Understanding the regional pattern of projected future

Nature Climate Change 7, 423-427 DOI: 10.1038/nclimate3287

Citation Report

#	Article	IF	CITATIONS
1	Understanding rainfall extremes. Nature Climate Change, 2017, 7, 391-393.	18.8	47
2	Weakening of the North American monsoon with global warming. Nature Climate Change, 2017, 7, 806-812.	18.8	105
3	ls the choice of statistical paradigm critical in extreme event attribution studies?. Climatic Change, 2017, 144, 143-150.	3.6	18
4	Models are likely to underestimate increase in heavy rainfall in the extratropical regions with high rainfall intensity. Geophysical Research Letters, 2017, 44, 7401-7409.	4.0	25
5	Stronger influences of increased CO ₂ on subdaily precipitation extremes than at the daily scale. Geophysical Research Letters, 2017, 44, 7464-7471.	4.0	19
6	Understanding, modeling and predicting weather and climate extremes: Challenges and opportunities. Weather and Climate Extremes, 2017, 18, 65-74.	4.1	178
7	Probable Maximum Precipitation in the U.S. Pacific Northwest in a Changing Climate. Water Resources Research, 2017, 53, 9600-9622.	4.2	35
8	Simultaneous characterization of mesoscale and convectiveâ€scale tropical rainfall extremes and their dynamical and thermodynamic modes of change. Journal of Advances in Modeling Earth Systems, 2017, 9, 2103-2119.	3.8	22
9	Does nonstationarity in rainfall require nonstationary intensity–duration–frequency curves?. Hydrology and Earth System Sciences, 2017, 21, 6461-6483.	4.9	79
10	Understanding the Dynamics of Future Changes in Extreme Precipitation Intensity. Geophysical Research Letters, 2018, 45, 2870-2878.	4.0	54
11	Contributions of Dynamic and Thermodynamic Scaling in Subdaily Precipitation Extremes in India. Geophysical Research Letters, 2018, 45, 2352-2361.	4.0	44
12	Sensitivity of peak flow to the change of rainfall temporal pattern due to warmer climate. Journal of Hydrology, 2018, 560, 546-559.	5.4	51
13	Genesis, goals and achievements of Long-Term Ecological Research at the global scale: A critical review of ILTER and future directions. Science of the Total Environment, 2018, 626, 1439-1462.	8.0	191
14	When Will We Detect Changes in Short-Duration Precipitation Extremes?. Journal of Climate, 2018, 31, 2945-2964.	3.2	55
15	Hydroclimatic conditions trigger record harmful algal bloom in western Patagonia (summer 2016). Scientific Reports, 2018, 8, 1330.	3.3	133
16	Temperatureâ€extreme precipitation scaling: a twoâ€way causality?. International Journal of Climatology, 2018, 38, e1274.	3.5	82
17	Intensification of Convective Rain Cells at Warmer Temperatures Observed from High-Resolution Weather Radar Data. Journal of Hydrometeorology, 2018, 19, 715-726.	1.9	70
18	Impacts of half a degree additional warming on the Asian summer monsoon rainfall characteristics. Environmental Research Letters, 2018, 13, 044033.	5.2	52

ATION RED

#	Article	IF	CITATIONS
19	Assessment of Temporally Conditioned Runoff Fractions in Unregulated Rivers. Journal of Hydrologic Engineering - ASCE, 2018, 23, .	1.9	18
20	Modelling soil moisture in a highâ€ŀatitude landscape using LiDAR and soil data. Earth Surface Processes and Landforms, 2018, 43, 1019-1031.	2.5	48
21	Conserving migration in a changing climate, a case study: The Eurasian spoonbill, Platalea leucorodia leucorodia. Biological Conservation, 2018, 217, 222-231.	4.1	8
22	Diagnosing Human-Induced Dynamic and Thermodynamic Drivers of Extreme Rainfall. Journal of Climate, 2018, 31, 1029-1051.	3.2	11
23	Sensitivity of European wheat to extreme weather. Field Crops Research, 2018, 222, 209-217.	5.1	101
24	Strong Influence of Eddy Length on Boreal Summertime Extreme Precipitation Projections. Geophysical Research Letters, 2018, 45, 10,665-10,672.	4.0	8
25	Changing seasonality of moderate and extreme precipitation events in the Alps. Natural Hazards and Earth System Sciences, 2018, 18, 2047-2056.	3.6	40
26	Rainfall Intensification Enhances Deep Percolation and Soil Water Content in Tilled and Noâ€Till Cropping Systems of the US Midwest. Vadose Zone Journal, 2018, 17, 1-12.	2.2	18
27	The â€~Day Zero' Cape Town drought and the poleward migration of moisture corridors. Environmental Research Letters, 2018, 13, 124025.	5.2	103
28	A regional frequency analysis of UK subâ€daily extreme precipitation and assessment of their seasonality. International Journal of Climatology, 2018, 38, 4758-4776.	3.5	22
29	Assessment of future changes in Southeast Asian precipitation using the NASA Earth Exchange Global Daily Downscaled Projections data set. International Journal of Climatology, 2018, 38, 5231-5244.	3.5	13
31	Global Observational Evidence of Strong Linkage Between Dew Point Temperature and Precipitation Extremes. Geophysical Research Letters, 2018, 45, 12,320.	4.0	100
32	Future evolution of extreme precipitation in the Mediterranean. Climatic Change, 2018, 151, 289-302.	3.6	96
33	Storylines: an alternative approach to representing uncertainty in physical aspects of climate change. Climatic Change, 2018, 151, 555-571.	3.6	317
34	Prognostic Power of Extreme Rainfall Scaling Formulas Across Space and Time Scales. Journal of Advances in Modeling Earth Systems, 2018, 10, 3252-3267.	3.8	8
35	Significantly increased extreme precipitation expected in Europe and North America from extratropical cyclones. Environmental Research Letters, 2018, 13, 124006.	5.2	58
36	Projection of Future Extreme Precipitation and Flood Changes of the Jinsha River Basin in China Based on CMIP5 Climate Models. International Journal of Environmental Research and Public Health, 2018, 15, 2491.	2.6	18
37	Effect of Agricultural Chemicals and Organic Amendments on Biological Control Fungi. Sustainable Agriculture Reviews, 2018, , 217-359.	1.1	2

		CITATION R	EPORT	
#	Article		IF	Citations
38	The Changing Seasonality of Extreme Daily Precipitation. Geophysical Research Letters, 2018	3, 45, 11,352.	4.0	37
39	On the Connection Between Global Hydrologic Sensitivity and Regional Wet Extremes. Geop Research Letters, 2018, 45, 11,343.	hysical	4.0	40
40	Response of the Hydrological Cycle in Asian Monsoon Systems to Global Warming Through to of Water Vapor Wave Activity Analysis. Geophysical Research Letters, 2018, 45, 11,904.	he Lens:	4.0	9
41	On the link between the North Atlantic storm track and precipitation deuterium excess in Re Atmospheric Science Letters, 2018, 19, e865.	ykjavik.	1.9	20
42	The Uneven Nature of Daily Precipitation and Its Change. Geophysical Research Letters, 2018	3, 45, 11,980.	4.0	112
43	Using Historical Precipitation Patterns to Forecast Daily Extremes of Rainfall for the Coming in Naples (Italy). Geosciences (Switzerland), 2018, 8, 293.	Decades	2.2	10
44	Dynamic amplification of extreme precipitation sensitivity. Proceedings of the National Acad Sciences of the United States of America, 2018, 115, 9467-9472.	emy of	7.1	85
45	Projected timing of perceivable changes in climate extremes for terrestrial and marine ecosys Global Change Biology, 2018, 24, 4696-4708.	stems.	9.5	29
46	Physical mechanism of spring and early summer drought over North America associated with boreal warming. Scientific Reports, 2018, 8, 7533.	the	3.3	5
47	A regime shift in sediment export from a coastal watershed during a record wet winter, Calif Implications for landscape response to hydroclimatic extremes. Earth Surface Processes and Landforms, 2018, 43, 2562-2577.	brnia:	2.5	36
48	Increase in Subdaily Precipitation Extremes in India Under 1.5 and 2.0°C Warming Worlds Research Letters, 2018, 45, 6972-6982.	. Geophysical	4.0	59
49	How Uneven Are Changes to Impactâ€Relevant Climate Hazards in a 1.5 °C World and Bey Geophysical Research Letters, 2018, 45, 6672-6680.	ond?.	4.0	33
50	Detection of continental-scale intensification of hourly rainfall extremes. Nature Climate Cha 2018, 8, 803-807.	nge,	18.8	186
51	Effects of variability in probable maximum precipitation patterns on flood losses. Hydrology Earth System Sciences, 2018, 22, 2759-2773.	and	4.9	24
52	Letter to the editor regarding: Sponge Wetlands: restoring functional flood relief to Chinaâ€ rivers. Wetlands Ecology and Management, 2018, 26, 729-731.	™s great	1.5	0
53	Rainfall intensification in tropical semi-arid regions: the Sahelian case. Environmental Researc Letters, 2018, 13, 064013.	;h	5.2	104
54	Shifts in Precipitation Accumulation Extremes During the Warm Season Over the United Sta Geophysical Research Letters, 2018, 45, 8586-8595.	tes.	4.0	40
55	Reduced exposure to extreme precipitation from 0.5 °C less warming in global land mo Nature Communications, 2018, 9, 3153.	onsoon regions.	12.8	134

