Rethinking cancer nanotheranostics

Nature Reviews Materials

2,

DOI: 10.1038/natrevmats.2017.24

Citation Report

#	Article	IF	CITATIONS
1	Antimonene Quantum Dots: Synthesis and Application as Nearâ€Infrared Photothermal Agents for Effective Cancer Therapy. Angewandte Chemie - International Edition, 2017, 56, 11896-11900.	7.2	465
2	Antimonene Quantum Dots: Synthesis and Application as Nearâ€Infrared Photothermal Agents for Effective Cancer Therapy. Angewandte Chemie, 2017, 129, 12058-12062.	1.6	93
3	Engineering of inorganic nanoparticles as magnetic resonance imaging contrast agents. Chemical Society Reviews, 2017, 46, 7438-7468.	18.7	358
4	Antitumor Activity of a Unique Polymer That Incorporates a Fluorescent Self-Assembled Metallacycle. Journal of the American Chemical Society, 2017, 139, 15940-15949.	6.6	203
5	Fast Image-Guided Stratification Using Anti-Programmed Death Ligand 1 Gold Nanoparticles for Cancer Immunotherapy. ACS Nano, 2017, 11, 11127-11134.	7.3	101
6	Design and development of multifunctional polyphosphoester-based nanoparticles for ultrahigh paclitaxel dual loading. Nanoscale, 2017, 9, 15773-15777.	2.8	25
7	Amphiphilic semiconducting polymer as multifunctional nanocarrier for fluorescence/photoacoustic imaging guided chemo-photothermal therapy. Biomaterials, 2017, 145, 168-177.	5.7	155
8	Bridging Bio–Nano Science and Cancer Nanomedicine. ACS Nano, 2017, 11, 9594-9613.	7.3	304
9	The role of radionuclide probes for monitoring anti-tumor drugs efficacy: A brief review. Biomedicine and Pharmacotherapy, 2017, 95, 469-476.	2.5	9
10	Albumin/vaccine nanocomplexes that assemble in vivo for combination cancer immunotherapy. Nature Communications, 2017, 8, 1954.	5.8	237
11	CuS-Based Theranostic Micelles for NIR-Controlled Combination Chemotherapy and Photothermal Therapy and Photoacoustic Imaging. ACS Applied Materials & Interfaces, 2017, 9, 41700-41711.	4.0	67
12	Nanostructured Phthalocyanine Assemblies with Protein-Driven Switchable Photoactivities for Biophotonic Imaging and Therapy. Journal of the American Chemical Society, 2017, 139, 10880-10886.	6.6	296
13	Biodegradable Core-shell Dual-Metal-Organic-Frameworks Nanotheranostic Agent for Multiple Imaging Guided Combination Cancer Therapy. Theranostics, 2017, 7, 4605-4617.	4.6	85
14	Nanoparticles—Emerging Potential for Managing Leukemia and Lymphoma. Frontiers in Bioengineering and Biotechnology, 2017, 5, 79.	2.0	63
15	One-Pot Aqueous Synthesis of Fluorescent Ag-In-Zn-S Quantum Dot/Polymer Bioconjugates for Multiplex Optical Bioimaging of Glioblastoma Cells. Contrast Media and Molecular Imaging, 2017, 2017, 1-15.	0.4	23
16	Emerging Advances in Nanotheranostics with Intelligent Bioresponsive Systems. Theranostics, 2017, 7, 3915-3919.	4.6	48
17	The Potential of Zebrafish as a Model Organism for Improving the Translation of Genetic Anticancer Nanomedicines. Genes, 2017, 8, 349.	1.0	27
18	Be Active or Not: the Relative Contribution of Active and Passive Tumor Targeting of Nanomaterials. Nanotheranostics, 2017, 1, 346-357.	2.7	76

#	Article	IF	CITATIONS
19	Lightâ€īriggered Retention and Cascaded Therapy of Albuminâ€Based Theranostic Nanomedicines to Alleviate Tumor Adaptive Treatment Tolerance. Advanced Functional Materials, 2018, 28, 1707291.	7.8	68
20	The increasing dynamic, functional complexity of bio-interface materials. Nature Reviews Chemistry, 2018, 2, .	13.8	84
21	Perfluorooctyl bromide & indocyanine green co-loaded nanoliposomes for enhanced multimodal imaging-guided phototherapy. Biomaterials, 2018, 165, 1-13.	5.7	173
22	Direct and effective preparation of core-shell PCL/PEG nanoparticles based on shell insertion strategy by using coaxial electrospray. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 547, 1-7.	2.3	15
23	Influence of supramolecular layer-crosslinked structure on stability of dual pH-Responsive polymer nanoparticles for doxorubicin delivery. Journal of Drug Delivery Science and Technology, 2018, 45, 81-92.	1.4	8
24	Understanding the Effects of Nanocapsular Mechanical Property on Passive and Active Tumor Targeting. ACS Nano, 2018, 12, 2846-2857.	7.3	126
25	Supramolecular polymeric chemotherapy based on cucurbit[7]uril-PEG copolymer. Biomaterials, 2018, 178, 697-705.	5.7	74
26	Concentration effect on large scale synthesis of high quality small gold nanorods and their potential role in cancer theranostics. Materials Science and Engineering C, 2018, 87, 120-127.	3.8	22
27	Magnetic nanoparticles based cancer therapy: current status and applications. Science China Life Sciences, 2018, 61, 400-414.	2.3	74
28	A DNA Nanotube–Peptide Biocomplex for mRNA Detection and Its Application in Cancer Diagnosis and Targeted Therapy. Chemistry - A European Journal, 2018, 24, 10171-10177.	1.7	14
29	Cancer theranostic applications of lipid-based nanoparticles. Drug Discovery Today, 2018, 23, 1159-1166.	3.2	50
30	Multistimuli Responsive Core–Shell Nanoplatform Constructed from Fe ₃ O ₄ @MOF Equipped with Pillar[6]arene Nanovalves. Small, 2018, 14, e1704440.	5.2	156
31	Advances in transformable drug delivery systems. Biomaterials, 2018, 178, 546-558.	5.7	57
32	Molecular Fluorescence and Photoacoustic Imaging in the Second Nearâ€Infrared Optical Window Using Organic Contrast Agents. Advanced Biology, 2018, 2, e1700262.	3.0	136
33	Polytyrosine nanoparticles enable ultra-high loading of doxorubicin and rapid enzyme-responsive drug release. Biomaterials Science, 2018, 6, 1526-1534.	2.6	51
34	Perfluorocarbon-based nanomedicine: emerging strategy for diagnosis and treatment of diseases. MRS Communications, 2018, 8, 303-313.	0.8	23
35	Cell membrane-coated nanocarriers: the emerging targeted delivery system for cancer theranostics. Drug Discovery Today, 2018, 23, 891-899.	3.2	112
36	Dual Role of Subphthalocyanine Dyes for Optical Imaging and Therapy of Cancer. Advanced Functional Materials, 2018, 28, 1705938.	7.8	48

#	Article	IF	CITATIONS
37	ROS-Activated Ratiometric Fluorescent Polymeric Nanoparticles for Self-Reporting Drug Delivery. ACS Applied Materials & Interfaces, 2018, 10, 7798-7810.	4.0	52
38	A Magnetofluorescent Carbon Dot Assembly as an Acidic H ₂ O ₂ â€Driven Oxygenerator to Regulate Tumor Hypoxia for Simultaneous Bimodal Imaging and Enhanced Photodynamic Therapy. Advanced Materials, 2018, 30, e1706090.	11.1	385
39	Chemical Design of Both a Glutathione-Sensitive Dimeric Drug Guest and a Glucose-Derived Nanocarrier Host to Achieve Enhanced Osteosarcoma Lung Metastatic Anticancer Selectivity. Journal of the American Chemical Society, 2018, 140, 1438-1446.	6.6	94
40	Developing single-entity theranostic: drug-based fluorescent nanoclusters with augmented cytotoxicity. Nanomedicine, 2018, 13, 283-295.	1.7	2
41	Nanodrugs based on peptide-modulated self-assembly: Design, delivery and tumor therapy. Current Opinion in Colloid and Interface Science, 2018, 35, 17-25.	3.4	55
42	Degradable rhenium trioxide nanocubes with high localized surface plasmon resonance absorbance like gold for photothermal theranostics. Biomaterials, 2018, 159, 68-81.	5.7	52
43	Modularized peptides modified HBc virus-like particles for encapsulation and tumor-targeted delivery of doxorubicin. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 725-734.	1.7	45
44	2Dâ€Blackâ€Phosphorusâ€Reinforced 3Dâ€Printed Scaffolds:A Stepwise Countermeasure for Osteosarcoma. Advanced Materials, 2018, 30, 1705611.	11.1	284
45	Nanomedicine development guided by FRET imaging. Nano Today, 2018, 18, 124-136.	6.2	59
46	Nano-carriers for targeted delivery and biomedical imaging enhancement. Therapeutic Delivery, 2018, 9, 451-468.	1.2	61
47	Folic acid modified cell membrane capsules encapsulating doxorubicin and indocyanine green for highly effective combinational therapy in vivo. Acta Biomaterialia, 2018, 74, 374-384.	4.1	40
48	Histidine-rich glycoprotein-induced vascular normalization improves EPR-mediated drug targeting to and into tumors. Journal of Controlled Release, 2018, 282, 25-34.	4.8	29
49	Mucosal Penetrating Bioconjugate Coated Upconverting Nanoparticles That Integrate Biological Tracking and Photodynamic Therapy for Gastrointestinal Cancer Treatment. ACS Biomaterials Science and Engineering, 2018, 4, 2203-2212.	2.6	13
50	Surface-Modified Shortwave-Infrared-Emitting Nanophotonic Reporters for Gene-Therapy Applications. ACS Biomaterials Science and Engineering, 2018, 4, 2350-2363.	2.6	11
51	Ferritin Nanocarrier Traverses the Blood Brain Barrier and Kills Glioma. ACS Nano, 2018, 12, 4105-4115.	7.3	239
52	When radionuclides meet nanoparticles. Nature Nanotechnology, 2018, 13, 359-360.	15.6	18
53	Enzyme-triggered size shrink and laser-enhanced NO release nanoparticles for deep tumor penetration and combination therapy. Biomaterials, 2018, 168, 64-75.	5.7	234
54	ï€-Extended Benzoporphyrin-Based Metal–Organic Framework for Inhibition of Tumor Metastasis. ACS Nano, 2018, 12, 4630-4640.	7.3	136

#	Article	IF	CITATIONS
55	Manipulating nanoparticle transport within blood flow through external forces: an exemplar of mechanics in nanomedicine. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2018, 474, 20170845.	1.0	79
56	Nearâ€Infraredâ€Lightâ€Activatable Nanomaterialâ€Mediated Phototheranostic Nanomedicines: An Emerging Paradigm for Cancer Treatment. Advanced Materials, 2018, 30, e1706320.	11.1	414
57	Material Chemistry of Two-Dimensional Inorganic Nanosheets in Cancer Theranostics. CheM, 2018, 4, 1284-1313.	5.8	132
58	NanoTRAILâ€Oncology: A Strategic Approach in Cancer Research and Therapy. Advanced Healthcare Materials, 2018, 7, e1800053.	3.9	9
59	Layered double hydroxide nanoparticles: Impact on vascular cells, blood cells and the complement system. Journal of Colloid and Interface Science, 2018, 512, 404-410.	5.0	39
60	Polyester micelles for drug delivery and cancer theranostics: Current achievements, progresses and future perspectives. Materials Science and Engineering C, 2018, 83, 218-232.	3.8	68
61	Ultrafast charge-conversional nanocarrier for tumor-acidity-activated targeted drug elivery. Biomaterials Science, 2018, 6, 350-355.	2.6	21
62	Disulfideâ€Bridged Organosilica Frameworks: Designed, Synthesis, Redoxâ€Triggered Biodegradation, and Nanobiomedical Applications. Advanced Functional Materials, 2018, 28, 1707325.	7.8	150
63	"Wax‧ealed―Theranostic Nanoplatform for Enhanced Afterglow Imaging–Guided Photothermally Triggered Photodynamic Therapy. Advanced Functional Materials, 2018, 28, 1804317.	7.8	97
64	Fluorinated polymeric micelles to overcome hypoxia and enhance photodynamic cancer therapy. Biomaterials Science, 2018, 6, 3096-3107.	2.6	53
65	NIR-Absorbing water-soluble conjugated polymer dots for photoacoustic imaging-guided photothermal/photodynamic synergetic cancer therapy. Journal of Materials Chemistry B, 2018, 6, 7402-7410.	2.9	18
66	Laser-Induced Transformable BiS@HSA/DTX Multiple Nanorods for Photoacoustic/Computed Tomography Dual-Modal Imaging Guided Photothermal/Chemo Combinatorial Anticancer Therapy. ACS Applied Materials & Interfaces, 2018, 10, 41167-41177.	4.0	16
67	Acidity/Reducibility Dual-Responsive Hollow Mesoporous Organosilica Nanoplatforms for Tumor-Specific Self-Assembly and Synergistic Therapy. ACS Nano, 2018, 12, 12269-12283.	7.3	86
68	Structureâ€Guided Engineering of Cytotoxic Cabazitaxel for an Adaptive Nanoparticle Formulation: Enhancing the Drug Safety and Therapeutic Efficacy. Advanced Functional Materials, 2018, 28, 1804229.	7.8	43
69	Size-Controlled Synthesis of Drug-Loaded Zeolitic Imidazolate Framework in Aqueous Solution and Size Effect on Their Cancer Theranostics in Vivo. ACS Applied Materials & Interfaces, 2018, 10, 42165-42174.	4.0	67
70	Theranostic nanosystems for targeted cancer therapy. Nano Today, 2018, 23, 59-72.	6.2	86
71	Triple-Modal Imaging-Guided Chemo-Photothermal Synergistic Therapy for Breast Cancer with Magnetically Targeted Phase-Shifted Nanoparticles. ACS Applied Materials & Interfaces, 2018, 10, 42102-42114.	4.0	62
72	Molecular Engineering of Metal-Organic Cycles/Cages for Drug Delivery. Macromolecular Research, 2018, 26, 1074-1084.	1.0	21

#	Article	IF	CITATIONS
73	Multispectral optoacoustic tomography (MSOT) for imaging the particle size-dependent intratumoral distribution of polymeric micelles. International Journal of Nanomedicine, 2018, Volume 13, 8549-8560.	3.3	18
74	Fluorescent ZnS Quantum Dots–Phosphoethanolamine Nanoconjugates for Bioimaging Live Cells in Cancer Research. ACS Omega, 2018, 3, 15679-15691.	1.6	8
75	Precise nanomedicine for intelligent therapy of cancer. Science China Chemistry, 2018, 61, 1503-1552.	4.2	336
76	Free Adriamycin-Loaded pH/Reduction Dual-Responsive Hyaluronic Acid–Adriamycin Prodrug Micelles for Efficient Cancer Therapy. ACS Applied Materials & Interfaces, 2018, 10, 35693-35704.	4.0	56
77	A Semimetal-Like Molybdenum Carbide Quantum Dots Photoacoustic Imaging and Photothermal Agent with High Photothermal Conversion Efficiency. Materials, 2018, 11, 1776.	1.3	32
78	Protein-modified conjugated polymer nanoparticles with strong near-infrared absorption: a novel nanoplatform to design multifunctional nanoprobes for dual-modal photoacoustic and fluorescence imaging. Nanoscale, 2018, 10, 19742-19748.	2.8	17
79	Site-Specific Labeling of Cyanine and Porphyrin Dye-Stabilized Nanoemulsions with Affibodies for Cellular Targeting. Journal of the American Chemical Society, 2018, 140, 13550-13553.	6.6	14
80	Nanoparticleâ€Laden Macrophages for Tumorâ€Tropic Drug Delivery. Advanced Materials, 2018, 30, e1805557.	11.1	143
81	Bringing Again Noble Metal Nanoparticles to the Forefront of Cancer Therapy. Frontiers in Bioengineering and Biotechnology, 2018, 6, 143.	2.0	53
82	Tumor Microenvironment-Responsive Ultrasmall Nanodrug Generators with Enhanced Tumor Delivery and Penetration. Journal of the American Chemical Society, 2018, 140, 14980-14989.	6.6	180
83	Tumor Cell-Derived Extracellular Vesicle-Coated Nanocarriers: An Efficient Theranostic Platform for the Cancer-Specific Delivery of Anti-miR-21 and Imaging Agents. ACS Nano, 2018, 12, 10817-10832.	7.3	170
84	PEGylated hydrazided gold nanorods for pH-triggered chemo/photodynamic/photothermal triple therapy of breast cancer. Acta Biomaterialia, 2018, 82, 171-183.	4.1	56
85	A discrete organoplatinum(II) metallacage as a multimodality theranostic platform for cancer photochemotherapy. Nature Communications, 2018, 9, 4335.	5.8	197
86	Nanodiamond autophagy inhibitor allosterically improves the arsenical-based therapy of solid tumors. Nature Communications, 2018, 9, 4347.	5.8	77
87	Functional Nanoparticles for Tumor Penetration of Therapeutics. Pharmaceutics, 2018, 10, 193.	2.0	61
88	Nanomedicines for developing cancer nanotherapeutics: from benchtop to bedside and beyond. Applied Microbiology and Biotechnology, 2018, 102, 9449-9470.	1.7	54
89	Biodegradable hypocrellin derivative nanovesicle as a near-infrared light-driven theranostic for dually photoactive cancer imaging and therapy. Biomaterials, 2018, 185, 133-141.	5.7	54
90	Trojan Horse nanotheranostics with dual transformability and multifunctionality for highly effective cancer treatment. Nature Communications, 2018, 9, 3653.	5.8	153

