State Chemistry, 2019, 269, 195-202.	1.4	37
799	A Eu3+ post-functionalized metal-organic framework as fluorescent probe for highly selective sensing of Cu2+ in aqueous media. Journal of Molecular Structure, 2019, 1177, 444-448.	1.8	36
800	Two efficient pH sensors based on heteronuclear metal-organic frameworks. Journal of Luminescence, 2019, 205, 380-384.	1.5	23
801	Selective fluorescent sensing and photodegradation properties of Tb(III)-based MOFs with different bulky backbone ligands. Polyhedron, 2019, 157, 63-70.	1.0	12
802	New lanthanide ternary complex system in electrospun nanofibers: Assembly, physico-chemical property and sensor application. Chemical Engineering Journal, 2019, 358, 67-73.	6.6	59
803	Metallosalen-based crystalline porous materials: Synthesis and property. Coordination Chemistry Reviews, 2019, 378, 483-499.	9.5	82
804	Multicenter Metal–Organic Frameworkâ€Based Ratiometric Fluorescent Sensors. Advanced Materials, 2020, 32, e1805871.	11.1	413
805	Construction of mixed carboxylate and pyrogallate building units for luminescent metal–organic frameworks. Chinese Chemical Letters, 2020, 31, 813-817.	4.8	10
806	Receptor fluoride fine-tuning of fluorescent polymer probe for highly sensitive fluorescence response of methamphetamine vapor. Dyes and Pigments, 2020, 172, 107852.	2.0	15
807	Photo-luminescent chiral carbon-dot@Eu(D-cam) nanocomposites for selectively luminescence sensing of l-phenylalanine. Journal of Molecular Structure, 2020, 1201, 127214.	1.8	21
808	Broad spectrum detection of veterinary drugs with a highly stable metal-organic framework. Journal of Hazardous Materials, 2020, 382, 121018.	6.5	64
809	A Dye@MOF composite as luminescent sensory material for selective and sensitive recognition of Fe(III) ions in water. Inorganica Chimica Acta, 2020, 500, 119205.	1.2	34
810	A One-Dimensional Double-Chain Co(II) Metal–Organic Framework Based on Mixed Flexible N-donor Carboxylate and Bipyridine Ligands: Synthesis, Structure, Thermal Stability and Magnetic Property. Journal of Cluster Science, 2020, 31, 347-354.	1.7	5
811	Polymernetzwerke: Von Kunststoffen und Gelen zu porösen Gerüsten. Angewandte Chemie, 2020, 132, 5054-5085.	1.6	16

#	Article	IF	CITATIONS
812	Polymer Networks: From Plastics and Gels to Porous Frameworks. Angewandte Chemie - International Edition, 2020, 59, 5022-5049.	7.2	194
813	Adsorption and diffusion of CO2 in CPO-27–Ni beads. Adsorption, 2020, 26, 711-721.	1.4	12
814	A porous luminescent Zn-MOF for selective probing Fe3+ and nitrophenolic compounds. Inorganic Chemistry Communication, 2020, 111, 107644.	1.8	11
815	Artificial nanozyme based on platinum nanoparticles anchored metal-organic frameworks with enhanced electrocatalytic activity for detection of telomeres activity. Biosensors and Bioelectronics, 2020, 149, 111838.	5.3	54
816	Rapid colorimetric detection of Pb2+ with β-cyclodextrin-functionalized nanocrystalline gold. Materials Chemistry and Physics, 2020, 243, 122168.	2.0	5
817	Terbium metal organic framework: Microwave synthesis and selective sensing of nitrite. Inorganic Chemistry Communication, 2020, 111, 107627.	1.8	11
818	Adsorptive purification of organic contaminants of emerging concern from water with metal–organic frameworks. , 2020, , 47-92.		2
819	Gold nanoclusters-poly(9,9-dioctylfluorenyl-2,7-diyl) dots@zeolitic imidazolate framework-8 (ZIF-8) nanohybrid based probe for ratiometric analysis of dopamine. Analytica Chimica Acta, 2020, 1098, 102-109.	2.6	22
820	Ammoniated MOF-74(Zn) derivatives as luminescent sensor for highly selective detection of tetrabromobisphenol A. Ecotoxicology and Environmental Safety, 2020, 187, 109821.	2.9	25
821	Synthesis, Structure and Photocatalytic Dye Degradation Ability of Co(II)-Based Coordination Polymers. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 2105-2113.	1.9	7
822	Rigidifying induced fluorescence enhancement in 2D porous covalent triazine framework nanosheets for the simultaneously luminous detection and adsorption removal of antibiotics. Chemical Engineering Journal, 2020, 384, 123382.	6.6	83
823	Organosulfonate Counteranions—A Trapped Coordination Polymer as a Highâ€Output Triboelectric Nanogenerator Material for Selfâ€Powered Anticorrosion. Chemistry - A European Journal, 2020, 26, 584-591.	1.7	51
824	A thermal stable pincer-MOF with high selective and sensitive nitro explosive TNP, metal ion Fe3+ and pH sensing in aqueous solution. Dyes and Pigments, 2020, 173, 107993.	2.0	94
825	Two isomeric In(<scp>iii</scp>)-MOFs: unexpected stability difference and selective fluorescence detection of fluoroquinolone antibiotics in water. Inorganic Chemistry Frontiers, 2020, 7, 1161-1171.	3.0	89
826	Aggregation-induced emission compounds based on 9,10-diheteroarylanthracene and their applications in cell imaging. RSC Advances, 2020, 10, 2170-2179.	1.7	13
827	The Advent of Electrically Conducting Double-Helical Metal–Organic Frameworks Featuring Butterfly-Shaped Electron-Rich π-Extended Tetrathiafulvalene Ligands. ACS Applied Materials & Interfaces, 2020, 12, 12955-12961.	4.0	38
828	Humidity Sensing through Reversible Isomerization of a Covalent Organic Framework. Journal of the American Chemical Society, 2020, 142, 783-791.	6.6	190
829	Time-dependent solid-state molecular motion and colour tuning of host-guest systems by organic solvents. Nature Communications, 2020, 11, 77.	5.8	51

#	Article	IF	CITATIONS
830	Functional group induced structural diversities and photocatalytic, magnetic and luminescence sensing properties of four cobalt(<scp>ii</scp>) coordination polymers based on 1,3,5-tris(2-methylimidazol-1-yl)benzene. CrystEngComm, 2020, 22, 811-820.	1.3	56
831	Luminescent metal–organic framework-based phosphor for the detection of toxic oxoanions in an aqueous medium. Dalton Transactions, 2020, 49, 829-840.	1.6	30
832	Unravelling the mechanism of water sensing by the Mg ²⁺ dihydroxy-terephthalate MOF (AEMOF- 1′). Molecular Systems Design and Engineering, 2020, 5, 461-468.	1.7	14
833	Specific recognition of toxic allyl alcohol by pore-functionalized metal–organic frameworks. Molecular Systems Design and Engineering, 2020, 5, 469-476.	1.7	8
834	Recent advances in two-dimensional-material-based sensing technology toward health and environmental monitoring applications. Nanoscale, 2020, 12, 3535-3559.	2.8	318
835	Three stable dinuclear $[M < sub > 2 < /sub > (OH) < sub > 0.5 < /sub > (NO < sub > 3 < /sub > 0.5 < /sub > (RCOO) < sub > 2 < /sub > (RN) < sub > 4 < /sub (M = Cu, Ni) based metalâ € "organic frameworks with high CO < sub > 2 < /sub > adsorption and selective separation for O < sub > 2 < /sub > /N < sub > 2 < /sub > and C < sub > 3 < /sub > H < sub > 8 < /sub > /CH < sub > 4 < /sub > .$	b>] 3.0	4
836	A Co-MOF with a (4,4)-connected binodal two-dimensional topology: synthesis, structure and photocatalytic properties. Acta Crystallographica Section C, Structural Chemistry, 2020, 76, 23-29.	0.2	8
837	A Stable Broad-Range Fluorescent pH Sensor Based on Eu ³⁺ Post-Synthetic Modification of a Metal–Organic Framework. Industrial & Engineering Chemistry Research, 2020, 59, 1764-1771.	1.8	19
838	Fluorescent nanosensor for <i>in situ</i> detection of phosphate and alkaline phosphatase in mice with parathyroid dysfunction. Chemical Communications, 2020, 56, 2431-2434.	2.2	18
839	Rational design of a high-efficiency, multivariate metal–organic framework phosphor for white LED bulbs. Chemical Science, 2020, 11, 1814-1824.	3.7	43
840	Synthesis, Structure, and Characterization of Variable Chains in a Series of Transition Metal Coordination Compounds. European Journal of Inorganic Chemistry, 2020, 2020, 452-460.	1.0	6
841	A self-calibrating dual responsive platform for the sensitive detection of sulfite and sulfonic derivatives based on a robust Hf(<scp>iv</scp>) metal–organic framework. Chemical Communications, 2020, 56, 631-634.	2.2	16
842	Self-assembly of azaphthalocyanine–oligodeoxynucleotide conjugates into J-dimers: towards biomolecular logic gates. Organic Chemistry Frontiers, 2020, 7, 445-456.	2.3	5
843	A 3D hierarchical dual-metal–organic framework heterostructure up-regulating the pre-concentration effect for ultrasensitive fluorescence detection of tetracycline antibiotics. Journal of Materials Chemistry C, 2020, 8, 2054-2064.	2.7	95
844	Recent developments in luminescent coordination polymers: Designing strategies, sensing application and theoretical evidences. Coordination Chemistry Reviews, 2020, 406, 213145.	9.5	366
845	A 2D copper(I) metal-organic framework: Synthesis, structure and luminescence sensing for cupric, ferric, chromate and TNP. Dyes and Pigments, 2020, 175, 108159.	2.0	48
846	Metal-organic framework for sorptive/catalytic removal and sensing applications against nitroaromatic compounds. Journal of Industrial and Engineering Chemistry, 2020, 84, 87-95.	2.9	37
847	The syntheses, structures, and properties of metal-organic frameworks based on mixed multi-N donor and carboxylate ligands. Journal of Solid State Chemistry, 2020, 283, 121133.	1.4	9

#	Article	IF	CITATIONS
848	Construction of luminescent coordination polymers based on 5-(1-(carboxymethyl)-pyrazol-3-yl)isophthalic ligand for sensing Cu2+ and acetone. Polyhedron, 2020, 177, 114314.	1.0	7
849	Four New Luminescent Metal–Organic Frameworks as Multifunctional Sensors for Detecting Fe ³⁺ , Cr ₂ O ₇ <apre>2– and Nitromethane. Crystal Growth and Design, 2020, 20, 1898-1904.</apre>	1.4	45
850	Synthesis and Catalytic Properties of Porous Metal Silica Materials Templated and Functionalized by Extended Coordination Cages. Inorganic Chemistry, 2020, 59, 767-776.	1.9	16
851	Microflowers Comprised of Cu/Cu _{<i>x</i>} O/NC Nanosheets as Electrocatalysts and Horseradish Peroxidase Mimics. ACS Applied Nano Materials, 2020, 3, 617-623.	2.4	30
852	Sustainable Green Route to Synthesize Functional Nano-MOFs as Selective Sensing Probes for Cr ^{VI} Oxoanions and as Specific Sequestering Agents for Cr ₂ O ₇ ^{2–} . ACS Sustainable Chemistry and Engineering, 2020, 8, 1195-1206.	3.2	30
853	Strategies to Improve Electrical and Ionic Conductivities of Metal–Organic Frameworks. Comments on Inorganic Chemistry, 2020, 40, 86-106.	3.0	9
855	Highly Sensitive Determination of Bisphenol A in Bottled Water Samples by HPLC after Its Extraction by a Novel Th-MOF Pipette-Tip Micro-SPE. Journal of Chromatographic Science, 2020, 58, 373-382.	0.7	13
856	An etching and re-growth method for the synthesis of bismuth ferrite/MIL-53(Fe) nanocomposite as efficient photocatalyst for selective oxidation of aromatic alcohols. Applied Catalysis B: Environmental, 2020, 264, 118529.	10.8	50
857	Molecularly imprinted polymers-captivity ZnO nanorods for sensitive and selective detecting environmental pollutant. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 228, 117785.	2.0	8
858	Recent Advances in Photoelectrochemical Sensing: From Engineered Photoactive Materials to Sensing Devices and Detection Modes. Analytical Chemistry, 2020, 92, 363-377.	3.2	614
859	Four congenetic zinc(II) MOFs from delicate solvent-regulated strategy: Structural diversities and fluorescent properties. Inorganica Chimica Acta, 2020, 502, 119296.	1.2	3
860	Ultrasensitive Assay of Alkaline Phosphatase Based on the Fluorescent Response Difference of the Metal–Organic Framework Sensor. ACS Omega, 2020, 5, 712-717.	1.6	11
861	Coordination polymers with salicylaldehyde ligands: structural diversity, selective sorption and luminescence sensing properties. CrystEngComm, 2020, 22, 304-310.	1.3	8
862	AIE-ligand-based luminescent Cd(<scp>ii</scp>)–organic framework as the first "turn-on― Fe ³⁺ sensor in aqueous medium. Journal of Materials Chemistry C, 2020, 8, 1427-1432.	2.7	61
863	Accurate tuning of rare earth metal–organic frameworks with unprecedented topology for white-light emission. Journal of Materials Chemistry C, 2020, 8, 1374-1379.	2.7	26
864	Zn(<scp>ii</scp>)/Cd(<scp>ii</scp>) based mixed ligand coordination polymers as fluorosensors for aqueous phase detection of hazardous pollutants. Inorganic Chemistry Frontiers, 2020, 7, 1082-1107.	3.0	161
865	Synthesis, structure, and photoluminescence properties of coordination polymers of 4,4′,4′′,4′′′′a€²-tetrakiscarboxyphenylsilane and 3,5-bis(1′,2′,4′-triazol-1′-yl)pyridine. Cry 534-545.	/sttEagCorr	1m 1 2020, 22

866	Creation of Redoxâ€Active PdS <i>_x</i> Nanoparticles Inside the Defect Pores of MOF UiOâ€66 with Unique Semihydrogenation Catalytic Properties. Advanced Functional Materials, 2020, 30, 1908519.	7.8	24	
-----	--	-----	----	--

#	Article	IF	CITATIONS
867	RhBâ€Embedded Zirconium–Naphthaleneâ€Based Metal–Organic Framework Composite as a Luminescent Selfâ€Calibrating Platform for the Selective Detection of Inorganic Ions. Chemistry - A European Journal, 2020, 26, 1661-1667.	1.7	46
868	Metal Ion-Driven Assembly of Coordination Polymers Based on 1,3-Bis(4-imidazolylphenoxy)propane: Crystal Structures and Photocatalytic Properties. Journal of Chemical Crystallography, 2020, 50, 428-437.	0.5	0
869	CO2 fixation by cycloaddition of mono/disubstituted epoxides using acyl amide decorated Co(II) MOF as a synergistic heterogeneous catalyst. Applied Catalysis A: General, 2020, 590, 117375.	2.2	42
870	Lanthanide-Based Metal–Organic Frameworks Containing "V-Shaped―Tetracarboxylate Ligands: Synthesis, Crystal Structures, "Naked-Eye―Luminescent Detection, and Catalytic Properties. Inorganic Chemistry, 2020, 59, 264-273.	1.9	36
871	Metal–Organic Frameworks with Double Channels for Rapid and Reversible Adsorption of 1,2-Ethylenediamine and Gases. ACS Applied Materials & Interfaces, 2020, 12, 1412-1418.	4.0	14
872	Electrochemiluminescence aptasensor for multiple determination of Hg2+ and Pb2+ ions by using the MIL-53(Al)@CdTe-PEI modified electrode. Analytica Chimica Acta, 2020, 1100, 232-239.	2.6	51
873	Selective and sensitive recognition of Fe3+ ion by a Lewis basic functionalized chemically stable metal-organic framework (MOF). Inorganica Chimica Acta, 2020, 502, 119359.	1.2	22
874	Ag nanoparticles decorated into metal-organic framework (Ag NPs/ZIF-8) for electrochemical sensing of chloride ion. Nanotechnology, 2020, 31, 125601.	1.3	45
875	A superior luminescent metal-organic framework sensor for sensing trace Al3+ and picric acid via disparate charge transfer behaviors. Journal of Luminescence, 2020, 219, 116908.	1.5	21
876	Ultrasensitive Fe3+ luminescence sensing and supercapacitor performances of a triphenylamine-based TbIII-MOF. Journal of Solid State Chemistry, 2020, 282, 121083.	1.4	16
877	Advanced Photoresponsive Materials Using the Metal–Organic Framework Approach. Advanced Materials, 2020, 32, e1905227.	11.1	184
878	A highly stable luminescent coordination polymer for sensing of volatile iodine and its metal-ion exchange properties with Cu2+ ions. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 389, 112256.	2.0	24
879	Three new coordination polymers based on a fluorene derivative ligand for the highly luminescent sensitive detection of Fe3+. Journal of Molecular Structure, 2020, 1202, 127341.	1.8	7
880	Encapsulation of β-alanine model amino-acid in zirconium(IV) metal organic frameworks: Defect engineering to improve host guest interactions. Journal of Inorganic Biochemistry, 2020, 205, 110977.	1.5	11
881	The advanced sensing systems for NO based on metal-organic frameworks: Applications and future opportunities. TrAC - Trends in Analytical Chemistry, 2020, 122, 115730.	5.8	26
882	Enhancing the separation efficiency of a C ₂ H ₂ /C ₂ H ₄ mixture by a chromium metal–organic framework fabricated <i>via</i> post-synthetic metalation. Journal of Materials Chemistry A, 2020, 8, 2083-2089.	5.2	45
883	A Zn(II)-Based Coordination Polymer Featuring Selective Detection of Fe ³⁺ and Efficient Capture of Anionic Dyes. Crystal Growth and Design, 2020, 20, 7477-7483.	1.4	29
884	A Stable 3D Zn-Coordination Polymer Sensor Based on Dual Luminescent Ligands for Efficient Detection of Multiple Analytes under Acid or Alkaline Environment. Inorganic Chemistry, 2020, 59, 15495-15503.	1.9	71

#	Article	IF	CITATIONS
885	Understanding the hierarchical assemblies and oil/water separation applications of metal-organic frameworks. Journal of Molecular Liquids, 2020, 318, 114273.	2.3	26
886	Lanthanide functionalized MOF thin films as effective luminescent materials and chemical sensors for ammonia. Dalton Transactions, 2020, 49, 15663-15671.	1.6	36
887	Core-shell structured molecularly imprinted materials for sensing applications. TrAC - Trends in Analytical Chemistry, 2020, 133, 116043.	5.8	60
888	A luminescent sensor based on a new Cd-MOF for nitro explosives and organophosphorus pesticides detection. Inorganic Chemistry Communication, 2020, 122, 108272.	1.8	38
889	Highly selective and sensitive detection towards cationic Cu2+ and Fe3+ contaminants via an In-MOF based dual-responsive fluorescence probe. Inorganic Chemistry Communication, 2020, 122, 108273.	1.8	29
890	Structural diversity, gas adsorption and magnetic properties of three coordination polymers based on a rigid multicarboxylate ligand. CrystEngComm, 2020, 22, 7046-7053.	1.3	6
891	TWO 3D Cd (II) luminescent coordination polymers as highly selective and sensitive sensing for Fe3+ and CrO42â^'/Cr2O72â^' ions in aqueous system. Journal of Solid State Chemistry, 2020, 292, 121637.	1.4	11
892	The chemistry of Ce-based metal–organic frameworks. Dalton Transactions, 2020, 49, 16551-16586.	1.6	76
893	Role of the metal cation in the dehydration of the microporous metal–organic frameworks CPO-27-M. Microporous and Mesoporous Materials, 2020, 309, 110503.	2.2	14
894	Amino group dependent sensing properties of metal–organic frameworks: selective turn-on fluorescence detection of lysine and arginine. RSC Advances, 2020, 10, 37449-37455.	1.7	38
895	Chemoresistive Room-Temperature Sensing of Ammonia Using Zeolite Imidazole Framework and Reduced Graphene Oxide (ZIF-67/rGO) Composite. ACS Omega, 2020, 5, 27492-27501.	1.6	57
896	Highly efficient synergistic CO ₂ conversion with epoxide using copper polyhedron-based MOFs with Lewis acid and base sites. Inorganic Chemistry Frontiers, 2020, 7, 4517-4526.	3.0	36
897	Synthesis of multifunctional metal–organic frameworks and tuning the functionalities with pendant ligands. Dalton Transactions, 2020, 49, 15034-15040.	1.6	2
898	A new Cd-coordination polymer based on 1,3-di(4-pyridyl)propane: synthesis, crystal structure, thermogravimetric analysis, and photoluminescent properties. Journal of Coordination Chemistry, 2020, 73, 2265-2274.	0.8	4
899	One-step in-situ growth of zeolitic imidazole frameworks-8 on cotton fabrics for photocatalysis and antimicrobial activity. Cellulose, 2020, 27, 10447-10459.	2.4	48
900	Cd-Based Metal–Organic Framework Containing Uncoordinated Carbonyl Groups as Lanthanide Postsynthetic Modification Sites and Chemical Sensing of Diphenyl Phosphate as a Flame-Retardant Biomarker. Inorganic Chemistry, 2020, 59, 15088-15100.	1.9	38
901	Electronic Devices Using Open Framework Materials. Chemical Reviews, 2020, 120, 8581-8640.	23.0	185
902	A water-stable terbium metal–organic framework as a highly sensitive fluorescent sensor for nitrite. Inorganic Chemistry Frontiers, 2020, 7, 3379-3385.	3.0	69

#	Article	IF	CITATIONS
903	Ligand engineering to achieve enhanced ratiometric oxygen sensing in a silver cluster-based metal-organic framework. Nature Communications, 2020, 11, 3678.	5.8	122
904	A zwitterionic ligand-based water-stable metal–organic framework showing photochromic and Cr(<scp>vi</scp>) removal properties. Dalton Transactions, 2020, 49, 10613-10620.	1.6	16
905	The selective and sensitive detection of formaldehyde by ZIF-90-LW <i>via</i> aza-Cope rearrangement. Analytical Methods, 2020, 12, 3748-3755.	1.3	11
906	Modulating Magnetic and Photoluminescence Properties in 2â€Aminonicotinateâ€Based Bifunctional Coordination Polymers by Merging 3d Metal Ions. Chemistry - A European Journal, 2020, 26, 13484-13498.	1.7	8
907	Tuning Metal–Organic Framework Nanocrystal Shape through Facet-Dependent Coordination. Nano Letters, 2020, 20, 1774-1780.	4.5	52
908	Polar Sulfone-Functionalized Oxygen-Rich Metal–Organic Frameworks for Highly Selective CO ₂ Capture and Sensitive Detection of Acetylacetone at ppb Level. ACS Applied Materials & Interfaces, 2020, 12, 11724-11736.	4.0	53
909	AIE ligands-based new cobalt metal-organic framework as bifunctional sensor for Fe3+ ion and TNP in aqueous solution. Journal of Solid State Chemistry, 2020, 290, 121561.	1.4	20
910	A Green-Emission Metal–Organic Framework-Based Nanoprobe for Imaging Dual Tumor Biomarkers in Living Cells. ACS Applied Materials & Interfaces, 2020, 12, 35375-35384.	4.0	32
911	Tetraphenylethene-Based Luminescent Metal–Organic Framework for Effective Differentiation of <i>cis/trans</i> Isomers. ACS Applied Materials & Interfaces, 2020, 12, 35266-35272.	4.0	3
912	A new porous coordination polymer reveals selective sensing of Fe ³⁺ , Cr ₂ O ₇ ^{2â^'} , CrO ₄ ^{2â^'} , MnO ₄ ^{â^'} and nitrobenzene, and stimuli-responsive luminescence color conversions. Journal of Materials Chemistry C. 2020. 8. 11786-11795.	2.7	43
913	A thiadiazole-based covalent triazine framework nanosheet for highly selective and sensitive primary aromatic amine detection among various amines. Journal of Materials Chemistry A, 2020, 8, 16542-16550.	5.2	52
914	Increased Photocatalytic Activity of Post Synthetically Modified Coordination Polymer Derived from Bisâ€pyridyldiamide. European Journal of Inorganic Chemistry, 2020, 2020, 3174-3186.	1.0	2
915	An acetoxy functionalized Al(<scp>iii</scp>) based metal–organic framework showing selective "turn on―detection of perborate in environmental samples. Dalton Transactions, 2020, 49, 17612-17620.	1.6	10
916	Facile Fabrication of an AlE-Active Metal–Organic Framework for Sensitive Detection of Explosives in Liquid and Solid Phases. ACS Applied Materials & Interfaces, 2020, 12, 55299-55307.	4.0	51
917	Strontium-Based MOFs Showing Dual Emission: Luminescence Thermometers and Toluene Sensors. Inorganic Chemistry, 2020, 59, 18432-18443.	1.9	27
918	Highly luminescent silver-based MOFs: Scalable eco-friendly synthesis paving the way for photonics sensors and electroluminescent devices. Applied Materials Today, 2020, 21, 100817.	2.3	28
919	Research Progress of Porous Liquids. ChemistrySelect, 2020, 5, 13664-13672.	0.7	17
920	Metal–organic frameworks containing xanthene dyes for photocatalytic applications. Dalton Transactions, 2020, 49, 17520-17526.	1.6	13

#	Article	IF	CITATIONS
921	Isoreticular Microporous Metal–Organic Frameworks for Carbon Dioxide Capture. Inorganic Chemistry, 2020, 59, 17143-17148.	1.9	33
922	Crystallizing Atomic Xenon in a Flexible MOF to Probe and Understand Its Temperature-Dependent Breathing Behavior and Unusual Gas Adsorption Phenomenon. Journal of the American Chemical Society, 2020, 142, 20088-20097.	6.6	62
923	Highly fluorescent scandium-tetracarboxylate frameworks: selective detection of nitro-aromatic compounds, sensing mechanism, and their application. Dalton Transactions, 2020, 49, 17737-17744.	1.6	29
924	A lanthanide doped metal-organic framework demonstrated as naked eye detector of a trace of water in organic solvents including alcohols by monitoring the turn-on of luminescence. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 402, 112830.	2.0	13
925	A copper-based metal-organic framework for ratiometric detection of hydrogen sulfide with high sensitivity and fast response. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 243, 118794.	2.0	7
926	Luminescent metal–organic frameworks and their potential applications. Journal of Chemical Sciences, 2020, 132, 1.	0.7	34
927	Postmodified Dual Functional UiO Sensor for Selective Detection of Ozone and Tandemly Derived Sensing of Al ³⁺ . Analytical Chemistry, 2020, 92, 11600-11606.	3.2	22
928	Functionalizing Luminescent Metal–Organic Frameworks for Enhanced Photoluminescence. ACS Energy Letters, 2020, 5, 2671-2680.	8.8	58
929	Anchoring Zn-phthalocyanines in the pore matrices of UiO-67 to improve highly the photocatalytic oxidation efficiency. Applied Catalysis B: Environmental, 2020, 279, 119350.	10.8	21
930	Photofunctional metal-organic framework thin films for sensing, catalysis and device fabrication. Inorganica Chimica Acta, 2020, 513, 119926.	1.2	15
931	Photodynamical behaviour of MOFs and related composites: Relevance to emerging photon-based science and applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2020, 44, 100355.	5.6	32
932	On-Chip Template-Directed Conversion of Metal Hydroxides to Metal–Organic Framework Films with Enhanced Adhesion. ACS Applied Materials & Interfaces, 2020, 12, 36715-36722.	4.0	11
933	A dual-emission Acf@bioMOF-1 platform as fluorescence sensor for highly efficient detection of inorganic ions. Journal of Solid State Chemistry, 2020, 290, 121580.	1.4	15
934	Dye-Encapsulated Zeolitic Imidazolate Framework (ZIF-71) for Fluorochromic Sensing of Pressure, Temperature, and Volatile Solvents. ACS Applied Materials & Interfaces, 2020, 12, 37477-37488.	4.0	54
935	Facile Synthesis of Dicelike Cobalt Squarate Cages through a Spontaneous Dissolution–Regrowth Process. Chemistry of Materials, 2020, 32, 6765-6771.	3.2	15
936	MOF-based atomically dispersed metal catalysts: Recent progress towards novel atomic configurations and electrocatalytic applications. Coordination Chemistry Reviews, 2020, 422, 213483.	9.5	105
937	Chiral covalent organic frameworks: design, synthesis and property. Chemical Society Reviews, 2020, 49, 6248-6272.	18.7	211
938	Exploratory studies of a multidimensionally talented simple Mn ^{II} -based porous network: selective "turn-on―recognition @ cysteine over homocysteine with an indication of cystinuria and renal dysfunction. New Journal of Chemistry, 2020, 44, 14712-14722.	1.4	29

#	Article	IF	CITATIONS
939	Thermo-responsive light-emitting metal complexes and related materials. Inorganic Chemistry Frontiers, 2020, 7, 3258-3281.	3.0	32
940	A selfâ€penetrating and chemically stable zinc (ii)â€organic framework as multiâ€responsive chemoâ€sensor to detect pesticide and antibiotics in water. Applied Organometallic Chemistry, 2020, 34, e5960.	1.7	62
941	Construction of polypyrrole nanotubes interconnected ZIFs-templated nickel-cobalt layered double hydroxide via varying the mass of ZIF-67 for supercapacitors with tunable performance. Materials Chemistry and Physics, 2020, 255, 123497.	2.0	16
942	L-proline functionalized pillar-layered MOF as a heterogeneous catalyst for aldol addition reaction. Inorganic Chemistry Communication, 2020, 119, 108052.	1.8	12
943	A novel monocapped square-antiprismatic Ba(II) coordination polymer: a design for dual-responsive fluorescent chemosensor for Cr2O72â° and Fe(III). Journal of Solid State Chemistry, 2020, 290, 121582.	1.4	7
944	Highly selective, sensitive and stable three-dimensional luminescent metal–organic framework for detecting and removing of the antibiotic in aqueous solution. Microchemical Journal, 2020, 159, 105349.	2.3	21
945	Construction and selective gas adsorption properties of two heteroSBU MOFs based on unsymmetrical tetracarboxylate linkers. CrystEngComm, 2020, 22, 5961-5969.	1.3	8
946	Functional metal–organic frameworks as effective sensors of gases and volatile compounds. Chemical Society Reviews, 2020, 49, 6364-6401.	18.7	784
947	Polyurethane-coated luminescent dye@MOF composites for highly-stable white LEDs. Journal of Materials Chemistry C, 2020, 8, 12308-12313.	2.7	28
948	Rapid switch-on fluorescent detection of nanomolar-level hydrazine in water by a diacetoxy-functionalized MOF: application in paper strips and environmental samples. Dalton Transactions, 2020, 49, 12565-12573.	1.6	21
949	Cluster/cage-based coordination polymers with tetrazole derivatives. Coordination Chemistry Reviews, 2020, 422, 213424.	9.5	39
950	A Robust Mixedâ€Lanthanide PolyMOF Membrane for Ratiometric Temperature Sensing. Angewandte Chemie - International Edition, 2020, 59, 21752-21757.	7.2	115
951	Metal-organic frameworks and their derivatives as signal amplification elements for electrochemical sensing. Coordination Chemistry Reviews, 2020, 424, 213520.	9.5	105
952	Highly selective and sensitive dual-fluorescent probe for cationic Pb2+ and anionic Cr2O72â^, CrO42â^ contaminants via a powerful indiumâ^ organic framework. Journal of Solid State Chemistry, 2020, 291, 121672.	1.4	17
953	Sensing mechanism elucidation of a chemosensor based on a <scp>metalâ€organic</scp> framework selective to explosive aromatic compounds. International Journal of Quantum Chemistry, 2020, 120, e26404.	1.0	14
954	Guest-Responsive Reversal in Structural Transformation after a [2 + 2] Topochemical Reaction in a 3D Pillared Layer MOF: Uncovering the Role of C–H··ÂO Interaction. Inorganic Chemistry, 2020, 59, 12793-12801.	1.9	6
955	Luminescent sensing of nitroaromatics by crystalline porous materials. CrystEngComm, 2020, 22, 7736-7781.	1.3	97
956	Metal–Organicâ€Frameworkâ€Engineered Enzymeâ€Mimetic Catalysts. Advanced Materials, 2020, 32, e20030	6 51. 1	183

ARTICLE IF CITATIONS Rational design of a functionalized aluminum metal–organic framework as a turn-off fluorescence 957 1.6 7 sensor for α-ketoglutaric acid. Dalton Transactions, 2020, 49, 16928-16934. Aminoâ€Acidâ€Derived Emerging Sensor for Detection of S 2â^' Ion and MeOH Percentage in MeOHâ€H 2 O Mixture. ChemistrySelect, 2020, 5, 12835-12842. A Gadolinium Metalâ€Organic Framework Film as a Converter Layer for Neutron Detection. 959 1.3 1 ChemPlusChem, 2020, 85, 2349-2356. Luminescent Thermochromic Silver Iodides as Wavelength-Dependent Thermometers. Inorganic 960 1.9 Chemistry, 2020, 59, 13067-13077. Mixed donor, phenanthroline photoactive MOFs with favourable CO₂ selectivity. 961 2.2 2 Chemical Communications, 2020, 56, 13377-13380. Enhanced fluorescence by increasing dimensionality: a novel three-dimensional luminescent metal–organic framework with rigidified ligands. CrystEngComm, 2020, 22, 5946-5948. 1.3 Fe/Ni Bimetallic Organic Framework Deposited on TiO2 Nanotube Array for Enhancing Higher and 963 1.9 18 Stable Photoelectrochemical Activity of Oxygen Evaluation Reaction. Nanomaterials, 2020, 10, 1688. Anionic metal–organic framework as a unique turn-on fluorescent chemical sensor for 964 ultra-sensitive detection of antibiotics. Chemical Communications, 2020, 56, 12403-12406. Increase of network hydrophilicity from sql to lvt supramolecular isomers of Cu-MOFs with the 965 bifunctional 4-(3,5-dimethyl-1<i>H</i>-pyrazol-4-yl)benzoate linker. Dalton Transactions, 2020, 49, 7 1.6 12854-12864. Di-functional luminescent sensors based on Y³⁺ doped Eu³⁺ and Tb³⁺ coordination polymers: fast response and visible detection of Cr³⁺, 1.7 Fe³⁺ ions in aqueous solutions and acetone. RSC Advances, 2020, 10, 32232-32240. From lamellar net to bilayered-lamella and to porous pillared-bilayer: reversible crystal-to-crystal transformation, CO2 adsorption, and fluorescence detection of Fe3+, Al3+, Cr3+, MnO4a^{*'}, and Cr2O72a^{*'} 967 22 1.6 in water. Dalton Transactions, 2020, 49, 14201-14215. Bifunctional Dinuclear Complexes Based on Iminodiacetate and 1,2-Di(4-pyridyl)ethylene: Crystal 1.4 Structures, Vapochromism, and Iodine Adsorption. Crystal Growth and Design, 2020, 20, 7439-7449. From 1D Coordination Polymers to Metal Organic Frameworks by the Use of 2-Pyridyl Oximes. 969 1.3 7 Materials, 2020, 13, 4084. Construction of a High-Nuclearity Elliptical Yb(III) Nanoring: NIR Luminescent Response to Metal Ions and Nitro Explosives. Inorganic Chemistry, 2020, 59, 14620-14626. 970 Fast-synthesis and catalytic property of heterogeneous Co-MOF catalysts for the epoxidation of 971 1.4 11 α-pinéne with air. New Journal of Chemistry, 2020, 44, 17413-17421. A Water-Stable Cationic Metal–Organic Framework with Hydrophobic Pore Surfaces as an Efficient Scavenger of Oxo-Anion Pollutants from Water. ACS Applied Materials & amp; Interfaces, 2020, 12, 41810-41818. Multi-responsive chemosensing and photocatalytic properties of three luminescent coordination polymers derived from a bifunctional 1,1â€2-di(4-carbonylphenyl)-2,2â€2-biimidazoline ligand. CrystEngComm, 973 1.328 2020, 22, 6195-6206. Introducing a flexible tetracarboxylic acid linker into functional coordination polymers: synthesis, 974 1.4 structural traits, and photocatalytic dye degradation. New Journal of Chemistry, 2020, 44, 16082-16091.

