Adding value to EU energy policy analysis using a multielectricity dispatch model

Energy 130, 433-447

DOI: 10.1016/j.energy.2017.05.010

Citation Report

#	Article	IF	CITATIONS
1	Modelling the energy transition: A nexus of energy system and economic models. Energy Strategy Reviews, 2018, 20, 229-235.	7. 3	65
2	Consumption-based approach to RES-E quantification: Insights from a Pan-European case study. Energy Policy, 2018, 112, 291-300.	8.8	5
3	Energy systems modeling: Trends in research publication. Wiley Interdisciplinary Reviews: Energy and Environment, 2019, 8, e333.	4.1	11
4	Planning the European power sector transformation: The REmap modelling framework and its insights. Energy Strategy Reviews, 2018, 22, 147-165.	7.3	20
5	Environmental impact indicators for the electricity mix and network development planning towards 2050 – A POLES and EUTGRID model. Energy, 2018, 163, 618-628.	8.8	10
6	Sustainable development of the West African Power Pool: Increasing solar energy integration and regional electricity trade. Energy for Sustainable Development, 2018, 45, 124-134.	4.5	24
7	Future Trajectories of Renewable Energy Consumption in the European Union. Resources, 2018, 7, 10.	3.5	51
8	System dynamics within typical days of a high variable 2030 European power system. Energy Strategy Reviews, 2018, 22, 94-105.	7.3	7
9	Renewable Energy in the Electricity Sector and GDP per Capita in the European Union. Energies, 2019, 12, 2520.	3.1	56
10	Long term evaluation of electric storage technologies vs alternative flexibility options for the Swiss energy system. Applied Energy, 2019, 252, 113470.	10.1	57
11	The future developments of the electricity prices in view of the implementation of the Paris Agreements: Will the current trends prevail, or a reversal is ahead?. Energy Economics, 2019, 84, 104476.	12.1	31
12	Backbone—An Adaptable Energy Systems Modelling Framework. Energies, 2019, 12, 3388.	3.1	50
13	The value of flexible load in power systems with high renewable energy penetration. Energy, 2019, 188, 115960.	8.8	48
14	Adding detailed transmission constraints to a long-term integrated assessment model – A case study for Brazil using the TIMES model. Energy, 2019, 167, 791-803.	8.8	14
15	Including operational aspects in the planning of power systems with large amounts of variable generation: A review of modeling approaches. Wiley Interdisciplinary Reviews: Energy and Environment, 2019, 8, e341.	4.1	46
16	A comprehensive review on the benefits and challenges of global power grids and intercontinental interconnectors. Renewable and Sustainable Energy Reviews, 2019, 107, 274-287.	16.4	56
17	Future scenarios of variable renewable energies and flexibility requirements for thermal power plants in China. Energy, 2019, 167, 708-714.	8.8	37
18	Embedding power system's reliability within a long-term Energy System Optimization Model: Linking high renewable energy integration and future grid stability for France by 2050. Applied Energy, 2020, 257, 114037.	10.1	49

#	ARTICLE	IF	CITATIONS
19	From global to national scenarios: Bridging different models to explore power generation decarbonisation based on insights from socio-technical transition case studies. Technological Forecasting and Social Change, 2020, 151, 119882.	11.6	12
20	The changing virtual water trade network of the European electric grid. Applied Energy, 2020, 260, 114151.	10.1	32
21	Validation of a Europe-wide electricity system model for techno-economic analysis. International Journal of Electrical Power and Energy Systems, 2020, 123, 106292.	5.5	12
22	Uncertainty estimation of investment planning models under high shares of renewables using reanalysis data. Energy, 2020, 208, 118207.	8.8	13
23	Sustainable regional energy planning: The case of hydro. Sustainable Development, 2020, 28, 1652-1662.	12.5	13
24	Renewable Energy and Economic Performance in the Context of the European Green Deal. Energies, 2020, 13, 6440.	3.1	30
25	Renewables in the European power system and the impact on system rotational inertia. Energy, 2020, 203, 117776.	8.8	53
26	Implications of carbon price paths on energy security in four Baltic region countries. Energy Strategy Reviews, 2020, 30, 100509.	7.3	17
27	Renewable Energy in Final Energy Consumption and Income in the EU-28 Countries. Energies, 2020, 13, 2280.	3.1	83
28	Multi-objective investment optimization for energy system models in high temporal and spatial resolution. Applied Energy, 2020, 264, 114728.	10.1	38
29	Least cost energy system pathways towards 100% renewable energy in Ireland by 2050. Energy, 2020, 207, 118264.	8.8	40
30	Demand response for variable renewable energy integration: A proposed approach and its impacts. Energy, 2020, 197, 117205.	8.8	95
31	Model of Optimization of Wind Energy Production in the Light of Legal Changes in Poland. Energies, 2020, 13, 1557.	3.1	9
32	Building and Calibrating a Country-Level Detailed Global Electricity Model Based on Public Data. Energy Strategy Reviews, 2021, 33, 100592.	7.3	26
33	Application of a New Dispatch Methodology to Identify the Influence of Inertia Supplying Wind Turbines on Day-Ahead Market Sales Volumes. Energies, 2021, 14, 1255.	3.1	1
34	Superposition of Renewable-Energy Supply from Multiple Sites Maximizes Demand-Matching: Towards 100% Renewable Grids in 2050. Applied Energy, 2021, 284, 116402.	10.1	43
35	The Variation in Capacity Remunerations Requirements in European Electricity Markets. Energy Journal, 2021, 42, .	1.7	2
36	CO2 Intensities and Primary Energy Factors in the Future European Electricity System. Energies, 2021, 14, 2165.	3.1	17