#	Article	IF	CITATIONS
91	Mitochondriaâ€Targeted Artificial "Nanoâ€RBCs―for Amplified Synergistic Cancer Phototherapy by a Single NIR Irradiation. Advanced Science, 2018, 5, 1800049.	5.6	138
92	Recent insights into the development of nucleic acid-based nanoparticles for tumor-targeted drug delivery. Colloids and Surfaces B: Biointerfaces, 2018, 172, 315-322.	2.5	24
93	Bimetallic redox nanoprobe enhances the therapeutic efficacy of hyperthermia in drug-resistant cancer cells. Applied Nanoscience (Switzerland), 2018, 8, 1493-1504.	1.6	2
94	Advancements in Nanomedicine for Multiple Myeloma. Trends in Molecular Medicine, 2018, 24, 560-574.	3.5	23
95	Synchronous Chemoradiation Nanovesicles by Xâ€Ray Triggered Cascade of Drug Release. Angewandte Chemie, 2018, 130, 8599-8603.	1.6	4
96	Surface Nanopore Engineering of 2D MXenes for Targeted and Synergistic Multitherapies of Hepatocellular Carcinoma. Advanced Materials, 2018, 30, e1706981.	11.1	182
97	Bacteria-Driven Hypoxia Targeting for Combined Biotherapy and Photothermal Therapy. ACS Nano, 2018, 12, 5995-6005.	7.3	253
98	Design and Development of Polysaccharide-Doxorubicin-Peptide Bioconjugates for Dual Synergistic Effects of Integrin-Targeted and Cell-Penetrating Peptides for Cancer Chemotherapy. Bioconjugate Chemistry, 2018, 29, 1973-2000.	1.8	54
99	A novel phosphoester-based cationic co-polymer nanocarrier delivers chimeric antigen receptor plasmid and exhibits anti-tumor effect. RSC Advances, 2018, 8, 14975-14982.	1.7	16
100	Nanoparticle-Based Oral Drug Delivery Systems Targeting the Colon for Treatment of Ulcerative Colitis. Inflammatory Bowel Diseases, 2018, 24, 1401-1415.	0.9	105
101	Doxorubicin-conjugated pH-responsive gold nanorods for combined photothermal therapy and chemotherapy of cancer. Bioactive Materials, 2018, 3, 347-354.	8.6	66
102	Rational Design of Polyphenol-Poloxamer Nanovesicles for Targeting Inflammatory Bowel Disease Therapy. Chemistry of Materials, 2018, 30, 4073-4080.	3.2	87
103	Redox-Responsive Micellar Nanoparticles from Glycosaminoglycans for CD44 Targeted Drug Delivery. Biomacromolecules, 2018, 19, 2991-2999.	2.6	26
104	Block Copolymer Micelles in Nanomedicine Applications. Chemical Reviews, 2018, 118, 6844-6892.	23.0	925
105	Tumor-selective catalytic nanosystem for activatable theranostics. Chemical Communications, 2018, 54, 8214-8217.	2.2	40
106	Exogenous/Endogenousâ€īriggered Mesoporous Silica Cancer Nanomedicine. Advanced Healthcare Materials, 2018, 7, e1800268.	3.9	48
107	Fluorescence-guided magnetic nanocarriers for enhanced tumor targeting photodynamic therapy. Journal of Materials Chemistry B, 2018, 6, 4676-4686.	2.9	13
108	Combining photothermal therapy and immunotherapy against melanoma by polydopamine-coated Al ₂ O ₃ nanoparticles. Theranostics, 2018, 8, 2229-2241.	4.6	116

#	Article	IF	CITATIONS
109	Insights into 2D MXenes for Versatile Biomedical Applications: Current Advances and Challenges Ahead. Advanced Science, 2018, 5, 1800518.	5.6	397
110	Gadoliniumâ€Encapsulated Graphene Carbon Nanotheranostics for Imagingâ€Guided Photodynamic Therapy. Advanced Materials, 2018, 30, e1802748.	11.1	135
111	Unity Makes Strength: How Aggregationâ€Induced Emission Luminogens Advance the Biomedical Field. Advanced Biology, 2018, 2, 1800074.	3.0	106
112	Applications of nanocomposite materials in the delivery of anticancer drugs. , 2018, , 339-352.		3
113	Polylactide-tethered prodrugs in polymeric nanoparticles as reliable nanomedicines for the efficient eradication of patient-derived hepatocellular carcinoma. Theranostics, 2018, 8, 3949-3963.	4.6	57
114	A Novel DNA Aptamer for Dual Targeting of Polymorphonuclear Myeloid-derived Suppressor Cells and Tumor Cells. Theranostics, 2018, 8, 31-44.	4.6	44
115	Transport and interactions of nanoparticles in the kidneys. Nature Reviews Materials, 2018, 3, 358-374.	23.3	378
116	Magnesiumâ€Engineered Silica Framework for pHâ€Accelerated Biodegradation and DNAzymeâ€Triggered Chemotherapy. Small, 2018, 14, e1800708.	5.2	41
117	Dual-Responsive Core Crosslinking Glycopolymer-Drug Conjugates Nanoparticles for Precise Hepatocarcinoma Therapy. Frontiers in Pharmacology, 2018, 9, 663.	1.6	28
118	Nanomaterial Based Photo-Triggered Drug Delivery Strategies for Cancer Theranostics. , 2018, , 351-391.		1
119	Nanoengineering of Soft Polymer Particles for Exploring Bio-Nano Interactions. , 2018, , 393-419.		1
120	Image-Guided Cancer Nanomedicine. Journal of Imaging, 2018, 4, 18.	1.7	26
121	A Novel Topâ€Down Synthesis of Ultrathin 2D Boron Nanosheets for Multimodal Imagingâ€Guided Cancer Therapy. Advanced Materials, 2018, 30, e1803031.	11.1	318
122	A Sizeâ€Reducible Nanodrug with an Aggregationâ€Enhanced Photodynamic Effect for Deep Chemoâ€Photodynamic Therapy. Angewandte Chemie, 2018, 130, 11554-11558.	1.6	29
123	Glutathione-Responsive Self-Assembled Magnetic Gold Nanowreath for Enhanced Tumor Imaging and Imaging-Guided Photothermal Therapy. ACS Nano, 2018, 12, 8129-8137.	7.3	131
124	A Sizeâ€Reducible Nanodrug with an Aggregationâ€Enhanced Photodynamic Effect for Deep Chemoâ€Photodynamic Therapy. Angewandte Chemie - International Edition, 2018, 57, 11384-11388.	7.2	196
125	Bioengineered Ferritin Nanoprobes for Cancer Theranostics. , 2018, , 143-175.		3
126	Nanotheranostics and Their Potential in the Management of Metastatic Cancer. , 2018, , 199-244.		2

#	Article	IF	CITATIONS
127	Tumor targeting via EPR: Strategies to enhance patient responses. Advanced Drug Delivery Reviews, 2018, 130, 17-38.	6.6	897
128	Construction of Small-Sized, Robust, and Reduction-Responsive Polypeptide Micelles for High Loading and Targeted Delivery of Chemotherapeutics. Biomacromolecules, 2018, 19, 3586-3593.	2.6	37
129	Multimodal Microscopy Distinguishes Extracellular Aggregation and Cellular Uptake of Singleâ€Walled Carbon Nanohorns. Chemistry - A European Journal, 2018, 24, 14162-14170.	1.7	7
130	A review on core–shell structured unimolecular nanoparticles for biomedical applications. Advanced Drug Delivery Reviews, 2018, 130, 58-72.	6.6	63
131	Synchronous Chemoradiation Nanovesicles by Xâ€Ray Triggered Cascade of Drug Release. Angewandte Chemie - International Edition, 2018, 57, 8463-8467.	7.2	59
132	Light-driven transformable optical agent with adaptive functions for boosting cancer surgery outcomes. Nature Communications, 2018, 9, 1848.	5.8	286
133	Cavitation-threshold Determination and Rheological-parameters Estimation of Albumin-stabilized Nanobubbles. Scientific Reports, 2018, 8, 7472.	1.6	20
134	General synthesis of silica-based yolk/shell hybrid nanomaterials and in vivo tumor vasculature targeting. Nano Research, 2018, 11, 4890-4904.	5.8	28
135	Delivery of Phosphorescent Anticancer Iridium(III) Complexes by Polydopamine Nanoparticles for Targeted Combined Photothermalâ€Chemotherapy and Thermal/Photoacoustic/Lifetime Imaging. Advanced Science, 2018, 5, 1800581.	5.6	100
136	Aptamer-based targeted therapy. Advanced Drug Delivery Reviews, 2018, 134, 65-78.	6.6	314
137	Facile dynamic one-step modular assembly based on boronic acid-diol for construction of a micellar drug delivery system. Biomaterials Science, 2018, 6, 2605-2618.	2.6	4
138	Laser-Activated Bioprobes with High Photothermal Conversion Efficiency for Sensitive Photoacoustic/Ultrasound Imaging and Photothermal Sensing. ACS Applied Materials & Interfaces, 2018, 10, 29251-29259.	4.0	43
139	Ultrasmall gold nanosatellite-bearing transformable hybrid nanoparticles for deep tumor penetration. Acta Biomaterialia, 2018, 79, 294-305.	4.1	20
140	Biomineralized Enzyme-Like Cobalt Sulfide Nanodots for Synergetic Phototherapy with Tumor Multimodal Imaging Navigation. ACS Sustainable Chemistry and Engineering, 2018, 6, 12061-12069.	3.2	29
141	Synthesis and Biomedical Applications of Multifunctional Nanoparticles. Advanced Materials, 2018, 30, e1802309.	11.1	216
142	Local Intratracheal Delivery of Perfluorocarbon Nanoparticles to Lung Cancer Demonstrated with Magnetic Resonance Multimodal Imaging. Theranostics, 2018, 8, 563-574.	4.6	39
143	Porphyrinoid biohybrid materials as an emerging toolbox for biomedical light management. Chemical Society Reviews, 2018, 47, 7369-7400.	18.7	168
144	Bioinspired Multifunctional Melanin-Based Nanoliposome for Photoacoustic/Magnetic Resonance Imaging-Guided Efficient Photothermal Ablation of Cancer. Theranostics, 2018, 8, 1591-1606.	4.6	88

#	Article	IF	CITATIONS
145	Supramolecular Polymer-Based Nanomedicine: High Therapeutic Performance and Negligible Long-Term Immunotoxicity. Journal of the American Chemical Society, 2018, 140, 8005-8019.	6.6	227
146	Coadministration of iRGD with Multistage Responsive Nanoparticles Enhanced Tumor Targeting and Penetration Abilities for Breast Cancer Therapy. ACS Applied Materials & amp; Interfaces, 2018, 10, 22571-22579.	4.0	99
147	Cationic Polyelectrolyte Mediated Synthesis of MnO ₂ â€Based Core–Shell Structures as Activatable MRI Theranostic Platform for Tumor Cell Ablation. Particle and Particle Systems Characterization, 2018, 35, 1800078.	1.2	13
148	Ultrasound Triggered Conversion of Porphyrin/Camptothecin-Fluoroxyuridine Triad Microbubbles into Nanoparticles Overcomes Multidrug Resistance in Colorectal Cancer. ACS Nano, 2018, 12, 7312-7326.	7.3	115
149	Biomechanoâ€Interactive Materials and Interfaces. Advanced Materials, 2018, 30, e1800572.	11.1	93
150	Zwitterionic polypeptide nanomedicine with dual NIR/reduction-responsivity for synergistic cancer photothermal-chemotherapy. Polymer Chemistry, 2019, 10, 4825-4836.	1.9	14
151	Numerical investigation of drug transport from blood vessels to tumour tissue using a Tumour-Vasculature-on-a-Chip. Chemical Engineering Science, 2019, 208, 115155.	1.9	11
152	High Affinity of Chlorin e6 to Immunoglobulin G for Intraoperative Fluorescence Image-Guided Cancer Photodynamic and Checkpoint Blockade Therapy. ACS Nano, 2019, 13, 10242-10260.	7.3	78
153	Eradication of unresectable liver metastasis through induction of tumour specific energy depletion. Nature Communications, 2019, 10, 3051.	5.8	52
154	Molecular Engineering of Near-Infrared Light-Responsive BODIPY-Based Nanoparticles with Enhanced Photothermal and Photoacoustic Efficiencies for Cancer Theranostics. Theranostics, 2019, 9, 5315-5331.	4.6	54
155	Role of Nanoparticle Mechanical Properties in Cancer Drug Delivery. ACS Nano, 2019, 13, 7410-7424.	7.3	243
156	Layerâ€byâ€Layer Assembly of Functional Nanoparticles for Hepatocellular Carcinoma Therapy. Advanced Functional Materials, 2019, 29, 1904246.	7.8	19
157	Highly Stable and Longâ€Circulating Metalâ€Organic Frameworks Nanoprobes for Sensitive Tumor Detection In Vivo. Advanced Healthcare Materials, 2019, 8, 1900761.	3.9	22
158	Mesoporous cerium oxide-coated upconversion nanoparticles for tumor-responsive chemo-photodynamic therapy and bioimaging. Chemical Science, 2019, 10, 8618-8633.	3.7	92
159	Glutathione-Mediated Clearable Nanoparticles Based on Ultrasmall Gd ₂ O ₃ for MSOT/CT/MR Imaging Guided Photothermal/Radio Combination Cancer Therapy. Molecular Pharmaceutics, 2019, 16, 3489-3501.	2.3	37
160	Multifunctional Fe ₃ O ₄ @C-based nanoparticles coupling optical/MRI imaging and pH/photothermal controllable drug release as efficient anti-cancer drug delivery platforms. Nanotechnology, 2019, 30, 425102.	1.3	26
161	Intratumoral fate of functional nanoparticles in response to microenvironment factor: Implications on cancer diagnosis and therapy. Advanced Drug Delivery Reviews, 2019, 143, 37-67.	6.6	79
162	Peptide-coordination self-assembly for the precise design of theranostic nanodrugs. Coordination Chemistry Reviews, 2019, 397, 14-27.	9.5	54

#	Article	IF	CITATIONS
163	A chloroplast-inspired nanoplatform for targeting cancer and synergistic photodynamic/photothermal therapy. Biomaterials Science, 2019, 7, 3886-3897.	2.6	14
164	Size-Tunable Assemblies Based on Ferrocene-Containing DNA Polymers for Spatially Uniform Penetration. CheM, 2019, 5, 1775-1792.	5.8	78
165	Three-Component Sequential Reactions for Polymeric Nanoparticles with Tailorable Core and Surface Functionalities. CheM, 2019, 5, 3166-3183.	5.8	6
166	NaCl Nanoparticles as a Cancer Therapeutic. Advanced Materials, 2019, 31, e1904058.	11.1	74
167	Recent Progress in Ferroptosis Inducers for Cancer Therapy. Advanced Materials, 2019, 31, e1904197.	11.1	938
169	Preparation and cell activities of lactosylated curdlan-triornithine nanoparticles for enhanced DNA/siRNA delivery in hepatoma cells. Carbohydrate Polymers, 2019, 225, 115252.	5.1	12
170	Nanoassembly and Multiscale Computation of Multifunctional Optical-Magnetic Nanoprobes for Tumor-Targeted Theranostics. ACS Applied Materials & 2019, 11, 41069-41081.	4.0	15
171	Nanotheranostic Pluronic-Like Polymeric Micelles: Shedding Light into the Dark Shadows of Tumors. Molecular Pharmaceutics, 2019, 16, 4757-4774.	2.3	18
172	Smart cancer nanomedicine. Nature Nanotechnology, 2019, 14, 1007-1017.	15.6	776
173	Nanoagents Based on Poly(ethylene glycol)â€ <i>b</i> â€Poly(<scp>l</scp> â€thyroxine) Block Copolypeptide for Enhanced Dualâ€Modality Imaging and Targeted Tumor Radiotherapy. Small, 2019, 15, e1902577.	5.2	15
174	Cancer Nanomedicines Based on Synthetic Polypeptides. Biomacromolecules, 2019, 20, 4299-4311.	2.6	27
175	Physically stimulated nanotheranostics for next generation cancer therapy: Focus on magnetic and light stimulations. Applied Physics Reviews, 2019, 6, .	5.5	43
176	Phaseâ€Change Materials Based Nanoparticles for Controlled Hypoxia Modulation and Enhanced Phototherapy. Advanced Functional Materials, 2019, 29, 1906805.	7.8	100
177	H2O2/near-infrared light-responsive nanotheronostics for MRI-guided synergistic chemo/photothermal cancer therapy. Nanomedicine, 2019, 14, 2189-2207.	1.7	4
178	Right Cu _{2â^'} <i>_x</i> S@MnS Core–Shell Nanoparticles as a Photo/H ₂ O ₂ â€Responsive Platform for Effective Cancer Theranostics. Advanced Science, 2019, 6, 1901461.	5.6	45
179	Tumor pHâ€Responsive Albumin/Polyaniline Assemblies for Amplified Photoacoustic Imaging and Augmented Photothermal Therapy. Small, 2019, 15, e1902926.	5.2	88
180	Ligand-Functionalized Poly(ethylene glycol) Particles for Tumor Targeting and Intracellular Uptake. Biomacromolecules, 2019, 20, 3592-3600.	2.6	31
181	Polyphenol-based nanoplatform for MRI/PET dual-modality imaging guided effective combination chemotherapy. Journal of Materials Chemistry B, 2019, 7, 5688-5694.	2.9	14