#	Article	IF	CITATIONS
975	Isolated Mixed-Valence Iron Vanadium Malate and Its Metal Hydrates (M = Fe ²⁺ ,) Tj ETQq0 0 0 rgB Inorganic Chemistry, 2020, 59, 12768-12777.	T /Overloc 1.9	k 10 Tf 50 74 7
976	Synthesis, Structural Features, and Hydrogen Adsorption Properties of Three New Flexible Sulfur-Containing Metal–Organic Frameworks. Crystal Growth and Design, 2020, 20, 6707-6714.	1.4	6
977	Energy Transfer in Metal–Organic Frameworks and Its Applications. Small Structures, 2020, 1, 2000019.	6.9	26
978	Chiromagnetoptics of Au and Ag Nanoparticulate Systems. Journal of Physical Chemistry C, 2020, 124, 21722-21729.	1.5	9
979	Near-Field Infrared Nanospectroscopy Reveals Guest Confinement in Metal–Organic Framework Single Crystals. Nano Letters, 2020, 20, 7446-7454.	4.5	25
980	0D to 3D Pr ^{III} metal–organic networks crystal engineered for optimal iodine adsorption. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2020, 76, 779-788.	0.5	5
981	Tunable photoluminescence in flexible carboxylate ligand-based coordination polymers with interesting topologies and Fe3+ sensitivity. CrystEngComm, 2020, 22, 6713-6719.	1.3	7
982	Luminescent triphenylamine-based metal–organic frameworks: recent advances in nitroaromatics detection. Dalton Transactions, 2020, 49, 12929-12939.	1.6	18
983	A Robust Mixedâ€Lanthanide PolyMOF Membrane for Ratiometric Temperature Sensing. Angewandte Chemie, 2020, 132, 21936-21941.	1.6	23
984	Optical absorption properties of metal–organic frameworks: solid state <i>versus</i> molecular perspective. Physical Chemistry Chemical Physics, 2020, 22, 19512-19521.	1.3	14
985	A Trinuclear Cobalt–Organic Framework: Solvatochromic Sensor towards CH ₂ Cl ₂ , and its Derivative as an Anode of Lithiumâ€Ion Batteries with High Performance. Chemistry - A European Journal, 2020, 26, 14187-14193.	1.7	6
986	Metalloporphyrinâ€Based Metal–Organic Frameworks on Flexible Carbon Paper for Electrocatalytic Nitrite Oxidation. Chemistry - A European Journal, 2020, 26, 17399-17404.	1.7	7
987	Three-component D–A hybrid heterostructures with enhanced photochromic, photomodulated luminescence and selective anion-sensing properties. Dalton Transactions, 2020, 49, 13083-13089.	1.6	24
988	Size-controlled synthesis of metal–organic frameworks and their performance as fluorescence sensors. Analyst, The, 2020, 145, 7349-7356.	1.7	12
989	A biocompatible ZnNa2-based metal–organic framework with high ibuprofen, nitric oxide and metal uptake capacity. Materials Advances, 2020, 1, 2248-2260.	2.6	8
990	Tri-functional Fe–Zr bi-metal–organic frameworks enable high-performance phosphate ion ratiometric fluorescent detection. Nanoscale, 2020, 12, 19383-19389.	2.8	45
991	Near-infrared fluorescent organic porous crystal that responds to solvent vapors. Journal of Materials Chemistry C, 2020, 8, 12437-12444.	2.7	15
992	New microsphere cobalt complex: preparation and catalytic consideration for the synthesis of some heterocyclic compounds. ChemistrySelect, 2020, 5, 15130-15136.	0.7	2

#	Article	IF	Citations
993	Multiresponsive luminescent Cd(II) coordination polymer for selective and recyclable detection of TNP and Cr2O72- in aqueous media. Inorganic Chemistry Communication, 2020, 121, 108233.	1.8	6
994	A novel microporous metal–organic framework with Lewis basic sites and open O donor sites: Crystal structure and adsorption properties. Journal of Solid State Chemistry, 2020, 292, 121688.	1.4	2
995	A new covalent organic polymer used to highly selective detection of Fe3+ ions. E3S Web of Conferences, 2020, 213, 01008.	0.2	0
996	Dual-Emission Zr-MOF-Based Composite Material as a Fluorescence Turn-On Sensor for the Ultrasensitive Detection of Al ³⁺ . Inorganic Chemistry, 2020, 59, 18205-18213.	1.9	68
997	The active environment influence on the luminescence of SnO2 nanoparticles' ensembles in a porous matrix. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	1.1	0
998	Mesoporous MIP-capped luminescent MOF as specific and sensitive analytical probe: application for chlorpyrifos. Mikrochimica Acta, 2020, 187, 673.	2.5	31
999	SURMOF Devices Based on Heteroepitaxial Architectures with Whiteâ€Light Emission and Luminescent Thermalâ€Dependent Performance. Advanced Materials Interfaces, 2020, 7, 2000929.	1.9	15
1000	Reverse photoluminescence responses of Ln(<scp>iii</scp>) complexes to methanol vapor clarify the differentiated energy transfer pathway and potential for methanol detection and encryption. Journal of Materials Chemistry C, 2020, 8, 16907-16914.	2.7	6
1001	Alkaline earth-organic frameworks with amino derivatives of 2,6-naphthalene dicarboxylates: structural studies and fluorescence properties. Dalton Transactions, 2020, 49, 16736-16744.	1.6	3
1002	Recent Progress in 2D Metalâ€Organic Frameworks for Optical Applications. Advanced Optical Materials, 2020, 8, 2000110.	3.6	85
1003	Efficient Identification for Alcohol Homologues and Hyperthermy Based on Coordination Polymer Multiple Structural Transformations. ACS Applied Materials & Interfaces, 2020, 12, 24141-24148.	4.0	8
1004	Synthesis, structure diversity, and dye adsorption and luminescent sensing properties of Zinc (II) coordination polymers based on 1,3,5-tris(1-imidazolyl)benzene and 1,3-bis(1-imidazolyl)toluene. Journal of Solid State Chemistry, 2020, 288, 121445.	1.4	14
1005	Two d 10 metal–organic frameworks based on a novel semiâ€rigid aromatic biscarboxylate ligand: Syntheses, structures and luminescent properties. Applied Organometallic Chemistry, 2020, 34, e5654.	1.7	9
1006	Supramolecular organic frameworks with ultralong phosphorescence via breaking π-Conjugated structures. Giant, 2020, 1, 100007.	2.5	12
1007	Probing the limits of linker substitution in aluminum MOFs through water vapor sorption studies: mixed-MOFs instead of mixed-linker CAU-23 and MIL-160 materials. Dalton Transactions, 2020, 49, 7373-7383.	1.6	22
1008	The role of Fe3+ ions in fluorescence detection of H2S by a bimetallic metal-organic framework. Journal of Solid State Chemistry, 2020, 288, 121434.	1.4	17
1009	Ultrafast scale-up synthesis of calcium rod/layer MOFs and luminescence detection of water in organic solvents. Materials Advances, 2020, 1, 689-697.	2.6	2
1010	Building a robust 3D Ca-MOF by a new square Ca ₄ O SBU for purification of natural gas. Dalton Transactions, 2020, 49, 8836-8840.	1.6	19

#	Article	IF	CITATIONS
1011	R-Substituent induced structural diversity, synergistic effect and highly selective luminescence sensing for Fe ³⁺ detection by post-synthetically modified Cd-MOFs. CrystEngComm, 2020, 22, 3871-3883.	1.3	16
1012	A multifunctional photochromic metal–organic framework with Lewis acid sites for selective amine and anion sensing. CrystEngComm, 2020, 22, 4124-4129.	1.3	29
1013	Nano-sized metal-organic frameworks: Synthesis and applications. Coordination Chemistry Reviews, 2020, 417, 213366.	9.5	174
1014	Advanced Properties and Applications of AlEgens-Inspired Smart Materials. Industrial & Engineering Chemistry Research, 2020, 59, 10721-10736.	1.8	28
1015	Photoresponsivity and antibiotic sensing properties of an entangled tris(pyridinium)-based metal–organic framework. Dalton Transactions, 2020, 49, 7488-7495.	1.6	31
1016	A serial of 2D Coâ€Zn isomorphous metal–organic frameworks for photodegradation and luminescent detection properties. Applied Organometallic Chemistry, 2020, 34, e5743.	1.7	13
1017	Two cadmium(II) coordination polymers as multi-functional luminescent sensors for the detection of Cr(VI) anions, dichloronitroaniline pesticide, and nitrofuran antibiotic in aqueous media. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 239, 118467.	2.0	86
1018	Molecular Springâ€like Tripleâ€Helix Coordination Polymers as Dualâ€Stress and Thermally Responsive Crystalline Metal–Organic Materials. Angewandte Chemie, 2020, 132, 16195-16202.	1.6	4
1019	Selective fluorescence sensing properties of a novel two-fold interpenetrating coordination polymer. New Journal of Chemistry, 2020, 44, 9411-9418.	1.4	7
1021	Highly selective C2H2 and CO2 capture and photoluminescence properties of two Tb(III)-based MOFs. Journal of Solid State Chemistry, 2020, 285, 121257.	1.4	4
1022	Zn(<scp>ii</scp>)/Cd(<scp>ii</scp>)-based metal–organic frameworks: crystal structures, Ln(<scp>iii</scp>)-functionalized luminescence and chemical sensing of dichloroaniline as a pesticide biomarker. Journal of Materials Chemistry C, 2020, 8, 9427-9439.	2.7	43
1023	Effect of Substitution at Amine Functionality of 2,6-Diaminopyridine-Coupled Rhodamine on Metal-Ion Interaction and Self-Assembly. ACS Omega, 2020, 5, 13984-13993.	1.6	13
1024	Twofold Interpenetrated 2D MOF Nanosheets Generated by an Instant In Situ Exfoliation Method: Morphology Control and Fluorescent Sensing. Advanced Materials Interfaces, 2020, 7, 2000813.	1.9	33
1025	Two 2-fold interpenetrating three-dimensional coordination polymers based on two-fold deprotonated 5-((3-carboxyphenoxy)methyl)benzene-1,3-dioic acid and 1,4-bis((1H-imidazol-1-yl)methyl)benzene: Syntheses, structures and properties. Inorganica Chimica Acta, 2020, 511, 119802.	1.2	4
1026	Syntheses, characterization, and slow magnetic relaxation or luminescence properties of three new 2D coordination polymers. Journal of Molecular Structure, 2020, 1219, 128613.	1.8	6
1027	Bispecific T-cell engager (BiTE) immunotherapy of ovarian cancer based on MIL-88A MOF/MC gene delivery system. Applied Materials Today, 2020, 20, 100701.	2.3	13
1028	A highly selective and sensitive bifunctional luminescent sensor for TNP and Iron ion based on magnesium coordination polymer. Inorganica Chimica Acta, 2020, 511, 119836.	1.2	9
1029	A fluorometric metal-organic framework oxygen sensor: from sensitive powder to portable optical fiber device. Microporous and Mesoporous Materials, 2020, 305, 110396.	2.2	24

#	Article	IF	CITATIONS
1030	Self-assembly of three-dimensional oxalate-bridged alkali(<scp>i</scp>)–lanthanide(<scp>iii</scp>) heterometal–organic frameworks. CrystEngComm, 2020, 22, 4833-4841.	1.3	6
1031	Synthesis, Crystal Structures and Luminescent Properties of Zn(II)/Cd(II) Metal–Organic Frameworks Constructed by 1,4-Benzenedicarboxylic Acid and 4,4′-(2,5-Difluoro-1,4-phenylene)dipyridine. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 4289-4296.	1.9	6
1032	Dual-emissive metal–organic framework: a novel turn-on and ratiometric fluorescent sensor for highly efficient and specific detection of hypochlorite. Dalton Transactions, 2020, 49, 9680-9687.	1.6	25
1033	Scandium Metal–Organic Frameworks Containing Tetracarboxylate Linker Molecules: Synthesis, Structural Relationships, and Properties. Crystal Growth and Design, 2020, 20, 4686-4694.	1.4	18
1034	Magnetic and Photoluminescent Sensors Based on Metal-Organic Frameworks Built up from 2-aminoisonicotinate. Scientific Reports, 2020, 10, 8843.	1.6	14
1035	Post-synthetic modification of a metal–organic framework with a chemodosimeter for the rapid detection of lethal cyanide <i>via</i> dual emission. Dalton Transactions, 2020, 49, 8684-8692.	1.6	32
1036	Highly Stable Lanthanide Metal–Organic Framework as an Internal Calibrated Luminescent Sensor for Glutamic Acid, a Neuropathy Biomarker. Inorganic Chemistry, 2020, 59, 8809-8817.	1.9	45
1037	Synthesis of Hierarchically Porous HKUSTâ€1 MOF: Use of C _{14â€6â€14} , a Cationic Gemini Surfactant, as Softâ€Template ^{â€} . ChemistrySelect, 2020, 5, 6453-6469.	0.7	5
1038	Electroluminescent Guest@MOF Nanoparticles for Thin Film Optoelectronics and Solid‧tate Lighting. Advanced Optical Materials, 2020, 8, 2000670.	3.6	31
1039	A Scandium MOF with an Unprecedented Inorganic Building Unit, Delimiting the Micropore Windows. Inorganic Chemistry, 2020, 59, 8995-9004.	1.9	11
1040	Unravelling the true MOF-5 luminescence. RSC Advances, 2020, 10, 18418-18422.	1.7	15
1041	A "Thermodynamically Stable―2D Nickel Metal–Organic Framework over a Wide pH Range with Scalable Preparation for Efficient C ₂ s over C ₁ Hydrocarbon Separations. Chemistry - A European Journal, 2020, 26, 12624-12631.	1.7	28
1042	Sensing mechanism elucidation of a europium(<scp>III</scp>) <scp>metal–organic</scp> framework selective to aniline: A theoretical insight by means of multiconfigurational calculations. Journal of Computational Chemistry, 2020, 41, 1956-1964.	1.5	24
1043	Dithiooxalato-bridged Nickel Coordination Polymers: Synthesis and Structures. Chemistry Letters, 2020, 49, 1050-1052.	0.7	1
1044	Functional metal–organic frameworks constructed from triphenylamine-based polycarboxylate ligands. Coordination Chemistry Reviews, 2020, 420, 213354.	9.5	57
1045	Recent advances in the shaping of metal–organic frameworks. Inorganic Chemistry Frontiers, 2020, 7, 2840-2866.	3.0	88
1046	Advances in luminescent metal-organic framework sensors based on post-synthetic modification. TrAC - Trends in Analytical Chemistry, 2020, 129, 115939.	5.8	80
1047	Two Novel Lanthanide Metal–Organic Frameworks: Selective Luminescent Sensing for Nitrobenzene, Cu ²⁺ , and MnO ₄ [–] . Crystal Growth and Design, 2020, 20, 5225-5234.	1.4	64

#	Article	IF	CITATIONS
1048	Biocompatible Direct Deposition of Functionalized Nanoparticles Using Shrinking Surface Plasmonic Bubble. Advanced Materials Interfaces, 2020, 7, 2000597.	1.9	14
1049	In Situ Monitoring of Particle Formation with Spectroscopic and Analytical Techniques Under Solvothermal Conditions. Chemical Engineering and Technology, 2020, 43, 879-886.	0.9	3
1050	Seawater Desalination Using MOF-Incorporated Cu-Based Alginate Beads without Energy Consumption. ACS Applied Materials & Interfaces, 2020, 12, 16319-16326.	4.0	48
1051	"French fries―like luminescent metal organic frameworks for the fluorescence determination of cytochrome c released by apoptotic cells and screening of anticancer drug activity. Mikrochimica Acta, 2020, 187, 221.	2.5	12
1052	Nanocable catalysts MTe (M = Pt, PtCu)@UIO-67 for CO2 conversion. Science China Materials, 2020, 63, 769-778.	3.5	12
1053	Solvent triggering structural changes for two terbium-based metal–organic frameworks and their photoluminescence sensing. Chemical Communications, 2020, 56, 4320-4323.	2.2	28
1054	Supramolecular assemblies based on Fe ₈ L ₁₂ cubic metal–organic cages: synergistic adsorption and spin-crossover properties. Dalton Transactions, 2020, 49, 4220-4224.	1.6	9
1055	Programmable and Reversible Regulation of Catalytic Hemin@MOFs Activities with DNA Structures. Chemical Research in Chinese Universities, 2020, 36, 301-306.	1.3	7
1056	Photocatalytic CO2 reduction over metal-organic framework-based materials. Coordination Chemistry Reviews. 2020, 412, 213262.	9.5	401
1057	Three coordination polymers with regulated coordination interactions as fluorescent sensors for monitoring purine metabolite uric acid. Dalton Transactions, 2020, 49, 4343-4351.	1.6	14
1057 1058	Three coordination polymers with regulated coordination interactions as fluorescent sensors for monitoring purine metabolite uric acid. Dalton Transactions, 2020, 49, 4343-4351. Dual-emitting barium based metal-organic nanosheets as a potential sensor for temperature and anthrax biomarkers. Nanotechnology, 2020, 31, 245706.	1.6 1.3	14
1057 1058 1059	Three coordination polymers with regulated coordination interactions as fluorescent sensors for monitoring purine metabolite uric acid. Dalton Transactions, 2020, 49, 4343-4351. Dual-emitting barium based metal-organic nanosheets as a potential sensor for temperature and anthrax biomarkers. Nanotechnology, 2020, 31, 245706. Aggregationâ€Induced Emission and Retention of Crystal Chiral Information of Tetraphenylethylene Incorporated by Polysaccharides in Water. ChemPhotoChem, 2020, 4, 577-581.	1.6 1.3 1.5	14 16 10
1057 1058 1059 1060	Three coordination polymers with regulated coordination interactions as fluorescent sensors for monitoring purine metabolite uric acid. Dalton Transactions, 2020, 49, 4343-4351. Dual-emitting barium based metal-organic nanosheets as a potential sensor for temperature and anthrax biomarkers. Nanotechnology, 2020, 31, 245706. Aggregationâ€Induced Emission and Retention of Crystal Chiral Information of Tetraphenylethylene Incorporated by Polysaccharides in Water. ChemPhotoChem, 2020, 4, 577-581. A metal-organic frameworks@ carbon nanotubes based electrochemical sensor for highly sensitive and selective determination of ascorbic acid. Journal of Molecular Structure, 2020, 1209, 127986.	1.6 1.3 1.5 1.8	14 16 10 38
1057 1058 1059 1060	Three coordination polymers with regulated coordination interactions as fluorescent sensors for monitoring purine metabolite uric acid. Dalton Transactions, 2020, 49, 4343-4351. Dual-emitting barium based metal-organic nanosheets as a potential sensor for temperature and anthrax biomarkers. Nanotechnology, 2020, 31, 245706. Aggregationâ€Induced Emission and Retention of Crystal Chiral Information of Tetraphenylethylene Incorporated by Polysaccharides in Water. ChemPhotoChem, 2020, 4, 577-581. A metal-organic frameworks@ carbon nanotubes based electrochemical sensor for highly sensitive and selective determination of ascorbic acid. Journal of Molecular Structure, 2020, 1209, 127986. Single Bimetallic Lanthanide-Based Metal–Organic Frameworks for Visual Decoding of a Broad Spectrum of Molecules. Analytical Chemistry, 2020, 92, 5500-5508.	1.6 1.3 1.5 1.8 3.2	14 16 10 38
1057 1058 1059 1060 1061	Three coordination polymers with regulated coordination interactions as fluorescent sensors for monitoring purine metabolite uric acid. Dalton Transactions, 2020, 49, 4343-4351. Dual-emitting barium based metal-organic nanosheets as a potential sensor for temperature and anthrax biomarkers. Nanotechnology, 2020, 31, 245706. Aggregationâ&nduced Emission and Retention of Crystal Chiral Information of Tetraphenylethylene Incorporated by Polysaccharides in Water. ChemPhotoChem, 2020, 4, 577-581. A metal-organic frameworks@ carbon nanotubes based electrochemical sensor for highly sensitive and selective determination of ascorbic acid. Journal of Molecular Structure, 2020, 1209, 127986. Single Bimetallic Lanthanide-Based Metalâ&"Organic Frameworks for Visual Decoding of a Broad Spectrum of Molecules. Analytical Chemistry, 2020, 92, 5500-5508. The Role of Ï&& "f Orbital Interactions in Eu(III) Complexes for an Effective Molecular Luminescent The Role of Ï&& "f Orbital Interactions in Eu(III) Complexes for an Effective Molecular Luminescent	1.6 1.3 1.5 1.8 3.2 1.9	 14 16 10 38 35 24
1057 1058 1059 1060 1061 1062	Three coordination polymers with regulated coordination interactions as fluorescent sensors for monitoring purine metabolite uric acid. Dalton Transactions, 2020, 49, 4343-4351. Dual-emitting barium based metal-organic nanosheets as a potential sensor for temperature and anthrax biomarkers. Nanotechnology, 2020, 31, 245706. Aggregationâ&Anduced Emission and Retention of Crystal Chiral Information of Tetraphenylethylene Incorporated by Polysaccharides in Water. ChemPhotoChem, 2020, 4, 577-581. A metal-organic frameworks@ carbon nanotubes based electrochemical sensor for highly sensitive and selective determination of ascorbic acid. Journal of Molecular Structure, 2020, 1209, 127986. Single Bimetallic Lanthanide-Based Metalâ&"Organic Frameworks for Visual Decoding of a Broad Spectrum of Molecules. Analytical Chemistry, 2020, 92, 5500-5508. The Role of Ĩ@â@"f Orbital Interactions in Eu(III) Complexes for an Effective Molecular Luminescent Thermometer. Inorganic Chemistry, 2020, 59, 5865-5871. Multi-functional lanthanide-CPs based on tricarboxylphenyl terpyridyl ligand as ratiometric luminescent thermometer and highly sensitive ion sensor with turn on/off effect. Dalton Transactions, 2020, 49, 4741-4750.	1.6 1.3 1.5 1.8 3.2 1.9	14 16 10 38 35 24
1057 1058 1059 1060 1061 1062 1063	Three coordination polymers with regulated coordination interactions as fluorescent sensors for monitoring purine metabolite uric acid. Dalton Transactions, 2020, 49, 4343-4351. Dual-emitting barium based metal-organic nanosheets as a potential sensor for temperature and anthrax biomarkers. Nanotechnology, 2020, 31, 245706. Aggregationâ&houced Emission and Retention of Crystal Chiral Information of Tetraphenylethylene Incorporated by Polysaccharides in Water. ChemPhotoChem, 2020, 4, 577-581. A metal-organic frameworks@ carbon nanotubes based electrochemical sensor for highly sensitive and selective determination of ascorbic acid. Journal of Molecular Structure, 2020, 1209, 127986. Single Bimetallic Lanthanide-Based Metal–Organic Frameworks for Visual Decoding of a Broad Spectrum of Molecules. Analytical Chemistry, 2020, 92, 5500-5508. The Role of Ĭ€â€"f Orbital Interactions in Eu(III) Complexes for an Effective Molecular Luminescent Multi-functional lanthanide-CPs based on tricarboxylphenyl terpyridyl ligand as ratiometric Immescent thermometer and highly sensitive ion sensor with turn on/off effect. Dalton Transactions, 2020, 49, 4741-4750. Turn-on fluorescence in a stable Cd(II) metal-organic framework for highly sensitive detection of Cr3+ in water. Dyes and Pigments, 2020, 178, 108359.	 1.6 1.3 1.5 1.8 3.2 1.9 1.6 2.0 	 14 16 10 38 35 24 24 45 23

#	Article	IF	CITATIONS
1066	Correlating Pressureâ€Induced Emission Modulation with Linker Rotation in a Photoluminescent MOF. Angewandte Chemie, 2020, 132, 8195-8199.	1.6	10
1067	Recent Progress on Luminescent Metal-Organic Framework-Involved Hybrid Materials for Rapid Determination of Contaminants in Environment and Food. Polymers, 2020, 12, 691.	2.0	46
1068	Metal–Organic Framework Thin Films: Fabrication, Modification, and Patterning. Processes, 2020, 8, 377.	1.3	31
1069	Synthesis, crystal structure, and optical properties of fluorinated poly(pyrazole) ligands and <i>in silico</i> assessment of their affinity for volatile organic compounds. New Journal of Chemistry, 2020, 44, 6443-6455.	1.4	7
1070	Lanthanide organic/inorganic hybrid systems: Efficient sensors for fluorescence detection. Dyes and Pigments, 2020, 178, 108386.	2.0	28
1071	A 3D cadmium(II) coordination polymer based on rigid ligand 1-tetrazole-4-imidazole-benzene: Solvothermal synthesis, crystal structure and tunable luminescent emissions. Inorganic Chemistry Communication, 2020, 115, 107887.	1.8	2
1072	Two copper (II) complexes based on different copper salts, 1,3-benzenedicarboxylic acid and 1,4-di(imidazolidin-1-yl) benzene and their fluorescence recognition to nitrobenzene derivatives. Journal of Solid State Chemistry, 2020, 287, 121334.	1.4	4
1073	High-Performance Metal–Organic Framework-Templated Sorbent for Selective Eu(III) Capture. ACS Omega, 2020, 5, 7392-7398.	1.6	7
1074	Luminescent metal–organic frameworks (LMOFs) as potential probes for the recognition of cationic water pollutants. Inorganic Chemistry Frontiers, 2020, 7, 1801-1821.	3.0	126
1075	Photocatalytic Reduction and Recognition of Cr(VI): New Zn(II)-Based Metal–Organic Framework as Catalytic Surface. Industrial & Engineering Chemistry Research, 2020, 59, 8538-8550.	1.8	63
1076	Electrochemical deposition of metal–organic framework films and their applications. Journal of Materials Chemistry A, 2020, 8, 7569-7587.	5.2	126
1077	Water-stable Ln ^{III} -based coordination polymers displaying slow magnetic relaxation and luminescence sensing properties. New Journal of Chemistry, 2020, 44, 6747-6759.	1.4	15
1078	Post-synthetic modification of porous materials: superprotonic conductivities and membrane applications in fuel cells. Journal of Materials Chemistry A, 2020, 8, 7474-7494.	5.2	122
1079	Correlating Pressureâ€Induced Emission Modulation with Linker Rotation in a Photoluminescent MOF. Angewandte Chemie - International Edition, 2020, 59, 8118-8122.	7.2	30
1080	Porphyrin-based metal-organic framework and polyvinylchloride composites for fluorescence sensing of divalent cadmium ions in water. Inorganic Chemistry Communication, 2020, 115, 107861.	1.8	24
1081	Multiresponsive Luminescent Sensitivities of a 3D Cd-CP with Visual Turn-on and Ratiometric Sensing toward Al ³⁺ and Cr ³⁺ as Well as Turn-off Sensing toward Fe ³⁺ . Inorganic Chemistry, 2020, 59, 3828-3837.	1.9	94
1082	MOF-derived ZnCo ₂ O ₄ porous micro-rice with enhanced electro-catalytic activity for the oxygen evolution reaction and glucose oxidation. RSC Advances, 2020, 10, 9063-9069.	1.7	34
1083	Towards complete elucidation of structural factors controlling thermal stability of IL/MOF composites: effects of ligand functionalization on MOFs. Journal of Physics Condensed Matter, 2020, 32, 484001.	0.7	8

#	Article	IF	CITATIONS
1084	Femto- to Millisecond Time-Resolved Photodynamics of a Double-Functionalized Push–Pull Organic Linker: Potential Candidate for Optoelectronically Active MOFs. International Journal of Molecular Sciences, 2020, 21, 4366.	1.8	4
1086	A series of coordination polymers based on 2,6-pyridinedicarboxylic acid ligand: Synthesis, crystal structures, photo-catalysis and fluorescent sensing. Journal of Solid State Chemistry, 2020, 290, 121549.	1.4	10
1087	A cationic Zr-based metal organic framework with enhanced acidic resistance for selective and efficient removal of CrO ₄ ^{2â^'} . New Journal of Chemistry, 2020, 44, 12646-12653.	1.4	11
1088	Machine learning and high-throughput computational screening of hydrophobic metal–organic frameworks for capture of formaldehyde from air. Green Energy and Environment, 2021, 6, 759-770.	4.7	35
1089	Zn-MOFs based luminescent sensors for selective and highly sensitive detection of Fe3+ and tetracycline antibiotic. Journal of Pharmaceutical and Biomedical Analysis, 2020, 188, 113444.	1.4	32
1090	A New Multifunctional Zinc–Organic Framework with Rare Interpenetrated Tripillared Bilayers as a Luminescent Probe for Detecting Ni ²⁺ and PO ₄ ^{3–} in Water. Crystal Growth and Design, 2020, 20, 5120-5128.	1.4	35
1091	Designer Metal–Organic Frameworks for Sizeâ€Exclusionâ€Based Hydrocarbon Separations: Progress and Challenges. Advanced Materials, 2020, 32, e2002603.	11.1	182
1092	Electron transfer in the confined environments of metal–organic coordination supramolecular systems. Chemical Society Reviews, 2020, 49, 5561-5600.	18.7	75
1093	Selective sensing of aliphatic biogenic polyamines by a zwitterionic Cd-MOF based on bisimidazole tetracarboxylic acid linker. Journal of Materials Chemistry C, 2020, 8, 11449-11456.	2.7	21
1094	The marriage of metal–organic frameworks and silica materials for advanced applications. Coordination Chemistry Reviews, 2020, 421, 213442.	9.5	52
1095	Novel hollow beads of carboxymethyl cellulose/ZSM-5/ZIF-8 for dye removal from aqueous solution in batch and continuous fixed bed systems. International Journal of Biological Macromolecules, 2020, 162, 1140-1152.	3.6	46
1096	New Microporous Lanthanide Organic Frameworks. Synthesis, Structure, Luminescence, Sorption, and Catalytic Acylation of 2-Naphthol. Molecules, 2020, 25, 3055.	1.7	12
1097	Structural diversities of a series of Zn(II)/Cd(II) coordination polymers constructed via dual-ligand strategy of D-(+)-camphoric acid and pyridine-based ligand. Journal of Molecular Structure, 2020, 1218, 128482.	1.8	15
1098	Energy-based descriptors for photo-catalytically active metal–organic framework discovery. Journal of Materials Chemistry A, 2020, 8, 4473-4482.	5.2	24
1099	Water‣table Lanthanide Coordination Polymers with Triple Luminescent Centers for Tunable Emission and Efficient Self alibration Sensing Wastewater Pollutants. Advanced Optical Materials, 2020, 8, 1901659.	3.6	27
1100	Metal-organic framework-based materials as an emerging platform for advanced electrochemical sensing. Coordination Chemistry Reviews, 2020, 410, 213222.	9.5	321
1101	The crucial roles of guest water in a biocompatible coordination network in the catalytic ring-opening polymerization of cyclic esters: a new mechanistic perspective. Chemical Science, 2020, 11, 3345-3354.	3.7	11
1102	The development of two fluorescent chemosensors for the selective detection of Zn ²⁺ and Al ³⁺ ions in a quinoline platform by tuning the substituents in the receptor part: elucidation of the structures of the metal-bound chemosensors and biological studies. Dalton Transactions, 2020, 49, 4758-4773.	1.6	41

#	Article	IF	CITATIONS
1103	Synthesis of two new Cd(II)-MOFs based on different secondary building units with highly selective gas sorption for CO2/CH4 and luminescent sensor for Fe3+ and Cr2O72â^' ions. Journal of Solid State Chemistry, 2020, 285, 121258.	1.4	10
1104	Dramatic luminescence signal from a Co(ii)-based metal–organic compound due to the construction of charge-transfer bands with Al3+ and Fe3+ ions in water: steady-state and time-resolved spectroscopic studies. New Journal of Chemistry, 2020, 44, 4376-4385.	1.4	6
1105	Discrimination of Various Amine Vapors by a Triemissive Metal-Organic Framework Composite via the Combination of a Three-Dimensional Ratiometric Approach and a Confinement-Induced Enhancement Effect. ACS Applied Materials & Interfaces, 2020, 12, 12043-12053.	4.0	38
1106	<i>In situ</i> Raman and FTIR spectroscopic study on the formation of the isomers MIL-68(Al) and MIL-53(Al). RSC Advances, 2020, 10, 7336-7348.	1.7	48
1107	Ratiometric fluorescence detection of anthrax biomarker 2,6-dipicolinic acid using hetero MOF sensors through ligand regulation. Journal of Materials Chemistry C, 2020, 8, 4392-4400.	2.7	72
1108	Constructions of new luminescent 3D porous MOFs with high stability, unique selectivity and low detection limits for various ions in aqueous solution. Journal of Solid State Chemistry, 2020, 285, 121270.	1.4	15
1109	Structural Diversity of Copper(I) Cluster-Based Coordination Polymers with Pyrazine-2-thiol Ligand. Inorganic Chemistry, 2020, 59, 2680-2688.	1.9	39
1110	Resorcin[4]arene-based cadmium(II) coordination polymers for efficient luminescent detection of Fe3+ and Cr2O72â° ions. Inorganic Chemistry Communication, 2020, 114, 107847.	1.8	6
1111	Luminescence turn-on detection by an entanglement-protected MOF operating <i>via</i> a divided receptor–transducer protocol. Journal of Materials Chemistry C, 2020, 8, 3622-3625.	2.7	18
1112	The Chemistry of Reticular Framework Nanoparticles: MOF, ZIF, and COF Materials. Advanced Functional Materials, 2020, 30, 1909062.	7.8	174
1113	Tetra-carboxylic acid based metal-organic framework as a high-performance bifunctional electrocatalyst for HER and OER. International Journal of Hydrogen Energy, 2020, 45, 11077-11088.	3.8	46
1114	Green synthesis of hierarchically porous Cu- and Zn-MOFs by the combined action of hydroxy double salt and surfactant: An ultrafast method. Materials Today: Proceedings, 2020, 25, 230-235.	0.9	2
1115	An Electroactive Zinc-based Metal–Organic Framework: Bifunctional Fluorescent Quenching Behavior and Direct Observation of Nitrobenzene. Inorganic Chemistry, 2020, 59, 2997-3003.	1.9	20
1116	Pore-Functionalized and Hydrolytically Robust Cd(II)-Metal–Organic Framework for Highly Selective, Multicyclic CO ₂ Adsorption and Fast-Responsive Luminescent Monitoring of Fe(III) and Cr(VI) Ions with Notable Sensitivity and Reusability. Inorganic Chemistry, 2020, 59, 3012-3025.	1.9	90
1117	Assembly of four new cobalt coordination polymers modulated by N-coligands: sensitive and selective sensing of nitroaromatics, Fe ³⁺ and Cr ₂ O ₇ ^{2â^'} in water. CrystEngComm, 2020, 22, 1789-1801.	1.3	17
1118	A Zn-based coordination polymer as a luminescent sensor for simple and sensitive detecting of sulfonamides antibiotics and nitroaromatic. Journal of Solid State Chemistry, 2020, 286, 121247.	1.4	12
1119	Integrated outstanding precision and mechanical performance of transparent 3D photonic crystal devices employing cross-linked nanospheres <i>via</i> thermoforming in a rubbery state. Journal of Materials Chemistry C, 2020, 8, 2993-2999.	2.7	6
1120	Synthese, structure and photocatalytic properties of a new two-dimensional polymer based on 4,4′-bis(2-methylimidazol-1-yl)diphenyl ether and 5-tert-butyl isophthalic acid. Inorganic and Nano-Metal Chemistry, 2020, 50, 303-308.	0.9	1

