Influence of Diet in Multiple Sclerosis: A Systematic Rev

Advances in Nutrition 8, 463-472 DOI: 10.3945/an.116.014191

Citation Report

#	Article	IF	CITATIONS
1	Environmental risk factors in neuromyelitis optica spectrum disorder: a case–control study. Acta Neurologica Belgica, 2018, 118, 277-287.	0.5	32
2	Revealing the Inhibitory Effect of Ginseng on Mitochondrial Respiration through Synaptosomal Proteomics. Proteomics, 2018, 18, 1700354.	1.3	8
3	Exploring Wellness Interventions in Progressive Multiple Sclerosis: an Evidence-Based Review. Current Treatment Options in Neurology, 2018, 20, 13.	0.7	12
4	Diet, Gut Microbiota, and Vitamins D +ÂA in Multiple Sclerosis. Neurotherapeutics, 2018, 15, 75-91.	2.1	117
5	Changing Lifestyle of Persons With Multiple Sclerosis: Development, Feasibility and Preliminary Results of a Novel High-Impact Collaborative Intervention in Leisure Environments. International Journal of Physical Medicine & Rehabilitation, 2018, 06, .	0.5	5
6	Further Evidence on Efficacy of Diet Supplementation with Fatty Acids in Ocular Pathologies: Insights from the EAE Model of Optic Neuritis. Nutrients, 2018, 10, 1447.	1.7	21
7	Influence of diet on axonal damage in the EAE mouse model of multiple sclerosis. Journal of Neuroimmunology, 2018, 322, 9-14.	1.1	11
8	Disease Specific Aspects of Malnutrition in Neurogeriatric Patients. Frontiers in Aging Neuroscience, 2018, 10, 80.	1.7	27
9	Fatty Acids Dietary Supplements Exert Anti-Inflammatory Action and Limit Ganglion Cell Degeneration in the Retina of the EAE Mouse Model of Multiple Sclerosis. Nutrients, 2018, 10, 325.	1.7	16
10	Effect of intermittent vs. daily calorie restriction on changes in weight and patient-reported outcomes in people with multiple sclerosis. Multiple Sclerosis and Related Disorders, 2018, 23, 33-39.	0.9	105
11	ls there an effect of dietary intake on MS-related fatigue? – A systematic literature review. Multiple Sclerosis and Related Disorders, 2018, 25, 282-291.	0.9	17
12	Dietary responses to a multiple sclerosis diagnosis: a qualitative study. European Journal of Clinical Nutrition, 2019, 73, 601-608.	1.3	22
13	Lifestyle-based modifiable risk factors in multiple sclerosis: review of experimental and clinical findings. Neurodegenerative Disease Management, 2019, 9, 149-172.	1.2	41
14	Effect of omega-3 fatty acids and fish oil supplementation on multiple sclerosis: a systematic review. Nutritional Neuroscience, 2021, 24, 569-579.	1.5	54
16	Serum NADPH oxidase concentrations and the associations with iron metabolism in relapsing remitting multiple sclerosis. Journal of Trace Elements in Medicine and Biology, 2019, 55, 39-43.	1.5	7
17	Effectiveness of Vitamin D Supplementation in the Management of Multiple Sclerosis: A Systematic Review. International Journal of Molecular Sciences, 2019, 20, 1301.	1.8	28
18	New Insights on the Nutrition Status and Antioxidant Capacity in Multiple Sclerosis Patients. Nutrients, 2019, 11, 427.	1.7	39
20	A comparative systemâ€level analysis of the neurodegenerative diseases. Journal of Cellular Physiology, 2019, 234, 5215-5229.	2.0	6