#	Article	IF	CITATIONS
182	Engineered Polymeric Materials for Biological Applications: Overcoming Challenges of the Bio–Nano Interface. Polymers, 2019, 11, 1441.	2.0	24
183	Fluorescent Silicon Nanorods-Based Nanotheranostic Agents for Multimodal Imaging-Guided Photothermal Therapy. Nano-Micro Letters, 2019, 11, 73.	14.4	29
184	Dual-functional supramolecular nanohybrids of quantum dot/biopolymer/chemotherapeutic drug for bioimaging and killing brain cancer cells in vitro. Colloids and Surfaces B: Biointerfaces, 2019, 184, 110507.	2.5	27
185	Next-generation nanotheranostics targeting cancer stem cells. Nanomedicine, 2019, 14, 2487-2514.	1.7	19
186	Impact of soft protein interactions on the excretion, extent of receptor occupancy and tumor accumulation of ultrasmall metal nanoparticles: a compartmental model simulation. RSC Advances, 2019, 9, 26927-26941.	1.7	7
187	Evaluation of Structure–Function Relationships of Aggregation-Induced Emission Luminogens for Simultaneous Dual Applications of Specific Discrimination and Efficient Photodynamic Killing of Gram-Positive Bacteria. Journal of the American Chemical Society, 2019, 141, 16781-16789.	6.6	295
188	Delivery of RIPK4 small interfering RNA for bladder cancer therapy using natural halloysite nanotubes. Science Advances, 2019, 5, eaaw6499.	4.7	43
189	Janus nanoparticles in cancer diagnosis, therapy and theranostics. Biomaterials Science, 2019, 7, 1262-1275.	2.6	43
190	Nanomedicines for cancer therapy: current status, challenges and future prospects. Therapeutic Delivery, 2019, 10, 113-132.	1.2	102
191	Lectins as possible tools for improved urinary bladder cancer management. Glycobiology, 2019, 29, 355-365.	1.3	15
192	Do biomedical engineers dream of graphene sheets?. Biomaterials Science, 2019, 7, 1228-1239.	2.6	10
193	A hybrid nanomaterial with NIR-induced heat and associated hydroxyl radical generation for synergistic tumor therapy. Biomaterials, 2019, 199, 1-9.	5.7	40
194	Poly(amidoamine) Dendrimer-Coordinated Copper(II) Complexes as a Theranostic Nanoplatform for the Radiotherapy-Enhanced Magnetic Resonance Imaging and Chemotherapy of Tumors and Tumor Metastasis. Nano Letters, 2019, 19, 1216-1226.	4.5	88
195	Neutrophil Membrane-Derived Nanovesicles Alleviate Inflammation To Protect Mouse Brain Injury from Ischemic Stroke. ACS Nano, 2019, 13, 1272-1283.	7.3	135
196	Bioinspired Superhydrophobic Ni–Ti Archwires with Resistance to Bacterial Adhesion and Nickel Ion Release. Advanced Materials Interfaces, 2019, 6, 1801569.	1.9	13
197	Dynamically Reversible Iron Oxide Nanoparticle Assemblies for Targeted Amplification of T1-Weighted Magnetic Resonance Imaging of Tumors. Nano Letters, 2019, 19, 4213-4220.	4.5	137
198	Cell Membrane amouflaged NIR II Fluorescent Ag ₂ Te Quantum Dotsâ€Based Nanobioprobes for Enhanced In Vivo Homotypic Tumor Imaging. Advanced Healthcare Materials, 2019, 8, e1900341.	3.9	68
199	Development of β-elemene and Cisplatin Co-Loaded Liposomes for Effective Lung Cancer Therapy and Evaluation in Patient-Derived Tumor Xenografts. Pharmaceutical Research, 2019, 36, 121.	1.7	18

#	Article	IF	CITATIONS
200	Thermosensitive Nanogels with Cross-Linked Pd(II) Ions for Improving Therapeutic Effects on Platinum-Resistant Cancers via Intratumoral Formation of Hydrogels. Chemistry of Materials, 2019, 31, 5089-5103.	3.2	24
201	Gadolinium-doped carbon dots as nano-theranostic agents for MR/FL diagnosis and gene delivery. Nanoscale, 2019, 11, 12973-12982.	2.8	50
202	Bioengineering of Metal-organic Frameworks for Nanomedicine. Theranostics, 2019, 9, 3122-3133.	4.6	108
203	RBC membrane camouflaged prussian blue nanoparticles for gamabutolin loading and combined chemo/photothermal therapy of breast cancer. Biomaterials, 2019, 217, 119301.	5.7	127
204	Current Applications of Nanoemulsions in Cancer Therapeutics. Nanomaterials, 2019, 9, 821.	1.9	147
205	Promoting Early Diagnosis and Precise Therapy of Hepatocellular Carcinoma by Glypican-3-Targeted Synergistic Chemo-Photothermal Theranostics. ACS Applied Materials & Interfaces, 2019, 11, 23591-23604.	4.0	52
206	Recent advances in nanomaterial-based synergistic combination cancer immunotherapy. Chemical Society Reviews, 2019, 48, 3771-3810.	18.7	292
207	A Dualâ€Functional Photosensitizer for Ultraefficient Photodynamic Therapy and Synchronous Anticancer Efficacy Monitoring. Advanced Functional Materials, 2019, 29, 1902673.	7.8	89
208	Development of double strand RNA mPEI nanoparticles and application in treating invasive breast cancer. RSC Advances, 2019, 9, 13186-13200.	1.7	3
209	Multifunctional low-temperature photothermal nanodrug with in vivo clearance, ROS-Scavenging and anti-inflammatory abilities. Biomaterials, 2019, 216, 119280.	5.7	75
210	Bi-functional quantum dot-polysaccharide-antibody immunoconjugates for bioimaging and killing brain cancer cells in vitro. Materials Letters, 2019, 252, 333-337.	1.3	20
211	Microfluidic-Assisted Engineering of Quasi-Monodisperse pH-Responsive Polymersomes toward Advanced Platforms for the Intracellular Delivery of Hydrophilic Therapeutics. Langmuir, 2019, 35, 8363-8372.	1.6	18
212	FÖrster resonance energy transfer (FRET)-based biosensors for biological applications. Biosensors and Bioelectronics, 2019, 138, 111314.	5.3	148
213	Emerging blood–brain-barrier-crossing nanotechnology for brain cancer theranostics. Chemical Society Reviews, 2019, 48, 2967-3014.	18.7	389
214	Peptide-modulated self-assembly as a versatile strategy for tumor supramolecular nanotheranostics. Theranostics, 2019, 9, 3249-3261.	4.6	60
215	Polymer–Doxorubicin Prodrug with Biocompatibility, pH Response, and Main Chain Breakability Prepared by Catalyst-Free Click Reaction. ACS Biomaterials Science and Engineering, 2019, 5, 2307-2315.	2.6	29
216	ITGA2 as a potential nanotherapeutic target for glioblastoma. Scientific Reports, 2019, 9, 6195.	1.6	42
217	Colloids, nanoparticles, and materials for imaging, delivery, ablation, and theranostics by focused ultrasound (FUS). Theranostics, 2019, 9, 2572-2594.	4.6	42

#	Article	IF	CITATIONS
218	Porphyrin Nanocageâ€Embedded Singleâ€Molecular Nanoparticles for Cancer Nanotheranostics. Angewandte Chemie, 2019, 131, 8891-8895.	1.6	7
219	Clearable Theranostic Platform with a pH-Independent Chemodynamic Therapy Enhancement Strategy for Synergetic Photothermal Tumor Therapy. ACS Applied Materials & Interfaces, 2019, 11, 18133-18144.	4.0	120
220	Porphyrin Nanocageâ€Embedded Singleâ€Molecular Nanoparticles for Cancer Nanotheranostics. Angewandte Chemie - International Edition, 2019, 58, 8799-8803.	7.2	62
221	Scalable fabrication of metal–phenolic nanoparticles by coordination-driven flash nanocomplexation for cancer theranostics. Nanoscale, 2019, 11, 9410-9421.	2.8	33
222	Dual complementary liposomes inhibit triple-negative breast tumor progression and metastasis. Science Advances, 2019, 5, eaav5010.	4.7	66
223	MMP-2-Controlled Transforming Micelles for Heterogeneic Targeting and Programmable Cancer Therapy. Theranostics, 2019, 9, 1728-1740.	4.6	37
224	A Versatile Theranostic Nanoemulsion for Architectureâ€Dependent Multimodal Imaging and Dually Augmented Photodynamic Therapy. Advanced Materials, 2019, 31, e1806444.	11.1	124
225	UV/NIR-Light-Triggered Rapid and Reversible Color Switching for Rewritable Smart Fabrics. ACS Applied Materials & Interfaces, 2019, 11, 13370-13379.	4.0	33
226	Tumor Microenvironment Responsive Drugâ€Dyeâ€Peptide Nanoassembly for Enhanced Tumorâ€Targeting, Penetration, and Photoâ€Chemoâ€Immunotherapy. Advanced Functional Materials, 2019, 29, 1900004.	7.8	112
227	<i>In Situ</i> Dendritic Cell Vaccine for Effective Cancer Immunotherapy. ACS Nano, 2019, 13, 3083-3094.	7.3	164
228	Polydopamine-functionalized black phosphorus quantum dots for cancer theranostics. Applied Materials Today, 2019, 15, 297-304.	2.3	86
229	A Logic-Gated Modular Nanovesicle Enables Programmable Drug Release for On-Demand Chemotherapy. Theranostics, 2019, 9, 1358-1368.	4.6	21
230	Single-particle characterization of theranostic liposomes with stimulus sensing and controlled drug release properties. Biosensors and Bioelectronics, 2019, 131, 185-192.	5.3	25
231	Selfâ€Assembling Endogenous Biliverdin as a Versatile Nearâ€Infrared Photothermal Nanoagent for Cancer Theranostics. Advanced Materials, 2019, 31, e1900822.	11.1	249
232	Granzyme B Functionalized Nanoparticles Targeting Membrane Hsp70â€₽ositive Tumors for Multimodal Cancer Theranostics. Small, 2019, 15, 1900205.	5.2	40
233	Magnetite/Ceria Nanoparticle Assemblies for Extracorporeal Cleansing of Amyloidâ€Î² in Alzheimer's Disease. Advanced Materials, 2019, 31, e1807965.	11.1	87
234	BODIPY-Decorated Nanoscale Covalent Organic Frameworks for Photodynamic Therapy. IScience, 2019, 14, 180-198.	1.9	130
235	Semiconducting Perylene Diimide Nanostructure: Multifunctional Phototheranostic Nanoplatform. Accounts of Chemical Research, 2019, 52, 1245-1254.	7.6	138

#	Article	IF	CITATIONS
236	Amphiphilic Gemini Iridium(III) Complex as a Mitochondria-Targeted Theranostic Agent for Tumor Imaging and Photodynamic Therapy. ACS Applied Materials & Interfaces, 2019, 11, 15276-15289.	4.0	66
237	An extracellular pH-driven targeted multifunctional manganese arsenite delivery system for tumor imaging and therapy. Biomaterials Science, 2019, 7, 2480-2490.	2.6	19
238	Second near-infrared photodynamic therapy and chemotherapy of orthotopic malignant glioblastoma with ultra-small Cu _{2â°'x} Se nanoparticles. Nanoscale, 2019, 11, 7600-7608.	2.8	100
239	Effective loading of cisplatin into a nanoscale UiO-66 metal–organic framework with preformed defects. Dalton Transactions, 2019, 48, 5308-5314.	1.6	45
240	Targeted siRNA Nanoparticles for Mammary Carcinoma Therapy. Cancers, 2019, 11, 442.	1.7	12
241	Synthesis and characterization of iron oxide nanoparticles/carboxymethyl cellulose core-shell nanohybrids for killing cancer cells in vitro. International Journal of Biological Macromolecules, 2019, 132, 677-691.	3.6	46
242	Boron Dipyrromethene Nanoâ€Photosensitizers for Anticancer Phototherapies. Small, 2019, 15, e1804927.	5.2	135
243	Mitochondria-Targeted and Ultrasound-Activated Nanodroplets for Enhanced Deep-Penetration Sonodynamic Cancer Therapy. ACS Applied Materials & Interfaces, 2019, 11, 9355-9366.	4.0	139
244	Applying an innovative biodegradable self-assembly nanomicelles to deliver α-mangostin for improving anti-melanoma activity. Cell Death and Disease, 2019, 10, 146.	2.7	11
245	Biocompatible small organic molecule phototheranostics for NIR-II fluorescence/photoacoustic imaging and simultaneous photodynamic/photothermal combination therapy. Materials Chemistry Frontiers, 2019, 3, 650-655.	3.2	109
246	Artificial anaerobic cell dormancy for tumor gaseous microenvironment regulation therapy. Biomaterials, 2019, 200, 48-55.	5.7	10
247	Bifunctional magnetopolymersomes of iron oxide nanoparticles and carboxymethylcellulose conjugated with doxorubicin for hyperthermo-chemotherapy of brain cancer cells. Biomaterials Science, 2019, 7, 2102-2122.	2.6	60
248	Efficient Near Infrared Light Triggered Nitric Oxide Release Nanocomposites for Sensitizing Mild Photothermal Therapy. Advanced Science, 2019, 6, 1801122.	5.6	169
249	Pre-blocked molecular shuttle as an in-situ real-time theranostics. Biomaterials, 2019, 204, 46-58.	5.7	6
250	Augmenting the synergies of chemotherapy and immunotherapy through drug delivery. Acta Biomaterialia, 2019, 88, 1-14.	4.1	29
251	Interventional Nanotheranostics: Advancing Nanotechnology Applications with IR. Journal of Vascular and Interventional Radiology, 2019, 30, 1824-1829.e1.	0.2	2
252	D–A polymers for fluorescence/photoacoustic imaging and characterization of their photothermal properties. Journal of Materials Chemistry B, 2019, 7, 6576-6584.	2.9	38
253	Redox-responsive tetraphenylethylene-buried crosslinked vesicles for enhanced drug loading and efficient drug delivery monitoring. Journal of Materials Chemistry B, 2019, 7, 7540-7 <u>547.</u>	2.9	13

#	Article	IF	CITATIONS
254	Engineering Nanoparticles to Reprogram the Tumor Immune Microenvironment for Improved Cancer Immunotherapy. Theranostics, 2019, 9, 7981-8000.	4.6	106
255	Metal-Phenolic Network-Coated Hyaluronic Acid Nanoparticles for pH-Responsive Drug Delivery. Pharmaceutics, 2019, 11, 636.	2.0	14
256	Novel anti-HER2 peptide-conjugated theranostic nanoliposomes combining NaYF ₄ :Yb,Er nanoparticles for NIR-activated bioimaging and chemo-photodynamic therapy against breast cancer. Nanoscale, 2019, 11, 20598-20613.	2.8	37
257	A novel drug–drug nanohybrid for the self-delivery of porphyrin and <i>cis</i> -platinum. RSC Advances, 2019, 9, 37003-37008.	1.7	3
258	Metalâ€Organic Framework Mediated Multifunctional Nanoplatforms for Cancer Therapy. Advanced Therapeutics, 2019, 2, 1800100.	1.6	30
259	Plasmonic Gold Nanovesicles for Biomedical Applications. Small Methods, 2019, 3, 1800394.	4.6	28
260	<i>In Vivo</i> Albumin Traps Photosensitizer Monomers from Self-Assembled Phthalocyanine Nanovesicles: A Facile and Switchable Theranostic Approach. Journal of the American Chemical Society, 2019, 141, 1366-1372.	6.6	153
261	Recent advances in near-infrared emitting lanthanide-doped nanoconstructs: Mechanism, design and application for bioimaging. Coordination Chemistry Reviews, 2019, 381, 104-134.	9.5	252
262	Near-infrared AIEgens as transformers to enhance tumor treatment efficacy with controllable self-assembled redox-responsive carrier-free nanodrug. Biomaterials, 2019, 193, 12-21.	5.7	71
263	Highly tumor-specific DNA nanostructures discovered by in vivo screening of a nucleic acid cage library and their applications in tumor-targeted drug delivery. Biomaterials, 2019, 195, 1-12.	5.7	44
264	One-step synthesis of hydrophilic functionalized and cytocompatible superparamagnetic iron oxide nanoparticles (SPIONs) based aqueous ferrofluids for biomedical applications. Journal of Molecular Liquids, 2019, 274, 653-663.	2.3	28
265	Functional Nanomaterials Optimized to Circumvent Tumor Immunological Tolerance. Advanced Functional Materials, 2019, 29, 1806087.	7.8	21
266	A self-illuminating nanoparticle for inflammation imaging and cancer therapy. Science Advances, 2019, 5, eaat2953.	4.7	153
267	Enzyme-responsive multifunctional peptide coating of gold nanorods improves tumor targeting and photothermal therapy efficacy. Acta Biomaterialia, 2019, 86, 363-372.	4.1	62
268	Natural payload delivery of the doxorubicin anticancer drug from boron nitride oxide nanosheets. Applied Surface Science, 2019, 475, 666-675.	3.1	42
269	Mineral iron based self-assembling: bridging the small molecular drugs and transformative application. Science Bulletin, 2019, 64, 216-218.	4.3	6
270	Merging metal organic framework with hollow organosilica nanoparticles as a versatile nanoplatform for cancer theranostics. Acta Biomaterialia, 2019, 86, 406-415.	4.1	59
271	An inorganic magnetic fluorescent nanoprobe with favorable biocompatibility for dual-modality bioimaging and drug delivery. Journal of Inorganic Biochemistry, 2019, 192, 72-81.	1.5	19

#	Article	IF	CITATIONS
272	In Vivo Photoacoustic/Single-Photon Emission Computed Tomography Imaging for Dynamic Monitoring of Aggregation-Enhanced Photothermal Nanoagents. Analytical Chemistry, 2019, 91, 2128-2134.	3.2	23
273	Multiplex Three-Dimensional Mapping of Macromolecular Drug Distribution in the Tumor Microenvironment. Molecular Cancer Therapeutics, 2019, 18, 213-226.	1.9	33
274	Combination Strategies for Targeted Delivery of Nanoparticles for Cancer Therapy. , 2019, , 191-219.		8
275	Metal Drugs and the Anticancer Immune Response. Chemical Reviews, 2019, 119, 1519-1624.	23.0	237
276	Nanomaterials in microfluidics for disease diagnosis and therapy development. Materials Technology, 2019, 34, 92-116.	1.5	22
277	Branched and Dendritic Polymer Architectures: Functional Nanomaterials for Therapeutic Delivery. Advanced Functional Materials, 2020, 30, 1901001.	7.8	109
278	Supramolecular Nanodrugs Constructed by Self-Assembly of Peptide Nucleic Acid–Photosensitizer Conjugates for Photodynamic Therapy. ACS Applied Bio Materials, 2020, 3, 2-9.	2.3	33
279	Clinical applications of nanomedicine in cancer therapy. Drug Discovery Today, 2020, 25, 107-125.	3.2	74
280	Recent advances in the development of nanoparticles for multimodality imaging and therapy of cancer. Medicinal Research Reviews, 2020, 40, 909-930.	5.0	46
281	Near-infrared light-triggered degradable hyaluronic acid hydrogel for on-demand drug release and combined chemo-photodynamic therapy. Carbohydrate Polymers, 2020, 229, 115394.	5.1	55
282	Physicalâ€, chemicalâ€, and biologicalâ€responsive nanomedicine for cancer therapy. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1581.	3.3	44
283	Tumor microenvironment targeted nanotherapeutics for cancer therapy and diagnosis: A review. Acta Biomaterialia, 2020, 101, 43-68.	4.1	215
284	Activatable Phototheranostic Materials for Imaging-Guided Cancer Therapy. ACS Applied Materials & Interfaces, 2020, 12, 5286-5299.	4.0	75
285	Injectable Ovalbuminâ€Based Composite Implant for Photothermal Tumor Therapy. ChemBioChem, 2020, 21, 865-873.	1.3	3
286	Modulating the tumor microenvironment with new therapeutic nanoparticles: A promising paradigm for tumor treatment. Medicinal Research Reviews, 2020, 40, 1084-1102.	5.0	26
287	Delivery of polymeric nanostars for molecular imaging and endoradiotherapy through the enhanced permeability and retention (EPR) effect. Theranostics, 2020, 10, 567-584.	4.6	63
288	NIR-II Dye-Based Multifunctional Telechelic Glycopolymers for NIR-IIa Fluorescence Imaging-Guided Stimuli-Responsive Chemo-Photothermal Combination Therapy. , 2020, 2, 174-183.		54
289	Proteomic analysis of intracellular protein corona of nanoparticles elucidates nano-trafficking network and nano-bio interactions. Theranostics, 2020, 10, 1213-1229.	4.6	48