#	Article	IF	Citations
1121	Synthesis and Structures of Four Metalâ€Organic Coordination Compounds with Isomeric Tripodal Ligands. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2020, 646, 241-247.	0.6	0
1122	High Electrical Conductivity in a 2D MOF with Intrinsic Superprotonic Conduction and Interfacial Pseudo-capacitance. Matter, 2020, 2, 711-722.	5.0	115
1123	Luminescent MOF crystals embedded in PMMA/PDMS transparent films as effective NO ₂ gas sensors. Molecular Systems Design and Engineering, 2020, 5, 1048-1056.	1.7	34
1124	Interdigitated conducting tetrathiafulvalene-based coordination networks. Chemical Communications, 2020, 56, 2407-2410.	2.2	14
1125	A magnetic nanoscale metal–organic framework (MNMOF) as a viable fluorescence quencher material for ssDNA and for the detection of mercury ions <i>via</i> a novel quenching–quenching mechanism. RSC Advances, 2020, 10, 3705-3714.	1.7	20
1126	Metal–organic frameworks as a platform for clean energy applications. EnergyChem, 2020, 2, 100027.	10.1	530
1127	A Water‣table Lanthanide Coordination Polymer as Multicenter Platform for Ratiometric Luminescent Sensing Antibiotics. Chemistry - A European Journal, 2020, 26, 3137-3144.	1.7	72
1128	State of the Art in Alcohol Sensing with 2D Materials. Nano-Micro Letters, 2020, 12, 33.	14.4	41
1129	A dual-functional metal phosphate for high proton conduction and selective luminescence turn-on sensing of Co ²⁺ ions. CrystEngComm, 2020, 22, 2013-2019.	1.3	8
1130	Sensing organic analytes by metal–organic frameworks: a new way of considering the topic. Inorganic Chemistry Frontiers, 2020, 7, 1598-1632.	3.0	253
1131	Formation and Encapsulation of Lead Halide Perovskites in Lanthanide Metal–Organic Frameworks for Tunable Emission. ACS Applied Materials & Interfaces, 2020, 12, 9851-9857.	4.0	34
1132	A heat-set lanthanide metallogel capable of emitting stable luminescence under thermal, mechanical and water stimuli. Dalton Transactions, 2020, 49, 2827-2832.	1.6	12
1133	Micro or nano: Evaluation of biosafety and biopotency of magnesium metal organic framework-74 with different particle sizes. Nano Research, 2020, 13, 511-526.	5.8	45
1134	Hydrophobic Metal–Organic Frameworks: Assessment, Construction, and Diverse Applications. Advanced Science, 2020, 7, 1901758.	5.6	136
1135	Comparative studies of methyl orange adsorption in various metal-organic frameworks by nitrogen adsorption and positron annihilation lifetime spectroscopy. Microporous and Mesoporous Materials, 2020, 296, 109993.	2.2	23
1136	A ratiometric electrochemical sensor for simultaneous detection of multiple heavy metal ions based on ferrocene-functionalized metal-organic framework. Sensors and Actuators B: Chemical, 2020, 310, 127756.	4.0	133
1137	Applications of metal–organic framework-derived materials in fuel cells and metal-air batteries. Coordination Chemistry Reviews, 2020, 409, 213214.	9.5	182
1138	Rational design and synthesis of a stable pillar-layer Nal-organic framework as a multi-responsive luminescent sensor in aqueous solutions. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 230, 118106.	2.0	7

#	Article	IF	Citations
1139	A Sm(III) Coordination Polymer Containing 2,5-Furandicarboxylic Acid: Crystal Structure and Recognition of Oxalate in Water. Crystallography Reports, 2020, 65, 78-83.	0.1	0
1140	Advances in Metalâ€Organic Frameworks for Acetylene Storage. European Journal of Inorganic Chemistry, 2020, 2020, 2303-2311.	1.0	16
1141	Improving the Cd2+ detection capability of a new anionic rare earth metal–organic framework based on a [RE6(μ3-OH)8]10+ secondary building unit: an ion-exchange approach towards more efficient sensors. Molecular Systems Design and Engineering, 2020, 5, 1077-1087.	1.7	8
1142	Open metal site (OMS) and Lewis basic site (LBS)-functionalized copper–organic framework with high CO ₂ uptake performance and highly selective CO ₂ /N ₂ and CO ₂ /CH ₄ separation. CrystEngComm, 2020, 22, 3378-3384.	1.3	6
1143	Metal–Organic Framework Nanocarriers for Drug Delivery in Biomedical Applications. Nano-Micro Letters, 2020, 12, 103.	14.4	363
1144	Transitional MOFs: Exposing Metal Sites with Porosity for Enhancing Catalytic Reaction Performance. ACS Applied Materials & Interfaces, 2020, 12, 23968-23975.	4.0	20
1145	A tubular luminescent framework: precise decoding of nitroaniline isomers and quantitative detection of traces of benzaldehyde in benzyl alcohol. Journal of Materials Chemistry C, 2020, 8, 9828-9835.	2.7	12
1146	Two sulfone-functionalized Zn(II)-coordination polymers as luminescent sensors for sensitive and rapid detection of nitrofurans antibiotics. Journal of Solid State Chemistry, 2020, 286, 121318.	1.4	15
1147	Chiral Cu <i>_x</i> OS@ZIFâ€8 Nanostructures for Ultrasensitive Quantification of Hydrogen Sulfide In Vivo. Advanced Materials, 2020, 32, e1906580.	11.1	59
1148	Four new metal-organic frameworks based on diverse metal clusters: Syntheses, structures, luminescent sensing and dye adsorption properties. Journal of Solid State Chemistry, 2020, 287, 121336.	1.4	10
1149	FeCo-based hybrid MOF derived active species for effective oxygen evolution. Progress in Natural Science: Materials International, 2020, 30, 185-191.	1.8	40
1150	MOF@COFs with Strong Multiemission for Differentiation and Ratiometric Fluorescence Detection. ACS Applied Materials & amp; Interfaces, 2020, 12, 20973-20981.	4.0	94
1151	Controlling the morphology of metal–organic frameworks and porous carbon materials: metal oxides as primary architecture-directing agents. Chemical Society Reviews, 2020, 49, 3348-3422.	18.7	190
1152	The templating effect of 1,2-cyclohexanediamine configuration on iodoplumbate organic–inorganic hybrid structures. Journal of Coordination Chemistry, 2020, 73, 417-428.	0.8	5
1153	Coordination Polymers Based on a Biphenyl Tetraphosphonate Linker: Synthesis Control and Photoluminescence. Molecules, 2020, 25, 1835.	1.7	0
1154	Molecular Tuning Nanoarchitectonics for Molecular Recognition and Molecular Manipulation. ChemNanoMat, 2020, 6, 870-880.	1.5	25
1155	Water Stable Heterometallic Zn–Tb Coordination Polymer for Rapid Detection of the Ultraviolet Filter Benzophenone. Inorganic Chemistry, 2020, 59, 6729-6735.	1.9	32
1156	A novel sustainable metal organic framework as the ultimate aqueous phase sensor for natural hazards: detection of nitrobenzene and F ^{â^²} at the ppb level and rapid and selective adsorption of methylene blue. CrystEngComm, 2020, 22, 3891-3909.	1.3	50

#	Article	IF	CITATIONS
1157	Dual-responsive luminescent sensors based on two Cd-MOFs: rare enhancement toward acac and quenching toward Cr ₂ O ₇ ^{2â^²} . CrystEngComm, 2020, 22, 3759-3767.	1.3	40
1158	2D Porous Polymers with sp ² â€Carbon Connections and Sole sp ² â€Carbon Skeletons. Advanced Functional Materials, 2020, 30, 2000857.	7.8	42
1159	Structure Engineering of a Lanthanideâ€Based Metal–Organic Framework for the Regulation of Dynamic Ranges and Sensitivities for Pheochromocytoma Diagnosis. Advanced Materials, 2020, 32, e2000791.	11.1	33
1160	Highly Selective and Stable Zn (II)â€Based Metal–Organic Frameworks for the Detections of Tetracycline Antibiotic and Acetone in Aqueous System. Applied Organometallic Chemistry, 2020, 34, e5518.	1.7	27
1161	New Scandiumâ€containing Coordination Polymers with Linear Linker Molecules: Crystal Structures and Luminescence Properties. European Journal of Inorganic Chemistry, 2020, 2020, 2737-2743.	1.0	5
1162	A Highly Water-Stable <i>meta</i> -Carborane-Based Copper Metal–Organic Framework for Efficient High-Temperature Butanol Separation. Journal of the American Chemical Society, 2020, 142, 8299-8311.	6.6	54
1163	Bimetallic metal–organic frameworks and their derivatives. Chemical Science, 2020, 11, 5369-5403.	3.7	285
1164	A water-stable terbium metal–organic framework with functionalized ligands for the detection of Fe ³⁺ and Cr ₂ O ₇ ^{2â^'} ions in water and picric acid in seawater. CrystEngComm, 2020, 22, 3638-3643.	1.3	42
1165	Two Closely Related Zn(II)-MOFs for Their Large Difference in CO ₂ Uptake Capacities and Selective CO ₂ Sorption. Inorganic Chemistry, 2020, 59, 7056-7066.	1.9	35
1166	Lanthanide 5,7-Disulfonate-1,4-naphthalenedicarboxylate Frameworks Constructed from Trinuclear and Tetranuclear Lanthanide Carboxylate Clusters: Proton Conduction and Selective Fluorescent Sensing of Fe ³⁺ . Inorganic Chemistry, 2020, 59, 7265-7273.	1.9	25
1167	Electroactive Organic Building Blocks for the Chemical Design of Functional Porous Frameworks (MOFs and COFs) in Electronics. Chemistry - A European Journal, 2020, 26, 10912-10935.	1.7	53
1168	Conversion of Fluorescence Signals into Optical Fingerprints Realizing High-Throughput Discrimination of Anionic Sulfonate Surfactants with Similar Structure Based on a Statistical Strategy and Luminescent Metal–Organic Frameworks. Analytical Chemistry, 2020, 92, 7273-7281.	3.2	31
1169	Temperature-Dependent Emission and Turn-Off Fluorescence Sensing of Hazardous "Quat―Herbicides in Water by a Zn-MOF Based on a Semi-Rigid Dibenzochrysene Tetraacetic Acid Linker. Inorganic Chemistry, 2020, 59, 6202-6213.	1.9	47
1170	Fluorometric detection of iodine by MIL-53(Al)-TDC. Dalton Transactions, 2020, 49, 6572-6577.	1.6	19
1171	A smartphone-based quantitative point-of-care testing (POCT) system for simultaneous detection of multiple heavy metal ions. Chemical Engineering Journal, 2020, 394, 124966.	6.6	96
1172	Metal ion detection using luminescent-MOFs: Principles, strategies and roadmap. Coordination Chemistry Reviews, 2020, 415, 213299.	9.5	158
1173	Practical MOF Nanoarchitectonics: New Strategies for Enhancing the Processability of MOFs for Practical Applications. Langmuir, 2020, 36, 4231-4249.	1.6	86
1174	Selective chemochromic and chemically-induced photochromic response of a metal–organic framework. Chemical Communications, 2020, 56, 5929-5932.	2.2	35

#	Article	IF	CITATIONS
1175	Design of fluorescent sensors based on azaheterocyclic push-pull systems towards nitroaromatic explosives and related compounds: A review. Dyes and Pigments, 2020, 180, 108414.	2.0	89
1176	Cationic Metal–Organic Frameworks Based on Linear Zwitterionic Ligands for Cr ₂ O ₇ ^{2–} and Ammonia Sensing. Crystal Growth and Design, 2020, 20, 3466-3473.	1.4	44
1177	A feasible linker transformation strategy towards the formation of Cu ₂ O nanoparticles for immobilization in hierarchical CuBTC for adsorption desulfurization. Journal of Materials Chemistry A, 2020, 8, 8678-8683.	5.2	30
1178	An Unusual Luminescent Mo/S/Cu Cluster-Based Metal–Organic Framework for Efficient Detection of TNP. Journal of Cluster Science, 2021, 32, 279-285.	1.7	2
1179	Synthesis, Structure and Luminescent Property of a 3D Layered-Pillared Cd(II) Metal–Organic Framework Derived from Mixed Rigid and Flexible Ligands. Journal of Chemical Crystallography, 2021, 51, 50-56.	0.5	0
1180	Mn2Cl4 Cluster Based Two-Dimensional Coordination Polymer for Dichromate Sensing Property. Journal of Cluster Science, 2021, 32, 235-241.	1.7	0
1181	Heterometallic One-Dimensional Tetranuclear Cu–Na Cluster-Based Polymers: Room Temperature Synthesis, Structures, and Properties. Journal of Cluster Science, 2021, 32, 499-505.	1.7	1
1182	Geometryâ€Directed Selfâ€Assembly of Polymeric Molecular Frameworks. Angewandte Chemie, 2021, 133, 2052-2057.	1.6	1
1183	Cdâ€Based Metal–Organic Framework for Selective Turnâ€On Fluorescent DMSO Residual Sensing. Chemistry - A European Journal, 2021, 27, 3753-3760.	1.7	12
1184	Dual-functionalization actuated trimodal attribute in an ultra-robust MOF: exceptionally selective capture and effectual fixation of CO ₂ with fast-responsive, nanomolar detection of assorted organo-contaminants in water. Materials Chemistry Frontiers, 2021, 5, 979-994.	3.2	50
1185	"Turn-on―fluorescent probes based on Rhodamine B/amino acid derivatives for detection of Fe3+ in water. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 247, 119095.	2.0	10
1186	Insights into the Capacity and Rate Performance of Transitionâ€Metal Coordination Compounds for Reversible Lithium Storage. Angewandte Chemie - International Edition, 2021, 60, 4142-4149.	7.2	35
1187	Recent advances in naphthalenediimide-based metal-organic frameworks: Structures and applications. Coordination Chemistry Reviews, 2021, 430, 213665.	9.5	65
1188	A highly sensitive and selective turn-off fluorescence sensor for Fe3+ detection based on a terbium metal-organic framework. Journal of Solid State Chemistry, 2021, 294, 121835.	1.4	36
1189	Effect of pyridyl donors from organic ligands <i>versus</i> metalloligands on material design. Inorganic Chemistry Frontiers, 2021, 8, 1334-1373.	3.0	18
1190	Hierarchical assemblies of molecular frameworks—MOF-on-MOF epitaxial heterostructures. Nano Research, 2021, 14, 355-368.	5.8	58
1191	Structural diversity and photoluminescent properties of two zinc coordination polymers based on 5-i-propoxyisophthalate and flexible N-donor ligands. Inorganic and Nano-Metal Chemistry, 2021, 51, 485-491.	0.9	0
1192	Charge transfer complexes: Emerging and promising colorimetric real-time chemosensors for hazardous materials. Journal of Hazardous Materials, 2021, 403, 123537.	6.5	54

#	Article	IF	CITATIONS
1193	Near-infrared luminescent Nd3+/Yb3+-codoped metal–organic framework for ratiometric temperature sensing in physiological range. Journal of Rare Earths, 2021, 39, 1024-1030.	2.5	18
1194	Porphyrinylphosphonateâ€Based Metal–Organic Framework: Tuning Proton Conductivity by Ligand Design. Chemistry - A European Journal, 2021, 27, 1598-1602.	1.7	16
1195	Recent progress on metal-organic framework-derived porous carbon and its composite for pollutant adsorption from liquid phase. Chemical Engineering Journal, 2021, 405, 126960.	6.6	137
1196	Two-channel responsive luminescent chemosensors for dioxygen species: Molecular oxygen, singlet oxygen and superoxide anion. Coordination Chemistry Reviews, 2021, 427, 213575.	9.5	36
1197	Multi-dimensional ZnO@MWCNTs assembly derived from MOF-5 heterojunction as highly efficient microwave absorber. Carbon, 2021, 172, 15-25.	5.4	59
1198	Nonlinear optical metal-organic frameworks for ratiometric temperature sensing in physiological range. Chinese Chemical Letters, 2021, 32, 1511-1514.	4.8	24
1199	Integrating peroxidase-mimicking activity with photoluminescence into one framework structure for high-performance ratiometric fluorescent pesticide sensing. Sensors and Actuators B: Chemical, 2021, 328, 129024.	4.0	41
1200	Synergistic Size Effect of MOF Cavity/Encapsulated Luminescent Modules Significantly Boosts Nitro-Aromatic Vapors Distinction via a Three-Dimensional Ratiometric Sensing. Sensors and Actuators B: Chemical, 2021, 328, 129025.	4.0	7
1201	Three Co/Ni(II)-MOFs with dinuclear metal units constructed by biphenyl-3,3′,5,5′-tetracarboxylic acid and N-donor ligands: Synthesis, structures, and magnetic properties. Journal of Solid State Chemistry, 2021, 293, 121706.	1.4	7
1202	Luminescent sensors based on coordination polymers with adjustable emissions for detecting biomarker of pollutant ethylbenzene and styrene. Applied Organometallic Chemistry, 2021, 35, .	1.7	9
1203	A binuclear chloride bridged Cu(II) and a mononuclear Ni(II) complex: Synthesis, crystal structure, photo catalytic and biological studies. Inorganica Chimica Acta, 2021, 515, 120067.	1.2	12
1204	Structural modulation of the photophysical and electronic properties of pyrene-based 3D metal–organic frameworks derived from s-block metals. CrystEngComm, 2021, 23, 82-90.	1.3	3
1205	Enhanced acetone sensing from Zn(II)-MOFs comprising tetranuclear metal clusters built with EDC and BDC ligands. Inorganic Chemistry Communication, 2021, 123, 108339.	1.8	4
1206	Environmental pollutionÂanalysis based on the luminescent metal organic frameworks: A review. TrAC - Trends in Analytical Chemistry, 2021, 134, 116131.	5.8	45
1207	BNâ€Doped Metal–Organic Frameworks: Tailoring 2D and 3D Porous Architectures through Molecular Editing of Borazines. Chemistry - A European Journal, 2021, 27, 4124-4133.	1.7	8
1208	Ultrasensitive, rapid and selective sensing of hazardous fluoride ion in aqueous solution using a zirconium porphyrinic luminescent metal-organic framework. Analytica Chimica Acta, 2021, 1145, 95-102.	2.6	19
1209	Variability in the Formation and Framework Polymorphism of Metalâ€organic Frameworks based on Yttrium(III) and the Bifunctional Organic Linker 2,5â€Dihydroxyterephthalic Acid. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2021, 647, 15-25.	0.6	1
1210	Trinuclear iron cluster and layered manganese complexes based on indolecarboxylic acid showing magnetic and antibacterial properties. Inorganic Chemistry Communication, 2021, 124, 108381.	1.8	6

#	Article	IF	Citations
1211	Insights into the Capacity and Rate Performance of Transitionâ€Metal Coordination Compounds for Reversible Lithium Storage. Angewandte Chemie, 2021, 133, 4188-4195.	1.6	2
1212	Biosensors based on fluorescence carbon nanomaterials for detection of pesticides. TrAC - Trends in Analytical Chemistry, 2021, 134, 116126.	5.8	121
1213	Critical Aspects of Metal–Organic Frameworkâ€Based Materials for Solarâ€Đriven CO 2 Reduction into Valuable Fuels. Global Challenges, 2021, 5, 2000082.	1.8	9
1214	Smart recycling of PET to sorbents for insecticides through in situ MOF growth. Applied Materials Today, 2021, 22, 100910.	2.3	17
1215	Applications of reticular diversity in metal–organic frameworks: An ever-evolving state of the art. Coordination Chemistry Reviews, 2021, 430, 213655.	9.5	56
1216	Ratiometric fluorescence detection of tetracycline antibiotic based on a polynuclear lanthanide metal–organic framework. Sensors and Actuators B: Chemical, 2021, 330, 129314.	4.0	79
1217	Coordination polymers from an unexplored biphenyl-tricarboxylate linker: hydrothermal synthesis, structural traits and catalytic cyanosilylation. Inorganic Chemistry Frontiers, 2021, 8, 1229-1242.	3.0	15
1218	Design and Property Modulation of Metal–Organic Frameworks with Aggregation-Induced Emission. , 2021, 3, 77-89.		73
1219	Fabrication of ultrathin single-layer 2D metal–organic framework nanosheets with excellent adsorption performance <i>via</i> a facile exfoliation approach. Journal of Materials Chemistry A, 2021, 9, 546-555.	5.2	55
1220	Bioresponsive metal–organic frameworks: Rational design and function. Coordination Chemistry Reviews, 2021, 431, 213682.	9.5	17
1221	Application of Metalâ€Organic Frameworks in Adsorptive Removal of Organic Contaminants from Water, Fuel and Air. Chemistry - an Asian Journal, 2021, 16, 185-196.	1.7	31
1222	Multi-responsive luminescent sensors of two water-stable polynuclear Cd organic frameworks: Synthesis, structures and sensing of tetracycline, Cr2O72â^' and Fe3+ ions in water. Microchemical Journal, 2021, 162, 105880.	2.3	14
1223	8-Hydroxyquinoline and Eu ³⁺ Incorporated Metal–Organic Framework Nanosystems with Tunable Emissions for White Light and Anticounterfeiting Applications. ACS Applied Nano Materials, 2021, 4, 313-321.	2.4	10
1224	Recent advances in visible-light-driven carbon dioxide reduction by metal-organic frameworks. Science of the Total Environment, 2021, 762, 144101.	3.9	35
1225	Passing the framework skeleton and properties of coordination materials onto organic framework materials. Chemical Communications, 2021, 57, 1348-1351.	2.2	2
1226	MOFs assembled from <i>C</i> ₃ symmetric ligands: structure, iodine capture and role as bifunctional catalysts towards the oxidation–Knoevenagel cascade reaction. Dalton Transactions, 2021, 50, 647-659.	1.6	12
1227	Coordination polymers based on 3,5-di-tert-butylbenzoate {Cd2Eu} moieties. Inorganica Chimica Acta, 2021, 515, 120050.	1.2	10
1228	Specific fluorescence sensing of hydrogen sulphide by an azide functionalized Zr(IV) MOF with DUT-52 topology. Microporous and Mesoporous Materials, 2021, 311, 110725.	2.2	22

#	Article	IF	CITATIONS
1229	Geometryâ€Directed Selfâ€Assembly of Polymeric Molecular Frameworks. Angewandte Chemie - International Edition, 2021, 60, 2024-2029.	7.2	12
1230	Luminescence response mode and chemical sensing mechanism for lanthanide-functionalized metal–organic framework hybrids. Inorganic Chemistry Frontiers, 2021, 8, 201-233.	3.0	166
1231	Direct X-ray and electron-beam lithography of halogenated zeolitic imidazolate frameworks. Nature Materials, 2021, 20, 93-99.	13.3	112
1232	Calciumâ€Based Metal–Organic Frameworks and Their Potential Applications. Small, 2021, 17, e2005165.	5.2	30
1233	A unique 3D microporous MOF constructed by cross-linking 1D coordination polymer chains for effectively selective separation of CO2/CH4 and C2H2/CH4. Chinese Chemical Letters, 2021, 32, 1153-1156.	4.8	28
1234	Bio-inspired self-cleaning carbon cloth based on flower-like Ag nanoparticles and leaf-like MOF: A high-performance and reusable substrate for SERS detection of azo dyes in soft drinks. Sensors and Actuators B: Chemical, 2021, 329, 129080.	4.0	31
1235	The Role of Metal–Organic Frameworks in Electronic Sensors. Angewandte Chemie, 2021, 133, 15320-15340.	1.6	26
1236	A novel ultrasonic reverse micelle-assisted electrospun efficient route for Eu-MOF and Eu-MOF/CA composite nanofibers: a high performance photocatalytic treatment for removal of BG pollutant. Environmental Science and Pollution Research, 2021, 28, 4317-4328.	2.7	15
1237	Recent advances in process engineering and upcoming applications of metal–organic frameworks. Coordination Chemistry Reviews, 2021, 426, 213544.	9.5	243
1238	Supramolecular fluorescent sensors: An historical overview and update. Coordination Chemistry Reviews, 2021, 427, 213560.	9.5	135
1239	The Role of Metal–Organic Frameworks in Electronic Sensors. Angewandte Chemie - International Edition, 2021, 60, 15192-15212.	7.2	62
1240	Monodentate AlEgen Anchored on Metalâ€Organic Framework for Fast Fluorescence Sensing of Phosphate. Chinese Journal of Chemistry, 2021, 39, 99-105.	2.6	21
1241	One high-nuclearity Eu ₁₈ nanoring with rapid ratiometric fluorescence response to dipicolinic acid (an anthrax biomarker). Chemical Communications, 2021, 57, 7316-7319.	2.2	8
1242	Regulation on Topological Architectures and Gas Adsorption for Cadmium-Azolate-Carboxylate Frameworks by the Ligand Flexibility. Crystal Growth and Design, 2021, 21, 1718-1726.	1.4	17
1243	Self-assembly of TiO ₂ /ZIF-8 nanocomposites for varied photocatalytic CO ₂ reduction with H ₂ O vapor induced by different synthetic methods. Nanoscale Advances, 2021, 3, 1455-1463.	2.2	8
1244	Stereoselective synthesis of E, E / E, Z isomers based on 1-(4- iodophenyl)-2,5-divinyl-1H-pyrrole core skeleton: A configuration-controlled fluorescence characteristics and highly selective anti-cancer activity. Dyes and Pigments, 2021, 184, 108733.	2.0	7
1245	Deciphering the behavior of a new MOF and its composites under light at ensemble and single crystal levels: relevance to its photonic applications. Journal of Materials Chemistry C, 2021, 9, 6418-6435.	2.7	1
1246	Tuning the excited-state intramolecular proton transfer (ESIPT)-based luminescence of metal–organic frameworks by metal nodes toward versatile photoluminescent applications. Dalton Transactions, 2021, 50, 6901-6912.	1.6	22

#	Article	IF	CITATIONS
1247	A water-stable molecular cadmium phosphonate bearing 2-(2-pyridyl)benzimidazole as a highly sensitive luminescence sensor for the selective detection of bisphenol AF and bisphenol B. CrystEngComm, 2021, 23, 2842-2853.	1.3	5
1248	Luminescence sensing and photocatalytic activities of four Zn(<scp>ii</scp>)/Co(<scp>ii</scp>) coordination polymers based on a pyridinephenyl bifunctional ligand. CrystEngComm, 2021, 23, 1497-1506.	1.3	34
1249	Two Co(<scp>ii</scp>)-based coordination polymers as multi-responsive luminescent sensors for the detection of levofloxacin, benzaldehyde and Fe ³⁺ ions in water media. CrystEngComm, 2021, 23, 7485-7495.	1.3	19
1250	An exceptionally stable luminescent cadmium(<scp>ii</scp>) metal–organic framework as a dual-functional chemosensor for detecting Cr(<scp>vi</scp>) anions and nitro-containing antibiotics in aqueous media. CrystEngComm, 2021, 23, 1218-1225.	1.3	62
1251	The coordination chemistry of benzhydrazide with lanthanide(<scp>iii</scp>) ions: hydrothermal <i>in situ</i> ligand formation, structures, magnetic and photoluminescence sensing properties. RSC Advances, 2021, 11, 24709-24721.	1.7	10
1252	Thermal hysteresis induced by external pressure in a 3D Hofmann-type SCO-MOF. Dalton Transactions, 2021, 50, 1384-1389.	1.6	5
1253	Homochiral metal–organic frameworks for enantioseparation. Chemical Society Reviews, 2021, 50, 5706-5745.	18.7	86
1254	Pyrene-based metal organic frameworks: from synthesis to applications. Chemical Society Reviews, 2021, 50, 3143-3177.	18.7	126
1255	Recent progresses in luminescent metal–organic frameworks (LMOFs) as sensors for the detection of anions and cations in aqueous solution. Dalton Transactions, 2021, 50, 1950-1972.	1.6	74
1256	Tin-Based Oxide, Alloy, and Selenide Li-Ion Battery Anodes Derived from a Bimetallic Metal–Organic Material. Journal of Physical Chemistry C, 2021, 125, 1180-1189.	1.5	6
1257	Amino and triazole-containing metal–organic frameworks for highly efficient CO ₂ fixation. Chemical Communications, 2021, 57, 10803-10806.	2.2	9
1258	Metal–organic frameworks for chemical sensing devices. Materials Horizons, 2021, 8, 2387-2419.	6.4	139
1259	Novel fluorescent probes based on nitrogen–sulfur co-doped carbon dots for chromium ion detection. New Journal of Chemistry, 2021, 45, 4828-4834.	1.4	10
1260	Facile fabrication of a highly (110)-oriented ZIF-7 film with rod-shaped seeds. Chemical Communications, 2021, 57, 2128-2131.	2.2	10
1261	Simultaneous fluorescence and phosphorescence in Zn(<scp>ii</scp>)–zwitterionic coordination polymers with tunable colors. Journal of Materials Chemistry C, 2021, 9, 4233-4239.	2.7	5
1262	Incorporation of homogeneous organometallic catalysts into metal–organic frameworks for advanced heterogenization: a review. Catalysis Science and Technology, 2021, 11, 5734-5771.	2.1	35
1263	A highly stable Zn coordination polymer exhibiting pH-dependent fluorescence and as a visually ratiometric and on–off fluorescent sensor. CrystEngComm, 2021, 23, 5226-5240.	1.3	26
1264	Photophysical studies of a room temperature phosphorescent Cd(<scp>ii</scp>) based MOF and its application towards ratiometric detection of Hg ²⁺ ions in water. CrystEngComm, 2021, 23, 4160-4168.	1.3	5

#	Article	IF	CITATIONS
1265	Fluorogenic naked eye "turn-on―sensing of hypochlorous acid by a Zr-based metal organic framework. New Journal of Chemistry, 2021, 45, 14211-14217.	1.4	3
1266	Tetracycline antibiotics and NH ₄ ⁺ detection by Zn–organic framework fluorescent probe. Analyst, The, 2021, 146, 6883-6892.	1.7	24
1267	Luminescent metal–organic frameworks as chemical sensors based on "mechanism–response― a review. Dalton Transactions, 2021, 50, 3429-3449.	1.6	68
1268	Mechanochemical Approach to Preparation of MFI Zeolites Substituted Isomorphously by Both Al and Fe as Durable Catalysts for the Dimethyl Ether to Olefin Reaction. Industrial & Engineering Chemistry Research, 2021, 60, 2079-2088.	1.8	17
1269	MOF-74 type variants for CO ₂ capture. Materials Chemistry Frontiers, 2021, 5, 5172-5185.	3.2	63
1270	Efficient chemosensors for toxic pollutants based on photoluminescent Zn(<scp>ii</scp>) and Cd(<scp>ii</scp>) metal–organic networks. Dalton Transactions, 2021, 50, 4470-4485.	1.6	28
1271	Luminescent Metal-Organic Frameworks-Based Sensors for Environmentally Toxic Analytes. Advances in Chemical and Materials Engineering Book Series, 2021, , 13-35.	0.2	0
1272	A donor–acceptor liganded metal–organic framework showcases the hydrogen-bond-enhanced sensing of N-heterocyclic explosives. Journal of Materials Chemistry C, 2021, 9, 12086-12093.	2.7	6
1273	Polyhedral metal–organic framework monolayer colloidal crystals with sharpened and crystal facet-dependent selectivity for organic vapor sensing. Journal of Materials Chemistry C, 2021, 9, 5379-5386.	2.7	21
1274	Synthesis, structure, and fluorescence properties of coordination polymers of 3,5-bis(1′,2′,4′-triazol-1′-yl) pyridine. CrystEngComm, 2021, 23, 1744-1755.	1.3	5
1275	Tailoring the triplet level of isomorphic Eu/Tb mixed MOFs for sensitive temperature sensing. Chemical Communications, 2021, 57, 3143-3146.	2.2	39
1276	Controllable generation of ZnO/ZnCo ₂ O ₄ arising from bimetal–organic frameworks for electrochemical detection of naphthol isomers. Analyst, The, 2021, 146, 3352-3360.	1.7	3
1277	A selective detection of nanomolar-range noxious anions in water by a luminescent metal–organic framework. Materials Advances, 2021, 2, 985-995.	2.6	14
1278	Rapid spatially-resolved post-synthetic patterning of metal–organic framework films. Chemical Communications, 2021, 57, 4706-4709.	2.2	7
1279	The influence of linker substitution on the fluorescence responsive sensing of isostructural coordination polymers: visual turn-on, ratiometric, and turn-off sensing in water. CrystEngComm, 2021, 23, 2222-2234.	1.3	16
1280	The ratiometric detection of the biomarker Ap5A for dry eye disease and physiological temperature using a rare trinuclear lanthanide metal–organic framework. Dalton Transactions, 2021, 50, 2792-2799.	1.6	10
1281	Response of a Zn(<scp>ii</scp>)-based metal–organic coordination polymer towards trivalent metal ions (Al ³⁺ , Fe ³⁺ and Cr ³⁺) probed by spectroscopic methods. Dalton Transactions, 2021, 50, 7388-7399.	1.6	26
1282	Nitrogen-Rich Tetraphenylethene-Based Luminescent Metal–Organic Framework for Efficient Detection of Carcinogens. ACS Omega, 2021, 6, 2177-2183.	1.6	8
#	Article	IF	CITATIONS
------	---	-----	-----------
1283	Regulating the near-infrared region to visible-light emission by adjusting cuprophilic interactions for blue light-excited phosphors. Journal of Materials Chemistry C, 2021, 9, 8589-8595.	2.7	10
1284	Coordination networks for the recognition of oxo-anions. Dalton Transactions, 2021, 50, 8273-8291.	1.6	16
1285	Dual-functional porous MOFs with hierarchical guest encapsulation for room-temperature phosphorescence and white-light-emission. Nanoscale, 2021, 13, 12466-12474.	2.8	14
1286	Growth of robust metal–organic framework films by spontaneous oxidation of a metal substrate for NO ₂ sensing. Materials Chemistry Frontiers, 2021, 5, 6476-6484.	3.2	13
1287	Metal–organic frameworks of linear trinuclear cluster secondary building units: structures and applications. Dalton Transactions, 2021, 50, 12692-12707.	1.6	12
1288	Water-Robust Zinc–Organic Framework with Mixed Nodes and Its Handy Mixed-Matrix Membrane for Highly Effective Luminescent Detection of Fe ³⁺ , CrO ₄ ^{2–} , and Cr ₂ O ₇ ^{2–} in Aqueous Solution. Inorganic Chemistry, 2021, 60, 1716-1725.	1.9	61
1289	Inter-ligand charge-transfer interactions in a photochromic and redox active zinc–organic framework. CrystEngComm, 2021, 23, 5982-5988.	1.3	7
1290	An excellent thermostable dual-functionalized 3D <i>fsx</i> -type Cd(<scp>ii</scp>) MOF for the highly selective detection of Fe ³⁺ ions and ten nitroaromatic explosives. CrystEngComm, 2021, 23, 6171-6179.	1.3	6
1291	A smart sensing triazine hexacarboxylic metal–organic skeleton material: synthesis, structure and multifunctional fluorescence detector. Journal of Materials Chemistry C, 2021, 9, 3193-3203.	2.7	20
1292	Biologically relevant and energetically significant cooperative ternary (π–π)2/(π–Ĩ€)1/(π–Ĩ€)2 assemblies and fascinating discrete (H2O)21 clusters in isostructural 2,5-pyridine dicarboxylato Co(ii) and Zn(ii) phenanthroline compounds: antiproliferative evaluation and theoretical studies. New Journal of Chemistry, 2021, 45, 3699-3715.	1.4	13
1293	A luminescent cationic MOF for bimodal recognition of chromium and arsenic based oxo-anions in water. Dalton Transactions, 2021, 50, 10133-10141.	1.6	25
1294	Rapid, selective capture of toxic oxo-anions of Se(<scp>iv</scp>), Se(<scp>vi</scp>) and As(<scp>v</scp>) from water by an ionic metal–organic framework (iMOF). Journal of Materials Chemistry A, 2021, 9, 6499-6507.	5.2	39
1295	Adsorption of Malachite Green and Alizarin Red S Dyes Using Fe-BTC Metal Organic Framework as Adsorbent. International Journal of Molecular Sciences, 2021, 22, 788.	1.8	66
1296	Multifunctionality in an Ion-Exchanged Porous Metal–Organic Framework. Journal of the American Chemical Society, 2021, 143, 1365-1376.	6.6	31
1297	Optical chemosensors for the gas phase detection of aldehydes: mechanism, material design, and application. Materials Advances, 2021, 2, 6213-6245.	2.6	14
1298	Covalent-coordination tandem functionalization of a metal–organic framework (UiO-66) as a hybrid probe for luminescence detection of <i>trans</i> , <i>trans</i> -muconic acid as a biomarker of benzene and Fe ³⁺ . Analyst, The, 2021, 146, 3052-3061.	1.7	12
1299	Highly selective fluorescent turn-on–off sensing of OH ^{â^'} , Al ³⁺ and Fe ³⁺ ions by tuning ESIPT in metal organic frameworks and mitochondria targeted bio-imaging. RSC Advances, 2021, 11, 27787-27800.	1.7	15
1300	Metal–organic frameworks towards bio-medical applications. Materials Chemistry Frontiers, 2021, 5, 5573-5594.	3.2	39