	Сіта	CITATION REPORT	
# 21	ARTICLE Is diet associated with physical capacity and fatigue in persons with multiple sclerosis? –Results from a pilot study. Multiple Sclerosis and Related Disorders, 2020, 40, 101921.	IF 0.9	CITATIONS
22	Antioxidants and Nanotechnology: Promises and Limits of Potentially Disruptive Approaches in the Treatment of Central Nervous System Diseases. Advanced Healthcare Materials, 2020, 9, e1901589.	3.9	50
24	Defining Wellness. , 2020, , 1-12.		0
25	Toxoplasma gondii and multiple sclerosis: a population-based case–control study. Scientific Reports, 2020, 10, 18855.	1.6	12
26	Wellness Interventions in the Workplace. , 2020, , 248-257.		0
27	Engaging the Five Senses. , 2020, , 448-462.		0
28	Family Relations, Friendships, and Love. , 2020, , 553-564.		0
30	Screening and Assessment Methods for Wellness. , 2020, , 13-22.		0
31	The Biopsychosocial Assessment. , 2020, , 23-36.		0
32	Wellness Measurement. , 2020, , 37-44.		0
33	The Wellness Treatment Plan. , 2020, , 45-56.		1
34	The Concept of Wellness in Psychiatric and Substance-Use Disorders. , 2020, , 57-65.		0
35	Neurological and Neurosurgical Disorders and Wellness. , 2020, , 66-78.		0
36	Cardiovascular and Pulmonary Wellness. , 2020, , 79-86.		0
37	Gastrointestinal System and Wellness. , 2020, , 87-97.		0
38	Wellness and the Genito-Urinary System. , 2020, , 98-115.		0
39	Reproductive System. , 2020, , 116-134.		1
40	Allergic, Infectious, and Immunological Processes. , 2020, , 135-159.		1

#	ARTICLE Wellness in Endocrine and Metabolic Disorders. , 2020, , 160-176.	IF	Citations
41			0
42	Wellness in Older Individuals. , 2020, , 188-198.		0
43	Wellness in Children and Adolescents. , 2020, , 199-208.		0
44	Wellness in Cancer and Neoplastic Diseases. , 2020, , 225-236.		0
45	Wellness in Terminal Illness. , 2020, , 237-247.		0
46	Wellness Interventions for Physicians and Healthcare Professionals. , 2020, , 258-270.		0
48	Exercise, Dance, Tai Chi, Pilates, and Alexander Technique. , 2020, , 315-323.		0
49	Sleep, Rest, and Relaxation in Improving Wellness. , 2020, , 324-331.		0
50	Sex, Intimacy, and Well-Being. , 2020, , 332-344.		0
51	Mindfulness, Meditation, and Yoga. , 2020, , 345-356.		Ο
52	Positive Neuropsychology, Cognitive Rehabilitation, and Neuroenhancement. , 2020, , 365-377.		0
53	Acupuncture, Herbs, and Ayurvedic Medicine. , 2020, , 378-393.		Ο
54	Massage, Humor, and Music. , 2020, , 403-412.		0
55	Nature and Pets. , 2020, , 413-422.		1
56	Resilience and Wellness. , 2020, , 484-493.		0
57	Developing Purpose, Meaning, and Achievements. , 2020, , 494-503.		0
58	Healing and Wellness. , 2020, , 504-514.		0
59	Connection, Compassion, and Community. , 2020, , 515-524.		0