#	Article	IF	CITATIONS
290	A neutrophil membrane-functionalized black phosphorus riding inflammatory signal for positive feedback and multimode cancer therapy. Materials Horizons, 2020, 7, 574-585.	6.4	43
291	Light-triggered selective ROS-dependent autophagy by bioactive nanoliposomes for efficient cancer theranostics. Nanoscale, 2020, 12, 2028-2039.	2.8	38
292	Enzyme-instructed self-aggregation of Fe ₃ O ₄ nanoparticles for enhanced MRI <i>T</i> ₂ imaging and photothermal therapy of tumors. Nanoscale, 2020, 12, 1886-1893.	2.8	47
293	Recent advances and prospects of carbon dots in cancer nanotheranostics. Materials Chemistry Frontiers, 2020, 4, 449-471.	3.2	101
294	Dual ultrasound-activatable nanodroplets for highly-penetrative and efficient ovarian cancer theranostics. Journal of Materials Chemistry B, 2020, 8, 380-390.	2.9	31
295	pH-sensitive, dynamic graft polymer micelles via simple synthesis for enhanced chemotherapeutic efficacy. Journal of Biomaterials Applications, 2020, 34, 1059-1070.	1.2	3
296	Multistage tumor microenvironment-responsive theranostic nanopeanuts: Toward multimode imaging guided chemo-photodynamic therapy. Chemical Engineering Journal, 2020, 385, 123893.	6.6	50
297	Multifunctional phototheranostic nanomedicine for cancer imaging and treatment. Materials Today Bio, 2020, 5, 100035.	2.6	167
298	Theranostic Layerâ€by‣ayer Nanoparticles for Simultaneous Tumor Detection and Gene Silencing. Angewandte Chemie, 2020, 132, 2798-2805.	1.6	5
299	Theranostic Layerâ€by‣ayer Nanoparticles for Simultaneous Tumor Detection and Gene Silencing. Angewandte Chemie - International Edition, 2020, 59, 2776-2783.	7.2	55
300	Nanoscintillator-Mediated X-Ray Induced Photodynamic Therapy for Deep-Seated Tumors: From Concept to Biomedical Applications. Theranostics, 2020, 10, 1296-1318.	4.6	127
301	A self-assembling amphiphilic dendrimer nanotracer for SPECT imaging. Chemical Communications, 2020, 56, 301-304.	2.2	19
302	Janus Î ³ -Fe2O3/SiO2-based nanotheranostics for dual-modal imaging and enhanced synergistic cancer starvation/chemodynamic therapy. Science Bulletin, 2020, 65, 564-572.	4.3	93
303	A magnetism/laser-auxiliary cascaded drug delivery to pulmonary carcinoma. Acta Pharmaceutica Sinica B, 2020, 10, 1549-1562.	5.7	5
304	Liposome-Stabilized Black Phosphorus for Photothermal Drug Delivery and Oxygen Self-Enriched Photodynamic Therapy. ACS Applied Nano Materials, 2020, 3, 563-575.	2.4	32
305	Imaging-assisted anticancer nanotherapy. Theranostics, 2020, 10, 956-967.	4.6	40
306	Passive targeting in nanomedicine: fundamental concepts, body interactions, and clinical potential. , 2020, , 37-53.		39
307	DNA Nanostructures and DNAâ€Functionalized Nanoparticles for Cancer Theranostics. Advanced Science, 2020, 7, 2001669.	5.6	47

		CITATION REP	ORT	
#	ARTICLE		IF	CITATIONS
308	Multifunctional peptides for tumor therapy. Advanced Drug Delivery Reviews, 2020, 160, 36-51.		6.6	40
309	Enhancement of tumour penetration by nanomedicines through strategies based on transport processes and barriers. Journal of Controlled Release, 2020, 328, 28-44.		4.8	43
310	Enhancing Förster Resonance Energy Transfer (FRET) Efficiency of Titania–Lanthanide Hybrid Upconversion Nanomaterials by Shortening the Donor–Acceptor Distance. Nanomaterials, 202 2035.	20, 10,	1.9	5
311	Brave new world revisited: Focus on nanomedicine. Biochemical and Biophysical Research Communications, 2020, 533, 36-49.		1.0	18
312	Aptamer-Mediated Nanotheranostics for Cancer Treatment: A Review. ACS Applied Nano Materia 2020, 3, 9542-9559.	als,	2.4	30
313	Six Birds with One Stone: Versatile Nanoporphyrin for Singleâ€Laserâ€Triggered Synergistic Phototheranostics and Robust Immune Activation. Advanced Materials, 2020, 32, e2004481.		11.1	89
314	Cascade Reactions Catalyzed by Planar Metal–Organic Framework Hybrid Architecture for Cor Cancer Therapy. Small, 2020, 16, e2004016.	nbined	5.2	64
315	Cancer Nanomedicines in an Evolving Oncology Landscape. Trends in Pharmacological Sciences, 41, 730-742.	2020,	4.0	32
316	Tumor-Activated and Metal–Organic Framework Assisted Self-Assembly of Organic Photosens ACS Nano, 2020, 14, 13056-13068.	itizers.	7.3	38
317	A novel strategy for tumor therapy: targeted, PAA-functionalized nano-hydroxyapatite nanomedi Journal of Materials Chemistry B, 2020, 8, 9589-9600.	cine.	2.9	15
318	Rational design of an "all-in-one―phototheranostic. Chemical Science, 2020, 11, 8204-821	3.	3.7	41
319	An Allâ€Round Athlete on the Track of Phototheranostics: Subtly Regulating the Balance betwee Radiative and Nonradiative Decays for Multimodal Imagingâ€Guided Synergistic Therapy. Advand Materials, 2020, 32, e2003210.	n ced	11.1	259
320	Theranostic multimodal gold nanoclusters. Nature Biomedical Engineering, 2020, 4, 668-669.		11.6	14
322	Grafted semiconducting polymer amphiphiles for multimodal optical imaging and combination phototherapy. Chemical Science, 2020, 11, 10553-10570.		3.7	55
323	A nephrotoxicity-free, iron-based contrast agent for magnetic resonance imaging of tumors. Biomaterials, 2020, 257, 120234.		5.7	21
324	Diagnostic prospects and preclinical development of optical technologies using gold nanostruct contrast agents to boost endogenous tissue contrast. Chemical Science, 2020, 11, 8671-8685.	ure	3.7	17
325	<p>Hollow Prussian Blue Nanospheres for Photothermal/Chemo-Synergistic TherapyInternational Journal of Nanomedicine, 2020, Volume 15, 5165-5177.</p>	gt;.	3.3	17
326	Mitochondria-targeted nanospheres with deep tumor penetration for photo/starvation therapy. Journal of Materials Chemistry B, 2020, 8, 7740-7754.		2.9	19

#	Article	IF	CITATIONS
327	Understanding Nanoparticle Toxicity to Direct a Safe-by-Design Approach in Cancer Nanomedicine. Nanomaterials, 2020, 10, 2186.	1.9	49
328	Simulation-based correction of dose enhancement factor values in photon brachytherapy with metal nanoparticle targeting. Nuclear Science and Techniques/Hewuli, 2020, 31, 1.	1.3	2
329	Advances of Nanoparticles for Leukemia Treatment. ACS Biomaterials Science and Engineering, 2020, 6, 6478-6489.	2.6	19
330	Induction of Immunogenic Cell Death in Breast Cancer by Conductive Polymer Nanoparticle-Mediated Photothermal Therapy. ACS Applied Polymer Materials, 2020, 2, 5602-5620.	2.0	16
331	Self-Assembling Supramolecular Dendrimers for Biomedical Applications: Lessons Learned from Poly(amidoamine) Dendrimers. Accounts of Chemical Research, 2020, 53, 2936-2949.	7.6	69
332	Nanostructure of DiR-Loaded Solid Lipid Nanoparticles with Potential Bioimaging Functions. AAPS PharmSciTech, 2020, 21, 321.	1.5	3
333	Pro-organic radical contrast agents ("pro-ORCAsâ€) for real-time MRI of pro-drug activation in biological systems. Polymer Chemistry, 2020, 11, 4768-4779.	1.9	20
334	A Self-Evaluating Photothermal Therapeutic Nanoparticle. ACS Nano, 2020, 14, 9585-9593.	7.3	61
335	Tumor-activatable ultrasmall nanozyme generator for enhanced penetration and deep catalytic therapy. Biomaterials, 2020, 258, 120263.	5.7	48
336	Cu-In-S/ZnS@carboxymethylcellulose supramolecular structures: Fluorescent nanoarchitectures for targeted-theranostics of cancer cells. Carbohydrate Polymers, 2020, 247, 116703.	5.1	15
337	Dual Role of Doxorubicin for Photopolymerization and Therapy. Biomacromolecules, 2020, 21, 3887-3897.	2.6	15
338	Bioinspired red blood cell membrane-encapsulated biomimetic nanoconstructs for synergistic and efficacious chemo-photothermal therapy. Colloids and Surfaces B: Biointerfaces, 2020, 189, 110842.	2.5	29
339	Intelligent Nanoprobe: Acid-Responsive Drug Release and In Situ Evaluation of Its Own Therapeutic Effect. Analytical Chemistry, 2020, 92, 12371-12378.	3.2	8
340	Surface Charge of Supramolecular Nanosystems for In Vivo Biodistribution: A MicroSPECT/CT Imaging Study. Small, 2020, 16, e2003290.	5.2	11
341	Full-spectrum responsive ZrO ₂ -based phototheranostic agent for NIR-II photoacoustic imaging-guided cancer phototherapy. Biomaterials Science, 2020, 8, 6515-6525.	2.6	14
342	Circulating tumour cells: a broad perspective. Journal of the Royal Society Interface, 2020, 17, 20200065.	1.5	37
343	Robust and smart polypeptide-based nanomedicines for targeted tumor therapy. Advanced Drug Delivery Reviews, 2020, 160, 199-211.	6.6	52
344	Localized nanotheranostics: recent developments in cancer nanomedicine. Materials Today Advances, 2020, 8, 100087.	2.5	21

#	Article	IF	CITATIONS
345	Recent Advances in Crosslinked Nanogel for Multimodal Imaging and Cancer Therapy. Polymers, 2020, 12, 1902.	2.0	14
346	Modulating barriers of tumor microenvironment through nanocarrier systems for improved cancer immunotherapy: a review of current status and future perspective. Drug Delivery, 2020, 27, 1248-1262.	2.5	16
347	Characteristics of Molecularly Engineered Anticancer Drug Conjugated Organic Nanomicelles for Site-Selective Cancer Cell Rupture and Growth Inhibition of Tumor Spheroids. ACS Applied Bio Materials, 2020, 3, 7067-7079.	2.3	4
348	<i>In Vivo</i> Real-Time Pharmaceutical Evaluations of Near-Infrared II Fluorescent Nanomedicine Bound Polyethylene Glycol Ligands for Tumor Photothermal Ablation. ACS Nano, 2020, 14, 13681-13690.	7.3	38
349	Pharmacophore hybridisation and nanoscale assembly to discover self-delivering lysosomotropic new-chemical entities for cancer therapy. Nature Communications, 2020, 11, 4615.	5.8	27
350	Leveraging metal oxide nanoparticles for bacteria tracing and eradicating. View, 2020, 1, 20200052.	2.7	55
351	Redoxâ€Responsive Selfâ€Assembled Nanoparticles for Cancer Therapy. Advanced Healthcare Materials, 2020, 9, e2000605.	3.9	59
352	Tumorâ€Activated Sizeâ€Enlargeable Bioinspired Lipoproteins Access Cancer Cells in Tumor to Elicit Antiâ€Tumor Immune Responses. Advanced Materials, 2020, 32, e2002380.	11.1	43
353	<i>In Vivo</i> Computing Strategies for Tumor Sensitization and Targeting. IEEE Transactions on Cybernetics, 2022, 52, 4970-4980.	6.2	8
354	Transdermal Nanomedicines for Reduction of Dose and Site-Specific Drug Delivery. , 2020, , 175-211.		0
355	Size-transformable antigen-presenting cell–mimicking nanovesicles potentiate effective cancer immunotherapy. Science Advances, 2020, 6, .	4.7	53
356	Mechanisms for Tuning Engineered Nanomaterials to Enhance Radiation Therapy of Cancer. Advanced Science, 2020, 7, 2003584.	5.6	49
357	Gadolinium–Rose Bengal Coordination Polymer Nanodots for MRâ€∤Fluorescenceâ€Imageâ€Guided Radiation and Photodynamic Therapy. Advanced Materials, 2020, 32, e2000377.	11.1	95
358	Enzymeâ€Triggered Disassembly of Perylene Monoimideâ€based Nanoclusters for Activatable and Deep Photodynamic Therapy. Angewandte Chemie - International Edition, 2020, 59, 14014-14018.	7.2	89
359	Polymeric Nanoparticles Integrated from Discrete Organoplatinum(II) Metallacycle by Stepwise Post-assembly Polymerization for Synergistic Cancer Therapy. Chemistry of Materials, 2020, 32, 4564-4573.	3.2	34
360	Graphene, other carbon nanomaterials and the immune system: toward nanoimmunity-by-design. JPhys Materials, 2020, 3, 034009.	1.8	29
361	<p>ROS-Responsive Chitosan Coated Magnetic Iron Oxide Nanoparticles as Potential Vehicles for Targeted Drug Delivery in Cancer Therapy</p> . International Journal of Nanomedicine, 2020, Volume 15, 3333-3346.	3.3	43
362	Nanotheranostic Applications for Detection and Targeting Neurodegenerative Diseases. Frontiers in Neuroscience, 2020, 14, 305.	1.4	41

# 363	ARTICLE Enzymeâ€Triggered Disassembly of Perylene Monoimideâ€based Nanoclusters for Activatable and Deep Photodynamic Therapy. Angewandte Chemie, 2020, 132, 14118-14122.	IF 1.6	CITATIONS 24
364	Targeted hyperthermia with plasmonic nanoparticles. Frontiers of Nanoscience, 2020, 16, 307-352.	0.3	8
365	In Situ Formation of Polymeric Nanoassemblies Using an Efficient Reversible Click Reaction. Angewandte Chemie - International Edition, 2020, 59, 15135-15140.	7.2	13
366	A multistage assembly/disassembly strategy for tumor-targeted CO delivery. Science Advances, 2020, 6, eaba1362.	4.7	70
367	Theoretical study of ciprofloxacin antibiotic trapping on graphene or boron nitride oxide nanoflakes. Journal of Molecular Modeling, 2020, 26, 135.	0.8	12
368	A Nanomedicine Fabricated from Gold Nanoparticlesâ€Decorated Metal–Organic Framework for Cascade Chemo/Chemodynamic Cancer Therapy. Advanced Science, 2020, 7, 2001060.	5.6	150
369	Early stratification of radiotherapy response by activatable inflammation magnetic resonance imaging. Nature Communications, 2020, 11, 3032.	5.8	62
370	Acidâ€Induced In Vivo Assembly of Gold Nanoparticles for Enhanced Photoacoustic Imagingâ€Guided Photothermal Therapy of Tumors. Advanced Healthcare Materials, 2020, 9, e2000394.	3.9	44
371	Protein-assisted synthesis of nanoscale covalent organic frameworks for phototherapy of cancer. Materials Chemistry Frontiers, 2020, 4, 2346-2356.	3.2	34
372	Phagocyte-membrane-coated and laser-responsive nanoparticles control primary and metastatic cancer by inducing anti-tumor immunity. Biomaterials, 2020, 255, 120159.	5.7	99
373	Smart Gold Nanostructures for Light Mediated Cancer Theranostics: Combining Optical Diagnostics with Photothermal Therapy. Advanced Science, 2020, 7, 1903441.	5.6	117
374	Supramolecular magnetonanohybrids for multimodal targeted therapy of triple-negative breast cancer cells. Journal of Materials Chemistry B, 2020, 8, 7166-7188.	2.9	26
375	Mesoporous Silica Nanoparticles for Co-Delivery of Drugs and Nucleic Acids in Oncology: A Review. Pharmaceutics, 2020, 12, 526.	2.0	65
376	Dancing with reactive oxygen species generation and elimination in nanotheranostics for disease treatment. Advanced Drug Delivery Reviews, 2020, 158, 73-90.	6.6	83
377	A liquid biopsy-guided drug release system for cancer theranostics: integrating rapid circulating tumor cell detection and precision tumor therapy. Lab on A Chip, 2020, 20, 1418-1425.	3.1	15
378	Imageâ€guided tumor surgery: The emerging role of nanotechnology. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1624.	3.3	40
379	<i>cis</i> -Silicon phthalocyanine conformation endows <i>J</i> -aggregated nanosphere with unique near-infrared absorbance and fluorescence enhancement: a tumor sensitive phototheranostic agent with deep tissue penetrating ability. Journal of Materials Chemistry B, 2020, 8, 2895-2908.	2.9	15
380	Copperâ€Enriched Prussian Blue Nanomedicine for In Situ Disulfiram Toxification and Photothermal Antitumor Amplification. Advanced Materials, 2020, 32, e2000542.	11.1	112