#	Article	IF	CITATIONS
1301	Double-site recognition of <i>Staphylococcus aureus</i> using a metal–organic framework material with an alkaline hydrolysis property as a sensitive fluorescent probe. Nanoscale, 2021, 13, 12546-12552.	2.8	6
1302	Metal–organic framework thin films as versatile chemical sensing materials. Materials Advances, 2021, 2, 6169-6196.	2.6	30
1303	Quinoline-tagged fluorescent organic probes for sensing of nitro-phenolic compounds and Zn ²⁺ ions at the ppb level. Materials Advances, 2021, 2, 2334-2346.	2.6	7
1304	Metal–organic frameworks as proton conductors: strategies for improved proton conductivity. Dalton Transactions, 2021, 50, 10655-10673.	1.6	36
1305	Thermally stable and robust gadolinium-based metal-organic framework: Synthesis, structure and heterogeneous catalytic O-arylation reaction. Polyhedron, 2021, 194, 114934.	1.0	2
1306	Ni(<scp>ii</scp>)-Based one dimensional coordination polymers for environmental remediation: design, topology, magnetism and the selective adsorption of cationic dyes. CrystEngComm, 2021, 23, 6253-6266.	1.3	19
1307	Engineering of Mixed Eu ³⁺ /Tb ³⁺ Metalâ€Organic Frameworks Luminescent Thermometers with Tunable Sensitivity. Advanced Optical Materials, 2021, 9, 2001938.	3.6	89
1308	The construction of a novel luminescent lanthanide framework for the selective sensing of Cu ²⁺ and 4-nitrophenol in water. Dalton Transactions, 2021, 50, 1874-1886.	1.6	36
1309	Ultrasensitive and highly selective detection of formaldehyde <i>via</i> an adenine-based biological metal–organic framework. Materials Chemistry Frontiers, 2021, 5, 2416-2424.	3.2	34
1310	A robust 3D zinc(<scp>ii</scp>)–organic framework for efficient dual detection of acetylacetone and Tb ³⁺ ions. Dalton Transactions, 2021, 50, 10180-10186.	1.6	47
1311	Nanocage-Based N-Rich Metal–Organic Framework for Luminescence Sensing toward Fe ³⁺ and Cu ²⁺ lons. Inorganic Chemistry, 2021, 60, 671-681.	1.9	97
1312	A dual-response regenerable luminescent 2D-MOF for nitroaromatic sensing <i>via</i> target-modulation of active interaction sites. Journal of Materials Chemistry C, 2021, 9, 12849-12858.	2.7	15
1313	N-Functionality actuated improved CO ₂ adsorption and turn-on detection of organo-toxins with guest-induced fluorescence modulation in isostructural diamondoid MOFs. Journal of Materials Chemistry C, 2021, 9, 7142-7153.	2.7	32
1314	Ratiometric fluorescent detection of dipicolinic acid as an anthrax biomarker based on a high-nuclearity Yb ₁₈ nanoring. Dalton Transactions, 2021, 50, 13528-13532.	1.6	5
1315	Applications of MOFs as Luminescent Sensors for Environmental Pollutants. Small, 2021, 17, e2005327.	5.2	177
1316	Two-Dimensional Metal-Organic Framework Materials: Synthesis, Structures, Properties and Applications. Chemical Reviews, 2021, 121, 3751-3891.	23.0	442
1317	Target-induced mimic enzyme deactivation based on mixed-node metal-organic frameworks for colorimetric assay of hydrogen sulfide. Chinese Chemical Letters, 2021, 32, 3155-3158.	4.8	4
1318	The Effect of Auxiliary Nitrogenated Linkers on the Design of New Cadmiumâ€Based Coordination Polymers as Sensors for the Detection of Explosive Materials. Chemistry - A European Journal, 2021, 27, 5298-5306.	1.7	8

#	Article	IF	CITATIONS
1319	Facile and Fast Transformation of Nonluminescent to Highly Luminescent Metal–Organic Frameworks: Acetone Sensing for Diabetes Diagnosis and Lead Capture from Polluted Water. ACS Applied Materials & Interfaces, 2021, 13, 7801-7811.	4.0	20
1320	Rational design, synthesis, and applications of carbon dots@metal–organic frameworks (CD@MOF) based sensors. TrAC - Trends in Analytical Chemistry, 2021, 135, 116163.	5.8	77
1321	Encapsulation of Luminescent Guests to Construct Luminescent Metal–Organic Frameworks for Chemical Sensing. ACS Sensors, 2021, 6, 641-658.	4.0	184
1322	An MOFâ€Based Luminescent Sensor Array for Pattern Recognition and Quantification of Metal Ions. Advanced Optical Materials, 2021, 9, 2002180.	3.6	48
1323	In Situ Tracking of Wettingâ€Front Transient Heat Release on a Surfaceâ€Mounted Metal–Organic Framework. Advanced Materials, 2021, 33, 2006980.	11.1	7
1324	Influence of the Anionic Zinc-Adeninate Metal–Organic Framework Structure on the Luminescent Detection of Rare Earth Ions in Aqueous Streams. ACS Applied Materials & Interfaces, 2021, 13, 7268-7277.	4.0	16
1325	Flexible Sensors Based on Organic–Inorganic Hybrid Materials. Advanced Materials Technologies, 2021, 6, 2000889.	3.0	43
1326	Recent progresses and remaining challenges for the detection of Zika virus. Medicinal Research Reviews, 2021, 41, 2039-2108.	5.0	16
1327	Tetraphenylpyrazine-Based Luminescent Metal–Organic Framework for Chemical Sensing of Carcinoids Biomarkers. ACS Applied Materials & Interfaces, 2021, 13, 6421-6429.	4.0	35
1328	Three new Cd(II)/Zn(II) coordination polymers assembled <i>via</i> dualâ€ligand strategy: crystal structures and luminescent properties. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2021, 647, 770-776.	0.6	6
1329	A Fluorescent Titaniumâ€based Metalâ€Organic Framework Sensor for Nitroâ€aromatics Detection. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2021, 647, 759-763.	0.6	17
1330	Reversible Humidity-Driven Transformation of a Bimetallic {EuCo} Molecular Material: Structural, Sorption, and Photoluminescence Studies. Molecules, 2021, 26, 1102.	1.7	1
1331	Two Cd-Based Luminescent Coordination Polymers Constructed from a Truncated Linker. Inorganic Chemistry, 2021, 60, 2503-2513.	1.9	11
1332	Microenvironment Modulation in Metal–Organic Framework-Based Catalysis. Accounts of Materials Research, 2021, 2, 327-339.	5.9	171
1333	Anion Exchange on Surface Induces Drastic Fluorescence Response in Cu(II) Coordination Polymer Crystals. Crystal Growth and Design, 2021, 21, 1905-1911.	1.4	8
1334	Ultrasound targeted microbubble destruction combined with Fe-MOF based bio-/enzyme-mimics nanoparticles for treating of cancer. Journal of Nanobiotechnology, 2021, 19, 92.	4.2	29
1335	A new porous heterometallic metalâ€organic framework for gas adsorption and luminescence sensing. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2021, 647, 1077-1082.	0.6	8
1336	Crystalline Porous Materials for Nonlinear Optics. Small, 2021, 17, e2006416.	5.2	52

#	Article	IF	Citations
1337	Homochiral MOF as Chiroptical Sensor for Determination of Absolute Configuration and Enantiomeric Ratio of Chiral Tryptophan. Advanced Optical Materials, 2021, 9, 2001889.	3.6	30
1338	Photoresponse within dye-incorporated metal-organic architectures. Coordination Chemistry Reviews, 2021, 430, 213648.	9.5	21
1339	Overview of Nâ€Rich Antennae Investigated in Lanthanideâ€Based Temperature Sensing. Chemistry - A European Journal, 2021, 27, 7214-7230.	1.7	19
1340	MOF Nanosheet Reconstructed Twoâ€Dimensional Bionic Nanochannel for Protonic Fieldâ€Effect Transistors. Angewandte Chemie, 2021, 133, 10019-10023.	1.6	6
1341	A Oneâ€Dimensional Cadmium Coordination Polymer: Synthesis, Structure, and Application as Luminescent Sensor for Cu ²⁺ and CrO ₄ ^{2â^'} /Cr ₂ O ₇ ^{2â^'} lons. European Journal of Inorganic Chemistry, 2021, 2021, 1349-1357.	1.0	11
1342	Engineered Bifunctional Luminescent Pillared‣ayer Frameworks for Adsorption of CO 2 and Sensitive Detection of Nitrobenzene in Aqueous Media. Chemistry - A European Journal, 2021, 27, 6529-6537.	1.7	13
1343	A Photoluminescent Cd(II) Coordination Polymer with Potential Active Sites Exhibiting Multiresponsive Fluorescence Sensing for Trace Amounts of NACs and Fe ³⁺ and Al ³⁺ lons. Inorganic Chemistry, 2021, 60, 4945-4956.	1.9	58
1344	Bimetallic NiCo Metal-Organic Framework-Derived Hierarchical Spinel NiCo2O4 Microflowers for Efficient Non-Enzymatic Glucose Sensing. Bulletin of the Chemical Society of Japan, 2021, 94, 1118-1124.	2.0	8
1345	Ratiometric fluorescence for sensitive detection of phosphate species based on mixed lanthanide metal organic framework. Analytical and Bioanalytical Chemistry, 2021, 413, 3281-3290.	1.9	16
1346	Phosphor-Free Electrically Driven White Light Emission from Nanometer-Thick Barium–Organic Framework Films. ACS Applied Nano Materials, 2021, 4, 2395-2403.	2.4	6
1347	Fluorescent Detection of Carbon Disulfide by a Highly Emissive and Robust Isoreticular Series of Zr-Based Luminescent Metal Organic Frameworks (LMOFs). Chemistry, 2021, 3, 327-337.	0.9	11
1348	MOF Nanosheet Reconstructed Twoâ€Dimensional Bionic Nanochannel for Protonic Fieldâ€Effect Transistors. Angewandte Chemie - International Edition, 2021, 60, 9931-9935.	7.2	51
1349	A Fluorescent Metal–Organic Framework for Food Realâ€Time Visual Monitoring. Advanced Materials, 2021, 33, e2008020.	11.1	139
1350	Composite fast scintillators based on high-Z fluorescent metal–organic framework nanocrystals. Nature Photonics, 2021, 15, 393-400.	15.6	93
1351	Synthesis, structure and properties of a novel Cu(II)-MOF {[Cu2L(OH)]·DMF}n based on a semi-rigid polycarboxylic acid ligand. Inorganic Chemistry Communication, 2021, 125, 108449.	1.8	5
1352	A 3D 2-fold interpenetrating Cu(II) coordination polymer based on 4,4′-oxybis(benzoic acid) and 1,3-bis(2-methyl-imidazol-1-yl) benzene exhibiting photocatalytic properties. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2021, 76, 237-241.	0.3	0
1353	Proton conductive metal sulfonate frameworks. Coordination Chemistry Reviews, 2021, 431, 213747.	9.5	63
1354	Synthesis and Optical Performance of terbium complexes with octanoyl amino acids. Arabian Journal of Chemistry, 2021, 14, 103033.	2.3	8

#	Article	IF	CITATIONS
1355	Construction of five non-covalent-fabricated Zn2+/Cd2+ supramolecules from 3,5-dimethylpyrazole: Their synthesis and features. Journal of Molecular Structure, 2021, 1230, 129818.	1.8	3
1356	The Preparation of Metal–Organicâ€Framework/Boron Phosphate Hybrid Materials for Improved Performances in Proton Exchange Membranes. Macromolecular Materials and Engineering, 2021, 306, 2100053.	1.7	4
1357	Target-induced activation of DNAzyme for sensitive detection of bleomycin by using a simple MOF-modified electrode. Biosensors and Bioelectronics, 2021, 178, 113034.	5.3	16
1358	A Fluorescent Probe of Nitrite Based on Eu ³⁺ Functionalized Metalâ€Organic Frameworks. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2021, 647, 1091-1095.	0.6	19
1359	Chemical Design and Physical Properties of Dynamic Molecular Assemblies. Bulletin of the Chemical Society of Japan, 2021, 94, 1400-1420.	2.0	37
1360	Facile synthesis of Fe3O4@MIL-100(Fe) towards enhancing photo-Fenton like degradation of levofloxacin via a synergistic effect between Fe3O4 and MIL-100(Fe). Chemical Engineering Journal, 2021, 409, 128274.	6.6	130
1362	Metalâ€Organic Frameworks Nanocomposites with Different Dimensionalities for Energy Conversion and Storage. Advanced Energy Materials, 2022, 12, 2100346.	10.2	86
1363	Carbon paste electrode modified with fern leave-like MIL-47(as) for electrochemical simultaneous detection of Pb(II), Cu(II) and Hg(II). Journal of Electroanalytical Chemistry, 2021, 886, 115121.	1.9	31
1364	Thermal-responsive Photonic Crystals based on Physically Cross-linked Inverse Opal Nanocomposite Hydrogels. Journal Wuhan University of Technology, Materials Science Edition, 2021, 36, 289-296.	0.4	4
1365	Four Novel Lanthanide(III) Metal–Organic Frameworks: Tunable Light Emission and Multiresponsive Luminescence Sensors for Vitamin B ₆ and Pesticides. Crystal Growth and Design, 2021, 21, 2889-2897.	1.4	30
1366	Multistimuli-Responsive Lanthanide-Containing Smart Luminescent Hydrogel Actuator. ACS Applied Materials & Interfaces, 2021, 13, 20633-20640.	4.0	48
1367	An analysis of luminous mechanism of rare earth hybrid complex with Ce ³⁺ ion by the DV-Xα method. International Journal of Electrical Engineering and Education, 0, , 002072092110020.	0.4	0
1368	Nanoscale Metal–Organic Frameworks That are Both Fluorescent and Hollow for Self-Indicating Drug Delivery. ACS Applied Materials & Interfaces, 2021, 13, 18554-18562.	4.0	15
1369	A Novel Luminescent Metalâ€Organic Framework as a Remarkable Sensor for Detecting Aristolochic Acids in Biological Fluids. European Journal of Inorganic Chemistry, 2021, 2021, 1695-1700.	1.0	6
1370	Controllable Microporous Framework Isomerism within Continuous Mesoporous Channels: Hierarchically Porous Structure for Capture of Bulky Molecules. Inorganic Chemistry, 2021, 60, 6633-6640.	1.9	5
1371	One-dimensional La(III) coordination polymer displaying multi-responsive luminescence activities towards Fe3+, acetone and benzothiozoles. Journal of Solid State Chemistry, 2021, 296, 121952.	1.4	13
1372	Design of <mml:math <br="" display="inline" id="d1e208" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si77.svg"><mml:mi>Ï€</mml:mi></mml:math> -conjugated flexible semiconductive 2D MOF and MOF derived CuO nano-spheres for solvent free C-X (S, O) hetero-coupling catalysis with enhanced conductivity. Nano Structures Nano Objects. 2021. 26. 100756.	1.9	7
1373	Turn-On Fluorescence Enantioselective Sensing of Hydroxyl Carboxylic Enantiomers by Metal–Organic Framework Nanosheets with a Homochiral Tetracarboxylate of Cyclohexane Diamide. ACS Applied Materials & Interfaces, 2021, 13, 20821-20829.	4.0	34

#	Article	IF	CITATIONS
1374	Strategic Design of Anthracene-Decorated Highly Luminescent Coordination Polymers for Selective and Rapid Detection of TNP: An Explosive Nitro Derivative and Mutagenic Pollutant. Crystal Growth and Design, 2021, 21, 3344-3354.	1.4	34
1375	Multi-stimuli-responsive fluorescent materials based on N, O-chelated BF2 complexes: Self-assembling, sensory properties and detection of latent fingerprint. Optical Materials, 2021, 115, 111006.	1.7	8
1376	Progress in Metal-Organic Frameworks Facilitated Mercury Detection and Removal. Chemosensors, 2021, 9, 101.	1.8	33
1377	Hydrolytically Stable and Trifunctional Zirconium-Based Organic Frameworks toward Cr ₂ O ₇ ^{2–} Detection, Capture, and Photoreduction. Inorganic Chemistry, 2021, 60, 8143-8153.	1.9	35
1378	Shaping of a Metal–Organic Framework–Polymer Composite and Its CO ₂ Adsorption Performances from Humid Indoor Air. ACS Applied Materials & Interfaces, 2021, 13, 25421-25427.	4.0	34
1379	Integrating photoluminescent nanomaterials with photonic nanostructures. Journal of Luminescence, 2021, 233, 117870.	1.5	10
1380	A bi-functionalized metal-organic framework based on N-methylation and Eu3+ post-synthetic modification for highly sensitive detection of 4-Aminophenol (4-AP), a biomarker for aniline in urine. Talanta, 2021, 227, 122209.	2.9	29
1381	Devising Mixed-Ligand Based Robust Cd(II)-Framework From Bi-Functional Ligand for Fast Responsive Luminescent Detection of Fe3+ and Cr(VI) Oxo-Anions in Water With High Selectivity and Recyclability. Frontiers in Chemistry, 2021, 9, 651866.	1.8	19
1382	Metal–organic frameworks of lanthanide iminodiacetates and tartrates: Synthesis, structural characterization and luminescence properties — Commemorating the 100th anniversary of the birth of Academician Guangxian Xu. Journal of Rare Earths, 2021, 39, 487-494.	2.5	4
1383	Solutionâ€Processable Metal–Organic Framework Nanosheets with Variable Functionalities. Advanced Materials, 2021, 33, e2101257.	11.1	33
1384	A highly selective fluorescent sensor for ratiometric detection of cyanide in aqueous solution and solid states. Journal of Molecular Structure, 2021, 1231, 129671.	1.8	12
1385	A water-stable europium-MOF as a multifunctional luminescent sensor for some inorganic ions and dichloromethane molecule. Journal of Industrial and Engineering Chemistry, 2021, 97, 180-187.	2.9	16
1386	Effect of Different Synthesis Approaches on Structural and Thermal Properties of Lanthanide(III) Metal–Organic Frameworks Based on the 1H-Pyrazole-3,5-Dicarboxylate Linker. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31, 3534-3548.	1.9	9
1387	Insights into the selective sensing mechanism of a luminescent Cd(II)-based MOF chemosensor toward NACs: roles of the host–guest interactions and PET processes. Journal of Materials Science, 2021, 56, 13684-13704.	1.7	14
1388	Facile preparation of functional and hybrid coatings by precipitations of polypyrrole and lysozyme via coâ€assembly process. Journal of Applied Polymer Science, 2021, 138, 50954.	1.3	2
1389	Electron Transfer Facilitated by ï€â€"ï€ Stacking during the Nitrobenzene Recognition Process of an MOF Sensor. Journal of Physical Chemistry C, 2021, 125, 12433-12440.	1.5	21
1390	A New Molecular Recognition Concept: Multiple Hydrogen Bonds and Their Optically Triggered Proton Transfer in Confined Metal–Organic Frameworks for Superior Sensing Element. ACS Applied Materials & Interfaces, 2021, 13, 22457-22465.	4.0	19
1391	Recent advances in luminescent metal–organic frameworks (LMOFs) based fluorescent sensors for antibiotics. Coordination Chemistry Reviews, 2021, 435, 213793.	9.5	90

#	Article	IF	CITATIONS
1392	Tailored Mobility in a Zeolite Imidazolate Framework (ZIF) Antibody Conjugate**. Chemistry - A European Journal, 2021, 27, 9414-9421.	1.7	5
1393	Biocatalytic and Antioxidant Nanostructures for ROS Scavenging and Biotherapeutics. Advanced Functional Materials, 2021, 31, 2101804.	7.8	71
1394	Synthesis of a tetraphenylethylene-based metal-organic framework as the luminescent sensor for selective sensing of Cr2O72â´' in aqueous solution. Inorganic Chemistry Communication, 2021, 127, 108550.	1.8	5
1395	Non-covalent interactions governing the supramolecular assembly of copper(II) complexes with hydrazone-type ligand: Experimental and quantum chemical study. Polyhedron, 2021, 200, 115142.	1.0	5
1396	1-(4-Carboxyphenyl)-5-methyl-1H-1,2,3-triazole-4-carboxylic acid – A versatile ligand for the preparation of coordination polymers and mononuclear complexes. Polyhedron, 2021, 200, 115115.	1.0	2
1397	Recent Progress in Luminous Particleâ€Encapsulated Host–Guest Metalâ€Organic Frameworks for Optical Applications. Advanced Optical Materials, 2021, 9, 2100283.	3.6	39
1398	Directional Exciton Migration in Benzoimidazole-Based Metal–Organic Frameworks. Journal of Physical Chemistry Letters, 2021, 12, 4917-4927.	2.1	10
1399	Luminescent metal-organic frameworks (LMOFs): An emerging sensing platform for food quality and safety control. Trends in Food Science and Technology, 2021, 111, 716-730.	7.8	39
1400	Recent Progresses in Metal–Organic Frameworks Based Core–shell Composites. Advanced Energy Materials, 2022, 12, 2100061.	10.2	43
1401	Structure and reversible crystal-to-crystal transformations of a zinc(II) coordination polymer constructed from an imide-based dicarboxylic acid. Journal of Solid State Chemistry, 2021, 298, 122129.	1.4	0
1402	Recognition and Sequestration of Toxic Inorganic Water Pollutants with Hydrolytically Stable Metalâ€Organic Frameworks. Chemical Record, 2021, 21, 1666-1680.	2.9	22
1404	High Proton Conduction Behavior of a Water-Stable Cadmium Organic Framework and Its Polymer Composite Membranes. Journal of the Electrochemical Society, 2021, 168, 064518.	1.3	3
1405	Luminescent, Helical and Highly Stable Zn(II) and Cd(II) Coordination Polymers: Structural Diversity and Selective Sensing of 4â€Nitroaniline in Water. European Journal of Inorganic Chemistry, 2021, 2021, 2595-2605.	1.0	5
1406	A Water-Stable Tb-MOF As a Rapid, Accurate, and Highly Sensitive Ratiometric Luminescent Sensor for the Discriminative Sensing of Antibiotics and D ₂ O in H ₂ O. Inorganic Chemistry, 2021, 60, 10513-10521.	1.9	54
1407	Solvothermal Preparation of a Lanthanide Metal-Organic Framework for Highly Sensitive Discrimination of Nitrofurantoin and I-Tyrosine. Molecules, 2021, 26, 3673.	1.7	11
1408	Recent progress in covalent organic frameworks as light-emitting materials. Materials Today Energy, 2021, 20, 100635.	2.5	77
1409	Differently luminescent sensing abilities for Cu2+ ion of two metal phosphonates with or without the free Lewis basic pyridyl sites. Journal of Molecular Structure, 2021, 1234, 130175.	1.8	6
1410	Asymmetric catalysis using metal-organic frameworks. Coordination Chemistry Reviews, 2021, 437, 213845.	9.5	80

#	Article	IF	CITATIONS
1411	Direct identification of HMX via guest-induced fluorescence turn-on of molecular cage. Chinese Chemical Letters, 2021, 32, 4006-4010.	4.8	9
1412	A decade of decoding. Nature Reviews Chemistry, 2021, 5, 600-601.	13.8	2
1413	Eu3+ doped bismuth metal-organic frameworks with ultrahigh fluorescence quantum yield and act as ratiometric turn-on sensor for histidine detection. Sensors and Actuators B: Chemical, 2021, 336, 129753.	4.0	43
1414	CRYSTAL STRUCTURE OF DENSE METAL-ORGANIC FRAMEWORKS BASED ON Sc(III) AND TWO TYPES OF LIGANDS. Journal of Structural Chemistry, 2021, 62, 897-904.	0.3	5
1415	Bandgap Modulation in Zr-Based Metal–Organic Frameworks by Mixed-Linker Approach. Inorganic Chemistry, 2021, 60, 8908-8916.	1.9	24
1416	Applications of metal-organic framework (MOF)-based sensors for food safety: Enhancing mechanisms and recent advances. Trends in Food Science and Technology, 2021, 112, 268-282.	7.8	139
1417	Recyclable Supramolecular Assemblyâ€Induced Emission System for Selective Detection and Efficient Removal of Mercury(II). Chemistry - A European Journal, 2021, 27, 11879-11887.	1.7	22
1418	Tuning Chromophore-Based LMOF Dimensionality to Enhance Detection Sensitivity for Fe ³⁺ Ions. ACS Omega, 2021, 6, 16498-16506.	1.6	10
1419	Progress in Multifunctional Metal–Organic Frameworks/Polymer Hybrid Membranes. Chemistry - A European Journal, 2021, 27, 12940-12952.	1.7	14
1420	Adsorption behavior of metal-organic frameworks: From single simulation, high-throughput computational screening to machine learning. Computational Materials Science, 2021, 193, 110383.	1.4	20
1421	Selective Photocatalytic Oxidation of Sulfides in Lanthanide Metal â€Organic Frameworks Incorporating Ru(2,2′â€bpy) ₃ photosensitizer. Chemistry - an Asian Journal, 2021, 16, 2031-2034	.1.7	14
1422	Controlled synthesis of fluorescent carbon materials with the assistance of capillary electrophoresis. Talanta, 2021, 228, 122224.	2.9	8
1423	Electrically Conductive Metal–Organic Frameworks for Electrocatalytic Applications. Advanced Energy and Sustainability Research, 2021, 2, 2100100.	2.8	17
1424	Multifunctional sensing activities toward heavy metals of three luminescent complexes: Effect of N-donor coligands and sensing medium. Dyes and Pigments, 2021, 190, 109291.	2.0	8
1425	Optical nanomaterials with focus on rare earth doped oxide: A Review. Materials Today Communications, 2021, 27, 102277.	0.9	56
1426	A water-stable 3D Zn(II) luminescent coordination polymer for highly sensitive and selective sensing of acetylacetone and Fe3+ ion. Inorganic Chemistry Communication, 2021, 129, 108654.	1.8	6
1427	Magnetism and Luminescence of a MOF with Linear Mn3 Nodes Derived from an Emissive Terthiophene-Based Imidazole Linker. Molecules, 2021, 26, 4286.	1.7	6
1428	Porous Anionic Co(II) Metalâ€Organic Framework, with a High Density of Amino Groups, as a Superior Luminescent Sensor for Turnâ€on Al(III) Detection. Chemistry - A European Journal, 2021, 27, 11804-11810.	1.7	41

#	Article	IF	CITATIONS
1429	Linker Engineering toward Full-Color Emission of UiO-68 Type Metal–Organic Frameworks. Journal of the American Chemical Society, 2021, 143, 10547-10552.	6.6	54
1430	Polymeric lead(II) phosphor featuring cubane [Pb4] and [Pb8] units: Organic vs inorganic binding competition, colour regulation and white luminescence. Inorganic Chemistry Communication, 2021, 129, 108632.	1.8	0
1431	Structural Color Materials from Natural Polymers. Advanced Materials Technologies, 2021, 6, .	3.0	52
1432	lmineâ€Induced Metalâ€Organic and Covalent Organic Coexisting Framework with Superior Liâ€Storage Properties and Activation Mechanism. ChemSusChem, 2021, 14, 3283-3292.	3.6	12
1433	Naphthalene oupled Pyridinium Urea Salt in Fluorometric Sensing of Iodide. ChemistrySelect, 2021, 6, 6353-6359.	0.7	5
1434	Research progress of defect-engineered UiO-66(Zr) MOFs for photocatalytic hydrogen production. Frontiers in Energy, 2021, 15, 656-666.	1.2	18
1435	Yolk-shell Fe3O4@MOF-5 nanocomposites as a heterogeneous Fenton-like catalyst for organic dye removal. Separation and Purification Technology, 2021, 267, 118620.	3.9	73
1436	Metal–Organic Framework-Based Hierarchically Porous Materials: Synthesis and Applications. Chemical Reviews, 2021, 121, 12278-12326.	23.0	633
1437	Guest-Anion-Induced Rotation-Restricted Emission in UiO-66-NH ₂ and Advanced Structure Elucidation. Chemistry of Materials, 2021, 33, 5422-5429.	3.2	5
1438	Ultrastable Tb-Organic Framework as a Selective Sensor of Phenylglyoxylic Acid in Urine. ACS Applied Materials & Interfaces, 2021, 13, 33546-33556.	4.0	27
1439	A waterâ€stable luminescent sensor based on Cd ²⁺ coordination polymer for detecting nitroimidazole antibiotics in water. Applied Organometallic Chemistry, 2021, 35, e6359.	1.7	12
1440	High-Performance Water Harvester Framework for Triphasic and Synchronous Detection of Assorted Organotoxins with Site-Memory-Reliant Security Encryption via pH-Triggered Fluoroswitching. ACS Applied Materials & Interfaces, 2021, 13, 34012-34026.	4.0	44
1441	Tetraphenylpyrazine-Based Manganese Metal–Organic Framework as a Multifunctional Sensor for Cu ²⁺ , Cr ³⁺ , MnO ₄ [–] , and 2,4,6-Trinitrophenol and the Construction of a Molecular Logical Gate. Inorganic Chemistry, 2021, 60, 11222-11230.	1.9	49
1442	Elucidating the Relationship between ROS and Protein Phosphorylation through <i>In Situ</i> Fluorescence Imaging in the Pneumonia Mice. Analytical Chemistry, 2021, 93, 10907-10915.	3.2	8
1443	Guestâ€selective gateâ€opening by pore engineering of twoâ€dimensional Kagomè lattice porous coordination polymers. Natural Sciences, 2021, 1, e10020.	1.0	3
1444	Anion-templated assembly of Co(II)-complexes based on the semirigid carboxylic acid ligand: synthesis, structure and magnetic property. Transition Metal Chemistry, 2021, 46, 547-553.	0.7	1
1445	Efficient Capture of Trace Acetylene by an Ultramicroporous Metal–Organic Framework with Purine Binding Sites. Chemistry of Materials, 2021, 33, 5800-5808.	3.2	22
1446	Flexible Zn-MOF with Rare Underlying <i>scu</i> Topology for Effective Separation of C6 Alkane Isomers. ACS Applied Materials & Interfaces, 2021, 13, 51997-52005.	4.0	22

#	Article	IF	CITATIONS
1447	A Multifunctional 3D Supermolecular Co Coordination Polymer With Potential for CO2 Adsorption, Antibacterial Activity, and Selective Sensing of Fe3+/Cr3+ lons and TNP. Frontiers in Chemistry, 2021, 9, 678993.	1.8	5
1448	Physical Vapor-Deposited Silver (Ag)-Based Metal-Dielectric Nanocomposites for Thin-Film and Coating Applications. Applied Sciences (Switzerland), 2021, 11, 6746.	1.3	7
1449	Microwave-Assisted Synthesis of Chromium Oxide Nanoparticles for Fluorescence Biosensing of Mercury Ions and Molecular Logic Computing. ACS Applied Nano Materials, 2021, 4, 7086-7096.	2.4	8
1450	Reversible Electroactive Behavior in a Zn-Based Metal–Organic Framework via Mild Oxidation Potential. Inorganic Chemistry, 2021, 60, 11458-11465.	1.9	2
1451	Nanozyme Applications: A Glimpse of Insight in Food Safety. Frontiers in Bioengineering and Biotechnology, 2021, 9, 727886.	2.0	35
1452	Ligand-Directed Conformational Control over Porphyrinic Zirconium Metal–Organic Frameworks for Size-Selective Catalysis. Journal of the American Chemical Society, 2021, 143, 12129-12137.	6.6	73
1453	Selective sensing of CrVI and FeIII ions in aqueous solution by an exceptionally stable TbIII-organic framework with an AIE-active ligand. Chinese Chemical Letters, 2021, 32, 2443-2447.	4.8	31
1454	Tetra-imidazole functionalized pyrene for constructing Co-MOF and its application for sensing of cyanide ion. Journal of Solid State Chemistry, 2021, 300, 122258.	1.4	10
1455	Synthesis of microporous hydrogen-bonded supramolecular organic frameworks through guanosine self-assembly. Cell Reports Physical Science, 2021, 2, 100519.	2.8	3
1456	Large-Scale Production of Hierarchically Porous Metal–Organic Frameworks by a Reflux-Assisted Post-Synthetic Ligand Substitution Strategy. ACS Central Science, 2021, 7, 1434-1440.	5.3	50
1457	Neutral Nitrogen Donor Ligandâ€based MOFs for Sensing Applications. Chemistry - an Asian Journal, 2021, 16, 2569-2587.	1.7	9
1458	Recent development on the alkaline earth MOFs (AEMOFs). Coordination Chemistry Reviews, 2021, 440, 213955.	9.5	24
1459	A functionalized UiO-66 MOF acting as a luminescent chemosensor for selective and sensitive turn-on detection of superoxide and acetylacetone. Microporous and Mesoporous Materials, 2021, 323, 111251.	2.2	26
1460	Label-free one-dimension photonics crystals sensors assembled by UiO-66 and graphene oxide: A platform to quick and efficiently detect chlorobenzene vapors. Journal of Environmental Chemical Engineering, 2021, 9, 105445.	3.3	7
1461	Biological metal organic framework (Bio-MOF) for detection of voltaic organic compounds (VOC's). Inorganic Chemistry Communication, 2021, 130, 108711.	1.8	14
1462	Insight understanding into influence of binding mode of carboxylate with metal ion on ligand-centered luminescence properties in Pb-based coordination polymers. Chinese Chemical Letters, 2021, 32, 2423-2426.	4.8	6
1463	An intelligent self-defensive coating based on sulfide ion responsive nanocontainers for suppression of microbiologically influenced corrosion induced by sulfate reducing bacteria. Corrosion Science, 2021, 188, 109543.	3.0	31
1464	A pillared metal-organic framework with rich ï€-electron linkers as a novel fluorescence probe for the highly selective and sensitive detection of nitroaromatics. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 622, 126631.	2.3	8