#	Article	IF	CITATIONS
56	Shifts in stream hydrochemistry in responses to typhoon and non-typhoon precipitation. Biogeosciences, 2018, 15, 2379-2391.	3.3	9
57	What precipitation is extreme?. Science, 2018, 360, 1072-1073.	12.6	171
58	Assessing the Robustness of Future Extreme Precipitation Intensification in the CMIP5 Ensemble. Journal of Climate, 2018, 31, 6505-6525.	3.2	45
59	Does global warming amplify interannual climate variability?. Climate Dynamics, 2019, 52, 2667-2684.	3.8	44
60	The local dependency of precipitation on historical changes in temperature. Climatic Change, 2019, 156, 105-120.	3.6	28
61	Projected changes in extreme precipitation at sub-daily and daily time scales. Global and Planetary Change, 2019, 182, 103004.	3.5	22
62	The impacts of a capacity-building workshop in a randomized adaptation project. Nature Climate Change, 2019, 9, 587-591.	18.8	16
63	Decadal-Scale Vegetation Change Driven by Salinity at Leading Edge of Rising Sea Level. Ecosystems, 2019, 22, 1918-1930.	3.4	37
64	Observed Link of Extreme Hourly Precipitation Changes to Urbanization over Coastal South China. Journal of Applied Meteorology and Climatology, 2019, 58, 1799-1819.	1.5	126
65	A Weatherâ€Regimeâ€Based Stochastic Weather Generator for Climate Vulnerability Assessments of Water Systems in the Western United States. Water Resources Research, 2019, 55, 6923-6945.	4.2	38
66	Extreme wet and dry conditions affected differently by greenhouse gases and aerosols. Npj Climate and Atmospheric Science, 2019, 2, .	6.8	21
67	Intensification of precipitation extremes in the world's humid and water-limited regions. Environmental Research Letters, 2019, 14, 065003.	5.2	80
68	Precipitation Evolution over Belgium by 2100 and Sensitivity to Convective Schemes Using the Regional Climate Model MAR. Atmosphere, 2019, 10, 321.	2.3	3
69	Precipitation extremes and depth-duration-frequency under internal climate variability. Scientific Reports, 2019, 9, 9112.	3.3	9
70	Recent spatial aggregation tendency of rainfall extremes over India. Scientific Reports, 2019, 9, 10321.	3.3	39
71	Roles of Dynamic Forcings and Diabatic Heating in Summer Extreme Precipitation in East China and the Southeastern United States. Journal of Climate, 2019, 32, 5815-5831.	3.2	23
72	Projected Changes in the Probability Distributions, Seasonality, and Spatiotemporal Scaling of Daily and Subdaily Extreme Precipitation Simulated by a 50â€Member Ensemble Over Northeastern North America. Journal of Geophysical Research D: Atmospheres, 2019, 124, 10427-10449.	3.3	21
73	Higher probability of compound flooding from precipitation and storm surge in Europe under anthropogenic climate change. Science Advances, 2019, 5, eaaw5531.	10.3	239

#	Article	IF	CITATIONS
74	Frequency of extreme precipitation increases extensively with event rareness under global warming. Scientific Reports, 2019, 9, 16063.	3.3	393
75	Contributions of Extreme and Nonâ€Extreme Precipitation to California Precipitation Seasonality Changes Under Warming. Geophysical Research Letters, 2019, 46, 13470-13478.	4.0	29
76	Latitudinal heterogeneity and hotspots of uncertainty in projected extreme precipitation. Environmental Research Letters, 2019, 14, 124032.	5.2	48
77	Regionalization of anthropogenically forced changes in 3 hourly extreme precipitation over Europe. Environmental Research Letters, 2019, 14, 124031.	5.2	14
78	Effect of Tropical Nonconvective Condensation on Uncertainty in Modeled Projections of Rainfall. Journal of Climate, 2019, 32, 6571-6588.	3.2	7
79	Impacts of Climate Change on the Hydro-Climate of Peninsular Malaysia. Water (Switzerland), 2019, 11, 1798.	2.7	11
80	Analysis of Rainfall Trends and Extreme Precipitation in the Middle Adriatic Side, Marche Region (Central Italy). Water (Switzerland), 2019, 11, 1948.	2.7	35
81	Analysis of the Atmospheric Water Budget for Elucidating the Spatial Scale of Precipitation Changes Under Climate Change. Geophysical Research Letters, 2019, 46, 10504-10511.	4.0	22
82	Nonlinear Response of Extreme Precipitation to Warming in CESM1. Geophysical Research Letters, 2019, 46, 10551-10560.	4.0	35
83	GSDR: A Global Sub-Daily Rainfall Dataset. Journal of Climate, 2019, 32, 4715-4729.	3.2	73
84	Emissions and emergence: a new index comparing relative contributions to climate change with relative climatic consequences. Environmental Research Letters, 2019, 14, 084009.	5.2	12
85	Estimation of extreme daily precipitation thermodynamic scaling using gridded satellite precipitation products over tropical land. Environmental Research Letters, 2019, 14, 095009.	5.2	17
86	Enhanced Climate Change Response of Wintertime North Atlantic Circulation, Cyclonic Activity, and Precipitation in a 25-km-Resolution Global Atmospheric Model. Journal of Climate, 2019, 32, 7763-7781.	3.2	19
87	A synthesis of hourly and daily precipitation extremes in different climatic regions. Weather and Climate Extremes, 2019, 26, 100219.	4.1	50
88	The Extreme Precipitation Index (EPI): A Coupled Dynamic–Thermodynamic Metric to Diagnose Midlatitude Floods Associated with Flow Reversal. Weather and Forecasting, 2019, 34, 1257-1276.	1.4	2
89	Why Do Precipitation Intensities Tend to Follow Gamma Distributions?. Journals of the Atmospheric Sciences, 2019, 76, 3611-3631.	1.7	60
90	Observed Spatiotemporal Trends in Intense Precipitation Events across United States: Applications for Stochastic Weather Generation. Climate, 2019, 7, 36.	2.8	5
91	Linking fire and the United Nations Sustainable Development Goals. Science of the Total Environment, 2019, 662, 547-558.	8.0	32