#	ARTICLE	IF	CITATIONS
60	Work, Love, Play, and Joie de Vivre. , 2020, , 535-544.		0
61	Well-Being and Work–Life Balance. , 2020, , 545-552.		Ο
62	The Role of Leisure, Recreation, and Play in Health and Well-Being. , 2020, , 565-572.		0
64	Wellness Interventions in Patients Living with Chronic Medical Conditions. , 2020, , 177-187.		Ο
65	Pharmaceuticals and Alternatives for Wellness. , 2020, , 302-314.		0
66	Emotional Intelligence and Its Role in Sustaining Fulfillment in Life. , 2020, , 463-473.		0
67	Wellness and Whole-Person Care. , 2020, , 573-581.		0
68	Wellness in Pain Disorders. , 2020, , 209-224.		0
69	Forgiveness, Gratitude, and Spirituality. , 2020, , 357-364.		0
70	The Role of Aesthetics in Wellness. , 2020, , 394-402.		1
71	Circadian Rhythm in the Digital Age. , 2020, , 423-434.		0
72	The Arts in Health Settings. , 2020, , 435-447.		0
73	Wellness Interventions for Chronicity and Disability. , 2020, , 525-534.		0
74	The Personalized Wellness Life Plan. , 2020, , 582-597.		Ο
76	Dietary interventions for multiple sclerosis-related outcomes. The Cochrane Library, 2020, 2020, CD004192.	1.5	35
77	Evaluating the Effects of Dietary Interventions on Disease Progression and Symptoms of Adults v Multiple Sclerosis: An Umbrella Review. Advances in Nutrition, 2020, 11, 1603-1615.	vith 2.9	22
78	Consensus statement from 2nd International Conference on Controversies in Vitamin D. Reviews Endocrine and Metabolic Disorders, 2020, 21, 89-116.	s in 2.6	182
79	Serum levels of Homocysteine, Vitamin B12 and Folate in Patients with Multiple Sclerosis: an Upo Meta-Analysis. International Journal of Medical Sciences, 2020, 17, 751-761.	lated 1.1	21

#	Article	IF	CITATIONS
80	Support vectors machine-based model for diagnosis of multiple sclerosis using the plasma levels of selenium, vitamin B12, and vitamin D3. Informatics in Medicine Unlocked, 2020, 20, 100382.	1.9	8
81	Aberrant DNA methylation profile exacerbates inflammation and neurodegeneration in multiple sclerosis patients. Journal of Neuroinflammation, 2020, 17, 21.	3.1	46
82	Role of Vitamin D in Preventing and Treating Selected Extraskeletal Diseases—An Umbrella Review. Nutrients, 2020, 12, 969.	1.7	67
83	Oxidative/Nitroxidative Stress and Multiple Sclerosis. Journal of Molecular Neuroscience, 2021, 71, 506-514.	1.1	43
84	A cross sectional assessment of nutrient intake and the association of the inflammatory properties of nutrients and foods with symptom severity in a large cohort from the UK Multiple Sclerosis Registry. Nutrition Research, 2021, 85, 31-39.	1.3	9
85	Correlation of Dietary Intake and Helicobacter pylori Infection with Multiple Sclerosis, a Case-Control Study in Rafsanjan, Iran, 2017–18. Qatar Medical Journal, 2021, 2020, 45.	0.2	5
86	Temporal trends of incidence and prevalence of multiple sclerosis in Razavi Khorasan Province, Northeast Iran. Neurological Sciences, 2022, 43, 583-591.	0.9	3
88	The clinical characteristics of primary headache and associated factors in children: A retrospective descriptive study. Annals of Medicine and Surgery, 2021, 65, 102374.	0.5	2
89	Obesity and Multiple Sclerosis—A Multifaceted Association. Journal of Clinical Medicine, 2021, 10, 2689.	1.0	30
90	A preliminary investigation of nutritional intake and supplement use in Australians with myalgic encephalomyelitis/chronic fatigue syndrome and the implications on health-related quality of life. Food and Nutrition Research, 2021, 65, .	1.2	2
91	Eating habits of patients with multiple sclerosis in three different countries: China, Spain and Cuba. Neurology Perspectives, 2021, 1, 170-177.	0.2	1
92	The nutritional status of relapsing-remitting multiple sclerosis (RRMS) patients compared to that of healthy people: a Turkish hospital-based study. Nutritional Neuroscience, 2022, 25, 2279-2287.	1.5	4
93	Reduction in Fatigue Symptoms Following the Administration of Nutritional Supplements in Patients with Multiple Sclerosis. Medical Sciences (Basel, Switzerland), 2021, 9, 52.	1.3	6
94	Assessing multiple sclerosis-related quality of life among Iranian patients using the MSQOL-54 tool: a cross-sectional study. BMC Neurology, 2021, 21, 333.	0.8	2
95	Dietary intake and characteristics in persons with multiple sclerosis. Multiple Sclerosis and Related Disorders, 2021, 56, 103237.	0.9	5
96	Diet and Multiple Sclerosis: Scoping Review of Web-Based Recommendations. Interactive Journal of Medical Research, 2019, 8, e10050.	0.6	38
97	Impact of Vitamin D Supplementation on Multiple Sclerosis. Cureus, 2021, 13, e18487.	0.2	6
99	Nutritional aspects of neurological diseases. Medicinski Casopis, 2019, 53, 101-111.	0.1	Ο