#	Article	IF	Citations
1465	A new Eu-MOF for ratiometrically fluorescent detection toward quinolone antibiotics and selective detection toward tetracycline antibiotics. Chinese Chemical Letters, 2022, 33, 1353-1357.	4.8	116
1466	Porous nanomaterials: Main vein of agricultural nanotechnology. Progress in Materials Science, 2021, 121, 100812.	16.0	52
1467	Four Novel d10 Metal-Organic Frameworks Incorporating Amino-Functionalized Carboxylate Ligands: Synthesis, Structures, and Fluorescence Properties. Frontiers in Chemistry, 2021, 9, 708314.	1.8	3
1468	Facile Synthesis of Metal–Organic Layers with High Catalytic Performance toward Detoxification of a Chemical Warfare Agent Simulant. ACS Applied Materials & Interfaces, 2021, 13, 40863-40871.	4.0	12
1469	Structural Regulation and Light Hydrocarbon Adsorption/Separation of Three Zirconium–Organic Frameworks Based on Different V-Shaped Ligands. ACS Applied Materials & Interfaces, 2021, 13, 41680-41687.	4.0	25
1470	Development of Eu-based metal-organic frameworks (MOFs) for luminescence sensing and entrapping of arsenate ion. Journal of Luminescence, 2021, 236, 118102.	1.5	14
1471	Sensitization of nontoxic MOF for their potential drug delivery application against microbial infection. Inorganica Chimica Acta, 2021, 523, 120381.	1.2	50
1472	Electrochemical Detection of Sarcosine and Supercapacitor Based on a New Ni–Metal Organic Framework Electrode Material. Crystals, 2021, 11, 1036.	1.0	3
1473	Electrospinning Fabrication of Europium-Chain@polymer Nanofiber Films for Visual Detection of the Fe ³⁺ Ion. ACS Applied Polymer Materials, 2021, 3, 4504-4511.	2.0	11
1474	Two Cd(II) coordination polymers containing bis(benzimidazole) ligands as luminescent probes for acetylacetone and Fe3+ ions. Inorganica Chimica Acta, 2021, 525, 120499.	1.2	7
1475	A comprehensive review on water stable metal-organic frameworks for large-scale preparation and applications in water quality management based on surveys made since 2015. Critical Reviews in Environmental Science and Technology, 2022, 52, 4038-4071.	6.6	9
1476	Ultrasound-Assisted Synthesis of Luminescent Micro- and Nanocrystalline Eu-Based MOFs as Luminescent Probes for Heavy Metal Ions. Nanomaterials, 2021, 11, 2448.	1.9	7
1477	C2s/C1 hydrocarbon separation: The major step towards natural gas purification by metal-organic frameworks (MOFs). Coordination Chemistry Reviews, 2021, 442, 213998.	9.5	64
1478	Hybrid Eu III Coordination Luminophore Standing on Two Legs on Silica Nanoparticles for Enhanced Luminescence. Chemistry - A European Journal, 2021, 27, 14438-14443.	1.7	3
1479	Interparticle Forces of a Native and Encapsulated Metal-Organic Framework and Their Effects on Colloidal Dispersion. ACS Applied Materials & amp; Interfaces, 2021, 13, 45898-45906.	4.0	3
1480	Two unusual metal-organic frameworks based on W/S/Cu clusters and Tetrakis(4-pyridyl)benzene: Enhanced nonlinear optics and efficient luminescence sensing. Journal of Solid State Chemistry, 2021, 301, 122349.	1.4	1
1481	Luminescent 2D Pillared-Bilayer Metal–Organic Coordination Networks for Selective Sensing of ReO ₄ [–] in Water. ACS Applied Materials & Interfaces, 2021, 13, 45465-45474.	4.0	18
1482	Electrospun rhodamine@MOF/polymer luminescent fibers with a quantum yield of over 90%. IScience, 2021, 24, 103035.	1.9	11

#	Article	IF	CITATIONS
1483	Structural heterogeneity and dynamics in flexible metal-organic frameworks. Cell Reports Physical Science, 2021, 2, 100544.	2.8	14
1484	Synthesis, structure and magnetocaloric properties of a new two-dimensional gadolinium(III) coordination polymer based on azobenzene-2,2â€2,3,3â€2-tetracarboxylic acid. Acta Crystallographica Section C, Structural Chemistry, 2021, 77, 591-598.	0.2	2
1485	Luminescent Metalâ€Phenolic Networks for Multicolor Particle Labeling. Angewandte Chemie - International Edition, 2021, 60, 24968-24975.	7.2	27
1486	Eight-Fold Interpenetrating Diamondoid Coordination Polymers for Sensing Volatile Organic Compounds and Metal Ions. Polymers, 2021, 13, 3018.	2.0	7
1487	Solid-State Synthesis of Defect-Rich Zr-UiO-66 Metal–Organic Framework Nanoparticles for the Catalytic Ring Opening of Epoxides with Alcohols. ACS Applied Nano Materials, 2021, 4, 9752-9759.	2.4	8
1488	Highly stable terbium(III)-based metal-organic framework for the detection of m-dinitroaromatics and Fe3+ in water. Inorganica Chimica Acta, 2021, 525, 120454.	1.2	9
1489	Photophysics of azobenzene constrained in a UiO metalâ€organic framework: effects of pressure, solvation and dynamic disorder. Chemistry - A European Journal, 2021, 27, 14871-14875.	1.7	6
1490	Synthesis of FeNiCo Ternary Hydroxides through Green Grinding Method with Metalâ€Organic Frameworks as Precursors for Oxygen Evolution Reaction. ChemSusChem, 2021, 14, 5042-5048.	3.6	5
1491	Pillar[5]areneâ€based "Threeâ€components―Supramolecular Assembly and the Performance of Nitrobenzeneâ€based Explosive Fluorescence Sensing. ChemistrySelect, 2021, 6, 9363-9367.	0.7	4
1492	A Dual-emitting Two-dimensional Nickel-based Metal-organic Framework Nanosheets: Eu3+/Ag+ Functionalization Synthesis and Ratiometric Sensing in Aqueous Solution. Journal of Fluorescence, 2021, 31, 1947-1957.	1.3	9
1493	Novel Eu-MOF-based mixed matrix membranes and 1D Eu-MOF-based ratiometric fluorescent sensor for the detection of metronidazole and PA in water. Dyes and Pigments, 2022, 197, 109812.	2.0	23
1494	Ratiometric recognition of humidity by a europium-organic framework equipped with quasi-open metal site. Science China Chemistry, 2021, 64, 1723-1729.	4.2	7
1495	Cu-BTC Metal-Organic Frameworks as Catalytic Modifier for Ultrasensitive Electrochemical Determination of Methocarbamol in the Presence of Methadone. Journal of the Electrochemical Society, 2021, 168, 097507.	1.3	15
1496	Inorganic–organic hybrids assembled by flexible multidentate linker: design, structure and luminescence. Transition Metal Chemistry, 0, , 1.	0.7	0
1497	Magnetic and pH responsive composite hydrogel-based on poly(2-(diethylamino)ethyl) Tj ETQq0 0 0 rgBT /Overlc 2021, 168, 105050.	ock 10 Tf 5 2.0	0 187 Td (mo 7
1498	Recent progress in the removal of mercury ions from water based MOFs materials. Coordination Chemistry Reviews, 2021, 443, 214034.	9.5	93
1499	Strong Coupling Between Plasmons and Molecular Excitons in Metal–Organic Frameworks. Nano Letters, 2021, 21, 7775-7780.	4.5	21
1500	Insights on Luminescent Micro―and Nanospheres of Infinite Coordination Polymers. Chemistry - A European Journal, 2021, , .	1.7	3

#	Article	IF	CITATIONS
1501	Bilanthanide Metal–Organic Frameworks for Instant Detection of 17βâ€Estradiol, a Vital Physiological Index. Small Structures, 2022, 3, 2100113.	6.9	21
1502	Twoâ€dimensional MOFs: Design & Synthesis and Applications. Chemistry - an Asian Journal, 2021, 16, 3281-3298.	1.7	23
1503	Non-injective gas sensor arrays: identifying undetectable composition changes. Journal of Physics Condensed Matter, 2021, 33, 464003.	0.7	2
1504	Luminescent Metal–Phenolic Networks for Multicolor Particle Labeling. Angewandte Chemie, 0, , .	1.6	4
1505	A hydrolytically stable amino-functionalized Zinc(II) metal-organic framework containing nanocages for selective gas adsorption and luminescent sensing. Microporous and Mesoporous Materials, 2021, 326, 111396.	2.2	82
1506	Improved electrochemical performances by Ni-catecholate-based metal organic framework grown on NiCoAl-layered double hydroxide/multi-wall carbon nanotubes as cathode catalyst in microbial fuel cells. Bioresource Technology, 2021, 337, 125430.	4.8	35
1507	A multivariate luminescent MOF based on dye covalently modification serving as a sensitive sensor for Cr2O72â^', CrO42â^' anions and its applications. Dyes and Pigments, 2021, 194, 109588.	2.0	34
1508	Triazole-based lanthanide(III) adducts: Photo- and thermochromic luminescence. Journal of Luminescence, 2021, 238, 118305.	1.5	14
1509	Luminescent lanthanide nanocomposites in thermometry: Chemistry of dopant ions and host matrices. Coordination Chemistry Reviews, 2021, 444, 214040.	9.5	96
1510	A New Electrically Conducting Metal–Organic Framework Featuring U-Shaped cis-Dipyridyl Tetrathiafulvalene Ligands. Frontiers in Chemistry, 2021, 9, 726544.	1.8	4
1511	Ultra-Stable Metal–Organic Framework with Concurrent High Proton Conductivity and Fluorescence Sensing for Nitrobenzene. Chemistry of Materials, 2021, 33, 7858-7868.	3.2	35
1512	The effect of pH on the coordination sphere of Pb(II) ions and structural diversity of Pb(II) coordination polymers. Journal of Solid State Chemistry, 2021, 303, 122475.	1.4	4
1513	A new strategy to fabricate multifunctional luminescent MOFs, extending their application range from pH sensing to amino acid information coding. Journal of Colloid and Interface Science, 2021, 601, 427-436.	5.0	17
1514	Two 2D metal–organic frameworks containing flexible bis(benzimidazole) derivatives for selective sensing of acetylacetone and Fe3+ ions. Inorganica Chimica Acta, 2021, 527, 120551.	1.2	6
1515	Two water-stable Cd(II)-MOFs as multiresponsive chemosensor with high sensitively and selectively detection of Fe3+, Cr2O72â^ and MnO4â^ ions. Journal of Solid State Chemistry, 2021, 303, 122538.	1.4	11
1516	Two new 2D Cd(II) coordination polymers as luminescent chemosensors for detection of acetylacetone and Fe3+ ions. Journal of Molecular Structure, 2021, 1244, 130954.	1.8	13
1517	Design and synthesis of a stable multifunctional photoluminescence sensing material for rare earth ions from a 2D undulating Cd-coordination polymer. Sensors and Actuators B: Chemical, 2021, 347, 130641.	4.0	5
1518	The design, synthesis and fluorescent sensing applications of a thermo-sensitive Zn-MOF. Journal of Solid State Chemistry, 2021, 303, 122476.	1.4	4

#	Article	IF	CITATIONS
1519	Solvent mediated photoluminescence responses over mixed-linker cadmium (II) based metal–organic frameworks. Polyhedron, 2021, 208, 115444.	1.0	1
1521	Cadmium(II) coordination polymers containing bis(benzimidazole) ligands: Synthesis, crystal structures, sensing and photocatalytic degradation of dye. Journal of Solid State Chemistry, 2021, 304, 122608.	1.4	12
1522	A lanthanide metal–organic framework as ratio fluorescence probe to detect pesticides in water. Inorganica Chimica Acta, 2021, 528, 120632.	1.2	8
1523	A microporous metal–organic framework with triangular channels for C2H6/C2H4 adsorption separation. Separation and Purification Technology, 2021, 276, 119424.	3.9	13
1524	A dual-responsive Ni(II) coordination polymer fluorescent sensor: Rare turn-on detection of ascorbic acid and turn-off sensing acetylacetone. Journal of Solid State Chemistry, 2021, 304, 122561.	1.4	11
1525	An Eu-based MOF as fluorescent probe for the sensitive detection of L-tryptophan. Journal of Solid State Chemistry, 2021, 304, 122555.	1.4	16
1526	A new 2D Zn(II) coordination polymer as luminescent probe for highly selective detection of nitrofurazone. Journal of Molecular Structure, 2021, 1245, 131264.	1.8	4
1527	Construction of four Zn(II)/Cd(II) coordination polymers with flexible isomer ligands: Chemosensor for antibiotic. Cleaner Engineering and Technology, 2021, 5, 100276.	2.1	0
1528	Luminescent binuclear Zinc(II) organic framework as bifunctional water-stable chemosensor for efficient detection of antibiotics and Cr(VI) anions in water. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 264, 120232.	2.0	73
1529	ZIF-8@GMP-Tb nanocomplex for ratiometric fluorescent detection of alkaline phosphatase activity. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 264, 120230.	2.0	15
1530	Selective adsorption and detection of p-arsanilic acid on MOF-on-MOF heterostructure induced by nitrogen-rich self-assembly template. Chemical Engineering Journal, 2022, 427, 131483.	6.6	24
1531	Photonic crystal barcode: An emerging tool for cancer diagnosis. Smart Materials in Medicine, 2021, 2, 182-195.	3.7	5
1532	Four anionic Ln-MOFs for remarkable separation of C2H2–CH4/CO2–CH4 and highly sensitive sensing of nitrobenzene. CrystEngComm, 2021, 23, 2788-2792.	1.3	11
1533	Multimetal lanthanide phosphonocarboxylate frameworks: structures, colour tuning and near-infrared emission. Dalton Transactions, 2021, 50, 7380-7387.	1.6	3
1534	TIPA-ligand-based luminescent Cd(<scp>ii</scp>) organic frameworks as an outstanding sensor for detecting Fe ³⁺ in an aqueous medium. CrystEngComm, 2021, 23, 5516-5521.	1.3	17
1535	Recent advances in the capture and abatement of toxic gases and vapors by metal–organic frameworks. Materials Chemistry Frontiers, 2021, 5, 5970-6013.	3.2	44
1536	A unique photoswitch: intrinsic photothermal heating induced reversible proton conductivity of a HKUST-1 membrane. Dalton Transactions, 2021, 50, 2731-2735.	1.6	12
1537	Recent progress in the development of MOF-based optical sensors for Fe ³⁺ . Dalton Transactions, 2021, 50, 7139-7155.	1.6	32

#	Article	IF	CITATIONS
1538	Indicator displacement assays: from concept to recent developments. Organic and Biomolecular Chemistry, 2021, 19, 5926-5981.	1.5	27
1539	Ancillary ligand enabled structural and fluorescence diversity in metal–organic frameworks: application for the ultra-sensitive detection of nitrofuran antibiotics. Inorganic Chemistry Frontiers, 2021, 8, 1290-1296.	3.0	24
1540	A dual-emissive europium-based metal–organic framework for selective and sensitive detection of Fe ³⁺ and Fe ²⁺ . Dalton Transactions, 2021, 50, 13823-13829.	1.6	10
1541	Synthesis of a bimetallic metal–organic framework catalyst <i>via</i> selective detection and adsorption of Fe ³⁺ for enhanced bio-based catalysis. Inorganic Chemistry Frontiers, 2021, 8, 4998-5005.	3.0	7
1542	Recent advances in molecular logic gate chemosensors based on luminescent metal organic frameworks. Dalton Transactions, 2021, 50, 14967-14977.	1.6	62
1543	Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges. Materials Advances, 2021, 2, 1821-1871.	2.6	1,049
1544	Metal–organic frameworks as photoluminescent biosensing platforms: mechanisms and applications. Chemical Society Reviews, 2021, 50, 4484-4513.	18.7	322
1545	Two Cd(II) Complexes Based on Carboxylate and Bis(imidazolyl) Ligands: Syntheses, Crystal Structures and Luminescence Properties. Journal of Cluster Science, 2022, 33, 321-329.	1.7	1
1546	Eu3+ functionalized robust membranes based on the post-synthetic copolymerization of a metal–organic framework and ethyl methacrylate. Dalton Transactions, 2021, 50, 7597-7603.	1.6	4
1547	Conformational isomerism involving the carboxylate groups of a linker in metal organic frameworks and its distinctive influence on the detection of ketones. New Journal of Chemistry, 2021, 45, 20219-20226.	1.4	7
1548	A "turn-on―Cr ³⁺ ion probe based on non-luminescent metal–organic framework-new strategy to prepare a recovery probe. Journal of Materials Chemistry A, 2021, 9, 13552-13561.	5.2	20
1549	Controllable selfâ€assembly from homonuclear Mn (II)â€MOF to heteronuclear Mn (II)â€K(I)â€MOF by alkaliâ€regulation: A novel mode of structural and luminescent regulation for off–on sensing ascorbic acid. Applied Organometallic Chemistry, 2021, 35, e6160.	1.7	0
1550	A single-crystal to single-crystal transition from a 7-fold interpenetrated coordination polymer to a non-interpenetrated one by photochemical [2 + 2] polymerization and their sensing properties. Dalton Transactions, 2021, 50, 4408-4414.	1.6	9
1551	Chemical sensors based on a Eu(iii)-centered periodic mesoporous organosilica hybrid material using picolinic acid as an efficient secondary ligand. Dalton Transactions, 2021, 50, 11061-11070.	1.6	4
1552	Eu-MOF and its mixed-matrix membranes as a fluorescent sensor for quantitative ratiometric pH and folic acid detection, and visible fingerprint identifying. Inorganic Chemistry Frontiers, 2021, 8, 4924-4932.	3.0	36
1553	Long-lived highly emissive MOFs as potential candidates for multiphotonic applications. Journal of Materials Chemistry C, 2021, 9, 15463-15469.	2.7	13
1554	Selective fluorescent sensing of LMOFs constructed from tri(4-pyridylphenyl)amine ligand. RSC Advances, 2021, 11, 16989-16995.	1.7	11
1555	A visual logic alarm sensor for diabetic patients towards diabetic polyneuropathy based on a metal–organic framework functionalized by dual-cation exchange. Journal of Materials Chemistry C, 2021 9 3440-3446	2.7	20

#	Article	IF	CITATIONS
1556	Construction of three new Co(<scp>ii</scp>)-organic frameworks based on diverse metal clusters: highly selective C ₂ H ₂ and CO ₂ capture and magnetic properties. CrystEngComm, 2021, 23, 2439-2446.	1.3	6
1557	A fluorescence red-shift and turn-on sensor for acetylacetone derived from Zn ^{II} -based metal–organic framework with new topology. CrystEngComm, 2021, 23, 2532-2537.	1.3	21
1558	Why conductivity is not always king – physical properties governing the capacitance of 2D metal–organic framework-based EDLC supercapacitor electrodes: a Ni ₃ (HITP) ₂ case study. Faraday Discussions, 2021, 231, 298-304.	1.6	12
1559	Ultrastable cucurbit[6]uril-based multifunctional supramolecular assembly for efficient detection of nitroaromatic compounds and antibiotics. New Journal of Chemistry, 0, , .	1.4	1
1560	A Eu(III)-based Metal Organic Framework: Selective Sensing of Picric Acid and Nursing Application Values On the Cerebral Edema Induced by Cerebral Hemorrhage Via Reducing the Coagulation Factor II Activity. Journal of Fluorescence, 2021, 31, 385-392.	1.3	4
1561	Structures and Catalytic Oxidative Coupling Reaction of Four Co-MOFs Modified by R-isophthalic acid (R=H, OH and COOH) and Trigonal ligands. CrystEngComm, 0, , .	1.3	2
1562	Stimuli -triggered fluoro-switching in metal–organic frameworks: applications and outlook. Dalton Transactions, 2021, 50, 4067-4090.	1.6	24
1563	Acid and Base Resistant Zirconium Polyphenolateâ€Metalloporphyrin Scaffolds for Efficient CO ₂ Photoreduction. Advanced Materials, 2018, 30, 1704388.	11.1	184
1564	Recent Progress of Nanoscale Metalâ€Organic Frameworks in Synthesis and Battery Applications. Advanced Science, 2021, 8, 2001980.	5.6	58
1565	Molecular Springâ€like Tripleâ€Helix Coordination Polymers as Dualâ€Stress and Thermally Responsive Crystalline Metal–Organic Materials. Angewandte Chemie - International Edition, 2020, 59, 16061-16068.	7.2	39
1566	Synthesis, Structure, and Proton Conductivities of a Mg(<scp>II</scp>)â€based Coordination Polymer Composed of an Exotic Oxidized Ligand. Bulletin of the Korean Chemical Society, 2021, 42, 322-325.	1.0	12
1567	Nano-architectonics for coordination assemblies at interfacial media. Advances in Inorganic Chemistry, 2020, 76, 199-228.	0.4	4
1568	Sensitive detection of streptomycin in milk using a hybrid signal enhancement strategy of MOF-based bio-bar code and target recycling. Analytica Chimica Acta, 2020, 1125, 1-7.	2.6	38
1569	Electron-rich anthracene-based twisted π-system as a highly fluorescent dye: Easy recognition of solvents and volatile organic compounds. Dyes and Pigments, 2020, 181, 108543.	2.0	18
1570	MOF-based materials for photo- and electrocatalytic CO2 reduction. EnergyChem, 2020, 2, 100033.	10.1	177
1571	A new three sensing channels platform of Eu@Zn-MOF for quantitative detection of Cr(III). Inorganic Chemistry Communication, 2020, 116, 107898.	1.8	6
1572	Metal-organic framework/poly (Îμ-caprolactone) hybrid electrospun nanofibrous membranes with effective photodynamic antibacterial activities. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 400, 112626.	2.0	34
1573	Two high tunable proton-conducting cobalt(II) complexes derived from imidazole multi-carboxylate-based ligand. Journal of Solid State Chemistry, 2020, 286, 121313.	1.4	5

#	Article	IF	Citations
1574	An ultra-stable Cd coordination polymer based on double-chelated ligand for efficient dual-response of TNP and MnO4 Sensors and Actuators B: Chemical, 2020, 317, 128230.	4.0	27
1575	Metal–Organic Frameworks with Multiple Luminescence Emissions: Designs and Applications. Accounts of Chemical Research, 2020, 53, 485-495.	7.6	355
1576	Synthesis of Two-Dimensional Metal–Organic Frameworks via Dehydrogenation Reactions on a Cu(111) Surface. Journal of Physical Chemistry C, 2020, 124, 12390-12396.	1.5	15
1577	Vibrational Paddlewheel Cu–Cu Node in Metal–Organic Frameworks: Probe of Nonradiative Relaxation. Journal of Physical Chemistry C, 2020, 124, 13187-13195.	1.5	10
1578	Chapter 4. Ionic Liquid Electrolytes for Graphene-based Supercapacitors with an Ultrahigh Energy Density. RSC Smart Materials, 2019, , 95-128.	0.1	2
1579	A rare Pb ₉ cluster-organic framework constructed from a flexible cyclotriphosphazene-functionalized hexacarboxylate exhibiting selective gas separation. Inorganic Chemistry Frontiers, 2017, 4, 1501-1508.	3.0	34
1580	Aqueous-phase detection of antibiotics and nitroaromatic explosives by an alkali-resistant Zn-MOF directed by an ionic liquid. RSC Advances, 2020, 10, 1439-1446.	1.7	77
1581	Zinc-tetracarboxylate framework material with nano-cages and one-dimensional channels for excellent selective and effective adsorption of methyl blue dye. RSC Advances, 2020, 10, 3539-3543.	1.7	7
1582	Recent advances in metal–organic frameworks for pesticide detection and adsorption. Dalton Transactions, 2020, 49, 14361-14372.	1.6	52
1583	A zinc ²⁺ -dpbt framework: luminescence sensing of Cu ²⁺ , Ag ⁺ , MnO ₄ ^{â^²} and Cr(<scp>vi</scp>) (Cr ₂ O ₇ ^{2â^²}) T	jETQq11	0. ₮ ⊗4314 rg
1584	A built-in self-calibrating luminescence sensor based on RhB@Zr-MOF for detection of cations, nitro explosives and pesticides. RSC Advances, 2020, 10, 19149-19156.	1.7	51
1585	Synthesis, structural characterization, antibiotics sensing and coordination chemistry of a fluorescent 4-amino-1,8-naphthalimide Tröger's base supramolecular scaffold. Supramolecular Chemistry, 2020, 32, 620-633.	1.5	13
1586	Zinc metal–organic framework with 3-pyridinecarboxaldehyde and trimesic acid as co-ligands for selective detection of Cr (VI) ions in aqueous solution. Methods and Applications in Fluorescence, 2020, 8, 045007.	1.1	8
1587	Killing two birds with one stone: 2D+2D→3D parallel stacking and 3D self-penetrating structures in one reaction and their crystal-to-crystal transformation. Acta Crystallographica Section C, Structural Chemistry, 2019, 75, 657-666.	0.2	2
1588	A novel three-dimensional tetranuclear Co ^{II} coordination polymer with water hexamers based on the V-shaped tetracarboxylate ligand 4-(2,4-dicarboxylatophenoxy)phthalate. Acta Crystallographica Section C, Structural Chemistry, 2020, 76, 863-868.	0.2	2
1589	Large-range, continuously tunable perfect absorbers based on Dirac semimetals. Optics Express, 2020, 28, 7350.	1.7	16
1590	Mesoporous Crystalline Silver-Chalcogenolate Cluster-Assembled Material with Tailored Photoluminescence Properties. CCS Chemistry, 2019, 1, 553-560.	4.6	39
1591	An europium(<scp>iii</scp>) metal–organic framework as a multi-responsive luminescent sensor for highly sensitive and selective detection of 4-nitrophenol and I ^{â^'} and Fe ³⁺ ions in water. Dalton Transactions, 2021, 50, 15593-15601.	1.6	15

#	Article	IF	CITATIONS
1592	Post-synthetically modified metal–organic frameworks for sensing and capture of water pollutants. Dalton Transactions, 2021, 50, 17832-17850.	1.6	22
1593	Biomedical applications of metal–organic framework (MOF)-based nano-enzymes. New Journal of Chemistry, 2021, 45, 20987-21000.	1.4	59
1594	Chapter 14. The Potential Applications of MOF-based Materials in Wastewater Treatment. Chemistry in the Environment, 2021, , 405-425.	0.2	0
1595	A hydrostable Zn ²⁺ coordination polymer for multifunctional detection of inorganic and organic contaminants in water. Dalton Transactions, 2021, 50, 16110-16121.	1.6	22
1596	The molecular sieving mechanism of a polysulfide-blocking metal–organic framework separator for lithium–sulfur batteries. Journal of Materials Chemistry A, 2021, 9, 23929-23940.	5.2	10
1597	A metal–organic framework featuring highly sensitive fluorescence sensing for Al ³⁺ ions. CrystEngComm, 2021, 23, 8087-8092.	1.3	14
1598	Highly Selective and Sensitive Detection of Volatile Sulfur Compounds by Ionically Conductive Metalâ€Organic Frameworks. Advanced Materials, 2021, 33, e2104120.	11.1	25
1599	Plantâ€Based Structures as an Opportunity to Engineer Optical Functions in Nextâ€Generation Light Management. Advanced Materials, 2022, 34, e2104473.	11.1	48
1600	Dual-Functional Metal–Organic Framework for Luminescent Detection of Carcinoid Biomarkers and High Proton Conduction. Inorganic Chemistry, 2021, 60, 17303-17314.	1.9	25
1601	Synthesis of copper-based metal-organic framework for sensing nitroaromatic compounds. Inorganic Chemistry Communication, 2021, 134, 109017.	1.8	8
1602	Fabrication of Robust and Porous Lead Chloride-Based Metal–Organic Frameworks toward a Selective and Sensitive Smart NH ₃ Sensor. ACS Applied Materials & Interfaces, 2021, 13, 52765-52774.	4.0	18
1603	Hexanuclear Molecular Precursors as Tools to Design Luminescent Coordination Polymers with Lanthanide Segregation. Inorganic Chemistry, 2021, 60, 16782-16793.	1.9	5
1604	Screening and Discrimination of Perfluoroalkyl Substances in Aqueous Solution Using a Luminescent Metal–Organic Framework Sensor Array. ACS Applied Materials & Interfaces, 2021, 13, 47706-47716.	4.0	16
1605	Failureâ€Experimentâ€6upported Optimization of Poorly Reproducible Synthetic Conditions for Novel Lanthanide Metalâ€Organic Frameworks with Twoâ€Dimensional Secondary Building Units**. Chemistry - A European Journal, 2021, 27, 16347-16353.	1.7	6
1606	A water-stable 3-fold parallel interpenetrated Cd(II) coordination polymer as multi-responsive luminescent sensor for detecting Fe3+, Cr2O72â^ and FZD in aqueous media. Journal of Molecular Structure, 2021, , 131792.	1.8	3
1607	Fast Detection of Entacapone by a Lanthanide–Organic Framework with Rhombic Channels. Chemistry - A European Journal, 2021, 27, 17459-17464.	1.7	15
1608	Functionalization using biocompatible carboxylated cyclodextrins of iron-based nanoMIL-100. Polyhedron, 2021, 210, 115509.	1.0	1
1609	Synthesis, Structure and Fluorescence Properties of Transition Metal Coordination Polymers Constructed by 3,5-bis(3',5'-dicarboxylphenyl)-1H-1,2,4-triazole. Journal of Advances in Physical Chemistry, 2018, 07, 163-173.	0.1	0

ARTICLE IF CITATIONS Assembly, Structure, and Properties of Six Coordination Polymers Based on 1610 0.5 1 1,3,5-Tri-4-pyridyl-1,2-ethenylbenzene. Australian Journal of Chemistry, 2019, 72, 751. Two Zn^{II}-based MOFs constructed with biphenyl-2,2â€2,5,5â€2-tetracarboxylic acid and flexible 1611 N-donor ligands: syntheses, structures and properties. Acta Crystallographica Section C, Structural 0.2 Chemistry, 2020, 76, 547-556. Self-Assembly of Metal-Organic Frameworks in Pickering Emulsions Stabilized with Graphene Oxide. 1612 0.56 Colloid Journal, 2021, 83, 614-626. Water-stable Zn-based metal-organic framework with hydrophilic-hydrophobic surface for selective adsorption and sensitive detection of oxo-anions and pesticides in aqueous medium. Journal of Environmental Chemical Engineering, 2022, 10, 106667. From Sintering to Particle Discrimination: New Opportunities in Metal–Organic Frameworks 1614 1.7 7 Scintillators. Advanced Photonics Research, 2022, 3, . Large scale synthesis and propylene purification by a high-performance MOF sorbent Y-abtc. Separation and Purification Technology, 2022, 282, 120010. Coordination polymers driven by 2,5-dibromoterephthalic acid and chelating co-ligands: Syntheses, 1617 1.4 2 structures and luminescent properties. Journal of Solid State Chemistry, 2020, 292, 121721. Lanthanide Isophthalate Metalâ€Organic Frameworks: Crystal Structure, Thermal Behavior, and White 1618 1.0 Luminescence. European Journal of Inorganic Chemistry, 2021, 2021, 398-404. Logic operation for differentiation and speciation of Fe³⁺ and Fe²⁺ based on 1619 twoâ€dimensional metal–organic frameworks with tunable emissions. Applied Organometallic 5 1.7 Chemistry, 2021, 35, . A Cd-MOF fluorescence sensor with dual functional sites for efficient detection of metal ions in 1.3 multifarious water environments. CrystEngComm, 2021, 23, 8392-8403. Stable hydrogen-bonded organic frameworks for selective fluorescence detection of 1621 4 1.3 Al³⁺ and Fe³⁺ ions. CrystEngComm, 2021, 23, 8334-8342. A dual fluorescent sensor coordination polymer for efficient recognition of acetylacetone and 1.2 Cr(VI) anions. Inorganica Chimica Acta, 2022, 529, 120666. Engineering luminescent metal nanoclusters for sensing applications. Coordination Chemistry 1623 9.5 79 Reviews, 2022, 451, 214268. Conductive MOFs based on Thiol-functionalized Linkers: Challenges, Opportunities, and Recent 1624 Advances. Coordination Chemistry Reviews, 2022, 450, 214235 Fabrication of high loading V2O5/TiO2 catalysts derived from metal-organic framework with 1625 3.116 excellent activity for chlorobenzene decomposition. Applied Surface Science, 2022, 572, 151511. Sulfonic and phosphonic porous solids as proton conductors. Coordination Chemistry Reviews, 2022, 63 451, 214241. Mimetic sea cucumber-shaped nanoscale metal-organic frameworks composite for enhanced 1627 2.0 7 photodynamic therapy. Dyes and Pigments, 2022, 197, 109920. Electrovalent bifunctional acid enables heterogeneously catalytic production of biodiesel by 3.4 (trans)esterification of non-edible oils. Fuel, 2022, 310, 122273.