#	Article	IF	CITATIONS
381	Dendritic cell vaccine for the effective immunotherapy of breast cancer. Biomedicine and Pharmacotherapy, 2020, 126, 110046.	2.5	26
382	Yolk-shell nanovesicles endow glutathione-responsive concurrent drug release and T1 MRI activation for cancer theranostics. Biomaterials, 2020, 244, 119979.	5.7	40
383	A Facile Approach to Carbon Dotsâ€Mesoporous Silica Nanohybrids and Their Applications for Multicolor and Twoâ€Photon Imaging Guided Chemoâ€∤Photothermal Synergistic Oncotherapy. ChemNanoMat, 2020, 6, 953-962.	1.5	12
384	Emerging and Innovative Theranostic Approaches for Mesoporous Silica Nanoparticles in Hepatocellular Carcinoma: Current Status and Advances. Frontiers in Bioengineering and Biotechnology, 2020, 8, 184.	2.0	16
385	Stimuli-responsive nanocarriers for drug delivery, tumor imaging, therapy and theranostics. Theranostics, 2020, 10, 4557-4588.	4.6	334
386	One-Minute Synthesis of Size-Controlled Fucoidan-Gold Nanosystems: Antitumoral Activity and Dark Field Imaging. Materials, 2020, 13, 1076.	1.3	12
387	Segregated Nanocompartments Containing Therapeutic Enzymes and Imaging Compounds within DNAâ€Zipped Polymersome Clusters for Advanced Nanotheranostic Platform. Small, 2020, 16, e1906492.	5.2	22
388	Regioisomer-manipulating thio-perylenediimide nanoagents for photothermal/photodynamic theranostics. Journal of Materials Chemistry B, 2020, 8, 5535-5544.	2.9	16
389	Novel therapies in the management of oral cancer: An update. Disease-a-Month, 2020, 66, 101036.	0.4	27
390	Cancer cell membrane-coated gold nanorods for photothermal therapy and radiotherapy on oral squamous cancer. Journal of Materials Chemistry B, 2020, 8, 7253-7263.	2.9	67
391	Dimerization-induced self-assembly of a redox-responsive prodrug into nanoparticles for improved therapeutic index. Acta Biomaterialia, 2020, 113, 464-477.	4.1	31
392	Targeting Neutrophils for Enhanced Cancer Theranostics. Advanced Materials, 2020, 32, e2002739.	11.1	52
393	In Situ Formation of Polymeric Nanoassemblies Using an Efficient Reversible Click Reaction. Angewandte Chemie, 2020, 132, 15247-15252.	1.6	4
394	Tumor Microenvironmentâ€Activated NIRâ€I Nanotheranostic System for Precise Diagnosis and Treatment of Peritoneal Metastasis. Angewandte Chemie, 2020, 132, 7286-7290.	1.6	13
395	Tumor Microenvironmentâ€Activated NIRâ€II Nanotheranostic System for Precise Diagnosis and Treatment of Peritoneal Metastasis. Angewandte Chemie - International Edition, 2020, 59, 7219-7223.	7.2	115
396	TfR1 binding with H-ferritin nanocarrier achieves prognostic diagnosis and enhances the therapeutic efficacy in clinical gastric cancer. Cell Death and Disease, 2020, 11, 92.	2.7	40
397	Active matter therapeutics. Nano Today, 2020, 31, 100836.	6.2	54
398	Design and preclinical evaluation of nanostars for the passive pretargeting of tumor tissue. Nuclear Medicine and Biology, 2020, 84-85, 63-72.	0.3	16

#	Article	IF	CITATIONS
399	Sphingomyelin-Based Nanosystems (SNs) for the Development of Anticancer miRNA Therapeutics. Pharmaceutics, 2020, 12, 189.	2.0	31
400	Size-Selected Graphene Oxide Loaded with Photosensitizer (TMPyP) for Targeting Photodynamic Therapy In Vitro. Processes, 2020, 8, 251.	1.3	6
401	A Sizeâ€Changeable Collagenaseâ€Modified Nanoscavenger for Increasing Penetration and Retention of Nanomedicine in Deep Tumor Tissue. Advanced Materials, 2020, 32, e1906745.	11.1	128
402	Core/Shell PEGS/HA Hybrid Nanoparticle Via Micelle-Coordinated Mineralization for Tumor-Specific Therapy. ACS Applied Materials & amp; Interfaces, 2020, 12, 12109-12119.	4.0	29
403	Dual-response oxygen-generating MnO2 nanoparticles with polydopamine modification for combined photothermal-photodynamic therapy. Chemical Engineering Journal, 2020, 389, 124494.	6.6	166
404	Gold-Nanobipyramid-Based Nanotheranostics for Dual-Modality Imaging-Guided Phototherapy. ACS Applied Materials & Interfaces, 2020, 12, 12541-12548.	4.0	31
405	Meta-Analysis of Nanoparticle Delivery to Tumors Using a Physiologically Based Pharmacokinetic Modeling and Simulation Approach. ACS Nano, 2020, 14, 3075-3095.	7.3	157
406	Naturally available hypericin undergoes electron transfer for type I photodynamic and photothermal synergistic therapy. Biomaterials Science, 2020, 8, 2481-2487.	2.6	14
407	Interactions Between Tumor Biology and Targeted Nanoplatforms for Imaging Applications. Advanced Functional Materials, 2020, 30, 1910402.	7.8	28
408	Rabies virus glycoprotein-amplified hierarchical targeted hybrids capable of magneto-electric penetration delivery to orthotopic brain tumor. Journal of Controlled Release, 2020, 321, 159-173.	4.8	23
409	Rational design of semiconducting polymer brushes as cancer theranostics. Materials Horizons, 2020, 7, 1474-1494.	6.4	40
410	Novel β-1,3- <scp>d</scp> -glucan porous microcapsule enveloped folate-functionalized liposomes as a Trojan horse for facilitated oral tumor-targeted co-delivery of chemotherapeutic drugs and quantum dots. Journal of Materials Chemistry B, 2020, 8, 2307-2320.	2.9	21
411	Nanoscale metal–organic frameworks in detecting cancer biomarkers. Journal of Materials Chemistry B, 2020, 8, 1338-1349.	2.9	47
412	The enhanced permeability and retention effect based nanomedicine at the site of injury. Nano Research, 2020, 13, 564-569.	5.8	46
413	Tuning Nanoparticle Interactions with Ovarian Cancer through Layer-by-Layer Modification of Surface Chemistry. ACS Nano, 2020, 14, 2224-2237.	7.3	64
414	Plasmonic Copper Sulfide Nanoparticles Enable Dark Contrast in Optical Coherence Tomography. Advanced Healthcare Materials, 2020, 9, e1901627.	3.9	21
415	Challenges of moving theranostic nanomedicine into the clinic. Nanomedicine, 2020, 15, 111-114.	1.7	66
416	Glioblastoma precision therapy: From the bench to the clinic. Cancer Letters, 2020, 475, 79-91.	3.2	27

#	Article	IF	CITATIONS
417	Size-Transformable Hyaluronan Stacked Self-Assembling Peptide Nanoparticles for Improved Transcellular Tumor Penetration and Photo–Chemo Combination Therapy. ACS Nano, 2020, 14, 1958-1970.	7.3	101
418	Nanomedicine for improvement of dendritic cell-based cancer immunotherapy. International Immunopharmacology, 2020, 83, 106446.	1.7	30
419	A photothermal-hypoxia sequentially activatable phase-change nanoagent for mitochondria-targeting tumor synergistic therapy. Biomaterials Science, 2020, 8, 3116-3129.	2.6	10
420	A tumour mRNA-triggered nanoassembly for enhanced fluorescence imaging-guided photodynamic therapy. Nanoscale, 2020, 12, 8727-8731.	2.8	15
421	Cerium Oxide Nanoparticles: Advances in Biodistribution, Toxicity, and Preclinical Exploration. Small, 2020, 16, e1907322.	5.2	85
422	Albumin-Based Nanotheranostic Probe with Hypoxia Alleviating Potentiates Synchronous Multimodal Imaging and Phototherapy for Glioma. ACS Nano, 2020, 14, 6191-6212.	7.3	91
423	Dimerization of heavy atom free tetraphenylethylene with aggregation induced emission for boosting photodynamic therapy. New Journal of Chemistry, 2020, 44, 7029-7034.	1.4	4
424	Multicationic AlEgens for unimolecular photodynamic theranostics and two-photon fluorescence bioimaging. Materials Chemistry Frontiers, 2020, 4, 1623-1633.	3.2	20
425	Graphene and other 2D materials: a multidisciplinary analysis to uncover the hidden potential as cancer theranostics. Theranostics, 2020, 10, 5435-5488.	4.6	80
426	Engineering biocompatible TeSex nano-alloys as a versatile theranostic nanoplatform. National Science Review, 2021, 8, .	4.6	10
427	Intracellular aggregation of peptide-reprogrammed small molecule nanoassemblies enhances cancer chemotherapy and combinatorial immunotherapy. Acta Pharmaceutica Sinica B, 2021, 11, 1069-1082.	5.7	22
428	Theranostic supramolecular polymers formed by the self-assembly of a metal-chelating prodrug. Biomaterials Science, 2021, 9, 463-470.	2.6	10
429	Codelivery of survivin inhibitor and chemotherapeutics by tumorâ€derived microparticles to reverse multidrug resistance in osteosarcoma. Cell Biology International, 2021, 45, 382-393.	1.4	7
430	Update on the development of molecular imaging and nanomedicine in China: Optical imaging. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2021, 13, e1660.	3.3	5
431	Clinical Translation of Self $\hat{a} \in A$ ssembled Cancer Nanomedicines. Advanced Therapeutics, 2021, 4, .	1.6	34
432	Cancer nanotheranostics in the second nearâ€infrared window. View, 2021, 2, 20200075.	2.7	29
433	Visual determination of azodicarbonamide in flour by label-free silver nanoparticle colorimetry. Food Chemistry, 2021, 337, 127990.	4.2	14
434	Endogenous tumor microenvironment-responsive multifunctional nanoplatforms for precision cancer theranostics. Coordination Chemistry Reviews, 2021, 426, 213529.	9.5	22

#	Article	IF	CITATIONS
435	Iron-crosslinked Rososome with robust stability and high drug loading for synergistic cancer therapy. Journal of Controlled Release, 2021, 329, 794-804.	4.8	10
436	Self-assembled heptamethine cyanine dye dimer as a novel theranostic drug delivery carrier for effective image-guided chemo-photothermal cancer therapy. Journal of Controlled Release, 2021, 329, 50-62.	4.8	8
437	Paying attention to tumor blood vessels: Cancer phototherapy assisted with nano delivery strategies. Biomaterials, 2021, 268, 120562.	5.7	26
438	A quantitative view on multivalent nanomedicine targeting. Advanced Drug Delivery Reviews, 2021, 169, 1-21.	6.6	52
439	Extracellular vesicle oated nanoparticles. View, 2021, 2, 20200187.	2.7	27
440	Smart nanotheranostic hydrogels for on-demand cancer management. Drug Discovery Today, 2021, 26, 344-359.	3.2	15
441	Near-infrared-responsive functional nanomaterials: the first domino of combined tumor therapy. Nano Today, 2021, 36, 100963.	6.2	30
442	Spatially offset Raman spectroscopy for biomedical applications. Chemical Society Reviews, 2021, 50, 556-568.	18.7	82
443	Deep Drug Penetration of Nanodrug Aggregates at Tumor Tissues by Fast Extracellular Drug Release. Advanced Healthcare Materials, 2021, 10, e2001430.	3.9	10
444	Stimuliâ€Responsive Nanomaterials for Smart Tumorâ€Specific Phototherapeutics. ChemMedChem, 2021, 16, 919-931.	1.6	3
445	Tumor-Specific Activatable Nanocarriers with Gas-Generation and Signal Amplification Capabilities for Tumor Theranostics. ACS Nano, 2021, 15, 1627-1639.	7.3	62
446	Supramolecular coordination complexes as diagnostic and therapeutic agents. Current Opinion in Chemical Biology, 2021, 61, 19-31.	2.8	24
447	Functional gadolinium-based nanoscale systems for cancer theranostics. Journal of Controlled Release, 2021, 329, 482-512.	4.8	21
448	Recent progress on molecularly near-infrared fluorescent probes for chemotherapy and phototherapy. Coordination Chemistry Reviews, 2021, 427, 213556.	9.5	120
449	Applications of Nanomaterials in Biomedical Engineering. Environmental and Microbial Biotechnology, 2021, , 51-86.	0.4	0
450	Nanotoxicology profiling of cancer nanomedicines. , 2021, , 291-301.		1
451	Current Therapies and Future Prospects. Advances in Medical Technologies and Clinical Practice Book Series, 2021, , 306-318.	0.3	0
452	Polymeric Systems Containing Supramolecular Coordination Complexes for Drug Delivery. Polymers, 2021, 13, 370.	2.0	9

#	Article	IF	Citations
453	Dendrimer Architectonics to Treat Cancer and Neurodegenerative Diseases with Implications in Theranostics and Personalized Medicine. ACS Applied Bio Materials, 2021, 4, 1115-1139.	2.3	25
454	Supramolecular cancer nanotheranostics. Chemical Society Reviews, 2021, 50, 2839-2891.	18.7	257
455	Designing and Immunomodulating Multiresponsive Nanomaterial for Cancer Theranostics. Frontiers in Chemistry, 2020, 8, 631351.	1.8	8
456	Designing a lysosome targeting nanomedicine for pH-triggered enhanced phototheranostics. Materials Chemistry Frontiers, 2021, 5, 2694-2701.	3.2	9
457	Nano-assembly of ruthenium(<scp>ii</scp>) photosensitizers for endogenous glutathione depletion and enhanced two-photon photodynamic therapy. Nanoscale, 2021, 13, 7590-7599.	2.8	16
458	Regulatory perspectives of nanomedicines for cancer treatment. , 2021, , 29-49.		0
459	Nanotheranostics through Mitochondria-targeted Delivery with Fluorescent Peptidomimetic Nanohybrids for Apoptosis Induction of Brain Cancer Cells. Nanotheranostics, 2021, 5, 213-239.	2.7	9
460	Advanced drug delivery systems in blood cancer. , 2021, , 141-154.		0
461	Targeting myeloid-derived suppressor cells for cancer therapy. Cancer Biology and Medicine, 2021, 18, 0-0.	1.4	12
462	Recent progress of nanotechnology-based theranostic systems in cancer treatments. Cancer Biology and Medicine, 2021, 18, 336-351.	1.4	16
463	Strategies and applications of covalent organic frameworks as promising nanoplatforms in cancer therapy. Journal of Materials Chemistry B, 2021, 9, 3450-3483.	2.9	36
464	Recent progress in nanomedicine for enhanced cancer chemotherapy. Theranostics, 2021, 11, 6370-6392.	4.6	177
465	Smart Theranostic Applications of Metal Nanoparticles Against Cancer. Advances in Medical Technologies and Clinical Practice Book Series, 2021, , 319-336.	0.3	0
466	The Use of Alternative Strategies for Enhanced Nanoparticle Delivery to Solid Tumors. Chemical Reviews, 2021, 121, 1746-1803.	23.0	248
467	Evaluation of the <i>in vivo</i> behavior of antibacterial gold nanoparticles for potential biomedical applications. Journal of Materials Chemistry B, 2021, 9, 3025-3031.	2.9	7
468	Nanomaterials-Mediated Immunomodulation for Cancer Therapeutics. Frontiers in Chemistry, 2021, 9, 629635.	1.8	15
469	Harnessing Endogenous Stimuli for Responsive Materials in Theranostics. ACS Nano, 2021, 15, 2068-2098.	7.3	117
470	Tumorâ€Activated Photosensitization and Size Transformation of Nanodrugs. Advanced Functional Materials, 2021, 31, 2010241.	7.8	44

#	Article	IF	CITATIONS
471	Bacteriaâ€Based Cancer Immunotherapy. Advanced Science, 2021, 8, 2003572.	5.6	115
472	Excretable, ultrasmall hexagonal NaGdF4:Yb50% nanoparticles for bimodal imaging and radiosensitization. Cancer Nanotechnology, 2021, 12, 4.	1.9	9
473	A near-infrared light-responsive extracellular vesicle as a "Trojan horse―for tumor deep penetration and imaging-guided therapy. Biomaterials, 2021, 269, 120647.	5.7	41
474	Rational nanocarrier design towards clinical translation of cancer nanotherapy. Biomedical Materials (Bristol), 2021, 16, 032005.	1.7	14
475	A Diradicaloid Small Molecular Nanotheranostic with Strong Near-Infrared Absorbance for Effective Cancer Photoacoustic Imaging and Photothermal Therapy. ACS Applied Materials & Interfaces, 2021, 13, 15983-15991.	4.0	37
476	Quantitative imaging of intracellular nanoparticle exposure enables prediction of nanotherapeutic efficacy. Nature Communications, 2021, 12, 2385.	5.8	25
477	Classification of Metastatic Breast Cancer Cell using Deep Learning Approach. , 2021, , .		5
478	P22 virus-like particles as an effective antigen delivery nanoplatform for cancer immunotherapy. Biomaterials, 2021, 271, 120726.	5.7	38
479	Redox/pH/NIR-responsive degradable silica nanospheres with fluorescence for drug release and photothermal therapy. Biochemical Engineering Journal, 2021, 168, 107955.	1.8	5
480	Apoferritin: a potential nanocarrier for cancer imaging and drug delivery. Expert Review of Anticancer Therapy, 2021, 21, 901-913.	1.1	14
481	Polymeric Nanoreactors as Emerging Nanoplatforms for Cancer Precise Nanomedicine. Macromolecular Bioscience, 2021, 21, 2000424.	2.1	7
482	Endogenous Stimuliâ€Activatable Nanomedicine for Immune Theranostics for Cancer. Advanced Functional Materials, 2021, 31, 2100386.	7.8	36
483	Recent advances of redox-responsive nanoplatforms for tumor theranostics. Journal of Controlled Release, 2021, 332, 269-284.	4.8	79
484	Capturing Cytokines with Advanced Materials: A Potential Strategy to Tackle COVIDâ€19 Cytokine Storm. Advanced Materials, 2021, 33, e2100012.	11.1	43
485	Precise Molecular Engineering of Small Organic Phototheranostic Agents toward Multimodal Imaging-Guided Synergistic Therapy. ACS Nano, 2021, 15, 7328-7339.	7.3	79
486	Multifunctional biomolecule nanostructures for cancer therapy. Nature Reviews Materials, 2021, 6, 766-783.	23.3	224
487	Recent Advances in Stimulusâ€Responsive Nanocarriers for Gene Therapy. Advanced Science, 2021, 8, 2100540.	5.6	60
488	From Design to Clinic: Engineered Nanobiomaterials for Immune Normalization Therapy of Cancer. Advanced Materials, 2021, 33, e2008094.	11.1	60