	Сітатіої	CITATION REPORT	
#	Article	IF	CITATIONS
92	Fastâ€Forward to Perturbed Equilibrium Climate. Geophysical Research Letters, 2019, 46, 8969-8975.	4.0	8
93	Projected intensification of sub-daily and daily rainfall extremes in convection-permitting climate model simulations over North America: implications for future intensity–duration–frequency curves. Natural Hazards and Earth System Sciences, 2019, 19, 421-440.	3.6	32
94	Current and Future Variations of the Monsoons of the Americas in a Warming Climate. Current Climate Change Reports, 2019, 5, 125-144.	8.6	58
95	Larger Increases in More Extreme Local Precipitation Events as Climate Warms. Geophysical Research Letters, 2019, 46, 6885-6891.	4.0	76
96	Changes in Frequency of Large Precipitation Accumulations over Land in a Warming Climate from the CESM Large Ensemble: The Roles of Moisture, Circulation, and Duration. Journal of Climate, 2019, 32, 5397-5416.	3.2	20
97	The Diurnal Nature of Future Extreme Precipitation Intensification. Geophysical Research Letters, 2019, 46, 7680-7689.	4.0	25
98	Systematic increases in the thermodynamic response of hourly precipitation extremes in an idealized warming experiment with a convection-permitting climate model. Environmental Research Letters, 2019, 14, 074012.	5.2	30
99	Quantitative scenarios for future hydrologic extremes in the U.S. Southern Great Plains. International Journal of Climatology, 2019, 39, 2659-2676.	3.5	7
100	Storyline approach to the construction of regional climate change information. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2019, 475, 20190013.	2.1	115
101	Nonstationary frequency analysis of the recent extreme precipitation events in the United States. Journal of Hydrology, 2019, 575, 999-1010.	5.4	62
102	Convection and Climate: What Have We Learned from Simple Models and Simplified Settings?. Current Climate Change Reports, 2019, 5, 196-206.	8.6	13
103	Response of Extreme Precipitating Cell Structures to Atmospheric Warming. Journal of Geophysical Research D: Atmospheres, 2019, 124, 6904-6918.	3.3	31
104	Precipitation From Persistent Extremes is Increasing in Most Regions and Globally. Geophysical Research Letters, 2019, 46, 6041-6049.	4.0	79
105	Impact of climate change on European winter and summer flood losses. Advances in Water Resources, 2019, 129, 165-177.	3.8	26
106	Wintertime extreme events recorded by lake sediments in Arctic Norway. Holocene, 2019, 29, 1305-1321.	1.7	1
107	A synoptic assessment of the summer extreme rainfall over the middle reaches of Yangtze River in CMIP5 models. Climate Dynamics, 2019, 53, 2133-2146.	3.8	8
108	Causal Reasoning: Towards Dynamic Predictive Models for Runoff Temporal Behavior of High Dependence Rivers. Water (Switzerland), 2019, 11, 877.	2.7	15
109	Synopticâ€Scale Precursors of Extreme U.K. Summer 3â€Hourly Rainfall. Journal of Geophysical Research D: Atmospheres, 2019, 124, 4477-4489.	3.3	13

#	Article	IF	CITATIONS
110	A High-Resolution Global Gridded Historical Dataset of Climate Extreme Indices. Data, 2019, 4, 41.	2.3	33
111	Estuarine salinity recovery from an extreme precipitation event: Hurricane Harvey in Galveston Bay. Science of the Total Environment, 2019, 670, 1049-1059.	8.0	44
112	Suitability of Satellite-Based Precipitation Products for Water Balance Simulations Using Multiple Observations in a Humid Catchment. Remote Sensing, 2019, 11, 151.	4.0	17
113	The Role of Convective Selfâ€Aggregation in Extreme Instantaneous Versus Daily Precipitation. Journal of Advances in Modeling Earth Systems, 2019, 11, 19-33.	3.8	21
114	Improving probabilistic hydroclimatic projections through high-resolution convection-permitting climate modeling and Markov chain Monte Carlo simulations. Climate Dynamics, 2019, 53, 1613-1636.	3.8	31
115	Regulation of atmospheric circulation controlling the tropical Pacific precipitation change in response to CO2 increases. Nature Communications, 2019, 10, 1108.	12.8	28
116	The response of precipitation characteristics to global warming from climate projections. Earth System Dynamics, 2019, 10, 73-89.	7.1	172
117	Seasonal variations in the response of soil CO2 efflux to precipitation pulse under mild drought in a temperate oak (Quercus variabilis) forest. Agricultural and Forest Meteorology, 2019, 271, 240-250.	4.8	18
118	Weather Types and Hourly to Multiday Rainfall Characteristics in Tropical Australia. Journal of Climate, 2019, 32, 3983-4011.	3.2	15
119	Changes in Extreme Precipitation Over Dry and Wet Regions of China During 1961â€2014. Journal of Geophysical Research D: Atmospheres, 2019, 124, 5847-5859.	3.3	32
120	On the relationship of daily rainfall extremes and local mean temperature. Journal of Hydrology, 2019, 572, 179-191.	5.4	40
121	Revisiting the dynamic and thermodynamic processes driving the record-breaking January 2014 precipitation in the southern UK. Scientific Reports, 2019, 9, 2859.	3.3	21
122	Understanding the Dynamic Contribution to Future Changes in Tropical Precipitation From Low‣evel Convergence Lines. Geophysical Research Letters, 2019, 46, 2196-2203.	4.0	9
123	Joint emulation of Earth System Model temperature-precipitation realizations with internal variability and space-time and cross-variable correlation: fldgen v2.0 software description. PLoS ONE, 2019, 14, e0223542.	2.5	4
124	Convective Precipitation Efficiency Observed in the Tropics. Geophysical Research Letters, 2019, 46, 13574-13583.	4.0	20
125	Variations in Greenhouse Gas Fluxes in Response to Short-Term Changes in Weather Variables at Three Elevation Ranges, Wakiso District, Uganda. Atmosphere, 2019, 10, 708.	2.3	8
126	Detection and attribution of flood trends in Mediterranean basins. Hydrology and Earth System Sciences, 2019, 23, 4419-4431.	4.9	41
127	Mechanism for Increasing Tropical Rainfall Unevenness With Global Warming. Geophysical Research Letters, 2019, 46, 14836-14843.	4.0	18

#	Article	IF	CITATIONS
128	Intensification of summer precipitation with shorter time-scales in Europe. Environmental Research Letters, 2019, 14, 124050.	5.2	31
129	Precipitation Trends and Alteration in Wei River Basin: Implication for Water Resources Management in the Transitional Zone between Plain and Loess Plateau, China. Water (Switzerland), 2019, 11, 2407.	2.7	9
130	Multi-RCM near-term projections of summer climate extremes over East Asia. Climate Dynamics, 2019, 52, 4937-4952.	3.8	22
131	Longâ€Term Changes in Wintertime Temperature Extremes in Moscow and Their Relation to Regional Atmospheric Dynamics. Journal of Geophysical Research D: Atmospheres, 2019, 124, 92-109.	3.3	4
132	Thermodynamic and Dynamic Mechanisms for Hydrological Cycle Intensification over the Full Probability Distribution of Precipitation Events. Journals of the Atmospheric Sciences, 2019, 76, 497-516.	1.7	38
133	Dramatic hydrodynamic and sedimentary responses in Galveston Bay and adjacent inner shelf to Hurricane Harvey. Science of the Total Environment, 2019, 653, 554-564.	8.0	76
134	The Asymmetry of Vertical Velocity in Current and Future Climate. Geophysical Research Letters, 2019, 46, 374-382.	4.0	13
135	How Much Information Is Required to Well Constrain Local Estimates of Future Precipitation Extremes?. Earth's Future, 2019, 7, 11-24.	6.3	55
136	Thermodynamic versus Dynamic Controls on Extreme Precipitation in a Warming Climate from the Community Earth System Model Large Ensemble. Journal of Climate, 2019, 32, 1025-1045.	3.2	70
137	Role of vertical velocity in improving finer scale statistical downscaling for projection of extreme precipitation. Theoretical and Applied Climatology, 2019, 137, 791-804.	2.8	7
138	The influence of convection-permitting regional climate modeling on future projections of extreme precipitation: dependency on topography and timescale. Climate Dynamics, 2019, 52, 5303-5324.	3.8	37
139	Contribution of large-scale midlatitude disturbances to hourly precipitation extremes in the United States. Climate Dynamics, 2019, 52, 197-208.	3.8	26
140	A pan-South-America assessment of avoided exposure to dangerous extreme precipitation by limiting to 1.5 ŰC warming. Environmental Research Letters, 2020, 15, 054005.	5.2	15
141	Potential impacts of specific global warming levels on extreme rainfall events over southern Africa in CORDEX and NEXâ€GDDP ensembles. International Journal of Climatology, 2020, 40, 3118-3141.	3.5	19
142	Effects of earthworms and whiteâ€ŧailed deer on roots, arbuscular mycorrhizae, and forest seedling performance. Ecology, 2020, 101, e02903.	3.2	8
143	Changes in future rainfall extremes over Northeast Bangladesh: A Bayesian model averaging approach. International Journal of Climatology, 2020, 40, 3232-3249.	3.5	9
144	Possible Increased Frequency of ENSO-Related Dry and Wet Conditions over Some Major Watersheds in a Warming Climate. Bulletin of the American Meteorological Society, 2020, 101, E409-E426.	3.3	48
145	North Atlantic Integrated Water Vapor Transport—From 850 to 2100 CE: Impacts on Western European Rainfall. Journal of Climate, 2020, 33, 263-279.	3.2	26