IF CITATIONS

100 神経ãf»ç∢ç−¾æ,£ã«ãŠãʿã,‹Lâ€ã,«ãf«ãf«ãf«ãf«ãf®f³æ¬ä¹ç−‡ã¤æ²»ç™,. The Japanese Journal of SURGICAL METABOLOSM and NUTRITION,

101	The Mediating Role of Psychological Capital in The Relationship Between Self-Management and Nutrition Behavior in People with Multiple Sclerosis. Caspian Journal of Health Research, 2020, 5, 28-33.	0.1	0
102	The Effects of Different Kinds of Nutrition and Functional Foods on Multiple Sclerosis. Current Nutrition and Food Science, 2020, 16, 632-637.	0.3	0
103	Low carbohydrate diet score and odds of neuromyelitis optica spectrum disorder: A case-control study. International Journal for Vitamin and Nutrition Research, 2020, , 1-10.	0.6	2
104	The Handbook of Wellness Medicine. Family Medicine, 2021, 53, 726-726.	0.3	0
105	Food consumption in Tunisian university students and its association with sociodemographic characteristics and lifestyle behaviours. Public Health Nutrition, 2021, 24, 4949-4964.	1.1	4
107	Nutraceuticals and Wellness. , 2020, , 292-301.		1
108	What are the characteristics of vitamin D metabolism in opioid dependence? An exploratory longitudinal study in Australian primary care. BMJ Open, 2018, 8, e016806.	0.8	Ο
109	Association between multiple sclerosis and dietary patterns based on the traditional concept of food nature: a case-control study in Iran. BMC Neurology, 2021, 21, 453.	0.8	5
110	Methyl acetate arrests Th1 in peripheral immune system and alleviates CNS inflammation in EAE. International Immunopharmacology, 2021, 101, 108291.	1.7	5
111	Vitamin D and Multiple Sclerosis; Is There a Real Association?. International Journal of Pharmaceutical Research and Allied Sciences, 2021, 10, 129-133.	0.1	2
112	Metagenomic Analysis of the Pediatric-Onset Multiple Sclerosis Gut Microbiome. Neurology, 2022, 98, .	1.5	15
113	Is Mediterranean diet associated with multiple sclerosis related symptoms and fatigue severity?. Nutritional Neuroscience, 2023, 26, 228-234.	1.5	16
114	Personalized Nutritional Intervention to Improve Mediterranean Diet Adherence in Female Patients with Multiple Sclerosis: A Randomized Controlled Study. Dietetics, 2022, 1, 25-38.	0.4	5
115	The Role of Diet and Interventions on Multiple Sclerosis: A Review. Nutrients, 2022, 14, 1150.	1.7	52
116	The Relationship of Cobalamin and/or Folate to the Patient-Centred Outcomes in Multiple Sclerosis: A Systematic Review and Meta-analysis. Nutrition and Health, 2022, 28, 527-542.	0.6	1
117	Coenzyme Q10 effects in neurological diseases. Physiological Research, 2021, , S683-S714.	0.4	1
118	Coenzyme Q10 effects in neurological diseases. Physiological Research, 2021, , S683-S714.	0.4	17