#	Article	IF	CITATIONS
489	STING-activating drug delivery systems: Design strategies and biomedical applications. Chinese Chemical Letters, 2021, 32, 1615-1625.	4.8	19
490	Antiangiogenesis Combined with Inhibition of the Hypoxia Pathway Facilitates Low-Dose, X-ray-Induced Photodynamic Therapy. ACS Nano, 2021, 15, 11112-11125.	7.3	16
491	Stimuli-responsive size-changeable strategy for cancer theranostics. Nano Today, 2021, 38, 101208.	6.2	27
492	3D CoPt nanostructures hybridized with iridium complexes for multimodal imaging and combined photothermal-chemotherapy. Journal of Inorganic Biochemistry, 2021, 219, 111429.	1.5	7
493	Application and Future Prospect of Extracellular Matrix Targeted Nanomaterials in Tumor Theranostics. Current Drug Targets, 2021, 22, 913-921.	1.0	2
494	Metal oordinated Supramolecular Selfâ€Assemblies for Cancer Theranostics. Advanced Science, 2021, 8, e2101101.	5.6	51
495	Effect of a 2-HP-Î ² -Cyclodextrin Formulation on the Biological Transport and Delivery of Chemotherapeutic PLGA Nanoparticles. Drug Design, Development and Therapy, 2021, Volume 15, 2605-2618.	2.0	7
497	One-for-all phototheranostics: Single component AIE dots as multi-modality theranostic agent for fluorescence-photoacoustic imaging-guided synergistic cancer therapy. Biomaterials, 2021, 274, 120892.	5.7	55
498	HOClâ€Activated Aggregation of Gold Nanoparticles for Multimodality Therapy of Tumors. Advanced Science, 2021, 8, e2100074.	5.6	37
499	Review on Recent Progress in Magnetic Nanoparticles: Synthesis, Characterization, and Diverse Applications. Frontiers in Chemistry, 2021, 9, 629054.	1.8	242
500	Advanced Nanoparticle-Based Drug Delivery Systems and Their Cellular Evaluation for Non-Small Cell Lung Cancer Treatment. Cancers, 2021, 13, 3539.	1.7	9
501	Breast cancer drug delivery by novel drug-loaded chitosan-coated magnetic nanoparticles. Cancer Nanotechnology, 2021, 12, .	1.9	39
502	Co-Adjuvant Nanoparticles for Radiotherapy Treatments of Oncological Diseases. Applied Sciences (Switzerland), 2021, 11, 7073.	1.3	17
503	Preclinical Cancer Theranostics—From Nanomaterials to Clinic: The Missing Link. Advanced Functional Materials, 2021, 31, 2104199.	7.8	33
504	Advances in Biosensors and Diagnostic Technologies Using Nanostructures and Nanomaterials. Advanced Functional Materials, 2021, 31, 2104126.	7.8	77
505	Nucleic Acid-Gated Covalent Organic Frameworks for Cancer-Specific Imaging and Drug Release. Analytical Chemistry, 2021, 93, 11751-11757.	3.2	35
506	In Vitro Anticancer Activity of Nanoformulated Mono―and Diâ€nuclear Pt Compounds. Chemistry - an Asian Journal, 2021, 16, 2993-3000.	1.7	1
507	Cold-Bipyramid-Based Nanothernostics: FRET-Mediated Protein-Specific Sialylation Visualization and Oxygen-Augmenting Phototherapy against Hypoxic Tumor. Analytical Chemistry, 2021, 93, 12103-12115.	3.2	11

#	Article	IF	CITATIONS
508	Incorporating spin-orbit coupling promoted functional group into an enhanced electron D-A system: A useful designing concept for fabricating efficient photosensitizer and imaging-guided photodynamic therapy. Biomaterials, 2021, 275, 120934.	5.7	41
509	Cellulose nanocrystals in cancer diagnostics and treatment. Journal of Controlled Release, 2021, 336, 207-232.	4.8	31
510	Imaging Strategy that Achieves Ultrahigh Contrast by Utilizing Differential Esterase Activity in Organs: Application in Early Detection of Pancreatic Cancer. ACS Nano, 2021, 15, 17348-17360.	7.3	21
511	Evaporation-Induced Diffusion Acceleration in Liquid-Filled Porous Materials. ACS Omega, 2021, 6, 21646-21654.	1.6	8
512	Monte Carlo Simulations Reveal New Design Principles for Efficient Nanoradiosensitizers Based on Nanoscale Metal–Organic Frameworks. Advanced Materials, 2021, 33, e2104249.	11.1	18
513	Optical – Magnetic probe for evaluating cancer therapy. Coordination Chemistry Reviews, 2021, 441, 213978.	9.5	15
514	Insight of nanomedicine strategies for a targeted delivery of nanotherapeutic cues to cope with the resistant types of cancer stem cells. Journal of Drug Delivery Science and Technology, 2021, 64, 102681.	1.4	9
515	Organic Sonosensitizers for Sonodynamic Therapy: From Small Molecules and Nanoparticles toward Clinical Development. Small, 2021, 17, e2101976.	5.2	105
516	Exquisite Vesicular Nanomedicine by Paclitaxel Mediated Coâ€essembly with Camptothecin Prodrug. Angewandte Chemie - International Edition, 2021, 60, 21033-21039.	7.2	22
517	Exquisite Vesicular Nanomedicine by Paclitaxel Mediated Coâ€assembly with Camptothecin Prodrug. Angewandte Chemie, 2021, 133, 21201-21207.	1.6	2
518	Optically Activatable Double-Drug-Loaded Perfluorocarbon Nanodroplets for On-Demand Image-Guided Drug Delivery. ACS Applied Nano Materials, 2021, 4, 8026-8038.	2.4	9
519	Promoted intramolecular photoinduced-electron transfer for multi-mode imaging-guided cancer photothermal therapy. Rare Metals, 2022, 41, 56-66.	3.6	29
520	Tripleâ€Jump Photodynamic Theranostics: MnO ₂ Combined Upconversion Nanoplatforms Involving a Typeâ€I Photosensitizer with Aggregationâ€Induced Emission Characteristics for Potent Cancer Treatment. Advanced Materials, 2021, 33, e2103748.	11.1	87
521	Nanomedicines modulating myeloid-derived suppressor cells for improving cancer immunotherapy. Nano Today, 2021, 39, 101163.	6.2	18
522	Boosting Antitumor Sonodynamic Therapy Efficacy of Black Phosphorus via Covalent Functionalization. Advanced Science, 2021, 8, e2102422.	5.6	32
523	Targeting the tumor microenvironment with amphiphilic near-infrared cyanine nanoparticles for potentiated photothermal immunotherapy. Biomaterials, 2021, 275, 120926.	5.7	31
524	Scalable synthesis of multicomponent multifunctional inorganic core@mesoporous silica shell nanocomposites. Materials Science and Engineering C, 2021, 128, 112272.	3.8	9
525	Cascadeâ€Amplifying Synergistic Therapy for Intracranial Glioma via Endogenous Reactive Oxygen Speciesâ€Triggered "Allâ€inâ€One―Nanoplatform. Advanced Functional Materials, 2021, 31, 2105786.	7.8	16

#	Article	IF	CITATIONS
526	Rapid and delayed effects of single-walled carbon nanotubes in glioma cells. Nanotechnology, 2021, 32, 505103.	1.3	2
527	Metal peroxides for cancer treatment. Bioactive Materials, 2021, 6, 2698-2710.	8.6	46
528	Molecular Probes for Autofluorescence-Free Optical Imaging. Chemical Reviews, 2021, 121, 13086-13131.	23.0	166
529	Plasmonic AuPt@CuS Heterostructure with Enhanced Synergistic Efficacy for Radiophotothermal Therapy. Journal of the American Chemical Society, 2021, 143, 16113-16127.	6.6	85
530	An overview of photocatalytic water splitting on semiconductor oxides for hydrogen production. International Journal of Environmental Analytical Chemistry, 0, , 1-11.	1.8	2
531	Increased photoluminescence and photodynamic therapy efficiency of hydroxyapatite-β-cyclodextrin-methylene blue@carbon powders with the favor of hydrogen bonding effect. Photochemical and Photobiological Sciences, 2021, 20, 1323-1331.	1.6	0
532	Genetically Engineered Cellular Membrane Vesicles as Tailorable Shells for Therapeutics. Advanced Science, 2021, 8, e2100460.	5.6	34
533	Principal Trends in Nanobiotechnology. , 2022, , 3-13.		0
534	Synergistic therapeutic strategies for cancer treatment based on nanophototherapy. Nanophotonics, 2021, 10, 3391-3395.	2.9	7
535	Intelligent Design of Ultrasmall Iron Oxide Nanoparticle-Based Theranostics. ACS Applied Materials & Interfaces, 2021, 13, 45119-45129.	4.0	14
536	Self-assembly nanomicelle-microneedle patches with enhanced tumor penetration for superior chemo-photothermal therapy. Nano Research, 2022, 15, 2335-2346.	5.8	17
537	Dynamic nanoassemblies of nanomaterials for cancer photomedicine. Advanced Drug Delivery Reviews, 2021, 177, 113954.	6.6	35
538	Dendrimer-decorated nanogels: Efficient nanocarriers for biodistribution in vivo and chemotherapy of ovarian carcinoma. Bioactive Materials, 2021, 6, 3244-3253.	8.6	46
539	Cellular and mitochondrial dual-targeted nanoprobe with near-infrared emission for activatable tumor imaging and photodynamic therapy. Sensors and Actuators B: Chemical, 2021, 346, 130451.	4.0	9
540	Photoactivatable nanogenerators of reactive species for cancer therapy. Bioactive Materials, 2021, 6, 4301-4318.	8.6	14
541	Polypeptides as building blocks for image-guided nanotherapies. Current Opinion in Biomedical Engineering, 2021, 20, 100323.	1.8	1
542	Nanoparticle-based theranostics in cancer. , 2021, , 1-24.		0
543	Tumoral delivery of nanotherapeutics. , 2021, , 53-101.		0

#	Article	IF	CITATIONS
544	Magnetite-Functionalized Plumbagin for Therapeutic Applications. ACS Sustainable Chemistry and Engineering, 2021, 9, 1361-1372.	3.2	4
545	A carboxymethylcellulose-mediated aqueous colloidal process for building plasmonic–excitonic supramolecular nanoarchitectures based on gold nanoparticles/ZnS quantum emitters for cancer theranostics. Green Chemistry, 2021, 23, 8260-8279.	4.6	9
546	Engineering protein theranostics using bio-orthogonal asparaginyl peptide ligases. Theranostics, 2021, 11, 5863-5875.	4.6	17
547	Radiolabeling of Gold Nanocages for Potential Applications in Tracking, Diagnosis, and Imageâ€Guided Therapy. Advanced Healthcare Materials, 2021, 10, e2002031.	3.9	16
548	Applications of carbon dots on tumour theranostics. View, 2021, 2, 20200061.	2.7	30
549	Nanotechnology for diagnosis and therapy of rheumatoid arthritis: Evolution towards theranostic approaches. Chinese Chemical Letters, 2021, 32, 66-86.	4.8	46
550	Technological challenges of theranostics in oncology. , 2021, , 307-344.		2
551	Radiolabelling of nanomaterials for medical imaging and therapy. Chemical Society Reviews, 2021, 50, 3355-3423.	18.7	145
552	ROS-responsive EPO nanoparticles ameliorate ionizing radiation-induced hematopoietic injury. Biomaterials Science, 2021, 9, 6474-6485.	2.6	4
553	Metal–Organic Framework Assisted and Tumor Microenvironment Modulated Synergistic Imageâ€Guided Photo hemo Therapy. Advanced Functional Materials, 2020, 30, 2002431.	7.8	67
554	Organic supramolecular aggregates based on waterâ€soluble cyclodextrins and calixarenes. Aggregate, 2020, 1, 31-44.	5.2	97
555	Magnetic/Superparamagnetic Hyperthermia as an Effective Noninvasive Alternative Method for Therapy of Malignant Tumors. , 2019, , 297-335.		5
556	Superparamagnetic Nanoparticles for Cancer Hyperthermia Treatment. , 2019, , 299-332.		2
557	Dual-drug loaded phase-changing nanodroplets for image-guided tumor therapy. , 2020, , .		1
559	Recent Progresses in Organic-Inorganic Nano Technological Platforms for Cancer Therapeutics. Current Medicinal Chemistry, 2020, 27, 6015-6056.	1.2	10
560	Metal-Organic Framework (MOF)-Based Drug Delivery. Current Medicinal Chemistry, 2020, 27, 5949-5969.	1.2	152
561	Synthesis and Properties of CurNQ for the Theranostic Application in Ovarian Cancer Intervention. Molecules, 2020, 25, 4471.	1.7	7
562	Tumor pH-responsive metastable-phase manganese sulfide nanotheranostics for traceable hydrogen sulfide gas therapy primed chemodynamic therapy. Theranostics, 2020, 10, 2453-2462.	4.6	120

#	Article	IF	CITATIONS
563	Nanoscale porous organic polymers for drug delivery and advanced cancer theranostics. Chemical Society Reviews, 2021, 50, 12883-12896.	18.7	108
564	Recent Advances in Lipid-Based Nanoformulations for Breast Cancer Theranostics. Nanotechnology in the Life Sciences, 2021, , 175-200.	0.4	3
565	Porphyrin-Based Nanomaterials for Cancer Nanotheranostics. Nanotechnology in the Life Sciences, 2021, , 275-295.	0.4	3
566	Polyamino acid calcified nanohybrids induce immunogenic cell death for augmented chemotherapy and chemo-photodynamic synergistic therapy. Theranostics, 2021, 11, 9652-9666.	4.6	15
567	Magnetic nanomaterials-mediated cancer diagnosis and therapy. Progress in Biomedical Engineering, 2022, 4, 012005.	2.8	21
568	Donor/Ï€â€Bridge Manipulation for Constructing a Stable NIRâ€II Aggregationâ€Induced Emission Luminogen with Balanced Phototheranostic Performance**. Angewandte Chemie, 2021, 133, 26973-26980.	1.6	17
569	Donor/ï€â€Bridge Manipulation for Constructing a Stable NIRâ€I Aggregationâ€Induced Emission Luminogen with Balanced Phototheranostic Performance**. Angewandte Chemie - International Edition, 2021, 60, 26769-26776.	7.2	96
570	Erythrocyte Membrane Camouflaged Metal–Organic Framework Nanodrugs for Remodeled Tumor Microenvironment and Enhanced Tumor Chemotherapy. Advanced Functional Materials, 2022, 32, 2107791.	7.8	39
571	Nanoscale Coordination Polymers for Combined Chemotherapy and Photodynamic Therapy of Metastatic Cancer. Bioconjugate Chemistry, 2021, 32, 2318-2326.	1.8	3
572	Nano-Assembly Small Molecule Probe - New Horizon for Molecular Imaging. Nano Biomedicine and Engineering, 2017, 9, .	0.3	0
573	Advanced Nanotherapeutic Systems for Drug Delivery and Imaging in Cancer. Advances in Medical Technologies and Clinical Practice Book Series, 2018, , 1-21.	0.3	0
575	Concluding Remarks and theÂFuture of Nanotheranostics. Bioanalysis, 2019, , 461-470.	0.1	0
577	Nanomedicine Strategies to Circumvent Intratumor Extracellular Matrix Barriers for Cancer Therapy. Advanced Healthcare Materials, 2022, 11, e2101428.	3.9	27
578	Electrophysiology and the magnetic sense: a guide to best practice. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2021, 208, 185.	0.7	5
579	Cancer nanotechnology: current status and perspectives. Nano Convergence, 2021, 8, 34.	6.3	97
580	Biomimetic nanomedicine toward personalized disease theranostics. Nano Research, 2021, 14, 2491-2511.	5.8	17
581	Nanocarrier drug resistant tumor interactions: novel approaches to fight drug resistance in cancer. , 2021, 4, 264-297.		5
582	Genetically Programmable Fusion Cellular Vesicles for Cancer Immunotherapy. Angewandte Chemie - International Edition, 2021, 60, 26320-26326.	7.2	55