#	Article	IF	CITATIONS
146	Climate Adaptation as a Control Problem: Review and Perspectives on Dynamic Water Resources Planning Under Uncertainty. Water Resources Research, 2020, 56, e24389.	4.2	110
147	Projected Changes to Extreme Precipitation Along North American West Coast From the CESM Large Ensemble. Geophysical Research Letters, 2020, 47, e2019GL086038.	4.0	14
148	Application of the non-stationary peak-over-threshold methods for deriving rainfall extremes from temperature projections. Journal of Hydrology, 2020, 585, 124318.	5.4	29
149	Resilient Infrastructure: Understanding Interconnectedness and Long-Term Risk. , 2020, , 5-21.		Ο
150	Massive pollutants released to Galveston Bay during Hurricane Harvey: Understanding their retention and pathway using Lagrangian numerical simulations. Science of the Total Environment, 2020, 704, 135364.	8.0	34
151	Changes in climate extremes in observations and climate model simulations. From the past to the future. , 2020, , 31-57.		11
152	Atmospheric precursors for intense summer rainfall over the United Kingdom. International Journal of Climatology, 2020, 40, 3849-3867.	3.5	11
153	Trend in Short-Duration Extreme Precipitation in Hong Kong. Frontiers in Environmental Science, 2020, 8, .	3.3	3
154	Analyzing Internal Variability and Forced Response of Subdaily and Daily Extreme Precipitation Over Europe. Geophysical Research Letters, 2020, 47, e2020GL089300.	4.0	19
155	Advanced risk-based event attribution for heavy regional rainfall events. Npj Climate and Atmospheric Science, 2020, 3, .	6.8	27
156	Precipitation trends over the southern Andean Altiplano from 1981 to 2018. Journal of Hydrology, 2020, 590, 125485.	5.4	14
157	Future precipitation increase from very high resolution ensemble downscaling of extreme atmospheric river storms in California. Science Advances, 2020, 6, eaba1323.	10.3	65
158	Changes in daily and cumulative volumetric rainfall at various intensity levels due to urban surface expansion over China. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 72, 1745532.	1.7	7
159	Comparison between observations and gridded data sets over complex terrain in the Chilean Andes: Precipitation and temperature. International Journal of Climatology, 2020, 40, 5266-5288.	3.5	23
160	More meteorological events that drive compound coastal flooding are projected under climate change. Communications Earth & Environment, 2020, 1, 47.	6.8	78
161	Modeling River Runoff Temporal Behavior through a Hybrid Causal–Hydrological (HCH) Method. Water (Switzerland), 2020, 12, 3137.	2.7	13
162	Changes in Extreme Precipitation in the Mekong Basin. Advances in Meteorology, 2020, 2020, 1-10.	1.6	8
163	Seasonal variations in the response of soil respiration to rainfall events in a riparian poplar plantation. Science of the Total Environment, 2020, 747, 141222.	8.0	11

#	Article	IF	CITATIONS
164	Large-scale dynamics have greater role than thermodynamics in driving precipitation extremes over India. Climate Dynamics, 2020, 55, 2603-2614.	3.8	10
165	Spatiotemporal Variations of Extreme Precipitation Events in the Jinsha River Basin, Southwestern China. Advances in Meteorology, 2020, 2020, 1-13.	1.6	5
166	What metabolic, osmotic and molecular stress responses tell us about extreme ambient heatwave impacts in fish at low salinities: The case of European seabass, Dicentrarchus labrax. Science of the Total Environment, 2020, 749, 141458.	8.0	30
167	Geomorphic and Sedimentary Effects of Modern Climate Change: Current and Anticipated Future Conditions in the Western United States. Reviews of Geophysics, 2020, 58, e2019RG000692.	23.0	68
168	Potential Precipitation Predictability Decreases Under Future Warming. Geophysical Research Letters, 2020, 47, e2020GL090798.	4.0	9
169	Atmospheric convection, dynamics and topography shape the scaling pattern of hourly rainfall extremes with temperature globally. Communications Earth & Environment, 2020, 1, .	6.8	31
170	Climate change impact on flood and extreme precipitation increases with water availability. Scientific Reports, 2020, 10, 13768.	3.3	423
171	Estimations of Long-Term nss-SO42– and NO3– Wet Depositions over East Asia by Use of Ensemble Machine-Learning Method. Environmental Science & Technology, 2020, 54, 11118-11126.	10.0	7
172	Long-Term Rainfall Trends and Their Variability in Mainland Portugal in the Last 106 Years. Climate, 2020, 8, 146.	2.8	15
173	Groundwater utilization practices for irrigation systems in east Hararghe zone, Ethiopia. Cogent Food and Agriculture, 2020, 6, 1850200.	1.4	0
174	Composite effects of temperature increase and snow cover change on litter decomposition and microbial community in coolâ€ŧemperate grassland. Grassland Science, 2020, 67, 315.	1.1	1
175	Convective Aggregation and the Amplification of Tropical Precipitation Extremes. AGU Advances, 2020, 1, e2020AV000201.	5.4	5
176	Determining the Anthropogenic Greenhouse Gas Contribution to the Observed Intensification of Extreme Precipitation. Geophysical Research Letters, 2020, 47, e2019GL086875.	4.0	66
177	Emergence of an equatorial mode of climate variability in the Indian Ocean. Science Advances, 2020, 6, eaay7684.	10.3	23
178	Effects of extreme ambient temperature in European seabass, Dicentrarchus labrax acclimated at different salinities: Growth performance, metabolic and molecular stress responses. Science of the Total Environment, 2020, 735, 139371.	8.0	28
179	Improving US extreme precipitation simulation: dependence on cumulus parameterization and underlying mechanism. Climate Dynamics, 2020, 55, 1325-1352.	3.8	11
180	Projected Changes in Extreme Precipitation in a 60â€km AGCM Large Ensemble and Their Dependence on Return Periods. Geophysical Research Letters, 2020, 47, e2019GL086855.	4.0	10
181	Changes in Tropical Precipitation Intensity With El Niño Warming. Geophysical Research Letters, 2020, 47, e2020GL087663.	4.0	7

#	Article	IF	CITATIONS
182	Climate change attribution and the economic costs of extreme weather events: a study on damages from extreme rainfall and drought. Climatic Change, 2020, 162, 781-797.	3.6	93
183	Relative Importance of Greenhouse Gases, Sulfate, Organic Carbon, and Black Carbon Aerosol for South Asian Monsoon Rainfall Changes. Geophysical Research Letters, 2020, 47, e2020GL088363.	4.0	16
184	Emergence of unprecedented climate change in projected future precipitation. Scientific Reports, 2020, 10, 4802.	3.3	14
185	Fidelity of global climate models in representing the horizontal water vapour transport. International Journal of Climatology, 2020, 40, 5714-5726.	3.5	1
186	Impact of resolution on large-eddy simulation of midlatitude summertime convection. Atmospheric Chemistry and Physics, 2020, 20, 2891-2910.	4.9	7
187	Responses of Mean and Extreme Precipitation to Different Climate Forcing Under Radiative-Convective Equilibrium. Advances in Atmospheric Sciences, 2020, 37, 377-386.	4.3	4
188	Dynamic Amplification of Subtropical Extreme Precipitation in a Warming Climate. Geophysical Research Letters, 2020, 47, e2020GL087200.	4.0	13
189	Physics-guided probabilistic modeling of extreme precipitation under climate change. Scientific Reports, 2020, 10, 10299.	3.3	9
190	Changing Degree of Convective Organization as a Mechanism for Dynamic Changes in Extreme Precipitation. Current Climate Change Reports, 2020, 6, 47-54.	8.6	20
191	Rivers' Temporal Sustainability through the Evaluation of Predictive Runoff Methods. Sustainability, 2020, 12, 1720.	3.2	12
192	Changes in Antecedent Soil Moisture Modulate Flood Seasonality in a Changing Climate. Water Resources Research, 2020, 56, e2019WR026300.	4.2	81
193	Climate Extremes and Compound Hazards in a Warming World. Annual Review of Earth and Planetary Sciences, 2020, 48, 519-548.	11.0	330
194	Impacts of droughts on low flows and water quality near power stations. Hydrological Sciences Journal, 2020, 65, 898-913.	2.6	6
195	Increased population exposure to precipitation extremes under future warmer climates. Environmental Research Letters, 2020, 15, 034048.	5.2	41
196	Trait means predict performance under water limitation better than plasticity for seedlings of Poaceae species on the eastern Tibetan Plateau. Ecology and Evolution, 2020, 10, 2944-2955.	1.9	4
197	The 2018 Kerala floods: a climate change perspective. Climate Dynamics, 2020, 54, 2433-2446.	3.8	127
198	Temperature dependence of extreme precipitation over mainland China. Journal of Hydrology, 2020, 583, 124595.	5.4	36
199	Integrating the Water Planetary Boundary With Water Management From Local to Global Scales. Earth's Future, 2020, 8, e2019EF001377.	6.3	65