#	Article	IF	CITATIONS
1630	An ultra-high quantum yield Tb-MOF with phenolic hydroxyl as the recognition group for a highly selective and sensitive detection of Fe ³⁺ . Journal of Materials Chemistry C, 2021, 9, 15840-15847.	2.7	36
1631	Metal-organic framework engineered corn-like SERS active Ag@Carbon with controllable spacing distance for tracking trace amount of organic compounds. Journal of Hazardous Materials, 2022, 424, 127686.	6.5	14
1632	Metal-Organic-Frameworks: Low Temperature Gas Sensing and Air Quality Monitoring. Chemosensors, 2021, 9, 316.	1.8	13
1633	Gas sorption properties and kinetics of porous bismuth-based metal-organic frameworks and the selective CO2 and SF6 sorption on a new bismuth trimesate-based structure UU-200. Microporous and Mesoporous Materials, 2022, 329, 111548.	2.2	19
1634	Rational design of a novel two-dimensional porous metal-organic framework material for efficient benzene sensor. Chinese Chemical Letters, 2022, 33, 3726-3732.	4.8	9
1635	Sensing Intra―and Extra ellular Ca ²⁺ in the Islet of Langerhans. Advanced Functional Materials, 2022, 32, 2106020.	7.8	0
1636	Dual-Functional Coordination Polymer with High Proton Conductivity and a Low-Detection-Limit Fluorescent Probe. Journal of Physical Chemistry B, 2021, 125, 12627-12635.	1.2	1
1637	Bimetallic Cd/Zr-UiO-66 material as a turn-on/off probe for As5+/Fe3+ in organic media. Chemosphere, 2022, 291, 132827.	4.2	7
1638	Novel indoleoxazine derivative cyanide ion probe: Detection applications and cell-imaging studies. Journal of Molecular Structure, 2022, 1251, 131893.	1.8	4
1639	One amino-functionalized luminescence sensor demonstrating high sensitivity and selectivity for detecting Al3+ and Cu2+ as well as its luminescent mixed matrix membranes and test papers. Journal of Solid State Chemistry, 2022, 305, 122705.	1.4	2
1640	Two multifunctional LnMOFs as recyclable luminescent sensors for sensitive detection of nitro-aromatic compounds. Molecular Crystals and Liquid Crystals, 2020, 711, 32-40.	0.4	0
1641	Chiral fluorescence recognition of glutamine enantiomers by a modified Zr-based MOF based on solvent-assisted ligand incorporation. RSC Advances, 2021, 11, 37584-37594.	1.7	11
1642	An excellent water-stable 3D Zn-MOF with 8-fold interpenetrated diamondoid topology showing "turn-on/turn-off―luminescent detection of Al ³⁺ and SNT in aqueous media. RSC Advances, 2021, 11, 32622-32629.	1.7	7
1643	Four MOFs with isomeric ligands as fluorescent probes for highly selective, sensitive and stable detection of antibiotics in water. CrystEngComm, 2021, 24, 169-181.	1.3	11
1644	pH dependent sensitization of europium in a hydrogen bonded three-dimensional metal–organic compound with (4 ⁹ 6 ⁶) ₂ (4 ⁴ 6 ²) ₃ topology: luminescence titration and time-resolved studies. Materials Advances, 2022, 3, 1182-1190.	2.6	3
1645	Porous porphyrin-based metal-organic frameworks: synthesis, structure, sorption properties and application prospects. Russian Chemical Reviews, 2022, 91, .	2.5	12
1646	UiO-67-derived bithiophene and bithiazole MIXMOFs for luminescence sensing and removal of contaminants of emerging concern in wastewater. Inorganic Chemistry Frontiers, 2021, 9, 90-102.	3.0	3
1647	Mind the gap! tailoring sol–gel ceramic mesoporous coatings on labile metal–organic frameworks through kinetic control. Inorganic Chemistry Frontiers, 2022, 9, 221-230.	3.0	1

#	Article	IF	Citations
1648	Excellent application value of a rare pentanuclear [Ca5(COO)8] cluster-based compound in atherosclerosis treatment and nursing. Journal of the Indian Chemical Society, 2022, 99, 100277.	1.3	0
1649	Current progress in organic–inorganic hetero-nano-interfaces based electrochemical biosensors for healthcare monitoring. Coordination Chemistry Reviews, 2022, 452, 214282.	9.5	57
1650	BODIPY based metal-organic macrocycles and frameworks: Recent therapeutic developments. Coordination Chemistry Reviews, 2022, 452, 214308.	9.5	46
1651	Metal-organic framework-based sensors for the detection of toxins and foodborne pathogens. Food Control, 2022, 133, 108684.	2.8	28
1652	Three Robust Blue-Emitting Anionic Metal–Organic Frameworks with High Stability and Good Proton Conductivities. Inorganic Chemistry, 2021, 60, 17926-17932.	1.9	15
1653	Threeâ€inâ€One C ₂ H ₂ â€Selectivityâ€Guided Adsorptive Separation across an Isoreticular Family of Cationic Squareâ€Lattice MOFs. Angewandte Chemie, 2022, 134, e202114132.	1.6	2
1654	Moisture-tolerant diamine-appended metal–organic framework composites for effective indoor CO2 capture through facile spray coating. Chemical Engineering Journal, 2022, 433, 133856.	6.6	16
1655	Highâ€Efficiency Wideband Excitable Mechanoluminescence from a Yellow MOF Phosphor as White LED and Multicolor Thin Films. Advanced Optical Materials, 2022, 10, .	3.6	15
1656	Ratiometric fluorescence sensing of UiO-66-NH2 toward hypochlorite with novel dual emission in vitro and in vivo. Sensors and Actuators B: Chemical, 2022, 353, 131032.	4.0	17
1657	Phase engineering of metalâ€organic frameworks. Aggregate, 2022, 3, e145.	5.2	15
1658	Threeâ€inâ€One C ₂ H ₂ â€5electivityâ€Guided Adsorptive Separation across an Isoreticular Family of Cationic Squareâ€Lattice MOFs. Angewandte Chemie - International Edition, 2022, 61, .	7.2	33
1659	A Cd(II) Luminescent Coordination Grid as a Multiresponsive Fluorescence Sensor for Cr(VI) Oxyanions and Cr(III), Fe(III), and Al(III) in Aqueous Medium. Molecules, 2021, 26, 7103.	1.7	2
1660	Emerging Theranostic Nanomaterials in Diabetes and Its Complications. Advanced Science, 2022, 9, e2102466.	5.6	43
1661	Water-stable europium(III) and terbium(III)-metal organic frameworks as fluorescent sensors to detect ions, antibiotics and pesticides in aqueous solutions. Journal of Molecular Structure, 2022, 1251, 132009.	1.8	34
1662	Novel cerium-based MOFs photocatalyst for photocarrier collaborative performance under visible light. Journal of Catalysis, 2022, 405, 74-83.	3.1	27
1663	Selective and Sensitive Fluorescence Turnâ€on Detection of Cyanide Ions in Water by Post Metallization of a MOF. ChemPlusChem, 2021, 87, e202100426.	1.3	6
1664	Connectivity Replication of Neutral Eu ³⁺ - and Tb ³⁺ -Based Metal–Organic Frameworks (MOFs) from Anionic Cd ²⁺ -Based MOF Crystallites. Inorganic Chemistry, 2021, 60, 18614-18619.	1.9	3
1665	Template-Directed Fabrication of Highly Efficient Metal–Organic Framework Photocatalysts. ACS Applied Materials & Interfaces, 2021, 13, 58619-58629.	4.0	9

		15	0
#	ARTICLE	IF	CITATIONS
1666	MOFs in the time domain. Nature Reviews Chemistry, 2022, 6, 9-30.	13.8	34
1667	Excellent quantum yield enhancement in luminescent metal-organic layer for sensitive detection of antibiotics in aqueous medium. Dyes and Pigments, 2022, 198, 109961.	2.0	6
1668	Metal Organic Frameworks to Remove Arsenic Adsorption from Wastewater. Environmental Footprints and Eco-design of Products and Processes, 2022, , 1-35.	0.7	1
1669	Self-assembled porous nanoparticles based on silicone polymers with aggregation-induced emission for highly sensitive detection of nitroaromatics. Polymer Chemistry, 2021, 12, 7016-7022.	1.9	1
1670	A photoprogrammable electronic nose with switchable selectivity for VOCs using MOF films. Chemical Science, 2021, 12, 15700-15709.	3.7	28
1671	A multi-responsive luminescent sensor based on a stable Eu(<scp>iii</scp>) metal–organic framework for sensing Fe ³⁺ , MnO ₄ ^{â^'} , and Cr ₂ O ₇ ^{2â^'} in aqueous solutions. CrystEngComm, 2022, 24, 1041-1048.	1.3	20
1672	Bright red emission with high color purity from Eu(<scp>iii</scp>) complexes with π-conjugated polycyclic aromatic ligands and their sensing applications. RSC Advances, 2021, 12, 810-821.	1.7	17
1673	Post-synthetic modification within MOFs: a valuable strategy for modulating their ferroelectric performance. CrystEngComm, 2022, 24, 724-737.	1.3	7
1674	Lanthanide-based, water-soluble, white light-emitting coordination complexes for multitarget luminescence detection. Journal of Molecular Liquids, 2022, 347, 118353.	2.3	3
1675	Application of solid-state NMR techniques for structural characterization of metal-organic frameworks. Solid State Nuclear Magnetic Resonance, 2022, 117, 101772.	1.5	14
1676	Luminescent composites by in-suit encapsulating dye in IRMOF-3 for ratiometric temperature sensing and tunable white light emission. Dyes and Pigments, 2022, 198, 110000.	2.0	8
1677	Urea and thiourea based coordination polymers and metal-organic frameworks: Synthesis, structure and applications. Coordination Chemistry Reviews, 2022, 453, 214314.	9.5	24
1678	Interfacial self-assembly of porphyrin-based SURMOF/graphene oxide hybrids with tunable pore size: An approach toward size-selective ambivalent heterogeneous photocatalysts. Applied Surface Science, 2022, 579, 152080.	3.1	13
1679	Synthesis, modifications and applications of MILs Metal-organic frameworks for environmental remediation: The cutting-edge review. Science of the Total Environment, 2022, 810, 152279.	3.9	28
1680	Information encryption, highly sensitive detection of nitrobenzene, tetracycline based on a stable luminescent Cd-MOF. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 269, 120752.	2.0	11
1681	Two multifunctional luminescent cobalt metal-organic frameworks for selectively and sensitively sensing of Cu2+, MnO4- and picric acid in water. Journal of Solid State Chemistry, 2022, 307, 122875.	1.4	5
1682	Light responsive Fe-Tcpp@ICG for hydrogen peroxide detection and inhibition of tumor cell growth. Biosensors and Bioelectronics, 2022, 200, 113931.	5.3	5
1683	Multi-responsive luminescent probes for Fe3+, Cr2O72â^' and acetylacetone with Cd-MOF based on tris(3′-F-4′-carboxybiphenyl)amine and trans-1,2-bis(4-pyridyl)ethene. Journal of Solid State Chemistry, 2022, 307, 122820.	1.4	13

#	Article	IF	CITATIONS
1684	Dynamic ring-opening polymerization, D-ROP: Applications in coordination polymers. Coordination Chemistry Reviews, 2022, 454, 214342.	9.5	4
1685	Four new cobalt(II)/zinc(II) complexes derived from the naphthalene-bridging bis(pyridyl)-bis(amide) ligand: Fluorescence sensing Fe3+ ions and CrO42â^' anions, photocatalytic degrading dyes. Journal of Solid State Chemistry, 2022, 307, 122869.	1.4	1
1686	Polyoxometalate/ZIF-67 composite with exposed active sites as aqueous supercapacitor electrode. Chemical Engineering Journal, 2022, 431, 134085.	6.6	40
1687	Under-coordinated AlF3 clusters confined in carbon matrix with robust sintering resistance for dehydrofluorination of hydrofluorocarbons. Chemical Engineering Journal, 2022, 431, 134178.	6.6	7
1688	In-situ growth of porous Cu3(BTC)2 on cellulose nanofibrils for ultra-low dielectric films with high flexibility. Journal of Materials Science and Technology, 2022, 112, 202-211.	5.6	16
1689	Highly sensitive fluorescent sensing platform for imidacloprid and thiamethoxam by aggregation-induced emission of the Zr(â£) metalÂâ^Âorganic framework. Food Chemistry, 2022, 375, 131879.	4.2	15
1690	Synthesis of Polymer Composites with Luminescent Properties. Proceedings (mdpi), 2020, 67, 24.	0.2	0
1691	A Two-Photon Metal-Organic Framework Nanoprobe with Catalytic Hairpin Assembly for Amplified MicroRNA Imaging in Living Cells and Tissues. SSRN Electronic Journal, O, , .	0.4	0
1692	Rapid Cs ⁺ Capture via Multiple Supramolecular Interactions in Anionic Metal–Organic Framework Isomers. Inorganic Chemistry, 2022, 61, 1918-1927.	1.9	8
1693	Robust Al ³⁺ MOF with Selective As(V) Sorption and Efficient Luminescence Sensing Properties toward Cr(VI). Inorganic Chemistry, 2022, 61, 2017-2030.	1.9	18
1694	Our journey of developing dualâ€emitting metalâ€organic frameworkâ€based fluorescent sensors. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2022, 648, .	0.6	8
1695	Halogen bonding in cadmium(<scp>ii</scp>) MOFs: its influence on the structure and on the nitroaldol reaction in aqueous medium. Dalton Transactions, 2022, 51, 1019-1031.	1.6	22
1696	A multicolor-switchable fluorescent lanthanide MOFs triggered by anti-cancer drugs: multifunctional platform for anti-cancer drug sensing and information anticounterfeiting. Journal of Materials Chemistry C, 2022, 10, 3576-3584.	2.7	26
1697	Identifying the Polymorphs of Zr-Based Metal–Organic Frameworks via Time-Resolved Fluorescence Imaging. , 2022, 4, 370-377.		8
1698	Metal-Organic Frameworks-Based Sensors for Food Safety. Foods, 2022, 11, 382.	1.9	29
1699	Simple Design Concept for Dual-Channel Detection of Ochratoxin A Based on Bifunctional Metal–Organic Framework. ACS Applied Materials & Interfaces, 2022, 14, 5615-5623.	4.0	33
1701	Lanthanide Complexes with 4,4′â€Bis(2â€sulfonatostyryl)â€biphenyl: Crystal Structures and Luminescence Properties. European Journal of Inorganic Chemistry, 2022, 2022, .	1.0	1
1702	Modified Metalâ^'Organic Frameworks for Electrochemical Applications. Small Structures, 2022, 3,	6.9	20

#	Article	IF	CITATIONS
1703	A Ratio Fluorescence Thermometer Based on Carbon Dots & Lanthanide Functionalized Metalâ€Organic Frameworks. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2022, 648, .	0.6	2
1704	Luminescent Mn-based metal-organic framework as an unusual detector to OHâ^ and a multi-responsive sensor for Fe3+, Cr2O72â^ and CrO42â^ in aqueous media. Journal of Molecular Structure, 2022, 1257, 132485.	1.8	6
1705	Manganese(II)-based coordination polymer as a bi-responsive luminescent sensor for highly selective detection of picric acid and CrO42â ^{~?} ion. Transition Metal Chemistry, 2022, 47, 85-92.	0.7	3
1706	Temperature-Induced Structural Transformations of Lanthanide Coordination Polymers Based on a Semirigid Tricarboxylic Acid Ligand: Crystal Structures and Luminescence Properties. Crystal Growth and Design, 2022, 22, 1583-1593.	1.4	17
1707	Theoretical investigations on the nitro-explosive sensing process of a MOF sensor: Roles of hydrogen bond and π-π stacking. Chemical Physics Letters, 2022, 793, 139393.	1.2	8
1708	Unearth the Luminescence Potential of Metal–Organic Frameworks: Adopting a Feasible Strategy to Fabricate One Ratiometric Fluorescence Sensor for Monitoring Both 1-Hydroxypyrene and Cu ²⁺ . Inorganic Chemistry, 2022, 61, 1349-1359.	1.9	17
1709	Metal Organic Frameworks Based Nanomaterial: Synthesis and Applications; Removal of Heavy Metal Ions from Waste Water. Energy, Environment, and Sustainability, 2022, , 377-392.	0.6	1
1711	Label-free biosensing of mercury(II) in milk using an aptamer-gated graphene field-effect transistor. Journal of Electroanalytical Chemistry, 2022, 904, 115931.	1.9	6
1712	Rational design of carborane-based Cu ₂ -paddle wheel coordination polymers for increased hydrolytic stability. Dalton Transactions, 2022, 51, 1137-1143.	1.6	11
1713	Avoiding Pyrolysis and Calcination: Advances in the Benign Routes Leading to MOFâ€Derived Electrocatalysts. ChemElectroChem, 2022, 9, .	1.7	12
1714	Comparative Study of Nitro―and Azideâ€Functionalized Zn ^{II} â€Based Coordination Polymers (CPs) as Fluorescent Turnâ€On Probes for Rapid and Selective Detection of H ₂ S in Living Cells. Chemistry - A European Journal, 2022, 28, .	1.7	4
1715	Syntheses, structures and magnetic properties of two Co ^{II} /Ni ^{II} isostructural coordination polymers based on an asymmetric semirigid tricarboxylate ligand. Acta Crystallographica Section C, Structural Chemistry, 2022, 78, 23-29.	0.2	2
1717	Cyanineâ€Doped Lanthanide Metal–Organic Frameworks for Nearâ€Infrared II Bioimaging. Advanced Science, 2022, 9, e2104561.	5.6	28
1718	Emerging porous organic polymers for biomedical applications. Chemical Society Reviews, 2022, 51, 1377-1414.	18.7	103
1719	Binary Solvent System Composed of Polar Protic and Polar Aprotic Solvents for Controlling the Dimensionality of MOFs in the Solvothermal Synthesis. Crystal Growth and Design, 2022, 22, 1276-1282.	1.4	18
1720	A biological luminescent metal–organic framework with high fluorescence quantum yield for the selective detection of amino acids and monosaccharides. Dalton Transactions, 2022, 51, 2883-2889.	1.6	5
1721	A luminescent sensor based on a Cd2+ complex for the detection of nitrofuran antibiotics in aqueous solution. Inorganic Chemistry Communication, 2022, 138, 109220.	1.8	9
1722	Two-dimensional Metal Organic Frameworks for photonic applications. Optical Materials Express, 0, , .	1.6	9

#	Article	IF	Citations
1723	Barium-based coordination polymer: A bi-functional fluorescent sensor for Fe3+ and nitroaromatic molecular detection. Inorganic Chemistry Communication, 2022, 137, 109227.	1.8	9
1724	Construction of three-dimensional polymeric d-histidine based metal-organic framework (MOF) for selective sorption of CO2 and copper ion sensing applications. Chemical Physics Letters, 2022, 790, 139331.	1.2	12
1725	Dual-emitting metal–organic frameworks for ratiometric fluorescence detection of fluoride and Al3+ in sequence. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 271, 120896.	2.0	15
1726	Synergistic disulfide sites of tetrathiafulvalene-based metal–organic framework for highly efficient and selective mercury capture. Separation and Purification Technology, 2022, 287, 120577.	3.9	15
1727	Two novel cadmium coordination polymers bearing viologen-derived ligand: Structure and photochromism properties. Inorganica Chimica Acta, 2022, 534, 120818.	1.2	4
1728	Temperature- and solvent-induced reversible single-crystal-to-single-crystal transformations of Tb ^{III} -based MOFs with excellent stabilities and fluorescence sensing properties toward drug molecules. Inorganic Chemistry Frontiers, 2022, 9, 1504-1513.	3.0	64
1729	Materials Nanoarchitectonics Here, There, Everywhere: Looking Back and Leaping Forward. RSC Nanoscience and Nanotechnology, 2022, , 546-578.	0.2	1
1730	High Speed Mass Measurement of a Single Metal–Organic Framework Nanocrystal in a Paul Trap. Analytical Chemistry, 2022, 94, 2686-2692.	3.2	3
1731	A Highly Efficient Luminescent Metal–Organic Framework with Strong Conjugate Unit for Sensing Small Molecules. Chinese Journal of Chemistry, 2022, 40, 1305-1312.	2.6	24
1732	Zirconium metal organic framework based opto-electrochemical sensor for nitrofurazone detection. Journal of Electroanalytical Chemistry, 2022, 909, 116124.	1.9	18
1733	A fluorescence zinc metal-organic framework for the effective detection of Fe3+ and Fe2+ in water. Inorganic Chemistry Communication, 2022, 138, 109282.	1.8	6
1734	Temperature-dependent photonic properties of porous-shaped metal-organic frameworks on porous silicon substrates. Sensors and Actuators A: Physical, 2022, 337, 113443.	2.0	4
1735	Multiâ€Emission from Single Metal–Organic Frameworks under Single Excitation. Small, 2022, 18, e2106587.	5.2	44
1736	Mechanism-Guided Design of Metal–Organic Framework Composites for Selective Photooxidation of a Mustard Gas Simulant under Solvent-Free Conditions. ACS Catalysis, 2022, 12, 363-371.	5.5	30
1737	Synthesis of Metal–Organic Coordination Polymers and Their Derived Nanostructures for Organic Dye Removal and Analyte Detection. SSRN Electronic Journal, 0, , .	0.4	0
1738	Pyrene and porphyrin-based Zn metal 1-D-polymer: synthesis, molecular structure, and photocatalytic property. Dalton Transactions, 2022, 51, 4257-4261.	1.6	3
1739	A one-pot strategic construction of functionalized nanomaterial ZIF-90-Rhn for stepwise detection and capturing of Ag ⁺ and formaldehyde from an aqueous solution. Materials Advances, 2022, 3, 3457-3468.	2.6	2
1740	Pd(/Fe ₃ O ₄)-on-ZIFs: nanoparticle deposition on (nano-)MOFs from ionic liquids. Journal of Materials Chemistry A, 2022, 10, 11955-11970.	5.2	4

#	Article	IF	Citations
1741	An excited-state intramolecular proton-transfer responsive nanoscale MOF for dual sensing of water and chromate ions. Journal of Materials Chemistry C, 2022, 10, 7558-7566.	2.7	11
1742	Advances in Metal-Organic Frameworks-Based Gas Sensors for Hazardous Substances. SSRN Electronic Journal, 0, , .	0.4	0
1743	Tuning luminescence of the fluorescent molecule 2-(2-hydroxyphenyl)-1 <i>H</i> -benzimidazole <i>via</i> zeolitic imidazolate framework-8. RSC Advances, 2022, 12, 9342-9350.	1.7	4
1744	Two bis-ligand-coordinated Zn(<scp>ii</scp>)-MOFs for luminescent sensing of ions, antibiotics and pesticides in aqueous solutions. RSC Advances, 2022, 12, 7780-7788.	1.7	15
1745	Naphthalene-tagged highly stable and reusable luminescent metal–organic probes for selective and fast detection of 4-nitroaniline in water. New Journal of Chemistry, 2022, 46, 6068-6077.	1.4	2
1746	Lanthanide Functionalized Metal-Organic Frameworks as a Ratiometric Fluorescence Biosensor for Visual and Ultrasensitive Detection of Serotonin. SSRN Electronic Journal, 0, , .	0.4	0
1747	Pyridinaldehyde Modified Luminescence Metal-Organic Framework for Highly Sensitive and Selective Fluorescence Detection of Pyrophosphate. SSRN Electronic Journal, 0, , .	0.4	0
1748	Selective luminescent sensing of metal ions and nitroaromatics over a porous mixed-linker cadmium(<scp>ii</scp>) based metal–organic framework. New Journal of Chemistry, 2022, 46, 8523-8533.	1.4	6
1749	The Progress of Electrochromic Materials Based on Metal Organic Frameworks. SSRN Electronic Journal, O, , .	0.4	0
1750	Microwave-Assisted Synthesis to Prepare Metal-Organic Framework for Luminescence Thermometry. SSRN Electronic Journal, 0, , .	0.4	0
1752	Selectivity in trace gas sensing: recent developments, challenges, and future perspectives. Analyst, The, 2022, 147, 1024-1054.	1.7	11
1753	A Series of Metal-Organic Frameworks Derived from Bispyridine Cyclohexanone and Auxiliary Acid Ligands: Synthesis, Structures and Properties. SSRN Electronic Journal, 0, , .	0.4	0
1754	A water-stable luminescent Zn-MOF based on a conjugated π-electron ligand as an efficient sensor for atorvastatin and its application in pharmaceutical samples. Journal of Materials Chemistry C, 2022, 10, 5944-5955.	2.7	10
1755	Polyoxometalate-Based Metal–Organic Frameworks as the Solid Support to Immobilize MP-11 Enzyme for Enhancing Thermal and Recyclable Stability. ACS Applied Bio Materials, 2022, 5, 1222-1229.	2.3	6
1756	Zwitterionic Luminescent 2D Metal–Organic Framework Nanosheets (LMONs): Selective Turn-On Fluorescence Sensing of Dihydrogen Phosphate. Inorganic Chemistry, 2022, 61, 3942-3950.	1.9	12
1757	State of the Art and Prospects in Metal-Organic Framework-Derived Microwave Absorption Materials. Nano-Micro Letters, 2022, 14, 68.	14.4	117
1758	Cobalt Metal–Organic Frameworks with Aggregation-Induced Emission Characteristics for Fluorometric/Colorimetric Dual Channel Detection of Nitrogen-Rich Heterocyclic Compounds. Analytical Chemistry, 2022, 94, 3744-3748.	3.2	27
1759	Zn(II) and Co(II) 3D Coordination Polymers Based on 2-lodoterephtalic Acid and 1,2-bis(4-pyridyl)ethane: Structures and Sorption Properties. Molecules, 2022, 27, 1305.	1.7	5

#	Article	IF	CITATIONS
1760	Energy Transfer in Metal–Organic Frameworks for Fluorescence Sensing. ACS Applied Materials & Interfaces, 2022, 14, 9970-9986.	4.0	109
1761	A Water-Stable Lanthanide-Based MOF as a Highly Sensitive Sensor for the Selective Detection of Paraquat in Agricultural Products. ACS Sustainable Chemistry and Engineering, 2022, 10, 2761-2771.	3.2	40
1762	Porphyrin aluminum MOF with ultra-high water sorption capacity: In-situ time-dependent ATR-FTIR spectroscopy and gravimetry to study mechanism of water bonding and desorption. Vibrational Spectroscopy, 2022, 119, 103356.	1.2	8
1763	Metal–organic frameworkâ€derived phosphide nanomaterials for electrochemical applications. , 2022, 4, 246-281.		48
1764	Heterobimetallic Ln(III) ontaining Materials Based on Oneâ€Đimensional Aurophilic Chains of Gold(I) Dithiolate Dimers and Their Vapochromic Response to DMF. European Journal of Inorganic Chemistry, 2022, 2022, .	1.0	3
1765	Unfolding the Role of Building Units of MOFs with Mechanistic Insight Towards Selective Metal Ions Detection in Water**. Chemistry - A European Journal, 2022, 28, .	1.7	13
1766	Metal organic frameworks as advanced extraction adsorbents for separation and analysis in proteomics and environmental research. Science China Chemistry, 2022, 65, 650-677.	4.2	23
1767	Vibrational Modes and Terahertz Phenomena of the Large-Cage Zeolitic Imidazolate Framework-71. Journal of Physical Chemistry Letters, 2022, 13, 2838-2844.	2.1	11
1768	Three-Dimensional MoS2/Reduced Graphene Oxide Nanosheets/Graphene Quantum Dots Hybrids for High-Performance Room-Temperature NO2 Gas Sensors. Nanomaterials, 2022, 12, 901.	1.9	9
1769	Nickel(II) Coordination Polymers Supported by Bis-pyridyl-bis-amide and Angular Dicarboxylate Ligands: Role of Ligand Flexibility in Iodine Adsorption. International Journal of Molecular Sciences, 2022, 23, 3603.	1.8	4
1770	Novel Binary Ni-Based Mixed Metal–Organic Framework Nanosheets Materials and Their High Optical Power Limiting. ACS Omega, 2022, 7, 10429-10437.	1.6	0
1771	Two Zirconium Metal–Organic Cages with <i>S</i> ₄ and <i>D</i> _{2d} Symmetry: Construction and Detection of Antibiotics. Crystal Growth and Design, 2022, 22, 2768-2773.	1.4	13
1772	Defect Engineering in Metal–Organic Framework Nanocrystals: Implications for Mechanical Properties and Performance. ACS Applied Nano Materials, 2022, 5, 6398-6409.	2.4	26
1773	Magnetic Fe ₃ O ₄ Nanoparticle/ZIF-8 Composites for Contaminant Removal from Water and Enhanced Flame Retardancy of Flexible Polyurethane Foams. ACS Applied Nano Materials, 2022, 5, 3491-3501.	2.4	9
1775	Engineering of Metal–Organic Frameworks as Ratiometric Sensors. Crystal Growth and Design, 2022, 22, 3518-3564.	1.4	45
1776	A nanocaged cadmium-organic framework with high catalytic activity on the chemical fixation of CO2 and deacetalization-knoevenagel condensation. Microporous and Mesoporous Materials, 2022, 335, 111791.	2.2	21
1777	Mercapto-decorated Zn-based metal-organic framework embedded nanofibrous membrane for oxo-anions treatment in aqueous solution. Chemical Engineering Journal, 2022, 443, 136212.	6.6	9
1778	Cooperation between Eu MOF and glycerol for luminescent sensing of nerve agent mimic vapor. Journal of Solid State Chemistry, 2022, 311, 123114.	1.4	5

#	Article	IF	Citations
1779	Monosystem Discriminative Sensor toward Inorganic Anions via Incorporating Three Different Luminescent Channels in Metal–Organic Frameworks. Analytical Chemistry, 2022, 94, 5866-5874.	3.2	11
1780	A two-photon metal-organic framework nanoprobe with catalytic hairpin assembly for amplified MicroRNA imaging in living cells and tissues. Sensors and Actuators B: Chemical, 2022, 359, 131593.	4.0	16
1781	Bisligand-coordinated cadmium organic frameworks as fluorescent sensors to detect lons, antibiotics and pesticides in aqueous solutions. Polyhedron, 2022, 217, 115759.	1.0	16
1782	Luminescence Cd(II) coordination compounds based on a semi-rigid tricarboxylic acid ligand for identifying metal cations, inorganic anions and organic solvents. Polyhedron, 2022, 219, 115799.	1.0	2
1783	2D paddle wheel lanthanide metal-organic framework: Synthesis, structure and exploration of catalytic N-arylation reaction. Polyhedron, 2022, 219, 115789.	1.0	1
1784	Nanoconfinement of tetraphenylethylene in zeolitic metal-organic framework for turn-on mechanofluorochromic stress sensing. Applied Materials Today, 2022, 27, 101434.	2.3	11
1785	Dual confinement strategy based on metal-organic frameworks to synthesize MnOx@ZrO2 catalysts for toluene catalytic oxidation. Fuel, 2022, 320, 123983.	3.4	11
1786	Syntheses and characterizations of calcium and strontium based coordination compounds with the 5-(2-pyridyl)tetrazolate ligand, respectively exhibiting extended 1 D and 2 D structures. Journal of Molecular Structure, 2022, 1260, 132757.	1.8	1
1787	Post-modification of Uio-66-NH2 based on Schiff-base reaction for removal of Hg2+ from aqueous solution: Synthesis, adsorption performance and mechanism. Fuel, 2022, 319, 123816.	3.4	20
1788	AIE based luminescent porous materials as cutting-edge tool for environmental monitoring: State of the art advances and perspectives. Coordination Chemistry Reviews, 2022, 463, 214539.	9.5	40
1789	Phosphate group functionalized magnetic metal–organic framework nanocomposite for highly efficient removal of U(VI) from aqueous solution. Scientific Reports, 2021, 11, 24328.	1.6	11
1790	Impact of the Structural Modification of Diamondoid Cd(II) MOFs on the Nonlinear Optical Properties. ACS Applied Materials & Interfaces, 2021, 13, 60163-60172.	4.0	13
1791	Metalâ€Organic Framework Based Gas Sensors. Advanced Science, 2022, 9, e2104374.	5.6	142
1792	Construction of Stable Metal–Organic Framework Platforms Embedding <i>N</i> -Heterocyclic Carbene Metal Complexes for Selective Catalysis. Inorganic Chemistry, 2021, 60, 18687-18697.	1.9	3
1793	Highly pH-Stable Ln-MOFs as Sensitive and Recyclable Multifunctional Materials: Luminescent Probe, Tunable Luminescent, and Photocatalytic Performance. Crystal Growth and Design, 2022, 22, 323-333.	1.4	36
1794	From a Well-Defined Organozinc Precursor to Diverse Luminescent Coordination Polymers Based on Zn(II)-Quinolinate Building Units Interconnected by Mixed Ligand Systems. Molecules, 2021, 26, 7402.	1.7	1
1795	Luminescent Two-Dimensional Metal–Organic Framework Nanosheets with Large π-Conjugated System: Design, Synthesis, and Detection of Anti-Inflammatory Drugs and Pesticides. Inorganic Chemistry, 2022, 61, 982-991.	1.9	19
1796	Analysis of the Water Adsorption Isotherms in UiO-Based Metal–Organic Frameworks. Journal of Physical Chemistry C, 2022, 126, 1107-1114.	1.5	21

#	Article	IF	CITATIONS
1797	Metal–organic frameworks in pursuit of size: the development of macroscopic single crystals. Dalton Transactions, 2022, 51, 7775-7782.	1.6	4
1798	Supramolecular assemblies of Zn(<scp>ii</scp>) complexes with a D–π–A ligand for sensing specific organic molecules. CrystEngComm, 2022, 24, 3612-3620.	1.3	9
1799	A Zr-MOF nanoflower sensor and its mixed-matrix membrane for the highly sensitive detection of nitroaromatics. Journal of Materials Chemistry C, 2022, 10, 7469-7475.	2.7	105
1800	Four series of lanthanide coordination polymers based on the tetrabromobenzene-1,4-dicarboxylate ligand: structural diversity and multifunctional properties. Dalton Transactions, 2022, 51, 7420-7435.	1.6	4
1801	Supramolecular polymer gels: from construction methods to functionality. Soft Matter, 2022, 18, 3828-3844.	1.2	15
1802	Laser driven conversion of MOFs to rare earth metal oxide nanoparticles. APL Materials, 2022, 10, .	2.2	4
1803	Advances in metal-organic frameworks-based gas sensors for hazardous substances. TrAC - Trends in Analytical Chemistry, 2022, 153, 116644.	5.8	29
1804	UiO-66-NH2: An easily attainable and label-free turn-on probe for facile fluorescence sensing of alkaline phosphatase. Microchemical Journal, 2022, 179, 107516.	2.3	7
1805	Room temperature synthesis of new isoreticular 2D metal-organic frameworks of Co(II) and Ni(II) comprised of dual semiflexible neutral and anionic linkers, and their conversion to metal oxide nanomaterials. Inorganica Chimica Acta, 2022, , 120966.	1.2	0
1806	Confinement of Luminescent Guests in Metal–Organic Frameworks: Understanding Pathways from Synthesis and Multimodal Characterization to Potential Applications of LG@MOF Systems. Chemical Reviews, 2022, 122, 10438-10483.	23.0	106
1807	Dyeâ€encapsulated nanocageâ€based metalâ€organic frameworks as luminescent dualâ€emitting sensors for selective detection of inorganic ions. Applied Organometallic Chemistry, 0, , .	1.7	3
1808	Specific sensing of antibiotics with metal-organic frameworks based dual sensor system. Nano Research, 2022, 15, 6430-6437.	5.8	23
1810	Lanthanide-MOFs as multifunctional luminescent sensors. Inorganic Chemistry Frontiers, 2022, 9, 3259-3266.	3.0	43
1811	Metal-organic frameworks as effective sensors and scavengers for toxic environmental pollutants. National Science Review, 2022, 9, .	4.6	35
1812	Benzimidazolium ionic liquid tagged phenazine salophen as a bifunctional â€~off–on' PET based fluorescent sensor for aqueous phase detection of trinitrotoluene and picric acid. Journal of Materials Chemistry C, 2022, 10, 7949-7961.	2.7	5
1813	Recent advancement in bimetallic metal organic frameworks (M′MOFs): synthetic challenges and applications. Inorganic Chemistry Frontiers, 2022, 9, 3003-3033.	3.0	18
1814	Multicriteria decision making in organic-metal frameworks for fuel storage. , 2022, , 609-630.		0
1815	Low-temperature water-assisted crystallization approach to MOF@TiO ₂ core–shell nanostructures for efficient dye removal. Inorganic Chemistry Frontiers, 2022, 9, 2725-2733.	3.0	5