#	Article	IF	CITATIONS
583	A multifunctional nanotheranostic agent potentiates erlotinib to EGFR wild-type non-small cell lung cancer. Bioactive Materials, 2022, 13, 312-323.	8.6	21
584	Thiadiazoloquinoxaline-Based Semiconducting Polymer Nanoparticles for NIR-II Fluorescence Imaging-Guided Photothermal Therapy. Frontiers in Bioengineering and Biotechnology, 2021, 9, 780993.	2.0	6
585	Genetically Programmable Fusion Cellular Vesicles for Cancer Immunotherapy. Angewandte Chemie, 2021, 133, 26524-26530.	1.6	2
586	Marine organisms: Pioneer natural sources of polysaccharides/proteins for green synthesis of nanoparticles and their potential applications. International Journal of Biological Macromolecules, 2021, 193, 1767-1798.	3.6	42
589	Aptamer-nanoconjugates as emerging theranostic systems in neurodegenerative disorders. Colloids and Interface Science Communications, 2022, 46, 100554.	2.0	4
590	Synthesis of highly fluorescent, amine-functionalized carbon dots from biotin-modified chitosan and silk-fibroin blend for target-specific delivery of antitumor agents. Carbohydrate Polymers, 2022, 277, 118862.	5.1	22
592	Recent Advancements in Serum Albumin-Based Nanovehicles Toward Potential Cancer Diagnosis and Therapy. Frontiers in Chemistry, 2021, 9, 746646.	1.8	31
593	Photocleavageâ€based Photoresponsive Drug Delivery ^{â€} . Photochemistry and Photobiology, 2022, 98, 288-302.	1.3	19
594	Ultra‣ensitive Ironâ€Đoped Palladium Nanocrystals with Enhanced Hydroxyl Radical Generation for Chemoâ€∤Chemodynamic Nanotherapy. Advanced Functional Materials, 2022, 32, 2107518.	7.8	22
595	A Tumor-Targeting Near-Infrared Heptamethine Cyanine Photosensitizer with Twisted Molecular Structure for Enhanced Imaging-Guided Cancer Phototherapy. Journal of the American Chemical Society, 2021, 143, 20828-20836.	6.6	94
596	Synthesis of Enzyme-Responsive Theranostic Amphiphilic Conjugated Bottlebrush Copolymers for Enhanced Anticancer Drug Delivery. SSRN Electronic Journal, 0, , .	0.4	0
597	Mixed-charge modification as a robust method to realize the antiviral ability of gold nanoparticles in a high protein environment. Nanoscale, 2021, 13, 19857-19863.	2.8	7
598	Mitochondriaâ€Targeting Phototheranostics by Aggregationâ€Induced NIRâ€II Emission Luminogens: Modulating Intramolecular Motion by Electron Acceptor Engineering for Multiâ€Modal Synergistic Therapy. Advanced Functional Materials, 2022, 32, .	7.8	51
599	Nimbolide-encapsulated PLGA nanoparticles induces Mesenchymal-to-Epithelial Transition by dual inhibition of AKT and mTOR in pancreatic cancer stem cells. Toxicology in Vitro, 2022, 79, 105293.	1.1	12
600	Design of Magnetic Nanoplatforms for Cancer Theranostics. Biosensors, 2022, 12, 38.	2.3	23
601	pH-Responsive size-shrinkable mesoporous silica-based nanocarriers for improving tumor penetration and therapeutic efficacy. Nanoscale, 2022, 14, 1271-1284.	2.8	9
602	Polyelectrolyte Multilayered Capsules as Biomedical Tools. Polymers, 2022, 14, 479.	2.0	14
603	Pulmonary Delivery of Theranostic Nanoclusters for Lung Cancer Ferroptosis with Enhanced Chemodynamic/Radiation Synergistic Therapy. Nano Letters, 2022, 22, 963-972.	4.5	50

ARTICLE IF CITATIONS Nanotechnology for cancer theranostics., 2022, , 19-36. 604 0 Metal-free bioorthogonal click chemistry in cancer theranostics. Chemical Society Reviews, 2022, 51, 18.7 1336-1376. Advanced Optical Imaging-Guided Nanotheranostics towards Personalized Cancer Drug Delivery. 606 1.9 16 Nanomaterials, 2022, 12, 399. Boosting Vascular Imagingâ€Performance and Systemic Biosafety of Ultraâ€Small NaGdF₄ Nanoparticles via Surface Engineering with Rationally Designed Novel Hydrophilic Block Coâ€Polymer. Small Methods, 2022, 6, e2101145. Folic acid functionalized aggregation-induced emission nanoparticles for tumor cell targeted 608 1.7 6 imaging and photodynamic therapy. RSC Advances, 2022, 12, 4484-4489. Research progress on self-assembled nanodrug delivery systems. Journal of Materials Chemistry B, 2022, 10, 1908-1922. 609 39 Destruction of tumor vasculature by vascular disrupting agents in overcoming the limitation of EPR 610 6.6 33 effect. Advanced Drug Delivery Reviews, 2022, 183, 114138. Combined legumain- and integrin-targeted nanobubbles for molecular ultrasound imaging of breast 1.7 9 cancer. Nanomedicine: Nanotechnology, Biology, and Medicine, 2022, 42, 102533. Gd3+-Functionalized Lithium Niobate Nanoparticles for Dual Multiphoton and Magnetic Resonance 612 2.4 5 Bioimaging. ACS Applied Nano Materials, 0, , . Ultrasoundâ€controlled drug release and drug activation for cancer therapy. Exploration, 2021, 1, . 5.4 PEGylated Gold Nanoparticle Toxicity in Cardiomyocytes: Assessment of Size, Concentration, and Time 614 2.2 5 Dependency. IEEE Transactions on Nanobioscience, 2022, 21, 387-394. Radiolabeled peptide probe for tumor imaging. Chinese Chemical Letters, 2022, 33, 3361-3370. 4.8 A "Selfâ€Checking―pH/Viscosityâ€Activatable NIRâ€I Molecule for Realâ€Time Evaluation of Photothermal 616 7.2 42 Therapy Efficacy. Angewandte Chemie - International Edition, 2022, 61, . Self-Illuminating Triggered Release of Therapeutics from Photocleavable Nanoprodrug for the Targeted Treatment of Breast Cancer. ACS Applied Materials & Cancer, 2022, 14, 8766-8781. 4.0 A "Selfâ€Checking―pH/Viscosityâ€Activatable NIRâ€II Molecule for Realâ€Time Evaluation of Photothermal 618 1.6 2 Therapy Efficacy. Angewandte Chemie, 2022, 134, . A Generative Adversarial Network Approach to Metastatic Cancer Cell Images., 2022,,. One stone, many birds: Recent advances in functional nanogels for cancer nanotheranostics. Wiley 620 3.3 12 Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2022, 14, e1791. A pHâ€Responsive Nanoparticle Library with Precise pH Tunability by Coâ€Polymerization with Nonâ€Ionizable 621 Monomers. Angewandte Chemie, 0, , .

#	Article	IF	CITATIONS
622	Surfactantâ€Inspired Coassembly Strategy to Integrate Aggregationâ€Induced Emission Photosensitizer with Organosilica Nanoparticles for Efficient Theranostics. Advanced Functional Materials, 2022, 32, .	7.8	23
623	Overcoming Vascular Barriers to Improve the Theranostic Outcomes of Nanomedicines. Advanced Science, 2022, 9, e2103148.	5.6	6
624	A pHâ€Responsive Nanoparticle Library with Precise pH Tunability by Coâ€Polymerization with Nonâ€Ionizable Monomers. Angewandte Chemie - International Edition, 2022, 61, .	7.2	13
625	Synthesis of enzyme-responsive theranostic amphiphilic conjugated bottlebrush copolymers for enhanced anticancer drug delivery. Acta Biomaterialia, 2022, 144, 15-31.	4.1	10
626	Iron oxide nanoparticles for theranostic applications - Recent advances. Journal of Drug Delivery Science and Technology, 2022, 70, 103196.	1.4	12
627	Development of the poly(I-histidine) grafted carbon nanotube as a possible smart drug delivery vehicle. Computers in Biology and Medicine, 2022, 143, 105336.	3.9	9
628	Degradable Magnetic Nanoplatform with Hydroxide Ions Triggered Photoacoustic, MR Imaging, and Photothermal Conversion for Precise Cancer Theranostic. Nano Letters, 2022, 22, 3228-3235.	4.5	28
629	Biomedical engineering of two-dimensional MXenes. Advanced Drug Delivery Reviews, 2022, 184, 114178.	6.6	69
630	Driving forces and molecular interactions in the self-assembly of block copolymers to form fiber-like micelles. Applied Physics Reviews, 2022, 9, .	5.5	11
631	Functionalized Nanomaterials as Tailored Theranostic Agents in Brain Imaging. Nanomaterials, 2022, 12, 18.	1.9	18
632	DNA Nanodevice-Based Drug Delivery Systems. Biomolecules, 2021, 11, 1855.	1.8	9
633	Microfluidic Roadmap for Translational Nanotheranostics. Small Methods, 2022, 6, e2101217.	4.6	5
634	Pre- and Postfunctionalization of Dye-Loaded Polymeric Nanoparticles for Preparation of FRET-Based Nanoprobes. ACS Applied Polymer Materials, 2022, 4, 44-53.	2.0	4
636	Dissecting extracellular and intracellular distribution of nanoparticles and their contribution to therapeutic response by monochromatic ratiometric imaging. Nature Communications, 2022, 13, 2004.	5.8	13
637	Exploiting recent trends for the synthesis and surface functionalization of mesoporous silica nanoparticles towards biomedical applications. International Journal of Pharmaceutics: X, 2022, 4, 100116.	1.2	17
638	Cisplatin Nanoparticles Promote Intratumoral CD8 ⁺ T Cell Priming via Antigen Presentation and T Cell Receptor Crosstalk. Nano Letters, 2022, 22, 3328-3339.	4.5	18
639	Stimuliâ€responsive crosslinked nanomedicine for cancer treatment. Exploration, 2022, 2, .	5.4	74
641	Strategies of engineering nanomedicines for tumor retention. Journal of Controlled Release, 2022, 346, 193-211.	4.8	10

#	ARTICLE Receptor-Targeted Surface-Engineered Nanomaterials for Breast Cancer Imaging and Theranostic	IF	CITATIONS
643	Applications. Critical Reviews in Therapeutic Drug Carrier Systems, 2022, 39, 1-44. Nanostructured particles assembled from natural building blocks for advanced therapies. Chemical Society Reviews, 2022, 51, 4287-4336.	18.7	64
644	Nanostructures for the efficient oral delivery of chemotherapeutic agents. , 2022, , 419-430.		0
645	A Biodegradable Iridium(III) Coordination Polymer for Enhanced Twoâ€Photon Photodynamic Therapy Using an Apoptosis–Ferroptosis Hybrid Pathway. Angewandte Chemie, 2022, 134, .	1.6	9
646	A Biodegradable Iridium(III) Coordination Polymer for Enhanced Twoâ€Photon Photodynamic Therapy Using an Apoptosis–Ferroptosis Hybrid Pathway. Angewandte Chemie - International Edition, 2022, 61, .	7.2	64
647	Nanomedicine as a magic bullet for combating lymphoma. Journal of Controlled Release, 2022, 347, 211-236.	4.8	6
648	A hierarchical supramolecular nanozyme platform for programming tumor-specific PDT and catalytic therapy. Chemical Engineering Journal, 2022, 444, 136164.	6.6	9
649	Redox-responsive carrier based on fluorinated gemini amphiphilic polymer for combinational cancer therapy. Colloids and Surfaces B: Biointerfaces, 2022, 216, 112551.	2.5	7
650	Lanthanide-based NIR-II Fluorescent Nanoprobes and Their Biomedical Applications [※] . Acta Chimica Sinica, 2022, 80, 542.	0.5	3
651	Image-guided drug delivery of nanotheranostics for targeted lung cancer therapy. Theranostics, 2022, 12, 4147-4162.	4.6	4
652	Optical Microfiber with a Gold Nanorods–Black Phosphorous Nanointerface: An Ultrasensitive Biosensor and Nanotherapy Platform. Analytical Chemistry, 2022, 94, 8058-8065.	3.2	7
653	Hydrogenâ€Bondsâ€Mediated Nanomedicine: Design, Synthesis, and Applications. Macromolecular Rapid Communications, 2022, 43, .	2.0	6
654	Emerging Nanotheranostics for 5-Fluorouracil in Cancer Therapy: A Systematic Review on Efficacy, Safety, and Diagnostic Capability. Frontiers in Pharmacology, 2022, 13, .	1.6	3
655	Novel EPR-enhanced strategies for targeted drug delivery in pancreatic cancer: An update. Journal of Drug Delivery Science and Technology, 2022, 73, 103459.	1.4	10
656	Artificial Intelligence for Cancer Nanotheranostics. , 2022, , 78-85.		0
657	Threeâ€Pronged Attack by Hybrid Nanoplatform Involving MXenes, Upconversion Nanoparticle and Aggregationâ€Induced Emission Photosensitizer for Potent Cancer Theranostics. Small Methods, 2022, 6, .	4.6	11
658	"One Stone, Four Birds―lon Engineering to Fabricate Versatile Core–Shell Organosilica Nanoparticles for Intelligent Nanotheranostics. ACS Nano, 2022, 16, 9785-9798.	7.3	19
659	Materdicine and Medmaterial. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2022, 37, 1151.	0.6	6

#	Article	IF	CITATIONS
660	Rethinking nanoparticulate polymer–drug conjugates for cancer theranostics. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2023, 15, .	3.3	5
661	Engineering Metal–Organic Framework Hybrid AlEgens with Tumor-Activated Accumulation and Emission for the Image-Guided GSH Depletion ROS Therapy. ACS Applied Materials & Interfaces, 2022, 14, 29599-29612.	4.0	18
662	Peptide-based supramolecular assembly drugs toward cancer theranostics. Expert Opinion on Drug Delivery, 2022, 19, 847-860.	2.4	6
663	Inducible endothelial leakiness in nanotherapeutic applications. Biomaterials, 2022, 287, 121640.	5.7	25
664	Self-assembling porphyrin conjugate-carboplatin(IV) prodrug nanoparticles for enhancing high efficacy nasopharyngeal cancer and low systemic toxicity. Journal of Biomaterials Science, Polymer Edition, 2022, 33, 1828-1844.	1.9	2
665	Bacterial targeted AIE photosensitizers synergistically promote chemotherapy for the treatment of inflammatory cancer. Chemical Engineering Journal, 2022, 447, 137579.	6.6	17
666	Layered double hydroxide-based nanomaterials for biomedical applications. Chemical Society Reviews, 2022, 51, 6126-6176.	18.7	133
667	Rational design of a small organic photosensitizer for NIR-I imaging-guided synergistic photodynamic and photothermal therapy. Biomaterials Science, 2022, 10, 4785-4795.	2.6	5
668	Lanthanide porphyrinoids as molecular theranostics. Chemical Society Reviews, 2022, 51, 6177-6209.	18.7	34
669	Matrix Metalloproteinase-2-Responsive Surface-Changeable Liposomes Decorated by Multifunctional Peptides to Overcome the Drug Resistance of Triple-Negative Breast Cancer through Enhanced Targeting and Penetrability. ACS Biomaterials Science and Engineering, 2022, 8, 2979-2994.	2.6	13
670	Macrophage Cell Membraneâ€Cloaked Nanoplatforms for Biomedical Applications. Small Methods, 2022, 6, .	4.6	58
671	Promoting Tumor Accumulation of Anticancer Drugs by Hierarchical Carrying of Exogenous and Endogenous Vehicles. Small Structures, 2022, 3, .	6.9	24
672	Microenvironmental Behaviour of Nanotheranostic Systems for Controlled Oxidative Stress and Cancer Treatment. Nanomaterials, 2022, 12, 2462.	1.9	3
673	Research Progress of Photothermal Nanomaterials in Multimodal Tumor Therapy. Frontiers in Oncology, 0, 12, .	1.3	6
674	Oxygen Self‣upplying Enzymatic Nanoplatform for Precise and Enhanced Photodynamic Therapy. Advanced Therapeutics, 2022, 5, .	1.6	4
675	In-Situ Assembly of Janus Nanoprobe for Cancer Activated NIR-II Photoacoustic Imaging and Enhanced Photodynamic Therapy. Analytical Chemistry, 2022, 94, 10540-10548.	3.2	8
676	Synthesis strategies, luminescence mechanisms, and biomedical applications of near-infrared fluorescent carbon dots. Coordination Chemistry Reviews, 2022, 470, 214703.	9.5	64
677	An Osimertinib-Perfluorocarbon Nanoemulsion with Excellent Targeted Therapeutic Efficacy in Non-small Cell Lung Cancer: Achieving Intratracheal and Intravenous Administration. ACS Nano, 2022, 16, 12590-12605.	7.3	14

#	ARTICLE	IF	CITATIONS
678	Magnetic nanoparticles-based systems for multifaceted biomedical applications. Journal of Drug Delivery Science and Technology, 2022, 74, 103616.	1.4	5
679	Supramolecular engineering of cell membrane vesicles for cancer immunotherapy. Science Bulletin, 2022, 67, 1898-1909.	4.3	22
680	Multifunctional Gold Helix Phototheranostic Biohybrid That Enables Targeted Image-Guided Photothermal Therapy in Breast Cancer. ACS Applied Materials & Interfaces, 2022, 14, 37447-37465.	4.0	11
681	Self-Assembled DNA–Protein Hybrid Nanospheres: Biocompatible Nano-Drug-Carriers for Targeted Cancer Therapy. ACS Applied Materials & Interfaces, 2022, 14, 37493-37503.	4.0	3
682	Cancer cell membrane cloaked nanocarriers: A biomimetic approach towards cancer theranostics. Materials Today Communications, 2022, 33, 104289.	0.9	2
683	Synthesis of Vectorized Nanoparticles Based on a Copolymer of N-Vinyl-2-Pyrrolidone with Allyl Glycidyl Ether and a Carbohydrate Vector. Journal of Composites Science, 2022, 6, 247.	1.4	0
684	A multi-responsive targeting drug delivery system for combination photothermal/chemotherapy of tumor. Journal of Biomaterials Science, Polymer Edition, 0, , 1-18.	1.9	2
685	Pt/Agâ€PEG e6 Nanosystem with Enhanced Nearâ€Infrared Absorption and Peroxidaseâ€Like Activity for Synergistic Photodynamic/Photothermal Therapy. Advanced Therapeutics, 2022, 5, .	1.6	5
686	Autophagy-targeted nanoparticles for effective cancer treatment: advances and outlook. NPG Asia Materials, 2022, 14, .	3.8	18
687	Nanoflare Couple: Multiplexed mRNA Imaging and Logic-Controlled Combinational Therapy. Analytical Chemistry, 2022, 94, 12204-12212.	3.2	6
688	Coassembled Nitric Oxide-Releasing Nanoparticles with Potent Antimicrobial Efficacy against Methicillin-Resistant <i>Staphylococcus aureus</i> (MRSA) Strains. ACS Applied Materials & Interfaces, 2022, 14, 37369-37379.	4.0	1
689	Pulmonary delivery of size-transformable nanoparticles improves tumor accumulation and penetration for chemo-sonodynamic combination therapy. Journal of Controlled Release, 2022, 350, 132-145.	4.8	11
690	Nanocarriers as a Delivery Platform for Anticancer Treatment: Biological Limits and Perspectives in B-Cell Malignancies. Pharmaceutics, 2022, 14, 1965.	2.0	4
691	Dye Doped Metal-Organic Frameworks for Enhanced Phototherapy. Advanced Drug Delivery Reviews, 2022, 189, 114479.	6.6	9
692	Phototheranostic nanoparticles with aggregation-induced emission as a four-modal imaging platform for image-guided photothermal therapy and ferroptosis of tumor cells. Biomaterials, 2022, 289, 121779.	5.7	11
693	Cellulose nanocrystals based delivery vehicles for anticancer agent curcumin. International Journal of Biological Macromolecules, 2022, 221, 842-864.	3.6	8
694	Covalent organic framework nanomedicines: Biocompatibility for advanced nanocarriers and cancer theranostics applications. Bioactive Materials, 2023, 21, 358-380.	8.6	37
695	MXenes: promising 2D materials for wound dressing applications – a perspective review. Materials Advances, 2022, 3, 7445-7462.	2.6	4