#	Article	IF	Citations
200	Temperature effects on the spatial structure of heavy rainfall modify catchment hydro-morphological response. Earth Surface Dynamics, 2020, 8, 17-36.	2.4	28
201	Decreasing precipitation occurs in daily extreme precipitation intervals across China in observations and model simulations. Climate Dynamics, 2020, 54, 2597-2612.	3.8	13
202	Spatiotemporal variations in monthly relative humidity in China based on observations and CMIP5 models. International Journal of Climatology, 2020, 40, 6382-6395.	3.5	9
203	Dry and moist dynamics shape regional patterns of extreme precipitation sensitivity. Proceedings of the United States of America, 2020, 117, 8757-8763.	7.1	37
204	Advances in understanding largeâ€scale responses of the water cycle to climate change. Annals of the New York Academy of Sciences, 2020, 1472, 49-75.	3.8	226
205	Capturing transformation of flood hazard over a large River Basin under changing climate using a top-down approach. Science of the Total Environment, 2020, 726, 138600.	8.0	20
206	A universal multifractal approach to assessment of spatiotemporal extreme precipitation over the Loess Plateau of China. Hydrology and Earth System Sciences, 2020, 24, 809-826.	4.9	25
207	Potential linkages of extreme climate events with vegetation and large-scale circulation indices in an endorheic river basin in northwest China. Atmospheric Research, 2021, 247, 105256.	4.1	31
208	Heterogeneous response of global precipitation concentration to global warming. International Journal of Climatology, 2021, 41, E2347.	3.5	16
209	Tracking rates of postfire conifer regeneration vs. deciduous vegetation recovery across the western United States. Ecological Applications, 2021, 31, e02237.	3.8	17
210	Low frequency <scp>globalâ€scale</scp> modes and its influence on rainfall extremes over India: Nonstationary and uncertainty analysis. International Journal of Climatology, 2021, 41, 1873-1888.	3.5	20
211	Intensification of extreme precipitation in arid Central Asia. Journal of Hydrology, 2021, 598, 125760.	5.4	77
212	Reduced host plant growth and increased tyrosine-derived secondary metabolites under climate change and negative consequences on its specialist herbivore. Science of the Total Environment, 2021, 759, 143507.	8.0	7
213	Compounding factors for extreme flooding around Galveston Bay during Hurricane Harvey. Ocean Modelling, 2021, 158, 101735.	2.4	34
214	Fast adjustment versus slow SST-mediated response of daily precipitation statistics to abrupt 4xCO2. Climate Dynamics, 2021, 56, 1083-1104.	3.8	13
215	Identification of possible dynamical drivers for long-term changes in temperature and rainfall patterns over Europe. Theoretical and Applied Climatology, 2021, 143, 177-191.	2.8	7
216	Highâ€resolution dynamically downscaled rainfall and temperature projections for ecological life zones within Puerto Rico and for the U.S. Virgin Islands. International Journal of Climatology, 2021, 41, 1305-1327.	3.5	8
217	Assessment of rainfall variability and future change in Brazil across multiple timescales. International Journal of Climatology, 2021, 41, E1875.	3.5	29

~			~	
C^{+}		ON	REDC	DT
\sim	плі		NLFC	

#	Article	IF	CITATIONS
218	Anthropogenic intensification of short-duration rainfall extremes. Nature Reviews Earth & Environment, 2021, 2, 107-122.	29.7	279
219	Changes in Observed Daily Precipitation over Global Land Areas since 1950. Journal of Climate, 2021, 34, 3-19.	3.2	35
220	Evaluation of TMPA 3B42-V7 Product on Extreme Precipitation Estimates. Remote Sensing, 2021, 13, 209.	4.0	11
221	Quantifying Uncertainty in Food Security Modeling. Agriculture (Switzerland), 2021, 11, 33.	3.1	10
222	Identifying robust bias adjustment methods for European extreme precipitation in a multi-model pseudo-reality setting. Hydrology and Earth System Sciences, 2021, 25, 273-290.	4.9	9
223	Future Precipitation Extremes in China under Climate Change and Their Physical Quantification Based on a Regional Climate Model and CMIP5 Model Simulations. Advances in Atmospheric Sciences, 2021, 38, 460-479.	4.3	28
224	Extreme Subâ€Hourly Precipitation Intensities Scale Close to the Clausiusâ€Clapeyron Rate Over Europe. Geophysical Research Letters, 2021, 48, e2020GL089506.	4.0	25
225	Changing Spatial Structure of Summer Heavy Rainfall, Using Convectionâ€Permitting Ensemble. Geophysical Research Letters, 2021, 48, e2020GL090903.	4.0	15
226	A methodology for attributing the role of climate change in extreme events: a global spectrally nudged storyline. Natural Hazards and Earth System Sciences, 2021, 21, 171-186.	3.6	35
227	Precipitation Characteristics and Future Changes Over the Southern Slope of Tibetan Plateau Simulated by a Highâ€Resolution Global Nonhydrostatic Model. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033630.	3.3	10
228	Does the Hook Structure Constrain Future Flood Intensification Under Anthropogenic Climate Warming?. Water Resources Research, 2021, 57, e2020WR028491.	4.2	78
229	Boreal conifer seedling responses to experimental competition removal during summer drought. Ecosphere, 2021, 12, e03391.	2.2	3
230	Local and Regional Modes of Hydroclimatic Change Expressed in Modern Multidecadal Precipitation Oxygen Isotope Trends. Geophysical Research Letters, 2021, 48, e2020GL092006.	4.0	8
231	Low Pressure Systems and Extreme Precipitation in Southeast and East Asian Monsoon Regions. Journal of Climate, 2021, 34, 1147-1162.	3.2	10
232	Consistent Largeâ€Scale Response of Hourly Extreme Precipitation to Temperature Variation Over Land. Geophysical Research Letters, 2021, 48, e2020GL090317.	4.0	46
233	Extreme wet seasons – their definition and relationship with synoptic-scale weather systems. Weather and Climate Dynamics, 2021, 2, 71-88.	3.5	6
234	Observed and Projected Changes in Temperature and Precipitation in the Core Crop Region of the Humid Pampa, Argentina. Climate, 2021, 9, 40.	2.8	6
235	Independent <scp>ENSO</scp> and <scp>IOD</scp> impacts on rainfall extremes over Indonesia. International Journal of Climatology, 2021, 41, 3640-3656.	3.5	42

#	Article	IF	CITATIONS
236	Distortions of the Rain Distribution With Warming, With and Without Selfâ€Aggregation. Journal of Advances in Modeling Earth Systems, 2021, 13, e2020MS002256.	3.8	8
237	Extreme value analysis dilemma for climate change impact assessment on global flood and extreme precipitation. Journal of Hydrology, 2021, 593, 125932.	5.4	70
238	Toward Narrowing Uncertainty in Future Projections of Local Extreme Precipitation. Geophysical Research Letters, 2021, 48, e2020GL091823.	4.0	17
239	Multi-decadal convection-permitting climate projections for China's Greater Bay Area and surroundings. Climate Dynamics, 2021, 57, 415-434.	3.8	13
240	Response of extreme precipitation to uniform surface warming in quasi-global aquaplanet simulations at high resolution. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20190543.	3.4	11
241	Influence of extreme ambient cold stress on growth, hematological, antioxidants, and immune responses in European seabass, Dicentrarchus labrax acclimatized at different salinities. Ecological Indicators, 2021, 122, 107280.	6.3	15
242	Towards advancing scientific knowledge of climate change impacts on short-duration rainfall extremes. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20190542.	3.4	56
243	Updating <scp>intensity–duration–frequency</scp> curves for urban infrastructure design under a changing environment. Wiley Interdisciplinary Reviews: Water, 2021, 8, e1519.	6.5	25
244	Effects of 0.5°C less global warming on climate extremes in the contiguous United States. Climate Dynamics, 2021, 57, 303-319.	3.8	6
245	Changes in hourly extreme precipitation in Victoria, Australia, from the observational record. Weather and Climate Extremes, 2021, 31, 100294.	4.1	11
246	Assessing the Representation of Synoptic Variability Associated With California Extreme Precipitation in CMIP6 Models. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033938.	3.3	11
247	Debris-Flow Hazard Assessments: A Practitioner's View. Environmental and Engineering Geoscience, 2021, 27, 153-166.	0.9	12
248	Seasonality, Intensity, and Duration of Rainfall Extremes Change in a Warmer Climate. Earth's Future, 2021, 9, e2020EF001824.	6.3	71
249	The importance of horizontal model resolution on simulated precipitation in Europe – from global to regional models. Weather and Climate Dynamics, 2021, 2, 181-204.	3.5	8
250	Closing the Water Cycle from Observations across Scales: Where Do We Stand?. Bulletin of the American Meteorological Society, 2021, 102, E1897-E1935.	3.3	31
251	Larger Spatial Footprint of Wintertime Total Precipitation Extremes in a Warmer Climate. Geophysical Research Letters, 2021, 48, e2020GL091990.	4.0	19
252	Evaluation of multiple downscaling tools for simulating extreme precipitation events over Southeastern South America: a case study approach. Climate Dynamics, 2021, 57, 1241-1264.	3.8	16
253	Explaining the Spatial Pattern of U.S. Extreme Daily Precipitation Change. Journal of Climate, 2021, 34, 2759-2775.	3.2	3