#	Article	IF	CITATIONS
119	What are the characteristics of vitamin D metabolism in opioid dependence? An exploratory longitudinal study in Australian primary care. BMJ Open, 2018, 8, e016806.	0.8	2
120	Coenzyme Q10 effects in neurological diseases Physiological Research, 2021, 70, S683-S714.	0.4	0
121	Dietary Patterns and Metabolic Disorders in Polish Adults with Multiple Sclerosis. Nutrients, 2022, 14, 1927.	1.7	5
122	Role of Ketogenic Diets in Multiple Sclerosis and Related Animal Models: An Updated Review. Advances in Nutrition, 2022, 13, 2002-2014.	2.9	11
123	Food, Medicine, and Function. Physical Medicine and Rehabilitation Clinics of North America, 2022, 33, 553-570.	0.7	2
124	Involvement of the Intestinal Microbiota in the Appearance of Multiple Sclerosis: Aloe vera and Citrus bergamia as Potential Candidates for Intestinal Health. Nutrients, 2022, 14, 2711.	1.7	6
125	Risk Factors from Pregnancy to Adulthood in Multiple Sclerosis Outcome. International Journal of Molecular Sciences, 2022, 23, 7080.	1.8	2
126	The Role of Diet and Gut Microbiome in Multiple Sclerosis. Cureus, 2022, , .	0.2	4
127	Organ Systems. , 2022, , 225-413.		0
128	Use of complementary medicine in autoimmune diseases of the nervous system Vestnik Nevrologii, Psihiatrii I Nejrohirurgii, 2022, , 803-810.	0.0	0
129	Nutritional interventions for the prevention and treatment of neurological disorders such as anxiety, bipolar disorder, depression, epilepsy, multiple sclerosis, and schizophrenia. Journal of Neuroscience and Neurological Disorders, 2022, 6, 052-071.	0.1	2
130	Role of the intestinal microbiota in the pathogenesis of multiple sclerosis. Part 1. Clinical and experimental evidence for the involvement of the gut microbiota in the development of multiple sclerosis. Meditsinskii Akademicheskii Zhurnal, 2022, 2, 9-36.	0.2	1
131	More gain, less pain: How resistance training affects immune system functioning in multiple sclerosis patients: A review. Multiple Sclerosis and Related Disorders, 2023, 69, 104401.	0.9	2
132	Macronutrients, vitamins and minerals in the diet of multiple sclerosis patients. Postepy Psychiatrii I Neurologii, 2022, 31, 128-137.	0.2	0
133	Supplementation with Crocus sativus L. (Saffron) against Placebo in Multiple Sclerosis: A Systematic Review and Synthesis without Meta-Analysis of Randomized Controlled Trials. Dietetics, 2022, 1, 227-241.	0.4	1
134	NUTRISEP: Assessment of the nutritional status of patients with multiple sclerosis and link to fatigue. Revue Neurologique, 2023, 179, 282-288.	0.6	0
135	The inhibitory effect of vitamin D on myocardial homocysteine levels involves activation of Nrf2-mediated methionine synthase. Journal of Steroid Biochemistry and Molecular Biology, 2023, 231, 106303.	1.2	1
136	Effects of nutrition education given to persons with multiple sclerosis and their families on diet quality and anthropometric and biochemical measurements. Revista De Nutricao, 0, 35, .	0.4	Ο

#	Article	IF	CITATIONS
137	A collaborative approach to designing an online nutrition education program for people with multiple sclerosis. Disability and Rehabilitation, 2024, 46, 947-956.	0.9	3
139	Dietary fish intake and multiple sclerosis: A new narrative. , 2023, , 545-555.		Ο
146	Role of Endogenous and Dietary Antioxidants in Brain Disorders. Food Bioactive Ingredients, 2023, , 171-214.	0.3	0
151	Nutritional interventional studies in patients with multiple sclerosis: a scoping review of the current clinical evidence. Journal of Neurology, 2024, 271, 1536-1570.	1.8	1
152	Coenzyme Q10: Does it benefit neurological diseases?. , 2024, , .		0