#	Article	IF	CITATIONS
1816	The pioneering role of metal–organic framework-5 in ever-growing contemporary applications – a review. RSC Advances, 2022, 12, 14282-14298.	1.7	18
1817	Adsorption and Release of 1-Methylcyclopropene by Metal–Organic Frameworks for Fruit Preservation. , 2022, 4, 1053-1057.		8
1818	Smartly engineered "off-on―switchable probe: For the recognition of toxic analytes in semi-aqueous medium. Materials Today: Proceedings, 2022, , .	0.9	0
1819	Seed-aided green synthesis of metal-organic frameworks in water. Green Chemical Engineering, 2023, 4, 64-72.	3.3	6
1820	Growth of Feâ€BDC Metalâ€Organic Frameworks onto Functionalized Si (111) Surfaces. Chemistry - an Asian Journal, 2022, 17, .	1.7	5
1821	Water-Stable Carborane-Based Eu ³⁺ /Tb ³⁺ Metal–Organic Frameworks for Tunable Time-Dependent Emission Color and Their Application in Anticounterfeiting Bar-Coding. Chemistry of Materials, 2022, 34, 4795-4808.	3.2	27
1822	Designing Multicomponent Metal–Organic Frameworks with Hierarchical Structure-Mimicking Distribution for High CO ₂ Capture Performance. Inorganic Chemistry, 2022, 61, 7663-7670.	1.9	7
1823	Metal-induced Different Structures and Properties of Two Coordination Polymers Based on a Semi-flexible Carboxylic Ligand. Inorganic Chemistry Communication, 2022, , 109533.	1.8	1
1824	Detection and Sorption of Heavy Metal Ions in Aqueous Media by a Fluorescent Zr(IV) Metal–Organic Framework Functionalized with 2-Picolylamine Receptor Groups. Inorganic Chemistry, 2022, 61, 7847-7858.	1.9	16
1825	Rational Design of Coordination Bond Connected Metal Organic Frameworks/MXene Hybrids for Efficient Solar Water Splitting. Advanced Functional Materials, 2022, 32, .	7.8	56
1826	Customized Synthesis: Solvent- and Acid-Assisted Topology Evolution in Zirconium-Tetracarboxylate Frameworks. Inorganic Chemistry, 2022, 61, 7980-7988.	1.9	13
1827	Metal sulfide nano-frameworks anchored into 3D honeycomb-like porous carbon nanofibers as freestanding anodes for high performance lithium-ion batteries. Applied Surface Science, 2022, 597, 153627.	3.1	3
1828	Multi-responsive luminescent MOF sensor for Fe3+, CrO42â^' and Cr2O72â^' in aqueous solution based on phenylenediacetate and bis-imidazole ligand. Journal of Molecular Structure, 2022, 1264, 133239.	1.8	11
1829	Two Multiresponsive Luminescent Zn-MOFs for the Detection of Different Chemicals in Simulated Urine and Antibiotics/Cations/Anions in Aqueous Media. Inorganic Chemistry, 2022, 61, 7238-7250.	1.9	32
1830	Fabrication of NiCo2S4 accumulated on metal organic framework nanostructured with multiwalled carbon nanotubes composite material for supercapacitor application. Ceramics International, 2022, 48, 29102-29110.	2.3	28
1831	Stable Metal–Organic Frameworks for Fluorescent Detection of Tetracycline Antibiotics. Inorganic Chemistry, 2022, 61, 8015-8021.	1.9	44
1832	A Dihydrotetrazine-Functionalized Metal–Organic Framework as a Highly Selective Luminescent Host–Guest Sensor for Detection of 2,4,6-Trinitrophenol. Inorganic Chemistry, 2022, 61, 7820-7834.	1.9	26
1833	Weaving a 2D net of hydrogen and halogen bonds: cocrystal of a pyrazolium bromide with tetrafluorodiiodobenzene. Acta Crystallographica Section C, Structural Chemistry, 2022, 78, 324-331.	0.2	0

#	Article	IF	CITATIONS
1834	Recent Advancements in MOF/Biomass and Bio-MOF Multifunctional Materials: A Review. Sustainability, 2022, 14, 5768.	1.6	23
1835	Effect of N-donor ancillary ligand on zinc/cadmium-organic arsonates: Structural analysis and photoluminescence. Journal of Solid State Chemistry, 2022, 311, 123148.	1.4	1
1836	Porous materials for capture and catalytic conversion of CO2 at low concentration. Coordination Chemistry Reviews, 2022, 465, 214576.	9.5	74
1837	Pyridinaldehyde modified luminescence metal-organic framework for highly sensitive and selective fluorescence detection of pyrophosphate. Sensors and Actuators B: Chemical, 2022, 365, 131949.	4.0	18
1838	Flexible ligand for Metal-Organic frameworks with simultaneous Large-Pore and antenna effect emission. Chemical Engineering Journal, 2022, 443, 136532.	6.6	39
1839	Biomimetic enzyme MOF-NADH-mediated and 3,3′,5,5′-tetramethylbenzidine-based colorimetric assay for formaldehyde detection. Sensors and Actuators B: Chemical, 2022, 366, 132007.	4.0	3
1840	Lanthanide based inorganic phosphates and biological nucleotides sensor. Coordination Chemistry Reviews, 2022, 466, 214583.	9.5	12
1841	Recent advances in metal–organic frameworks and their composites for the phototherapy of skin wounds. Journal of Materials Chemistry B, 2022, 10, 4695-4713.	2.9	10
1842	Conductive 2D phthalocyanine-based metal-organic framework as a photoelectrochemical sensor for N-acetyl-L-cysteine detection. Sensors and Actuators B: Chemical, 2022, 367, 132028.	4.0	12
1843	Lanthanide coordination polymers functionalized by 5-nitroisophthalic acid: Synthesis, structure-DFT correlation and photoluminescent sensor of Cd2+ ion. Journal of Solid State Chemistry, 2022, 312, 123229.	1.4	5
1844	Microwave-assisted synthesis to prepare metal-organic framework for luminescence thermometry. Journal of Solid State Chemistry, 2022, 312, 123183.	1.4	1
1845	Ru(N^N) ₃ â€Metalloligand Pillared Zr ₆ â€Organic Layers for Aerobic Photooxidation. European Journal of Inorganic Chemistry, 2022, 2022, .	1.0	2
1846	Research progress in AIE-based crystalline porous materials for biomedical applications. Biomaterials, 2022, 286, 121583.	5.7	9
1847	How Reproducible are Surface Areas Calculated from the BET Equation?. Advanced Materials, 2022, 34, .	11.1	82
1848	Self-Assembled Nonlinear Optical Crystals Based on an Asymmetric Fluorenone Derivative. Crystal Growth and Design, 2022, 22, 3998-4004.	1.4	8
1849	Construction of a Cd ₈ Tb ₄ nanoring for luminescence response to 2,6-dipicolinic acid as an anthrax biomarker. CrystEngComm, 2022, 24, 4361-4365.	1.3	1
1850	One step synthesis of a bimetallic (Ni and Co) metal–organic framework for the efficient electrocatalytic oxidation of water and hydrazine. New Journal of Chemistry, 2022, 46, 13422-13430.	1.4	4
1851	Self-Calibrated Fret Fluorescent Probe with Metal-Organic Framework for Proportional Detection of Nitrofuran Antibiotics. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
1852	Silver-Rich Hybrid Framework lodide Based on [Ag ₈ 1 ₆] ²⁺ Clusters Displays Low-Temperature Dual Emission and Luminescence Thermochromism. Inorganic Chemistry, 2022, 61, 8662-8669.	1.9	2
1853	Strategies for the Improvement of Hydrogen Physisorption in Metal-Organic Frameworks and Advantages of Flexibility for the Enhancement. Journal of Molecular and Engineering Materials, 2022, 10, .	0.9	2
1854	Highly selective detection of Fe ³⁺ and nitro explosives by a bifunctional sensor based on Cd(II) complex. Inorganic and Nano-Metal Chemistry, 0, , 1-7.	0.9	1
1855	Anthracene-based fluorescent MOFs decorated by platinum nanozymes as a multifunctional nanoplatform for enhanced photodynamic therapy and self-monitoring of real-time singlet oxygen. Chemical Engineering Journal, 2022, 446, 137333.	6.6	17
1856	A Bisâ€heteroleptic Imidazoliumâ€bipyridine Functionalized Iridium(III) Complex for Fluorescence Lifetimeâ€based Recognition and Sensing of Phosphates. Chemistry - an Asian Journal, 2022, 17, .	1.7	6
1857	CO Oxidation over HKUST-1 Catalysts: The Role of Defective Sites. Journal of Physical Chemistry C, 2022, 126, 9652-9664.	1.5	2
1858	Exploiting one dimensional polymer for environmental monitoring: Co based coordination polymer for efficient removal of cationic dyes. Journal of Solid State Chemistry, 2022, , 123307.	1.4	5
1859	Bimetallic Fe–Cu metal organic frameworks for room temperature catalysis. Applied Organometallic Chemistry, 2022, 36, .	1.7	15
1860	Dyes-modified metalÂâ^'Âorganic frameworks composite as a sensitive, reversible and ratiometric fluorescent probe for the rapid detection of malachite green. Microchemical Journal, 2022, 180, 107631.	2.3	9
1861	Reverse-selective metal–organic framework materials for the efficient separation and purification of light hydrocarbons. Coordination Chemistry Reviews, 2022, 468, 214628.	9.5	48
1862	Environmental Applications of Metalâ^'Organic Frameworks. ACS Symposium Series, 0, , 247-255.	0.5	1
1863	Environmental Applications of Metalâ^'Organic Frameworks: Recent Advances and Challenges. ACS Symposium Series, 0, , 299-318.	0.5	6
1864	Recyclable L Uminescence S EnsorÂFor Cu 2+ , Cr 2 O 7 2- ÂAnd Cro42- in Water and Acid/Base Vapor Response Based OnÂWater-Stable Bipyridyl-Based Ln-Mofs. SSRN Electronic Journal, 0, , .	0.4	0
1865	Stabilization of CO ₂ as zwitterionic carbamate within a coordination polymer (CP): synthesis, structure and anion sensing behaviour of a Tb-CP composite. CrystEngComm, 2022, 24, 5890-5899.	1.3	1
1866	Determination of luminescent characteristics of organometallic complex in land and coal mining. Open Physics, 2022, 20, 538-547.	0.8	1
1867	Tunable fluorescence emission based on multi-layered MOF-on-MOF. Dalton Transactions, 2022, 51, 9397-9403.	1.6	7
1868	Hydrogen bonding-mediated assembly of carbon dot@Zr-based metal organic framework as a multifunctional fluorescence sensor for chlortetracycline, pH and temperature detection. New Journal of Chemistry, 2022, 46, 13021-13029.	1.4	4
1869	Multi-functional metal–organic frameworks for detection and removal of water pollutions. Chemical Communications, 2022, 58, 7890-7908.	2.2	25

#	Article	IF	CITATIONS
1870	Visual detection of fluoride in water by a dual-emitting, Eu-doped Sc-based metal organic framework. New Journal of Chemistry, 2022, 46, 13693-13699.	1.4	2
1871	Multi-responsive luminescent coordination polymer nanosheets for selective detection of nitroaromatics. Chemical Communications, 2022, 58, 7809-7812.	2.2	8
1872	The impact of MOFs in pH-dependent drug delivery systems: progress in the last decade. Dalton Transactions, 2022, 51, 9950-9965.	1.6	15
1873	2-Dimensional rare earth metal–organic frameworks based on a hexanuclear secondary building unit as efficient detectors for vapours of nitroaromatics and volatile organic compounds. Inorganic Chemistry Frontiers, 2022, 9, 4850-4863.	3.0	7
1874	Water-triggered synergistic fluorescence variation and shape deformation in Zn-TCPP metal–organic frameworks gel. Materials Chemistry Frontiers, 0, , .	3.2	0
1875	METAL-ORGANIC FRAMEWORKS IN RUSSIA: FROM THE SYNTHESIS AND STRUCTURE TO FUNCTIONAL PROPERTIES AND MATERIALS. Journal of Structural Chemistry, 2022, 63, 671-843.	0.3	35
1876	Rapid room temperature synthesis of a new 2D AIE-chromophore COFs at room temperature and highly selective naked eye sensing of Fe3+ ions. Journal of Porous Materials, 2022, 29, 1531-1538.	1.3	3
1877	Multi-step tandem functionalization assembly of MOFs-based hybrid polymeric films for color tuning luminescence and responsive sensing on organic vapors. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648, 129416.	2.3	6
1878	BrÃ,nsted Acid-Functionalized Ionic Co(II) Framework: A Tailored Vessel for Electrocatalytic Oxygen Evolution and Size-Exclusive Optical Speciation of Biothiols. ACS Applied Materials & Interfaces, 2022, 14, 29773-29787.	4.0	17
1879	Hexaphenylbenzeneâ€Based Deep Blueâ€Emissive Metallacages as Donors for Lightâ€Harvesting Systems. Angewandte Chemie, 2022, 134, .	1.6	4
1880	Hexaphenylbenzeneâ€Based Deep Blueâ€Emissive Metallacages as Donors for Lightâ€Harvesting Systems. Angewandte Chemie - International Edition, 2022, 61, .	7.2	37
1881	Design of a Sensitive Fluorescent Zn-Based Metal–Organic Framework Sensor for Cimetidine Monitoring in Biological and Pharmaceutical Samples. ACS Omega, 2022, 7, 22221-22231.	1.6	6
1882	A luminescence coordination polymer for long-term monitoring of antibiotic aztreonam in aqueous media. Dyes and Pigments, 2022, 205, 110513.	2.0	2
1883	Detection of the UV-vis silent biomarker trimethylamine-N-oxide via outer-sphere interactions in a lanthanide metal-organic framework. Communications Chemistry, 2022, 5, .	2.0	35
1884	VOC Mixture Sensing with a MOF Film Sensor Array: Detection and Discrimination of Xylene Isomers and Their Ternary Blends. ACS Sensors, 2022, 7, 1666-1675.	4.0	36
1885	Highly luminescent scintillating hetero-ligand MOF nanocrystals with engineered Stokes shift for photonic applications. Nature Communications, 2022, 13, .	5.8	38
1886	Europium-cadmium organic framework with zwitterionic ligand exhibiting tunable luminescence, CO2 adsorption and dye degradation. Journal of Solid State Chemistry, 2022, 313, 123346.	1.4	2
1887	Cd(II) and Co(II) coordination polymers constructed from N,N'-Bis(3-pyridylmethyl)oxalamide and 1,4-Naphthalenedicarboxylic acid. Polyhedron, 2022, 223, 115991.	1.0	0

#	Article	IF	CITATIONS
1888	Fluorescent lanthanide metal-organic framework for rapid and ultrasensitive detection of methcathinone in human urine. Talanta, 2022, 249, 123663.	2.9	13
1889	Electrochemical Microfluidic Immunosensor Based on Porous Nanomaterial Towards to Claudin7 Determination for Colorectal Cancer Diagnosis. SSRN Electronic Journal, 0, , .	0.4	2
1890	Post-synthetic modification of Prussian blue type nanoparticles: tailoring the chemical and physical properties. Inorganic Chemistry Frontiers, 2022, 9, 3943-3971.	3.0	5
1891	Single mode for luminescence responsive chemical sensing in rare earth metal-organic framework hybrid materials. , 2022, , 75-110.		0
1892	Collaborative Sensing in Internet of Things: A Comprehensive Survey. IEEE Communications Surveys and Tutorials, 2022, 24, 1435-1474.	24.8	52
1893	Chemical sensors based on periodic mesoporous organosilica @NaYF ₄ :Ln ³⁺ nanocomposites. Dalton Transactions, 2022, 51, 11467-11475.	1.6	5
1894	Metal–organic framework-based photonic crystal platforms for gas sensing: a review. Materials Advances, 2022, 3, 6728-6741.	2.6	10
1895	Summary and prospects. , 2022, , 503-518.		0
1896	Selective detection of sulfasalazine antibiotic and its controllable photodegradation into 5-aminosalicylic acid by visible-light-responsive metal–organic framework. Dalton Transactions, 2022, 51, 11730-11736.	1.6	1
1897	A Multifunctional Tb-Porphyrin Aerogelfor Ratiometric Fluorescent Sensing of Cu(li) and Photocatalytic Degradation of Rhodamine B. SSRN Electronic Journal, O, , .	0.4	0
1898	Luminescence responsive sensing mechanism in rare earth metal-organic framework hybrid materials. , 2022, , 145-175.		0
1899	Rare earth luminescence, MOFs luminescence, rare earth MOFs hybrid materials luminescence, luminescence response, and chemical sensing. , 2022, , 41-71.		0
1900	Recent advances in bimetallic metal–organic frameworks (BMOFs): synthesis, applications and challenges. New Journal of Chemistry, 2022, 46, 13818-13837.	1.4	61
1901	Transformation of metal–organic frameworks with retained networks. Chemical Communications, 2022, 58, 8602-8613.	2.2	11
1902	Dual-emissive EY/UiO-66-NH ₂ as a ratiometric probe for turn-on sensing and cell imaging of hypochlorite. Analyst, The, 2022, 147, 3867-3875.	1.7	6
1903	ZINC(II) AND CADMIUM(II) METAL-ORGANIC FRAMEWORKS BASED ON THE AMIDE- FUNCTIONALIZED TETRACARBOXYLATE LIGAND: SYNTHESIS, CRYSTAL STRUCTURE, AND LUMINESCENT PROPERTIES. Journal of Structural Chemistry, 2022, 63, 378-387.	0.3	9
1904	New Approach toward Dual-Emissive Organic–Inorganic Hybrids by Integrating Mn(II) and Cu(I) Emission Centers in Ionic Crystals. ACS Applied Materials & Interfaces, 2022, 14, 31000-31009.	4.0	11
1905	Shearâ€Induced Macroporeâ€Infused Nanocomposite Emulsion Thermosets. Advanced Materials Interfaces, 0, , 2200145.	1.9	0

#	Article	IF	Citations
1906	Two Eu ³⁺ Based Complexes Containing Uncoordinated Lewis Basic Pyridyl Sites and Chemical Sensing of 4-Nitrophenol and Fe ³⁺ ions. Crystal Growth and Design, 2022, 22, 4874-4884.	1.4	18
1907	Stable Cd Metal–Organic Framework as a Multiresponsive Luminescent Biosensor for Rapid, Accurate, and Recyclable Detection of Hippuric Acid, Nucleoside Phosphates, and Fe ³⁺ in Urine and Serum. Inorganic Chemistry, 2022, 61, 11243-11251.	1.9	12
1908	Fluorescent Covalent Organic Frameworks: A Promising Material Platform for Explosive Sensing. Frontiers in Chemistry, 0, 10, .	1.8	13
1909	Physicochemical, <i>inÂvitro</i> therapeutic activity, DNA-binding, and <i>in silico</i> molecular docking studies of samarium(III) complexes bearing N,O-chelated Schiff base ligands. Journal of Coordination Chemistry, 2022, 75, 994-1018.	0.8	4
1910	Approaches to Enhancing Electrical Conductivity of Pristine Metal–Organic Frameworks for Supercapacitor Applications. Small, 2022, 18, .	5.2	22
1911	Anisotropic Band-Edge Absorption of Millimeter-Sized Zn(3-ptz) ₂ Single-Crystal Metal–Organic Frameworks. ACS Omega, 2022, 7, 24432-24437.	1.6	3
1912	Structural Diversity of Mercury(II) Halide Complexes Containing Bis-pyridyl-bis-amide with Bulky and Angular Backbones: Ligand Effect and Metal Sensing. International Journal of Molecular Sciences, 2022, 23, 7861.	1.8	5
1913	Synthesis of metal–organic coordination polymers and their derived nanostructures for organic dye removal and analyte detection. Journal of Environmental Chemical Engineering, 2022, 10, 108215.	3.3	3
1914	Ultrasensitive photoelectrochemical sensing platform based on heterostructural CuO/NCDs@Au nanocomposites with the efficient photo-induced carrier separation. Microchemical Journal, 2022, 181, 107779.	2.3	2
1915	Recyclable luminescence sensor for Cu2+, Cr2O72â^ and CrO42â^ in water and acid/base vapor response based on water-stable bipyridyl-based Ln-MOFs. Journal of Solid State Chemistry, 2022, 314, 123423.	1.4	6
1916	Fabrication of Two Isomorphic and Hyperstable Rare Earth-Based Metal–Organic Frameworks with Efficient Ratiometric Probe and Photocatalytic Performances. Inorganic Chemistry, 2022, 61, 11866-11878.	1.9	18
1917	When MOFs meet wood: From opportunities toward applications. CheM, 2022, 8, 2342-2361.	5.8	53
1918	pH-Stable Luminescent Metal–Organic Frameworks for the Selective Detection of Aqueous-Phase Fe ^{III} and Cr ^{VI} Ions. Inorganic Chemistry, 2022, 61, 12396-12405.	1.9	41
1919	Controllable design of high-efficiency triboelectric materials by functionalized metal—organic frameworks with a large electron-withdrawing functional group. Nano Research, 2022, 15, 9386-9391.	5.8	22
1920	Luminescent Lanthanide Metal Organic Frameworks (LnMOFs): A Versatile Platform towards Organomolecule Sensing. Coordination Chemistry Reviews, 2022, 470, 214707.	9.5	69
1921	Effectiveness of metal-organic framework as sensors: Comprehensive review. , 2022, , 47-64.		2
1922	Preparation of Highly Water Stable Hkust-1@Pyr Composites for Excellent Co2 Capture Capability and Efficient Separation of Co2/N2. SSRN Electronic Journal, 0, , .	0.4	0
1923	Construction of a series of Ln-MOF luminescent sensors based on a functional "V―shaped ligand. Dalton Transactions, 2022, 51, 12549-12557.	1.6	7

#	Article	IF	CITATIONS
1924	Ultrasensitive point-of-care biochemical sensor based on metal-AIEgen frameworks. Science Advances, 2022, 8, .	4.7	29
1925	Rh ^{III} -Catalyzed C–H <i>N</i> -Heteroarylation and Esterification Cascade of Carboxylic Acid with Organoboron Reagents and 1,2-Dichloroethane in One-Pot Synthesis. Organic Letters, 2022, 24, 5704-5709.	2.4	4
1926	Synthesis of Metal–Organic Frameworks Quantum Dots Composites as Sensors for Endocrine-Disrupting Chemicals. International Journal of Molecular Sciences, 2022, 23, 7980.	1.8	8
1927	RhB@MOF-5 Composite Film as a Fluorescence Sensor for Detection of Chilled Pork Freshness. Biosensors, 2022, 12, 544.	2.3	4
1928	Parts-per-billion (ppb) selective iodine sensors leveraging metal–organic framework nanoenvironment. Materials Today, 2022, 58, 91-99.	8.3	4
1929	Defect Engineering in a Metal–Organic Framework System to Achieve Super-Protonic Conductivity. Chemistry of Materials, 2022, 34, 6734-6743.	3.2	28
1930	Eucalyptus globulus Extract-Assisted Fabrication of Copper Oxide/Zinc Oxide Nanocomposite for Photocatalytic Applications. Crystals, 2022, 12, 1153.	1.0	3
1931	Efficient and green oneâ€pot synthesis of Knoevenagel condensation catalyzed nano Metal–Organic Frameworks in water. Applied Organometallic Chemistry, 0, , .	1.7	2
1932	Combined Skeleton and Spatial Rigidification of AlEgens in 2D Covalent Organic Frameworks for Boosted Fluorescence Emission and Sensing of Antibiotics. ACS Applied Materials & Interfaces, 2022, 14, 37853-37864.	4.0	18
1933	Partially Ordered Lanthanide Carboxylates with a Highly Adaptable 1D Polymeric Structure. Polymers, 2022, 14, 3328.	2.0	1
1934	Carbazole-Equipped Metal–Organic Framework for Stability, Photocatalysis, and Fluorescence Detection. Inorganic Chemistry, 2022, 61, 14352-14360.	1.9	12
1935	Detection of Toxic Polychlorinated Biphenyls by Nanoporous Metal–Organic Frameworks. ACS Applied Nano Materials, 2022, 5, 11656-11664.	2.4	13
1936	Metal–Organic Frameworks for CO ₂ Separation from Flue and Biogas Mixtures. Advanced Functional Materials, 2022, 32, .	7.8	46
1937	Recent Trends and Advances in Porous Metal-Organic Framework Nanostructures for the Electrochemical and Optical Sensing of Heavy Metals in Water. Critical Reviews in Analytical Chemistry, 0, , 1-25.	1.8	13
1938	A Multinary Metal–Organic Framework with Divided Linkers for C ₂ H ₂ /CO ₂ Separation. , 2022, 4, 1774-1779.		16
1939	Synthesis, microstructure, and catalytic properties of porous SiFeCO nanocomposites derived from MILâ€101(Fe)â€modified PCS. International Journal of Applied Ceramic Technology, 0, , .	1.1	0
1940	New Three-dimensional Supramolecular Cd(II)-Coordination Polymer as a Luminescent Sensor for Sulfamethazine Detection. Journal of Inorganic and Organometallic Polymers and Materials, 2022, 32, 4627-4636.	1.9	3
1941	Turn-On Fluorescence Chemical Sensing through Transformation of Self-Trapped Exciton States at Room Temperature. ACS Sensors, 2022, 7, 2338-2344.	4.0	3
#	Article	IF	CITATIONS
------	--	-----	-----------
1942	Recent advances in nanoarchitectures of monocrystalline coordination polymers through confined assembly. Beilstein Journal of Nanotechnology, 0, 13, 763-777.	1.5	1
1943	Sensitive Detection of Alcohol Isomers by Ionically Conductive Metalâ€Organic Frameworks. Advanced Electronic Materials, 0, , 2200542.	2.6	1
1944	Pore size effect of 1,3,6,8-tetrakis(4-carboxyphenyl)pyrene-based metal-organic frameworks for enhanced SF6 adsorption with high selectivity. Microporous and Mesoporous Materials, 2022, 343, 112161.	2.2	4
1945	Highly scalable and pH stable 2D Ni-MOF-based composites for high performance supercapacitor. Composites Part B: Engineering, 2022, 245, 110174.	5.9	30
1946	Two new 5-mercapto-1-phenyl-1H-tetrazole-based Cu(I) coordination polymers with double layer structures: Crystal structures, substituent effects and sensing responses to NACs. Journal of Solid State Chemistry, 2022, 315, 123479.	1.4	1
1947	Self-calibrated FRET fluorescent probe with Metal-organic framework for proportional detection of nitrofuran antibiotics. Polyhedron, 2022, 226, 116080.	1.0	6
1948	A water-stable zwitterionic Zn(II) coordination polymer as a luminescent sensor for the nitrofurazone antibiotic in milk. Polyhedron, 2022, 226, 116092.	1.0	11
1949	Construction of a 1D Cu(I)-based coordination polymer as a luminescent sensor for antibiotics and a photocatalyst for dye degradation. Journal of Molecular Structure, 2022, 1270, 133990.	1.8	2
1950	Tailored FTO/Ag/ZIF-8 structure as SERS substrate for ultrasensitive detection. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 282, 121693.	2.0	6
1951	Excited state double proton transfer efficient probe: Theoretical investigation and sensing ability towards Pb2+ and Al3+ ions. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 433, 114198.	2.0	6
1952	Microfluidic amperometric immunosensor based on porous nanomaterial towards claudin7 determination for colorectal cancer diagnosis. Talanta, 2023, 251, 123766.	2.9	10
1953	Heterometallic Europium(III)–Lutetium(III) Terephthalates as Bright Luminescent Antenna MOFs. Molecules, 2022, 27, 5763.	1.7	5
1954	Metal-organic frameworks derived from chalcone dicarboxylic acid: New topological characters and initial catalytic properties. Inorganica Chimica Acta, 2022, 543, 121166.	1.2	1
1955	A luminescent Eu@SOF film fabricated by electrophoretic deposition as ultrasensitive platform for styrene gas quantitative monitoring through fluorescence sensing and ANNs model. Journal of Hazardous Materials, 2023, 441, 129865.	6.5	8
1956	UiO-66-NH ₂ based fluorescent sensing for detection of tetracyclines in milk. RSC Advances, 2022, 12, 23427-23436.	1.7	11
1957	Fumarato and phthalato bridged dinuclear metal–organic Cu(<scp>ii</scp>) and Mn(<scp>ii</scp>) compounds involving infinite fumarate–water assemblies and unusual structure-guiding H-bonded synthons: antiproliferative evaluation and theoretical studies. New Journal of Chemistry, 2022, 46, 17817-17833.	1.4	0
1958	Recent progress on MOF-based optical sensors for VOC sensing. Chemical Science, 2022, 13, 13978-14007.	3.7	49
1959	Metal phosphonates as heterogeneous catalysts for highly efficient chemical fixation of CO ₂ under mild conditions. CrystEngComm, 2022, 24, 7845-7851.	1.3	3

#	Article	IF	CITATIONS
1960	An anionic Zn-MOF composed of 1D columnar SBUs for highly C ₂ H ₂ /CH ₄ selective adsorption, dye adsorption and fluorescence sensing. Dalton Transactions, 2022, 51, 15273-15281.	1.6	11
1961	A 3D/3D hetero-interpenetrated MOF with a novel (3,9)-c net and 6-c lcy net for the fluorescence detection of carbaryl. Dalton Transactions, 2022, 51, 15644-15647.	1.6	3
1962	An Eu ³⁺ -functionalized metal–organic framework (Eu@Zn-MOF) for the highly sensitive detection of rotenone in serum. New Journal of Chemistry, 2022, 46, 19168-19173.	1.4	6
1963	MOF and its application in electrochemistry. , 2022, , 219-253.		0
1964	Luminescent metal-organic frameworks for sensing of toxic organic pollutants in water and real samples. , 2022, , 195-208.		1
1965	Facile supramolecular strategy to construct solid fluorophore@metal–organic framework composites. Materials Advances, 2022, 3, 6597-6608.	2.6	0
1966	Data-driven efficient synthetic exploration of anionic lanthanide-based metal–organic frameworks. Chemical Communications, 2022, 58, 11426-11429.	2.2	4
1967	Amino group induced structural diversity and near-infrared emission of yttrium-tetracarboxylate frameworks. Chemical Science, 2022, 13, 9321-9328.	3.7	16
1968	A stable Cd-MOF as a dual-responsive luminescent biosensor for the determination of urinary diphenyl phosphate and hippuric acid as biomarkers for human triphenyl phosphate and toluene poisoning. Dalton Transactions, 2022, 51, 14924-14929.	1.6	4
1969	Luminescent MOFs (LMOFs): recent advancement towards a greener WLED technology. Chemical Communications, 2022, 58, 10768-10788.	2.2	20
1970	Robust metal–organic framework with abundant large electronegative sites for removal of CO ₂ from a ternary C ₂ H ₂ /C ₂ H ₄ /CO ₂ mixture. Inorganic Chemistry Frontiers, 2022, 9, 5064-5071.	3.0	8
1971	Photo-induced reversible nitric oxide capture by Fe–M(CO ₂ H) ₄ (M = Co, Ni,) Tj ETQq1 22859-22870.	1 0.7843 1.3	314 rgBT /O 3
1972	Stable terbium metal–organic framework with turn-on and blue-shift fluorescence sensing for acidic amino acids (<scp>l</scp> -aspartate and <scp>l</scp> -glutamine) and cations (Al ³⁺ and) Tj ETQq0 () DøgBT /(D v erlock 10
1973	A series of naphthalenediimide-based metal–organic frameworks: synthesis, photochromism and inkless and erasable printing. Dalton Transactions, 2022, 51, 14852-14857.	1.6	2
1974	Detection of nitrophenols with a fluorescent Zr(<scp>iv</scp>) metal–organic framework functionalized with benzylamino groups. Journal of Materials Chemistry C, 2022, 10, 12307-12315.	2.7	14
1975	Robust Carbazole-Based Rare-Earth MOFs: Tunable White-Light Emission for Temperature and DMF Sensing. ACS Applied Materials & Interfaces, 2022, 14, 41178-41185.	4.0	8
1976	Oneâ€pot synthesis of copper nanocluster/Tbâ€MOF composites for the ratiometric fluorescence detection of Cu ²⁺ . Luminescence, 2022, 37, 1793-1799.	1.5	10
1977	RhB-Embedded Zirconium–Biquinoline-Based MOF Composite for Highly Sensitive Probing Cr(VI) and Photochemical Removal of CrO ₄ ^{2–} , Cr ₂ O ₇ ^{2–} , and MO. Inorganic Chemistry, 2022, 61, 15213-15224.	1.9	18

#	Article	IF	CITATIONS
1978	Demonstration of High-Throughput Building Block and Composition Analysis of Metal–Organic Frameworks. Journal of Chemical Information and Modeling, 2022, 62, 4672-4679.	2.5	3
1979	Recent Advances in Luminescent Hydrogenâ€Bonded Organic Frameworks: Structures, Photophysical Properties, Applications. Advanced Functional Materials, 2022, 32, .	7.8	43
1980	Application of Metal–Organic Framework in Diagnosis and Treatment of Diabetes. Biomolecules, 2022, 12, 1240.	1.8	9
1981	Series of TM-OFs as a Platform for Efficient Catalysis and Multifunctional Luminescence Sensing. Inorganic Chemistry, 2022, 61, 15880-15894.	1.9	6
1982	Syntheses, Crystal Structures, and Magnetic Properties of Two Cobalt(II) Coordination Complexes with 4'-Substituted 3,2':6',3''-Terpyridine Ligands. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2022, 48, 659-666.	0.3	4
1983	Fast preparation of Eu(BTB) MOFs in dielectric barrier discharge liquid plasma for luminescent sensing of trace iron. Luminescence, 2022, 37, 2050-2058.	1.5	2
1984	Unique Fluorescence Turn-On and Turn-Off–On Responses to Acids by a Carbazole-Based Metal–Organic Framework and Theoretical Studies. Journal of the American Chemical Society, 2022, 144, 17054-17063.	6.6	36
1985	Novel Approach for Detecting Vapors of Acids and Bases with Proton-Transfer Luminescent Dyes Encapsulated within Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2022, 14, 42656-42670.	4.0	9
1986	Construction of Halogen-Bonded Organic Frameworks (XOFs) as Novel Efficient Iodinating Agents. ACS Applied Materials & Interfaces, 2022, 14, 43621-43627.	4.0	10
1987	Co- and Ni-Based Electroactive Metal–Organic Frameworks for Stable Lithium Storage: Electrochemical and Charge-Storage Behavior in Response to Different Metal Centers. Crystal Growth and Design, 2022, 22, 5872-5882.	1.4	4
1988	A facile synthesis of CeO2 from the GO@Ce-MOF precursor and its efficient performance in the oxygen evolution reaction. Frontiers in Chemistry, 0, 10, .	1.8	4
1989	Magnetic recyclable g-C3N4/Fe3O4@MIL-100(Fe) ternary catalyst for photo-Fenton degradation of ciprofloxacin. Journal of Environmental Chemical Engineering, 2022, 10, 108698.	3.3	22
1990	Photoelectrochemical sensor for detection Hg2+ based on in situ generated MOFs-like structures. Analytica Chimica Acta, 2022, 1233, 340496.	2.6	9
1991	Structures, luminescent properties, and volatile iodine detection of Zn(II) based zigzag coordination chains. Journal of Solid State Chemistry, 2022, 316, 123612.	1.4	1
1992	SO ₂ capture and detection using a Cu(<scp>ii</scp>)-metal–organic polyhedron. Dalton Transactions, 2022, 51, 18368-18372.	1.6	6
1993	Metal–organic frameworks (MOFs) as fluorescence sensors: principles, development and prospects. CrystEngComm, 2022, 24, 7881-7901.	1.3	29
1994	A new visual and stable fluorescent Cu-MOF as a dual-function sensor for glyphosate and Cr ₂ O ₇ ^{2â^'} . New Journal of Chemistry, 2022, 46, 19808-19816.	1.4	2
1995	A new multifunctional anionic 3D Zn(II)-MOF based on heptanuclear clusters: selective adsorption of organic dyes and dual-emitting sensor for nitroantibiotics. CrystEngComm, 0, , .	1.3	1