#	Article	IF	CITATIONS
254	Sequential Data Assimilation for Streamflow Forecasting: Assessing the Sensitivity to Uncertainties and Updated Variables of a Conceptual Hydrological Model at Basin Scale. Water Resources Research, 2021, 57, .	4.2	25
255	Scenarios of Human Responses to Unprecedented Socialâ€Environmental Extreme Events. Earth's Future, 2021, 9, e2020EF001911.	6.3	15
256	Increased frequency of extreme precipitation events in the North Atlantic during the PETM: Observations and theory. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 568, 110289.	2.3	22
257	Evaluation of the Tail of the Probability Distribution of Daily and Subdaily Precipitation in CMIP6 Models. Journal of Climate, 2021, 34, 2701-2721.	3.2	11
258	Observed changes in air temperature and precipitation extremes over Brazil. International Journal of Climatology, 2021, 41, 5125-5142.	3.5	52
259	How Strongly Are Mean and Extreme Precipitation Coupled?. Geophysical Research Letters, 2021, 48, e2020GL092075.	4.0	16
260	Protected Convection as a Metric of Dry Air Influence on Precipitation. Journal of Climate, 2021, 34, 3821-3838.	3.2	3
261	Hydrological projections in the upper reaches of the Yangtze River Basin from 2020 to 2050. Scientific Reports, 2021, 11, 9720.	3.3	10
262	A Two-plume Convective Model for Precipitation Extremes. Advances in Atmospheric Sciences, 2021, 38, 957-965.	4.3	4
263	Reconstruction of erosivity density in northwest Italy since 1701. Hydrological Sciences Journal, 2021, 66, 1185-1196.	2.6	7
264	Simulation of Extreme Precipitation in Four Climate Regions in China by General Circulation Models (GCMs): Performance and Projections. Water (Switzerland), 2021, 13, 1509.	2.7	9
265	Present and future diurnal hourly precipitation in 0.11Ű EURO-CORDEX models and at convection-permitting resolution. Environmental Research Communications, 2021, 3, 055002.	2.3	12
266	Changing climate drives future streamflow declines and challenges in meeting water demand across the southwestern United States. Journal of Hydrology X, 2021, 11, 100074.	1.6	30
267	Changes in Annual Extremes of Daily Temperature and Precipitation in CMIP6 Models. Journal of Climate, 2021, 34, 3441-3460.	3.2	132
268	Towards a compound-event-oriented climate model evaluation: a decomposition of the underlying biases in multivariate fire and heat stress hazards. Natural Hazards and Earth System Sciences, 2021, 21, 1867-1885.	3.6	17
269	Drivers of Summer Extreme Precipitation Events Over East China. Geophysical Research Letters, 2021, 48, e2021GL093670.	4.0	42
270	Recent nationwide climate change impact assessments of natural hazards in Japan and East Asia. Weather and Climate Extremes, 2021, 32, 100309.	4.1	27
271	Internal variability and temperature scaling of future sub-daily rainfall return levels over Europe. Environmental Research Letters, 2021, 16, 064097.	5.2	12

#	Article	IF	CITATIONS
272	Connections Between Mean North Pacific Circulation and Western US Precipitation Extremes in a Warming Climate. Earth's Future, 2021, 9, e2020EF001944.	6.3	5
273	Root traits explain plant species distributions along climatic gradients yet challenge the nature of ecological trade-offs. Nature Ecology and Evolution, 2021, 5, 1123-1134.	7.8	62
274	Evaluation and Future Projection of Extreme Climate Events in the Yellow River Basin and Yangtze River Basin in China Using Ensembled CMIP5 Models Data. International Journal of Environmental Research and Public Health, 2021, 18, 6029.	2.6	11
275	Fecal indicators, pathogens, antibiotic resistance genes, and ecotoxicity in Galveston Bay after Hurricane Harvey. Journal of Hazardous Materials, 2021, 411, 124953.	12.4	10
276	A cross-scale study for compound flooding processes during Hurricane Florence. Natural Hazards and Earth System Sciences, 2021, 21, 1703-1719.	3.6	28
277	A unified statistical framework for detecting trends in multi-timescale precipitation extremes: application to non-stationary intensity-duration-frequency curves. Theoretical and Applied Climatology, 2021, 145, 839-860.	2.8	4
278	The three-dimensional life cycles of potential vorticity cutoffs: a global and selected regional climatologies in ERA-Interim (1979–2018). Weather and Climate Dynamics, 2021, 2, 507-534.	3.5	23
279	Massive oyster kill in Galveston Bay caused by prolonged low-salinity exposure after Hurricane Harvey. Science of the Total Environment, 2021, 774, 145132.	8.0	33
280	Earth System Model Evaluation Tool (ESMValTool) v2.0 – diagnostics for extreme events, regional and impact evaluation, and analysis of Earth system models in CMIP. Geoscientific Model Development, 2021, 14, 3159-3184.	3.6	19
281	Cut-Off Lows and Extreme Precipitation in Eastern Spain: Current and Future Climate. Atmosphere, 2021, 12, 835.	2.3	24
282	Extreme winter cold-induced osmoregulatory, metabolic, and physiological responses in European seabass (Dicentrarchus labrax) acclimatized at different salinities. Science of the Total Environment, 2021, 771, 145202.	8.0	30
283	How Moist and Dry Intrusions Control the Local Hydrologic Cycle in Present and Future Climates. Journal of Climate, 2021, 34, 4343-4359.	3.2	0
284	A Retrospective and Prospective Examination of the 1960s U.S. Northeast Drought. Earth's Future, 2021, 9, e2020EF001930.	6.3	5
285	Quasiâ€6tationary Intense Rainstorms Spread Across Europe Under Climate Change. Geophysical Research Letters, 2021, 48, e2020GL092361.	4.0	49
286	Rainfall on the Greenland Ice Sheet: Presentâ€Day Climatology From a Highâ€Resolution Nonâ€Hydrostatic Polar Regional Climate Model. Geophysical Research Letters, 2021, 48, e2021GL092942.	4.0	23
287	Global mean frequency increases of daily and sub-daily heavy precipitation in ERA5. Environmental Research Letters, 2021, 16, 074035.	5.2	20
288	River flooding in a changing climate: rainfall-discharge trends, controlling factors, and susceptibility mapping for the Mahi catchment, Western India. Natural Hazards, 2021, 109, 2439-2459.	3.4	9
289	Heavy versus extreme rainfall events in southeast Australia. Quarterly Journal of the Royal Meteorological Society, 2021, 147, 3201-3226.	2.7	13