	CITATION	LPORT	
#	Article	IF	CITATIONS
696	Nanotechnology for Enhancing Medical Imaging. Micro/Nano Technologies, 2022, , 1-60.	0.1	0
697	Redox dyshomeostasis modulation of the tumor intracellular environment through a metabolic intervention strategy for enhanced photodynamic therapy. Theranostics, 2022, 12, 6143-6154.	4.6	5
698	Intracellular fluorogenic supramolecular assemblies for self-reporting bioorthogonal prodrug activation. Biomaterials Science, 2022, 10, 5662-5668.	2.6	4
699	Surface engineering of polymeric micelles for imparting multifunctionality. , 2022, , 285-314.		1
700	Multimodal Imaging and Phototherapy of Cancer and Bacterial Infection by Graphene and Related Nanocomposites. Molecules, 2022, 27, 5588.	1.7	8
701	Highly hydrated paramagnetic amorphous calcium carbonate nanoclusters as an MRI contrast agent. Nature Communications, 2022, 13, .	5.8	23
702	Nanogels as target drug delivery systems in cancer therapy: A review of the last decade. Frontiers in Pharmacology, 0, 13, .	1.6	26
703	Enhancing the therapeutic efficacy of nanoparticles for cancer treatment using versatile targeted strategies. Journal of Hematology and Oncology, 2022, 15, .	6.9	93
704	Hydrogen Bond-Mediated Supramolecular Polymeric Nanomedicine with pH/Light-Responsive Methotrexate Release and Synergistic Chemo-/Photothermal Therapy. Biomacromolecules, 2022, 23, 4230-4240.	2.6	9
705	Editorial of Special Column on A New Era of Nanobiomaterial-based Drug Delivery. Acta Pharmaceutica Sinica B, 2022, 12, 3453-3455.	5.7	0
706	Nanoscale metal–organic frameworks for photodynamic therapy and radiotherapy. Current Opinion in Chemical Engineering, 2022, 38, 100871.	3.8	4
708	ROS-Responsive Nanocomplex of aPD-L1 and Cabazitaxel Improves Intratumor Delivery and Potentiates Radiation-Mediated Antitumor Immunity. Nano Letters, 2022, 22, 8312-8320.	4.5	9
709	Synthetic biology-instructed transdermal microneedle patch for traceable photodynamic therapy. Nature Communications, 2022, 13, .	5.8	25
710	Suprasomes Based on Host–Guest Molecular Recognition: An Excellent Alternative to Liposomes in Cancer Theranostics. Angewandte Chemie - International Edition, 2022, 61, .	7.2	22
711	Biomimetic Targeted Theranostic Nanoparticles for Breast Cancer Treatment. Molecules, 2022, 27, 6473.	1.7	10
712	Nanotherapy based on magnetoâ€mechanochemical modulation of tumor redox state. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2023, 15, .	3.3	6
713	Redox―and pHâ€Responsive Waterâ€Soluble Flexible Organic Frameworks Realize Synergistic Tumor Photodynamic and Chemotherapeutic Therapy. Macromolecular Rapid Communications, 2023, 44, .	2.0	2
714	Two-dimensional photonic MXene nanomedicine. Nanophotonics, 2022, 11, 4995-5017.	2.9	5

#	Article	IF	CITATIONS
715	Covalent Organic Frameworks as Nanocarriers for Improved Delivery of Chemotherapeutic Agents. Materials, 2022, 15, 7215.	1.3	4
716	Suprasomes Based on Host–Guest Molecular Recognition: An Excellent Alternative to Liposome in Cancer Theranostics. Angewandte Chemie, 0, , .	1.6	0
717	Ferroptosis in hepatocellular carcinoma: mechanisms and targeted therapy. British Journal of Cancer, 2023, 128, 190-205.	2.9	22
718	Ultra-small NIR-Responsive Nanotheranostic Agent for Targeted Photothermal Ablation Induced Damage-Associated Molecular Patterns (DAMPs) from Post-PTT of Tumor Cells Activate Immunogenic Cell Death. Nanotheranostics, 2023, 7, 41-60.	2.7	8
719	A tyrosinase-activated Pt(II) complex for melanoma photodynamic therapy and fluorescence imaging. Sensors and Actuators B: Chemical, 2023, 374, 132836.	4.0	7
720	A lipid droplet-specific near-infrared automatic oxygen-supplied AlEgen for photodynamic therapy and metastasis inhibition of hypoxic tumors. Chemical Engineering Journal, 2023, 453, 139838.	6.6	5
721	Responsive Accumulation of Nanohybrids to Boost NIRâ€Phototheranostics for Specific Tumor Imaging and Glutathione Depletionâ€Enhanced Synergistic Therapy. Advanced Science, 2023, 10, .	5.6	8
722	2D Hetero-Nanoconstructs of Black Phosphorus for Breast Cancer Theragnosis: Technological Advancements. Biosensors, 2022, 12, 1009.	2.3	5
723	Editorial for " <scp>T1</scp> Mapping Using <scp>MPRAGE</scp> Acquisitions: Application to the Measurement of the Concentration of Theranostic Agents in Tumors― Journal of Magnetic Resonance Imaging, 0, , .	1.9	0
724	Engineered upconversion nanocarriers for synergistic breast cancer imaging and therapy: Current state of art. Journal of Controlled Release, 2022, 352, 652-672.	4.8	6
725	Lactic acid modified rare earth-based nanomaterials for enhanced radiation therapy by disturbing the glycolysis. Journal of Nanobiotechnology, 2022, 20, .	4.2	1
726	Nanosensitizer-mediated unique dynamic therapy tactics for effective inhibition of deep tumors. Advanced Drug Delivery Reviews, 2023, 192, 114643.	6.6	8
727	Reaction mechanism of nanomedicine based on porphyrin skeleton and its application prospects. Photodiagnosis and Photodynamic Therapy, 2023, 41, 103236.	1.3	2
728	Nanoparticles-based phototherapy systems for cancer treatment: Current status and clinical potential. Bioactive Materials, 2023, 23, 471-507.	8.6	16
729	Dual-mode vehicles with simultaneous thermometry and drug release properties based on hollow Y ₂ O ₃ :Er,Yb and Y ₂ O ₂ SO ₄ :Er,Yb spheres. RSC Advances, 2022, 12, 33239-33250.	1.7	3
730	Transformable Nanotheranostics Capable of Sensoring Nucleic Acid Drugs' Spatiotemporal Behaviors. Advanced Functional Materials, 2023, 33, .	7.8	2
731	Computational Study on the Regulatory Mechanism of Cell Membrane Wrapping on Liposomes by Embedded Bowl-like Nanostructures for Drug Delivery. ACS Applied Nano Materials, 2022, 5, 18337-18348.	2.4	3
732	Non-invasive molecular imaging for precision diagnosis of metastatic lymph nodes: opportunities from preclinical to clinical applications. European Journal of Nuclear Medicine and Molecular Imaging, 2023, 50, 1111-1133.	3.3	5

	CITATION RE	CITATION REPORT	
#	Article	IF	CITATIONS
733	Aptamer-Based Probes for Cancer Diagnostics and Treatment. Life, 2022, 12, 1937.	1.1	7
734	Nearâ€Infrared Light Triggered Intelligent Nanoplatform for Synergistic Chemoâ€Photodynamic Therapy of Tumor. Advanced Optical Materials, 2023, 11, .	3.6	6
735	The Integration of Nanomedicine with Traditional Chinese Medicine: Drug Delivery of Natural Products and Other Opportunities. Molecular Pharmaceutics, 2023, 20, 886-904.	2.3	3
736	Macrophage Membrane-Coated Nano-Gemcitabine Promotes Lymphocyte Infiltration and Synergizes AntiPD-L1 to Restore the Tumoricidal Function. ACS Nano, 2023, 17, 322-336.	7.3	15
737	Editorial: Women in nanomedicine. Frontiers in Pharmacology, 0, 13, .	1.6	0
739	NIR―and Protonâ€Driven Perylene Reactive Oxygen Species Superâ€Generator for Trimodal Therapy Against Hypoxic Tumors. Angewandte Chemie, 0, , .	1.6	0
740	Innovative nanotheranostics: Smart nanoparticles based approach to overcome breast cancer stem cells mediated chemo―and radioresistances. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2023, 15, .	3.3	8
741	Nucleic acid drug vectors for diagnosis and treatment of brain diseases. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	19
742	Nanotechnology for Enhancing Medical Imaging. Micro/Nano Technologies, 2023, , 99-156.		0
743	Copper-Nitrogen-Coordinated Carbon Dots: Transformable Phototheranostics from Precise PTT/PDT to Post-Treatment Imaging-Guided PDT for Residual Tumor Cells. ACS Applied Materials & Interfaces, 2023, 15, 3253-3265.	4.0	20
744	Peryleneâ€Based Reactive Oxygen Species Supergenerator for Immunogenic Photochemotherapy against Hypoxic Tumors. Angewandte Chemie - International Edition, 2023, 62, .	7.2	11
745	Enzyme-Triggered Size-Switchable Nanosystem for Deep Tumor Penetration and Hydrogen Therapy. ACS Applied Materials & Interfaces, 2023, 15, 552-565.	4.0	7
746	De Novo Design of Reversibly pH-Switchable NIR-II Aggregation-Induced Emission Luminogens for Efficient Phototheranostics of Patient-Derived Tumor Xenografts. Journal of the American Chemical Society, 2023, 145, 334-344.	6.6	46
747	Construction of PAMAM-based Nanocomplex Conjugated with Pt(IV)-complex and Lauric Acid Exerting Both Anti-tumor and Antibacterial Effects. Chinese Journal of Polymer Science (English Edition), 2023, 41, 887-896.	2.0	3
748	AÂpHâ€Activatable Copperâ€Biomineralized Proenzyme for Synergistic Chemodynamic/Chemoâ€Immunotherapy against Aggressive Cancers. Advanced Materials, 2023, 35, .	11.1	19
749	A Magnetically Driven Amoebaâ€Like Nanorobot for Wholeâ€Process Active Drug Transport. Advanced Science, 2023, 10, .	5.6	10
750	Ultrasensitive Detection and Cellular Photothermal Therapy via a Selfâ€Photothermal Modulation Biosensor. Advanced Optical Materials, 2023, 11, .	3.6	1
751	Porous Framework Materials for Bioimaging and Cancer Therapy. Molecules, 2023, 28, 1360.	1.7	3

		CITATION REF	PORT	
#	Article		IF	CITATIONS
752	Nanotheranostics: The Afterglow for Cancer Immunotherapy. , 2023, , 1-43.			0
753	Cross-domain knowledge transfer based parallel-cascaded multi-scale attention network for limit view reconstruction in projection magnetic particle imaging. Computers in Biology and Medicine 2023, 158, 106809.	ted 2,	3.9	4
754	Fungal β-Glucan-Based Nanotherapeutics: From Fabrication to Application. Journal of Fungi (Bas	.el,) Tj ETQq0 0 0 r	gBT /Ove 1.5	rlgck 10 Tf 5
755	Ratiometric singlet oxygen self-detecting and oxygen self-supplying nanosensor for real-time photodynamic therapy feedback and therapeutic effect enhancement. Talanta, 2023, 259, 1244	-93.	2.9	2
756	Stimuli-Responsive Boron-Based Materials in Drug Delivery. International Journal of Molecular Sciences, 2023, 24, 2757.		1.8	9
757	Tumorâ€Targeting Nearâ€Infrared Dimeric Heptamethine Cyanine Photosensitizers with an Aror Diphenol Linker for Imagingâ€Guided Cancer Phototherapy. Advanced Healthcare Materials, 202	natic 23, 12, .	3.9	3
758	Planted Graphene Quantum Dots for Targeted, Enhanced Tumor Imaging and Longâ€Term Visua Local Pharmacokinetics. Advanced Materials, 2023, 35, .	ilization of	11.1	15
760	Recent trends in emerging strategies for ferroptosis-based cancer therapy. Nanoscale Advances, 5, 1271-1290.	2023,	2.2	6
761	Fe ₃ O ₄ Composite Superparticles with RGD/Magnetic Dual-Targeting Capabilities for the Imaging and Treatment of Non-Small Cell Lung Cancer. ACS Omega, 2023, 8 7891-7903.	,	1.6	1
762	Hybrid Quantum Dot as Promising Tools for Theranostic Application in Cancer. Electronics (Switzerland), 2023, 12, 972.		1.8	6
763	Nanotechnological advancements in the brain tumor therapy: a novel approach. Therapeutic Del 2022, 13, 531-557.	ivery,	1.2	2
764	Radiolabeled nanomaterial for cancer diagnostics and therapeutics: principles and concepts. Can Nanotechnology, 2023, 14, .	ncer	1.9	18
765	Design of One-for-All Near-Infrared Aggregation-Induced Emission Nanoaggregates for Boosting Theranostic Efficacy. ACS Nano, 2023, 17, 4591-4600.		7.3	25
766	Phototheranostic Nanoagents for <scp>Imagingâ€Guided</scp> Treatment of Oral Cancer <sup Chinese Journal of Chemistry, 2023, 41, 1624-1636.</sup 	>â€.	2.6	1
768	Advanced nanoformulations for theranostics: current status and challenges. , 2023, , 1-19.			0
769	Current status and prospects of MOFs in controlled delivery of Pt anticancer drugs. Dalton Transactions, 2023, 52, 6226-6238.		1.6	41
770	Biomimetic nanosystems in theranostics. , 2023, , 645-668.			0
771	Non-Viral Carriers for Nucleic Acids Delivery: Fundamentals and Current Applications. Life, 2023, 903.	13,	1.1	6

#	Article	IF	CITATIONS
772	Revisiting the impacts of silica nanoparticles on endothelial cell junctions and tumor metastasis. CheM, 2023, 9, 1865-1881.	5.8	3
773	Biomimetic liposomal nanozymes improve breast cancer chemotherapy with enhanced penetration and alleviated hypoxia. Journal of Nanobiotechnology, 2023, 21, .	4.2	1
774	Current status of Cancer Nanotheranostics: Emerging strategies for cancer management. Nanotheranostics, 2023, 7, 368-379.	2.7	4
775	Recent developments of Red/NIR carbon dots in biosensing, bioimaging, and tumor theranostics. Chemical Engineering Journal, 2023, 465, 143010.	6.6	22
787	Cancer Nanomedicine. SpringerBriefs in Applied Sciences and Technology, 2023, , 17-31.	0.2	0
790	Chromium Nanoparticles Improve Macrophage and T Cell Infiltration for Cancer Immunotherapy. , 2023, 5, 1738-1751.		2
791	Nano-mediated strategy for targeting and treatment of non-small cell lung cancer (NSCLC). Naunyn-Schmiedeberg's Archives of Pharmacology, 2023, 396, 2769-2792.	1.4	2
795	A review on reactive oxygen species (ROS)-inducing nanoparticles activated by uni- or multi-modal dynamic treatment for oncotherapy. Nanoscale, 2023, 15, 11813-11833.	2.8	6
797	Image-Guided Precision Treatments. Advances in Experimental Medicine and Biology, 2023, , 59-86.	0.8	0
798	Application of nanomedicine for efficient delivery of herbal bioactives. , 2023, , 159-195.		0
799	New opportunities and old challenges in the clinical translation of nanotheranostics. Nature Reviews Materials, 2023, 8, 783-798.	23.3	9
800	Nanotheranostic applications in the detection and treatment of cervical cancer. , 2023, , 413-430.		0
801	Review on iron nanoparticles for cancer theranostics: synthesis, modification, characterization and applications. Journal of Nanoparticle Research, 2023, 25, .	0.8	0
804	Phospholipase-based nanocarriers for therapeutic applications. , 2023, , 111-128.		0
807	Nanoprobe-based molecular imaging for tumor stratification. Chemical Society Reviews, 2023, 52, 6447-6496.	18.7	7
812	Application of Carbonaceous Quantum Dots in Biomedical. , 2023, , 78-93.		0
821	Reinforcement Learning forÂMultifocal Tumour Targeting. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2023, , 22-30.	0.2	0
829	The effect of Benson relaxation technique on cancer patients: a systematic review. Supportive Care in Cancer, 2023, 31, .	1.0	0

			CITATION REPORT		
#	Article			IF	CITATIONS
850	Contemporary developments, trends, and challenges in cancer phototheranostics. , 20	24, , 1-20.			0
851	Ferroptosis: Emerging mechanisms, biological function, and therapeutic potential in ca inflammation. Cell Death Discovery, 2024, 10, .	ncer and		2.0	0
855	Exosomes-based nanomedicines for cancer immunotherapy. , 2024, , 175-205.				0