3

#	ARTICLE	IF	CITATIONS
37	Assessing the Level of Renewable Energy Development in the European Union Member States. A 10-Year Perspective. Energies, 2021, 14, 3765.	3.1	47
38	Long-term uncertainties in generation expansion planning: Implications for electricity market modelling and policy. Energy, 2021, 227, 120371.	8.8	19
39	Probabilistic modeling of wind energy potential for power grid expansion planning. Energy, 2021, 230, 120831.	8.8	22
40	Long term storage in generation expansion planning models with a reduced temporal scope. Applied Energy, 2021, 298, 117168.	10.1	36
41	Dispatch optimization of thermal power unit flexibility transformation under the deep peak shaving demand based on invasive weed optimization. Journal of Cleaner Production, 2021, 315, 128047.	9.3	34
42	The Effect of Increased Transmission and Storage in an Interconnected Europe: An Application to France and Ireland. SSRN Electronic Journal, 0, , .	0.4	0
43	Évaluer le coût des politiques climat-énergie à base de renouvelables. Du bon usage des modèles d'optimisation sectorielle. Revue Française D'économie, 2020, Vol. XXXV, 81-127.	0.1	1
44	Assessing global climate change mitigation scenarios from a power system perspective using a novel multi-model framework. Environmental Modelling and Software, 2022, 150, 105336.	4.5	13
45	Techno-economic analysis of solar photovoltaic powered electrical energy storage (EES) system. AEJ - Alexandria Engineering Journal, 2022, 61, 6739-6753.	6.4	23
47	Potential of Onshore Wind Turbine Inertia in Decarbonising the Future Irish Energy System. Applied Sciences (Switzerland), 2022, 12, 2984.	2.5	3
48	Increasing the reliability of energy system scenarios with integrated modelling: a review. Environmental Research Letters, 2022, 17, 043006.	5.2	4
49	Regional Power Planning Robust to Multiple Models: Meeting Mexico's 2050 Climate Goals. Energy and Climate Change, 2022, , 100076.	4.4	0
50	Scenario Analysis of the GHG Emissions in the Electricity Sector through 2030 in South Korea Considering Updated NDC. Energies, 2022, 15, 3310.	3.1	12
51	Explaining expedited energy transition toward renewables by COVID-19 in India. Energy Policy, 2022, 165, 112986.	8.8	7
52	Will the energy-only market collapse? On market dynamics in low-carbon electricity systems. Renewable and Sustainable Energy Reviews, 2022, 164, 112594.	16.4	2
53	Using agricultural demand for reducing costs of renewable energy integration in India. Energy, 2022, 254, 124385.	8.8	3
54	Multi-model assessment of heat decarbonisation options in the UK using electricity and hydrogen. Renewable Energy, 2022, 194, 1261-1276.	8.9	14
55	Power System Inertia Dispatch Modelling in Future German Power Systems: A System Cost Evaluation. Applied Sciences (Switzerland), 2022, 12, 8364.	2.5	2

CITATION REPORT

#	Article	IF	CITATIONS
56	Integrated models in action: Analyzing flexibility in the Canadian power system toward a zero-emission future. Energy, 2022, 261, 125181.	8.8	7
57	Bi-directional soft-linking between a whole energy system model and a power systems model. , 2022, , .		0
58	Multi-Nodal Energy Systems Modelling Scenarios of South Africa's Power Sector. , 2023, , .		0
59	Computational analysis of nuclear desalination system under various configurations. Kerntechnik, 2023, 88, 291-301.	0.2	1
60	Scenario Analysis of the Development of the Polish Power System towards Achieving Climate Neutrality in 2050. Energies, 2023, 16, 5918.	3.1	2
61	On the design and analysis of long-term low-carbon roadmaps: A review and evaluation of available energy-economy-environment models. Renewable and Sustainable Energy Reviews, 2024, 189, 113899.	16.4	1
62	Reviewing the Situation and Prospects for Developing Small Renewable Energy Systems in Poland. Energies, 2023, 16, 7339.	3.1	2
63	A country-scale green energy-water-hydrogen nexus: Jordan as a case study. Solar Energy, 2024, 269, 112301.	6.1	0