#	Article	IF	Citations
290	Detectable anthropogenic changes in daily-scale circulations driving summer rainfall shifts over eastern China. Environmental Research Letters, 2021, 16, 074044.	5.2	6
291	Understanding the Mechanisms of Summer Extreme Precipitation Events in Xinjiang of Arid Northwest China. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034111.	3.3	29
292	Anthropogenic influence on extreme precipitation over global land areas seen in multiple observational datasets. Nature Communications, 2021, 12, 3944.	12.8	74
293	Summer and winter precipitation in East Asia scale with global warming at different rates. Communications Earth & Environment, 2021, 2, .	6.8	14
294	Understanding the sensitivity of hourly precipitation extremes to the warming climate over Eastern China. Environmental Research Communications, 2021, 3, 081002.	2.3	4
295	Using climate uncertainty for functional resilience. Climate Services, 2021, 23, 100244.	2.5	0
296	The spatial and seasonal dependency of daily precipitation extremes on the temperature in China from 1957 to 2017. International Journal of Climatology, 2022, 42, 1560-1575.	3.5	10
297	Imprint of the Pacific Walker Circulation in Global Precipitation δ18O. Journal of Climate, 2021, 34, 8579-8597.	3.2	11
298	Future Changes in the Indian Ocean Walker Circulation and Links to Kenyan Rainfall. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD034585.	3.3	5
299	Causes, impacts and patterns of disastrous river floods. Nature Reviews Earth & Environment, 2021, 2, 592-609.	29.7	175
300	Evaluation of climate change resilience for Boston's rail rapid transit network. Transportation Research, Part D: Transport and Environment, 2021, 97, 102908.	6.8	28
301	Summer Mean and Extreme Precipitation Over the Midâ€Atlantic Region: Climatological Characteristics and Contributions From Different Precipitation Types. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035045.	3.3	7
302	The Response of Daily and Subâ€Daily Extreme Precipitations to Changes in Surface and Dewâ€Point Temperatures. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD034972.	3.3	5
303	Impacts of Urbanization on Extreme Regional Precipitation Events. Discrete Dynamics in Nature and Society, 2021, 2021, 1-17.	0.9	3
304	Global Scaling of Rainfall With Dewpoint Temperature Reveals Considerable Ocean‣and Difference. Geophysical Research Letters, 2021, 48, e2021GL093798.	4.0	29
305	Assessment of extreme climatic event model parameters estimation techniques: a case study using Tasmanian extreme rainfall. Environmental Earth Sciences, 2021, 80, 1.	2.7	3
306	Investigating the Causes and Impacts of Convective Aggregation in a High Resolution Atmospheric GCM. Journal of Advances in Modeling Earth Systems, 0, , e2021MS002675.	3.8	1
307	Rainfall retention and runoff generation processes in tropical mature green roof ecosystems. Hydrological Processes, 2021, 35, e14382.	2.6	2

#	Article	IF	CITATIONS
308	Extreme storms in Southwest Asia (Northern Arabian Peninsula) under current and future climates. Climate Dynamics, 2022, 58, 1509-1524.	3.8	2
309	An online participatory system for SWMM-based flood modeling and simulation. Environmental Science and Pollution Research, 2022, 29, 7322-7343.	5.3	14
311	A link between surface air temperature and extreme precipitation over Russia from station and reanalysis data. Environmental Research Letters, 2021, 16, 105004.	5.2	27
312	Frequency analysis of storm-scale soil erosion and characterization of extreme erosive events by linking the DWEPP model and a stochastic rainfall generator. Science of the Total Environment, 2021, 787, 147609.	8.0	10
313	Breaking Down the Computational Barriers to Realâ€Time Urban Flood Forecasting. Geophysical Research Letters, 2021, 48, e2021GL093585.	4.0	21
314	A global perspective on the sub-seasonal clustering of precipitation extremes. Weather and Climate Extremes, 2021, 33, 100348.	4.1	17
315	Climate Change and Rainfall Intensity–Duration–Frequency Curves: Overview of Science and Guidelines for Adaptation. Journal of Hydrologic Engineering - ASCE, 2021, 26, .	1.9	58
316	Patterning the persistence of pervasive precipitation in the western Iran. Arabian Journal of Geosciences, 2021, 14, 1.	1.3	0
317	Projected effects of climate change on shallow landslides, North Shore Mountains, Vancouver, Canada. Geomorphology, 2021, 393, 107921.	2.6	14
318	Climate models capture key features of extreme precipitation probabilities across regions. Environmental Research Letters, 2021, 16, 024017.	5.2	12
319	Global atmospheric moisture transport associated with precipitation extremes: Mechanisms and climate change impacts. Wiley Interdisciplinary Reviews: Water, 2020, 7, e1412.	6.5	47
320	Rainfall Trends in Southern Portugal at Different Time Scales. , 2020, , 3-19.		1
321	Prototype of a LPWA Network for Real-Time Hydro-Meteorological Monitoring and Flood Nowcasting. Lecture Notes in Computer Science, 2019, , 566-574.	1.3	2
322	Response of precipitation extremes to warming: what have we learned from theory and idealized cloud-resolving simulations, and what remains to be learned?. Environmental Research Letters, 2020, 15, 035001.	5.2	30
323	Human influence strengthens the contrast between tropical wet and dry regions. Environmental Research Letters, 2020, 15, 104026.	5.2	27
324	Impact of atmospheric circulation on the rainfall-temperature relationship in Australia. Environmental Research Letters, 2020, 15, 094098.	5.2	21
325	The contribution of anthropogenic influence to more anomalous extreme precipitation in Europe. Environmental Research Letters, 2020, 15, 104077.	5.2	22
326	Shorter cyclone clusters modulate changes in European wintertime precipitation extremes. Environmental Research Letters, 2020, 15, 124005.	5.2	23

#	Article	IF	CITATIONS
327	Response of Vertical Velocities in Extratropical Precipitation Extremes to Climate Change. Journal of Climate, 2020, 33, 7125-7139.	3.2	26
328	A Comparison of Intra-Annual and Long-Term Trend Scaling of Extreme Precipitation with Temperature in a Large-Ensemble Regional Climate Simulation. Journal of Climate, 2020, 33, 9233-9245.	3.2	16
329	Heavy Daily Precipitation Events in the CMIP6 Worst-Case Scenario: Projected Twenty-First-Century Changes. Journal of Climate, 2020, 33, 7631-7642.	3.2	27
330	A Global Quasigeostrophic Diagnosis of Extratropical Extreme Precipitation. Journal of Climate, 2020, 33, 9629-9642.	3.2	9
332	Independence of Future Changes of River Runoff in Europe from the Pathway to Global Warming. Climate, 2020, 8, 22.	2.8	12
333	Characteristics and performance of wind profiles as observed by the radar wind profiler network of China. Atmospheric Measurement Techniques, 2020, 13, 4589-4600.	3.1	22
334	The INTENSE project: using observations and models to understand the past, present and future of sub-daily rainfall extremes. Advances in Science and Research, 0, 15, 117-126.	1.0	59
335	Long-term variance of heavy precipitation across central Europe using a large ensemble of regional climate model simulations. Earth System Dynamics, 2020, 11, 469-490.	7.1	19
336	Increasing precipitation variability on daily-to-multiyear time scales in a warmer world. Science Advances, 2021, 7, .	10.3	111
337	Amplified warming of extreme temperatures over tropical land. Nature Geoscience, 2021, 14, 837-841.	12.9	31
338	Comparison of estimation techniques for generalised extreme value (GEV) distribution parameters: a case study with Tasmanian rainfall. International Journal of Environmental Science and Technology, 2022, 19, 7737-7750.	3.5	4
339	Statistical characteristics of extreme daily precipitation during 1501 BCE–1849 CE in the Community Earth System Model. Climate of the Past, 2021, 17, 2031-2053.	3.4	1
340	What Controls the Interannual Variability of Extreme Precipitation?. Geophysical Research Letters, 2021, 48, e2021GL095503.	4.0	8
341	RELATINOSHIP BETWEEN EXTREME RAINFALL INTENSITY AND TEMPERATURE RISE DERIVED FROM OBSERVATIONS AND d4PDF OVER JAPAN. Journal of Japan Society of Civil Engineers Ser B1 (Hydraulic) Tj ETQq1 1	l 0.7 8431	4ogBT/Ov∈
342	Spatiotemporal variation of extreme precipitation regimes in the Hanjiang River Basin during 1970-2015. Journal of Natural Resources, 2019, 34, 1209.	0.6	2
343	O efeito do relevo nas chuvas na porção central do Estado de São Paulo em anos padrão extremos. Revista Do Departamento De Geografia, 0, 40, 132-147.	0.0	2
344	Landslides in a changing climate. , 2022, , 505-579.		16
345	Climate Change, Public Health, Social Peace. , 2020, , 225-238.		0