#	Article	IF	CITATIONS
1996	A UiO-66 3D photonic crystal optical sensor for highly efficient chlorobenzene vapor detection. RSC Advances, 2022, 12, 30262-30269.	1.7	4
1997	Simultaneous detection of Lead and Cadmium using a composite of Zeolite Imidazole Framework and Reduced Graphene Oxide (ZIF-67/rGO) via electrochemical approach. Environmental Engineering Research, 2023, 28, 220269-0.	1.5	1
1998	Multifunctional Luminescent Sensor Based on the Pb ²⁺ Complex Containing a Tetrazolato Ligand. Inorganic Chemistry, 2022, 61, 16831-16840.	1.9	6
1999	Advancement and future challenges of metal–organic coordination polymers: A case study of optical sensor for the detection of the environmental contaminants. Applied Organometallic Chemistry, 2023, 37, .	1.7	6
2000	Selective and Sensitive Recognition of Specific Types of Toxic Organic Pollutants with a Chemically Stable Highly Luminescent Porous Organic Polymer (POP). ACS Applied Polymer Materials, 2022, 4, 8633-8644.	2.0	10
2001	Modular design in metal-organic frameworks for oxygen evolution reaction. International Journal of Hydrogen Energy, 2022, 47, 39443-39469.	3.8	6
2002	Enhanced cataluminescence sensing of MIL-53(Al)/Sb2SnO5 composites for isobutanol detection. Measurement Science and Technology, 0, , .	1.4	0
2003	Highly Luminescent MOF and Its In Situ Fabricated Sustainable Corn Starch Gel Composite as a Fluoro-Switchable Reversible Sensor Triggered by Antibiotics and Oxo-Anions. ACS Applied Materials & amp; Interfaces, 2022, 14, 48658-48674.	4.0	22
2004	A Highly Selective MOF-Based Probe for Turn-On Luminescent Detection of Al ³⁺ , Cr ³⁺ , and Fe ³⁺ in Solution and Test Paper Strips through Absorbance Caused Enhancement Mechanism. Inorganic Chemistry, 2022, 61, 16952-16962.	1.9	38
2005	Computational Screening of Metal–Organic Frameworks for Ammonia Capture from H ₂ /N ₂ /NH ₃ Mixtures. ACS Omega, 2022, 7, 37640-37653.	1.6	4
2006	Recent Advances of Anticancer Studies Based on Nanoâ€Fluorescent Metalâ€Organic Frameworks. ChemMedChem, 0, , .	1.6	1
2007	Highly sensitive temperature probe fabricated by high aspect ratio Eu-BTC nanowire. Sensors and Actuators A: Physical, 2022, 347, 113948.	2.0	1
2008	Interpretable Graph Transformer Network for Predicting Adsorption Isotherms of Metal–Organic Frameworks. Journal of Chemical Information and Modeling, 2022, 62, 5446-5456.	2.5	11
2009	Dual-function Cd(II) coordination complexes as sensors for efficient detection of Zn2+ and Tb3+ ions. Journal of Luminescence, 2022, 252, 119426.	1.5	1
2010	Selective fluorescent sensing and photocatalytic properties of a new 2D Co coordination polymer based on 1,1′-di(p-carbonylbenzyl)-2,2′-biimidazoline. Polyhedron, 2022, 228, 116182.	1.0	3
2011	Mechanism, structural design, modulation and applications of Aggregation-induced emission-based Metal-organic framework. Inorganic Chemistry Communication, 2022, 146, 110038.	1.8	6
2012	Recent advances in photonic crystal-based sensors. Coordination Chemistry Reviews, 2023, 475, 214909.	9.5	38
2013	The progress of electrochromic materials based on metal–organic frameworks. Coordination Chemistry Reviews, 2023, 475, 214891.	9.5	27

#	Article	IF	Citations
2014	Evaluation and screening of porous materials containing fluorine for carbon dioxide capture and separation. Computational Materials Science, 2023, 216, 111872.	1.4	1
2015	A naphthalenediimide-based Cd-MOF as solvatochromic sensor to detect organic amines. Journal of Solid State Chemistry, 2023, 317, 123660.	1.4	2
2016	Metal organic frameworks and their composites as effective tools for sensing environmental hazards: An up to date tale of mechanism, current trends and future prospects. Coordination Chemistry Reviews, 2023, 474, 214859.	9.5	45
2017	Fabrication strategies for metal-organic framework electrochemical biosensors and their applications. Coordination Chemistry Reviews, 2023, 475, 214814.	9.5	46
2018	Mechanism, design and application of fluorescent recognition based on metal organic frameworks in pollutant detection. Chemical Engineering Journal, 2023, 454, 139931.	6.6	70
2019	Ionic metal–organic frameworks (iMOFs): progress and prospects as ionic functional materials. Chemical Communications, 2022, 58, 13676-13698.	2.2	22
2020	Metal-organic framework-based nanomaterials for the optoelectrochemical detection ofÂfoodAcontaminants. , 2023, , 205-222.		1
2021	Zirconium-based metal-organic frameworks for fluorescent sensing. Coordination Chemistry Reviews, 2023, 476, 214930.	9.5	63
2022	Detection of anthrax biomarker and metallic ions in aqueous media using spherical-shaped lanthanide infinite coordination polymers. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2023, 286, 122033.	2.0	5
2023	Recent advances in metal-organic frameworks for X-ray detection. Science China Chemistry, 2022, 65, 2338-2350.	4.2	12
2024	An electrochemical sensor for cadmium ion detection that is based on an AuNP-functionalized metal–organic framework-graphene nanocomposite. Journal of Materials Research, 2022, 37, 4368-4380.	1.2	3
2025	Pillar-Layered Metal-Organic Frameworks for Sensing Specific Amino Acid and Photocatalyzing Rhodamine B Degradation. Molecules, 2022, 27, 7551.	1.7	8
2026	Confinementâ€Driven Photophysics in Hydrazoneâ€Based Hierarchical Materials. Angewandte Chemie - International Edition, 2023, 62, .	7.2	5
2027	Schiff Base Pillar-layered Metal-organic Frameworks: From Synthesis to Applications. Comments on Inorganic Chemistry, 2023, 43, 382-427.	3.0	2
2028	Novel strategies for the formulation and processing of aluminum metal-organic framework-based sensing systems toward environmental monitoring of metal ions. Journal of Hazardous Materials, 2023, 444, 130422.	6.5	4
2029	Influence of Tartrate Ligand Coordination over Luminescence Properties of Chiral Lanthanide-Based Metal–Organic Frameworks. Nanomaterials, 2022, 12, 3999.	1.9	0
2030	Oxytetracycline Degradation by Heterogeneous Photo-Fenton-Like Process Using h@MIL-100(Fe) with LED Visible Light. Water, Air, and Soil Pollution, 2022, 233, .	1.1	3
2031	Lanthanide(III) Ions and 5-Methylisophthalate Ligand Based Coordination Polymers: An Insight into Their Photoluminescence Emission and Chemosensing for Nitroaromatic Molecules. Nanomaterials, 2022, 12, 3977.	1.9	2

#	Article	IF	CITATIONS
2032	Dual-Emitting Ratiometric Luminescent Thermometers Based on Lanthanide Metal–Organic Complexes with BrÃ,nsted Acidic Ionic Liquids. Inorganic Chemistry, 2022, 61, 18998-19009.	1.9	3
2033	MOF-Based Mycotoxin Nanosensors for Food Quality and Safety Assessment through Electrochemical and Optical Methods. Molecules, 2022, 27, 7511.	1.7	5
2034	Confinementâ€Ðriven Photophysics in Hydrazoneâ€Based Hierarchical Materials. Angewandte Chemie, 2023, 135, .	1.6	1
2035	BN/Fe3O4/MIL-53(Fe) ternary nanocomposite for boosted ibuprofen degradation by visible light assisted photocatalytic activation of persulfate. Surfaces and Interfaces, 2022, 35, 102472.	1.5	9
2036	Tailor-Made Multiple Interpenetrated Metal–Organic Framework for Selective Detection and Adsorption of ReO ₄ [–] . Analytical Chemistry, 2022, 94, 16864-16870.	3.2	6
2037	Metal–organic framework-derived advanced oxygen electrocatalysts as air-cathodes for Zn–air batteries: recent trends and future perspectives. Materials Horizons, 2023, 10, 745-787.	6.4	24
2038	Terbium-modified two-dimensional zirconium-based metal–organic frameworks for photoluminescence detection of nitrite. Molecular Systems Design and Engineering, 2023, 8, 330-340.	1.7	5
2039	Synthesis, crystal structure of four 1D to 3D coordination polymers as potential sensor for the detection of ions, antibiotics and pesticides in water media. Polyhedron, 2023, 230, 116242.	1.0	10
2040	Detection of salbutamol and enantioselective sensing of <scp>l</scp> / <scp>d</scp> -lysine based on a cadmium-based coordination polymer. New Journal of Chemistry, 2023, 47, 674-680.	1.4	2
2041	Elucidating phase transformation of Eu-based metal organic framework with intermediate isolation and theoretical calculations. CrystEngComm, 0, , .	1.3	0
2042	Synthesis, crystal structures, photophysics and computational study of a series of luminescent Pb2+ compounds bearing various functionalized diimine ligands. Polyhedron, 2023, 230, 116220.	1.0	0
2043	Cu2+@NMOFs-to-bimetallic CuFe PBA transformation: An instant catalyst with oxidase-mimicking activity for highly sensitive impedimetric biosensor. Biosensors and Bioelectronics, 2023, 222, 114961.	5.3	4
2044	Metal-organic framework membranes for proton exchange membrane fuel cells: A mini-review. Inorganica Chimica Acta, 2023, 546, 121304.	1.2	7
2045	Recent advance of macroscopic metal-organic frameworks for water treatment: A review. Surfaces and Interfaces, 2023, 36, 102564.	1.5	21
2046	A "heat set―Zr-Diimide based Fibrous Metallogel: Multiresponsive Sensor, Column-based Dye Separation, and Iodine Sequestration. Journal of Colloid and Interface Science, 2023, 633, 441-452.	5.0	9
2047	Cadmium-Based coordination polymers (CPs) constructed from two different V-Shaped dicarboxylate Ligands: Synthesis, structure and dielectric properties. Inorganic Chemistry Communication, 2023, 148, 110280.	1.8	3
2048	Ratiometric fluorescence detection of artemisinin based on photoluminescent Zn-MOF combined with hemin as catalyst. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2023, 289, 122253.	2.0	2
2049	Multiscale Computational Approaches toward the Understanding of Materials. Advanced Theory and Simulations, 2023, 6, .	1.3	4

#	Article	IF	CITATIONS
2050	Metal–Organic Frameworks as Intelligent Drug Nanocarriers for Cancer Therapy. Pharmaceutics, 2022, 14, 2641.	2.0	5
2051	Reticular Chemistry with Art: A Case Study of Olympic Rings-Inspired Metal–Organic Frameworks. Journal of the American Chemical Society, 2022, 144, 22170-22177.	6.6	12
2052	Hafnium(IV) Chemistry with Imide–Dioxime and Catecholate–Oxime Ligands: Unique {Hf ₅ } and Metalloaromatic {Hf ₆ }–Oxo Clusters Exhibiting Fluorescence. Inorganic Chemistry, 2022, 61, 20253-20267.	1.9	0
2053	Realâ€Time <i>In Situ</i> Volatile Organic Compound Sensing by a Dualâ€Emissive Polynuclear Lnâ€MOF with Pronounced Ln ^{III} Luminescence Response. Angewandte Chemie - International Edition, 2023, 62, .	7.2	27
2054	Molecular-kinetic study of multilayers gas-adsorption in a rarefied gas environment. Physics of Fluids, 2022, 34, .	1.6	1
2055	Selective Low-Level Detection of a Perilous Nitroaromatic Compound Using Tailor-Made Cd(II)-Based Coordination Polymers: Study of Photophysical Properties and Effect of Functional Groups. Inorganic Chemistry, 2023, 62, 98-113.	1.9	11
2056	Composites Filled with Metal Organic Frameworks and Their Derivatives: Recent Developments in Flame Retardants. Polymers, 2022, 14, 5279.	2.0	7
2057	Design of Flexible Metal–Organic Framework-Based Superprotonic Conductors and Their Fabrication with a Polymer into Proton Exchange Membranes. ACS Applied Energy Materials, 2023, 6, 9092-9107.	2.5	9
2058	Mechanochemistry Milling of Waste Poly(Ethylene Terephthalate) into Metal–Organic Frameworks. ChemSusChem, 2023, 16, .	3.6	19
2059	Recent advances in determination applications of emerging films based on nanomaterials. Advances in Colloid and Interface Science, 2023, 311, 102828.	7.0	3
2061	Efficient Recognition and Removal of Persistent Organic Pollutants by a Bifunctional Molecular Material. Journal of the American Chemical Society, 2023, 145, 260-267.	6.6	38
2062	Tunable and Thermally Stable Luminescence from Polycyclic Aromatic Hydrocarbons Confined in a Zeolitic Imidazolate Framework. Advanced Optical Materials, 0, , 2201856.	3.6	1
2063	MOF-Based Materials with Sensing Potential: Pyrrolidine-Fused Chlorin at UiO-66(Hf) for Enhanced NO2 Detection. Chemosensors, 2022, 10, 511.	1.8	0
2064	Atomically Precise Integration of Multiple Functional Motifs in Catalytic Metal–Organic Frameworks for Highly Efficient Nitrate Electroreduction. Jacs Au, 2022, 2, 2765-2777.	3.6	8
2065	Smart crystalline frameworks constructed with bisquinoxaline-based component for multi-stimulus luminescent sensing materials. , 2023, 42, 100001.		20
2066	Dense Conductive Metal–Organic Frameworks as Robust Electrocatalysts for Biosensing. Analytical Chemistry, 2022, 94, 17177-17185.	3.2	14
2067	Realâ€Time <i>In Situ</i> Volatile Organic Compound Sensing by a Dualâ€Emissive Polynuclear Lnâ€MOF with Pronounced Ln ^{III} Luminescence Response. Angewandte Chemie, 2023, 135, .	1.6	2
2068	A novel spectroscopic technique for studying metal–organic frameworks based on Mie scattering. Analytical and Bioanalytical Chemistry, 2023, 415, 1313-1320.	1.9	1

#	Article	IF	CITATIONS
2069	Recent Advances in Luminescent Metal-Organic Frameworks for Detection of Gas and Volatile Organic Molecules. IEEE Transactions on Instrumentation and Measurement, 2023, 72, 1-12.	2.4	0
2070	Photosalient ionic cocrystal composed of trimesic acid and 4-styrylpyridine. CrystEngComm, 0, , .	1.3	2
2071	A literature review of MOF derivatives of electromagnetic wave absorbers mainly based on pyrolysis. International Journal of Minerals, Metallurgy and Materials, 2023, 30, 446-473.	2.4	35
2072	Topological entrapment of macromolecules during the formation of metal–organic framework. Chemical Communications, 0, , .	2.2	1
2073	ZIF-derived non-bonding Co/Zn coordinated hollow carbon nitride for enhanced removal of antibiotic contaminants by peroxymonosulfate activation: Performance and mechanism. Applied Catalysis B: Environmental, 2023, 325, 122401.	10.8	29
2074	Functional Metal/Carbon Composites Derived from Metal–Organic Frameworks: Insight into Structures, Properties, Performances, and Mechanisms. ACS Catalysis, 2023, 13, 1759-1790.	5.5	74
2075	Metal–Organic Framework Fluorescence Sensors for Rapid and Accurate Detection of Melamine in Milk Powder. Biosensors, 2023, 13, 94.	2.3	14
2076	Metal-Organic Frameworks-Based Optical Nanosensors for Analytical and Bioanalytical Applications. Biosensors, 2023, 13, 128.	2.3	2
2077	A Robust Strontium Coordination Polymer with Selective and Sensitive Fluorescence Sensing Ability for Fe3+ Ions. Materials, 2023, 16, 577.	1.3	1
2078	Noncentrosymmetric Lanthanide-Based MOF Materials Exhibiting Strong SHG Activity and NIR Luminescence of Er ³⁺ : Application in Nonlinear Optical Thermometry. ACS Applied Materials & Interfaces, 2023, 15, 3244-3252.	4.0	21
2079	Metal-organic frameworks for food contaminant adsorption and detection. Frontiers in Chemistry, 0, 11, .	1.8	5
2080	Statistical copolymer metal organic nanotubes. Chemical Science, 2023, 14, 1003-1009.	3.7	2
2081	Two isostructural Ln-MOFs containing triazole groups as luminescent probes for efficient sensing of NACs and Fe3+. Inorganica Chimica Acta, 2023, 547, 121376.	1.2	6
2082	Structural influence of the length and functionality of N,N-donor spacers in Cd(II) ladder-type coordination polymers. Journal of Molecular Structure, 2023, 1277, 134896.	1.8	17
2083	Luminescent (metallo-supramolecular) cross-linked lanthanide hydrogels from a btp (2,3-bis(1,2,3-triazol-4-yl)picolinamide) monomer give rise to strong Tb(<scp>iii</scp>) and Eu(<scp>iii</scp>) centred emissions. Materials Chemistry Frontiers, 2023, 7, 906-916.	3.2	6
2084	2D Metal–Organic Frameworks as Competent Electrocatalysts for Water Splitting. Small, 2023, 19, .	5.2	31
2085	Electrodeposition of Ag/ZIF-8-Modified Membrane for Water Remediation. Langmuir, 2023, 39, 2291-2300.	1.6	5
2086	Construction of Zn ^{II} /Cd ^{II} -based MOFs containing a tripodal aromatic carboxylate ligand with unequal arms and their fluorescence detection for Cu ²⁺ and Fe ³⁺ cations. CrystEngComm, 2023, 25, 1232-1239.	1.3	2

#	Article	IF	Citations
2087	Activity of N–H in phenothiazine derivatives: synthesis and applications in fluoride ions sensing and electrochromism. Journal of Materials Chemistry C, 2023, 11, 2949-2956.	2.7	6
2088	Post Engineering of a Chemically Stable MOF for Selective and Sensitive Sensing of Nitric Oxide. Molecular Systems Design and Engineering, 0, , .	1.7	2
2089	Dual-Emission 2D Blue Luminescent Organic Silver Chalcogenide for Highly Selective Pb ²⁺ Detection in an Aqueous Medium. Inorganic Chemistry, 2023, 62, 2334-2341.	1.9	0
2090	An imidazole based luminescent Zn (II) metal–organic framework for sensing of nitroaromatic explosives. Inorganica Chimica Acta, 2023, 549, 121409.	1.2	4
2091	Cu(II)-based coordination polymer encapsulated formate: Unveiling efficient photocatalytic degradation of Rose Bengal dye and remarkable sensing of DMF, acetone and acetonitrile. Journal of Molecular Structure, 2023, 1280, 135055.	1.8	2
2092	A functional cobalt-organic framework constructed by triphenylamine tricarboxylate: Detect nitroaromatics by fluorescence sensing and UV-shielding. Talanta, 2023, 256, 124319.	2.9	2
2093	Bayesian optimization of the composition of the lanthanide metal–organic framework MIL-103 for white-light emission. Molecular Systems Design and Engineering, 2023, 8, 431-435.	1.7	4
2094	Dual-emission dye@MIL-101(Al) composite as fluorescence sensor for the selective and sensitive detection towards arginine. Journal of Solid State Chemistry, 2023, 323, 124025.	1.4	2
2095	A multicenter lanthanide coordination polymer for ratiometric pesticide monitoring. Sensors and Actuators B: Chemical, 2023, 383, 133593.	4.0	2
2096	A review on covalent organic frameworks as adsorbents for organic pollutants. Journal of Cleaner Production, 2023, 400, 136737.	4.6	28
2097	A rare heptanuclear cluster-based yttrium-organic framework with an aromatic tricarboxylate ligand for blue LED application. Inorganic Chemistry Communication, 2023, 151, 110623.	1.8	0
2098	Zirconium Metal-Organic Framework bearing V-shape letrozole dicarboxylic acid for versatile fluorescence detection. Inorganica Chimica Acta, 2023, 550, 121436.	1.2	2
2099	NH2-MIL-125(Ti)/amorphous TiO2 microspheres for enhanced visible light photocatalytic selective oxidation of amines. Materials Today Chemistry, 2023, 30, 101505.	1.7	1
2100	A new quercetin@ZIF-8composite as turn-on fluorescent sensor for selective and sensitive detection of Al3+ ions. Journal of Photochemistry and Photobiology A: Chemistry, 2023, 440, 114677.	2.0	0
2101	A multifunctional probe based on a heterometallic-organic framework: highly selective detection of 1,3-dinitrobenzene, tryptophan, and visual recognition of pentavalent vanadate ions. Materials Today Chemistry, 2023, 30, 101518.	1.7	2
2102	Two luminescent phosphonate metal-organic framework as highly efficient and sensitive sensors for the detections of tetracycline antibiotic in aqueous system. Journal of Solid State Chemistry, 2023, 322, 123942.	1.4	7
2103	Fluorescent probes for ozone-specific recognition: An historical overview and future perspectives. Trends in Environmental Analytical Chemistry, 2023, 38, e00201.	5.3	4
2104	Luminescence enhancement of gold nanoclusters hydrogel through co-assembly strategy and its application for detection. Journal of Molecular Liquids, 2023, 380, 121718.	2.3	1

#	Article	IF	CITATIONS
2105	Chemorobust dye-encapsulated framework as dual-emission self-calibrating ratiometric sensor for intelligent detection of toluene exposure biomarker in urine. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2023, 296, 122637.	2.0	30
2106	A novel fluorescent biomimetic sensor based on cerium, nitrogen co-doped carbon quantum dots embedded in cobalt-based metal organic framework@molecularly imprinted polymer for selective and sensitive detection of oxytetracycline. Microchemical Journal, 2023, 190, 108606.	2.3	11
2107	Dual-functional fluorescent metal-organic framework based beads for visual detection and removal of oxytetracycline in real aqueous solution. Applied Surface Science, 2023, 625, 157202.	3.1	8
2108	Dual recognition strategy for the rapid and precise detection of Bacillus cereus using post-modified nano-MOF and aptamer. Sensors and Actuators B: Chemical, 2023, 386, 133745.	4.0	2
2109	A pyrazole-functional 3D cobalt-organic framework for fluorescence detection of Cu2+ and Hg2+. Journal of Molecular Structure, 2023, 1284, 135456.	1.8	3
2110	A three-dimensional terbium metalÂâ^'Âorganic framework fluorescent sensor for efficient detection of chloroquine phosphate in serum. Microchemical Journal, 2023, 190, 108743.	2.3	1
2111	Metal organic frameworks as promising sensing tools for electrochemical detection of persistent heavy metal ions from water matrices: A concise review. Chemosphere, 2023, 318, 137920.	4.2	12
2112	Constructing functional metal-organic frameworks by ligand design for environmental applications. Journal of Hazardous Materials, 2023, 447, 130848.	6.5	14
2113	Molecular docking with SARS-CoV-2 and potential drug property of a bioactive novel Zn(II) polymer: A combined experimental and theoretical study. Polyhedron, 2023, 233, 116304.	1.0	0
2114	Enhancement of the intrinsic fluorescence of ZIF-8 via post-synthetic cation exchange with Cd2+ and its incorporation into PDMS films for selective sulfide optical sensing. Materials Today Chemistry, 2023, 28, 101366.	1.7	1
2115	Down-converting luminescent optoelectronics and their applications. APL Photonics, 2023, 8, .	3.0	6
2116	Research progress of POMs constructed by 1,3,5-benzene-tricarboxylic acid: From synthesis to application. Coordination Chemistry Reviews, 2023, 481, 215044.	9.5	16
2117	Multicomponent Anti-Kasha's Rule Emission from Nanotubular Metal–Organic Frameworks for Selective Detection of Small Molecules. Inorganic Chemistry, 2023, 62, 3170-3177.	1.9	5
2118	Efficient and Rapid Synthesis of a Solvent and Ion-Responsive Luminescent Copper 2-Aminoterephthalate Thin Film. , 2023, 1, 587-597.		2
2119	Amide Functionalized Mesoporous MOF LOCOM-1 as a Stable Highly Active Basic Catalyst for Knoevenagel Condensation Reaction. ACS Omega, 2023, 8, 6638-6649.	1.6	0
2120	Dual-functional pyrene implemented mesoporous silicon material used for the detection and adsorption of metal ions. Chinese Journal of Chemical Engineering, 2023, 60, 108-117.	1.7	4
2121	Metal–organic framework-derived photoelectrochemical sensors: structural design and biosensing technology. Journal of Materials Chemistry C, 2023, 11, 3692-3709.	2.7	17
2122	Self-assembled, Porous and Molecularly Imprinted Supramolecular Structures in Sensing. , 2023, , 165-208.		0

#	Article	IF	CITATIONS
2123	Fluorescence Sensing of Physical Parameters and Chemical Composition in Gases and Condensed Media. , 2023, , 237-294.		0
2124	A 2D Dy-based metal–organic framework derived from benzothiadiazole: structure and photocatalytic properties. Dalton Transactions, 2023, 52, 4058-4062.	1.6	1
2125	Metal-organic frameworks (MOF)-based sensors for detection of toxic gases: A review of current status and future prospects. Materials Chemistry and Physics, 2023, 299, 127512.	2.0	29
2126	A 2D Cd-based metal organic framework: synthesis, structure, selectively and sensitive sensing of Fe ³⁺ . Journal of Coordination Chemistry, 2023, 76, 494-502.	0.8	1
2127	2D Cd-MOF and its mixed-matrix membranes for luminescence sensing antibiotics in various aqueous systems and visible fingerprint identifying. Chinese Chemical Letters, 2023, 34, 108227.	4.8	10
2128	Defective Metal–Organic Framework Nanocrystals as Signal Amplifiers for Electrochemical Dopamine Sensing. ACS Applied Nano Materials, 2023, 6, 3675-3684.	2.4	10
2129	Quasi-HKUST-1 Nanostructures with Enhanced Catalytic Activity and Water Stability for Bacteria-Infected Diabetic Wound Therapy. ACS Applied Nano Materials, 2023, 6, 3835-3847.	2.4	4
2130	A Sâ€Scheme MOFâ€onâ€MOF Heterostructure. Advanced Functional Materials, 2023, 33, .	7.8	40
2131	Construction of MOFs-based nanocomposite membranes for emerging organic contaminants abatement in water. Frontiers of Environmental Science and Engineering, 2023, 17, .	3.3	7
2132	Unconventional Dual Donor-Acceptor Topologies of Aromatic Rings in Amine-Based Polymeric Tetrahedral Zn(II) Compounds Involving Unusual Non-Covalent Contacts: Antiproliferative Evaluation and Theoretical Studies. Crystals, 2023, 13, 382.	1.0	2
2133	A multifunctional cobalt–organic framework for proton conduction and selective sensing of Fe ³⁺ ions. Dalton Transactions, 2023, 52, 4407-4414.	1.6	5
2134	Highly selective C ₂ H ₂ and CO ₂ capture based on two new Zn ^{II} -MOFs and fluorescence sensing of two doped MOFs with Eu ^{III} . CrystEngComm, 2023, 25, 2313-2320.	1.3	1
2135	Preparation and quantitative analysis of multicenter luminescence materials for sensing function. Nature Protocols, 2023, 18, 1621-1640.	5.5	28
2136	Efficiency and selectivity of cost-effective Zn-MOF for dye removal, kinetic and thermodynamic approach. Environmental Science and Pollution Research, 2023, 30, 106860-106875.	2.7	5
2137	Rational design of COF–MOF composites for ratiometric fluorescence detection of phosphate. New Journal of Chemistry, 2023, 47, 6186-6190.	1.4	4
2138	Metal and Ligand Effect on the Structural Diversity of Divalent Coordination Polymers with Mixed Ligands: Evaluation for Photodegradation. Molecules, 2023, 28, 2226.	1.7	2
2139	Construction of Zn ^{II} /Cd ^{II} -CPs and their fluorescent detection for Fe ³⁺ , Cr ₂ O ₇ ^{2â^²} and TNP in water <i>via</i> luminescence quenching. CrystEngComm, 2023, 25, 2728-2738.	1.3	6
2140	Localization of nuclear wave functions of lithium in [Li ⁺ @C ₆₀]PF ₆ <â^`: molecular insights into two-site disorder–order transition. Physical Chemistry Chemical Physics, 2023, 25, 8446-8462.	1.3	Ο

<u><u> </u></u>	 	Depe	
	10 N	REDC	דגוו
\sim		ILLI C	

#	Article	IF	CITATIONS
2141	Ultralow-Power Cryogenic Thermometry Based on Optical-Transition Broadening of a Two-Level System in Diamond. ACS Photonics, 2023, 10, 2481-2487.	3.2	3
2142	Unprecedented highly efficient photoluminescence in a phosphorescent Ag(<scp>i</scp>) coordination polymer. Chemical Communications, 2023, 59, 4616-4619.	2.2	3
2143	Brightly Luminescent (TbxLu1â^'x)2bdc3•nH2O MOFs: Effect of Synthesis Conditions on Structure and Luminescent Properties. Molecules, 2023, 28, 2378.	1.7	3
2144	High-efficiency catalysis of nitrogen-rich metal-organic frameworks and their derivatives for the thermal decomposition of ammonium perchlorate. Energetic Materials Frontiers, 2023, 4, 37-43.	1.3	1
2145	Metal–Organic Frameworks as Sensors for Human Amyloid Diseases. ACS Sensors, 2023, 8, 1033-1053.	4.0	14
2146	A Zn-coordination polymer as a multifunctional fluorescent probe for the detection of V ₂ O ₇ ^{4â^²} , Fe ³⁺ , and <i>p</i> -nitrotoluene. Physical Chemistry Chemical Physics, 2023, 25, 10090-10096.	1.3	1
2147	A BF ₂ Chelate Exhibiting Excimerâ€like Fluorescence with an Unusually Large Stokes Shift in the Crystalline Phase. Chemistry - A European Journal, 2023, 29, .	1.7	0
2148	Facile Strategy of Directing Metal–Organic Frameworks into Hollow Nanostructures by Halide Ions. Journal of Physical Chemistry C, 2023, 127, 5702-5712.	1.5	3
2149	Photoluminescence PCMs and their potential for thermal adaptive textiles. , 2023, , 255-277.		0
2150	Dual-Emission Metal–Organic Framework for Highly Selective Ratiometric Sensing of Lithium(I) Ions in Aqueous Solution. ACS Sustainable Chemistry and Engineering, 2023, 11, 5262-5269.	3.2	6
2151	Nanotheranostics: application of nanosensors in diabetes management. Journal of Diabetes and Metabolic Disorders, 0, , .	0.8	0
2152	Fabrication of 3D Oriented MOF Micropatterns with Anisotropic Fluorescent Properties. Advanced Materials, 2023, 35, .	11.1	6
2153	Numerical Recognition System and Ultrasensitive Fluorescence Sensing Platform for Al ³⁺ and UO ₂ ²⁺ Based on Ln (III)-Functionalized MOF-808 via Thiodiglycolic Acid Intermediates. ACS Applied Materials & Interfaces, 2023, 15, 16882-16894.	4.0	14
2154	A Luminescent Zinc(II) Coordination Polymer for Selective Detection of Fe ³⁺ and Cr ₂ O ₇ ^{2â°} in Water and Catalytic CO ₂ Fixation. European Journal of Inorganic Chemistry, 2023, 26, .	1.0	4
2155	Metal-organic frameworks: Synthetic methods for industrial production. Nano Research, 2023, 16, 7906-7925.	5.8	14
2156	Recrystallization of 2D C-MOF Films for High-Performance Electrochemical Sensors. ACS Applied Materials & amp; Interfaces, 2023, 15, 16991-16998.	4.0	11
2157	Recent Advancements in the Preparation and Application of Copper Single-Atom Catalysts. ACS Applied Nano Materials, 2023, 6, 4987-5041.	2.4	10
2158	2D MOFs Containing Bis(azabenzimidazole) and Dicarboxylate Moieties for the Efficient Oxygen Evolution Reaction and CO ₂ Sorption. Crystal Growth and Design, 0, , .	1.4	Ο

#	Article	IF	CITATIONS
2159	Preparation and Applications of Polydimethylsiloxaneâ€Based Fluorescent Materials. Macromolecular Rapid Communications, 0, , .	2.0	0
2160	Preparation of CH ₃ NH ₃ PbBr ₃ Perovskites Encapsulated in ZIF-8 with Improved Stability and Their Application in Fluorimetry and Information Encryption. Langmuir, 2023, 39, 5315-5322.	1.6	0
2161	Ligand Torsion Engineering in Three Flexible Metal–Organic-Frameworks Exhibiting Distinct Breathing Behavior for Enhancing C ₂ H ₂ Capture. Inorganic Chemistry, 2023, 62, 5931-5938.	1.9	3
2162	9,10-Bis(diphenylmethylene)-9,10-dihydroanthracene-based metal-organic assemblies with aggregation-induced emission for multiple sensing. Chinese Chemical Letters, 2023, 34, 108439.	4.8	2
2163	Four isostructural lanthanide metal–organic frameworks: luminescence properties and fluorescence sensing for Fe ³⁺ and Cr ₂ O ₇ ^{2â^'} ions. CrystEngComm, 2023, 25, 2813-2823.	1.3	3
2164	Ultrasensitive Detection of Multidrug-Resistant Bacteria Based on Boric Acid-Functionalized Fluorescent MOF@COF. ACS Applied Materials & amp; Interfaces, 2023, 15, 18663-18671.	4.0	11
2165	Selective and reversible chemical sensor for methamphetamine detection using AIEgen and cucurbit[7]uril. Chinese Journal of Analytical Chemistry, 2023, 51, 100275.	0.9	1
2166	Recent Progress in the Application of Metal Organic Frameworks in Surface-Enhanced Raman Scattering Detection. Biosensors, 2023, 13, 479.	2.3	2
2167	Two novel metal-organic frameworks constructed by pyridinyl-derived and carboxylate mixed ligands for photocatalytic dye degradation. New Journal of Chemistry, 0, , .	1.4	0
2169	A MOF/DNA luminescent sensing platform for detection of potential COVID-19 biomarkers and drugs. Chemical Science, 2023, 14, 5386-5395.	3.7	6
2170	Fluorescent metal-organic frameworks for analytical applications. , 2023, , 339-374.		0
2171	ZIF-67/Ti3C2 MXene intercalated membrane with enhanced physical/chemical coupling light-to-heat conversion for laser ignition. Applied Surface Science, 2023, 627, 157285.	3.1	4
2210	Recent Advances in Metal–Organic Frameworks Based on Electrospinning for Energy Storage. Advanced Fiber Materials, 2023, 5, 1592-1617.	7.9	11
2219	Advances in 2D MOFs for Environmental Applications. Springer Series in Materials Science, 2023, , 327-349.	0.4	0
2248	Advanced BIFs with Co, B, N, and S for Electrocatalytic Oxygen Reduction and Oxygen Evolution Reactions. Inorganic Chemistry, 2023, 62, 11287-11290.	1.9	0
2251	Indoor carbon dioxide capture technologies: a review. Environmental Chemistry Letters, 2023, 21, 2559-2581.	8.3	2
2270	Optical detection of alcohols with a Cu(<scp>i</scp>)HETPHEN complex by reversible aldehyde to hemiacetal conversion. Analyst, The, 0, , .	1.7	0
2271	Lanthanides in biosensing. , 2023, , 409-540.		Ο

#	Article	IF	CITATIONS
2279	Linker engineering toward near-infrared-I emissive metal–organic frameworks for amine detection. Dalton Transactions, 2023, 52, 12198-12202.	1.6	0
2280	Interfacial chemistries in metal–organic framework (MOF)/covalent–organic framework (COF) hybrids. Nanoscale, 2023, 15, 13187-13201.	2.8	1
2284	Aggregation behaviour of pyrene-based luminescent materials, from molecular design and optical properties to application. Chemical Society Reviews, 2023, 52, 6715-6753.	18.7	26
2289	Use of Metal–Organic Frameworks in the Detection Stage of Analysis/Miniaturization Devices. , 2023, , 228-250.		0
2298	Metal–Organic Frameworks for Sensing Applications. , 2023, , 251-300.		0
2306	Dynamic-static coupled sensing of trace biomarkers by molecularly imprinted metal-organic frameworks. Science China Chemistry, 0, , .	4.2	0
2321	Graphene-based Nanocomposites for Protein Sensing. , 2023, , 343-368.		0
2333	Optical Sensors Based on Metal–OrganicÂFrameworks. Progress in Optical Science and Photonics, 2023, , 175-198.	0.3	0
2383	Porous Nanofabrications for Biosensing and Related Biological Application In-vitro/vivo Usability. Materials Advances, 0, , .	2.6	0
2427	Metal organic framework–based variable-size nanoparticles for tumor microenvironment-responsive drug delivery. Drug Delivery and Translational Research, 0, , .	3.0	1