#	Article	IF	CITATIONS
346	Great Plains storm intensity since the last glacial controlled by spring surface warming. Nature Geoscience, 2021, 14, 912-917.	12.9	2
347	Simulation of an extreme rainfall event over Mumbai using a regional climate model: a case study. Meteorology and Atmospheric Physics, 2022, 134, 1.	2.0	10
348	Event-based analysis of wetland hydrologic response in the Prairie Pothole Region. Journal of Hydrology, 2022, 604, 127237.	5.4	4
349	Reduced Rainfall in Future Heavy Precipitation Events Related to Contracted Rain Area Despite Increased Rain Rate. Earth's Future, 2022, 10, e2021EF002397.	6.3	9
350	Atmospheric Rivers Bring More Frequent and Intense Extreme Rainfall Events Over East Asia Under Global Warming. Geophysical Research Letters, 2021, 48, e2021GL096030.	4.0	17
351	Observed changes in heavy daily precipitation over the Nordic-Baltic region. Journal of Hydrology: Regional Studies, 2021, 38, 100965.	2.4	6
352	Investigating Temporal and Spatial Precipitation Patterns in the Southern Mid-Atlantic United States. Frontiers in Climate, 2022, 3, .	2.8	2
353	Observed and Projected Scaling of Daily Extreme Precipitation with Dew Point Temperature at Annual and Seasonal Scales across the Northeast United Sates. Journal of Hydrometeorology, 2022, , .	1.9	1
354	Future urban heat island influence on precipitation. Climate Dynamics, 2022, 58, 3393-3403.	3.8	23
355	Linking Total Precipitable Water to Precipitation Extremes Globally. Earth's Future, 2022, 10, .	6.3	22
356	The Response of Precipitation Extremes to the Twentieth―and Twentyâ€Firstâ€Century Global Temperature Change in a Comprehensive Suite of CESM1 Large Ensemble Simulation: Revisiting the Role of Forcing Agents Vs. the Role of Forcing Magnitudes. Earth and Space Science, 2022, 9, .	2.6	3
357	Capability of GPM IMERG Products for Extreme Precipitation Analysis over the Indonesian Maritime Continent. Remote Sensing, 2022, 14, 412.	4.0	18
358	Observed changes in extreme precipitation over the Tienshan Mountains and associated large-scale climate teleconnections. Journal of Hydrology, 2022, 606, 127457.	5.4	19
359	Analysis of extreme rainfall events under the climatic change. , 2022, , 307-326.		3
360	Precipitation variability and risk of infectious disease in children under 5 years for 32 countries: a global analysis using Demographic and Health Survey data. Lancet Planetary Health, The, 2022, 6, e147-e155.	11.4	7
361	Stormwater management in urban areas using dry gallery infiltration systems. Science of the Total Environment, 2022, 823, 153705.	8.0	5
362	Editorial: Water management addressing societal and climate change challenges. Journal of Water and Climate Change, 2022, 13, v-vii.	2.9	1
363	深度ä,ç;®å®šæ€§ä,‹æ²;æµ·æ′ªæ°´æ°"候å•åŒ−é€,应决ç−æ−1法è⁻"è;°. Chinese Science Bulletin, 2022, , . 	0.7	0

		CITATION REI	PORT	
#	Article		IF	CITATIONS
364	Precipitation Extremes and Water Vapor. Current Climate Change Reports, 2022, 8, 17-33.		8.6	17
365	East African population exposure to precipitation extremes under 1.5 °C and 2.0 °C warm based on CMIP6 models. Environmental Research Letters, 2022, 17, 044051.	ing levels	5.2	13
366	Modeling Streamflow at the Iberian Peninsula Scale Using MOHID-Land: Challenges from a C Scale Approach. Water (Switzerland), 2022, 14, 1013.	oarse	2.7	2
367	Multi-model errors and emergence times in climate attribution studies. Journal of Climate, 20	22, , 1-42.	3.2	0
368	Quantifying the role of the large-scale circulation on European summer precipitation change. Dynamics, 2022, 59, 2871-2886.	Climate	3.8	6
369	Examining subsurface response to an extreme precipitation event using HYDRUSâ€1D. Vado Journal, 2022, 21, .	se Zone	2.2	2
370	Twenty-first century hydroclimate: A continually changing baseline, with more frequent extre Proceedings of the National Academy of Sciences of the United States of America, 2022, 119 e2108124119.	mes.),	7.1	42
371	Combined signatures of atmospheric drivers, soil moisture, and moisture source on floods in Narmada River basin, India. Climate Dynamics, 2022, 59, 2831-2851.		3.8	7
372	The role of water in environmental migration. Wiley Interdisciplinary Reviews: Water, 2022, 9),.	6.5	5
373	Deriving First Floor Elevations within Residential Communities Located in Galveston Using U/ Data. Drones, 2022, 6, 81.	AS Based	4.9	3
374	Understanding Future Increases in Precipitation Extremes in Global Land Monsoon Regions. J Climate, 2022, 35, 1839-1851.	ournal of	3.2	8
375	Deep Learning for Improving Numerical Weather Prediction of Heavy Rainfall. Journal of Adva Modeling Earth Systems, 2022, 14, .	nces in	3.8	21
376	The Spatiotemporal Evolution of Rainfall Extremes in a Changing Climate: A CONUSâ€Wide A Based on Multifractal Scaling Arguments. Earth's Future, 2022, 10, .	Assessment	6.3	10
377	Revealing the Circulation Pattern Most Conducive to Precipitation Extremes in Henan Provin North China. Geophysical Research Letters, 2022, 49, .	ce of	4.0	25
378	Seasonally dependent precipitation changes and their driving mechanisms in Southwest Asia Change, 2022, 171, 1.	. Climatic	3.6	10
379	Monotonic Increase of Extreme Precipitation Intensity With Temperature When Controlled for Saturation Deficit. Geophysical Research Letters, 2022, 49, .	pr	4.0	3
380	A severe landslide event in the Alpine foreland under possible future climate and land-use cha Communications Earth & Environment, 2022, 3, .	inges.	6.8	22
381	Climate change increases risk of extreme rainfall following wildfire in the western United Sta Science Advances, 2022, 8, eabm0320.	tes	10.3	83

#	Article	IF	CITATIONS
382	Quantifying CMIP6 model uncertainties in extreme precipitation projections. Weather and Climate Extremes, 2022, 36, 100435.	4.1	26
383	More than six billion people encountering more exposure to extremes with 1.5°C and 2.0°C warming. Atmospheric Research, 2022, 273, 106165.	4.1	14
384	Extreme Precipitation on Consecutive Days Occurs More Often in a Warming Climate. Bulletin of the American Meteorological Society, 2022, 103, E1130-E1145.	3.3	26
385	Latent heat must be visible in climate communications. Wiley Interdisciplinary Reviews: Climate Change, 2022, 13, .	8.1	12
386	Constraining the increased frequency of global precipitation extremes under warming. Nature Climate Change, 2022, 12, 441-448.	18.8	63
387	Impact of SST on Present and Future Extreme Precipitation in Hokkaido Investigated Considering Weather Patterns. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	1
388	Assessing the Impact of Flooding on Bacterial Community Structure and Occurrence of Potentially Pathogenic Bacteria in Texas Rivers after Hurricane Harvey. SSRN Electronic Journal, 0, , .	0.4	0
389	Impact of correcting sub-daily climate model biases for hydrological studies. Hydrology and Earth System Sciences, 2022, 26, 1545-1563.	4.9	8
390	Further probing the mechanisms driving projected decreases of extreme precipitation intensity over the subtropical Atlantic. Climate Dynamics, 0, , 1.	3.8	0
391	Robust Expansion of Extreme Midlatitude Storms Under Clobal Warming. Geophysical Research Letters, 2022, 49, .	4.0	10
392	Mechanisms for extreme precipitation changes in a tropical archipelago. Journal of Climate, 2022, , 1-53.	3.2	0
393	Summerâ€Winter Contrast in the Response of Precipitation Extremes to Climate Change Over Northern Hemisphere Land. Geophysical Research Letters, 2022, 49, .	4.0	5
394	Using a model comparison to support the interpretation of extreme event attribution. Weather and Climate Extremes, 2022, 36, 100444.	4.1	0
395	How Do Regional Distributions of Daily Precipitation Change under Warming?. Journal of Climate, 2022, 35, 3243-3260.	3.2	4
396	HydroPredicT_Extreme: A probabilistic method for the prediction of extremal high-flow hydrological events. Journal of Hydrology, 2022, 610, 127929.	5.4	5
397	The spectrum of uncertainty in flood damage assessment. Journal of Water and Climate Change, 0, , .	2.9	0
398	Impact of thresholds on nonstationary frequency analyses of peak over threshold extreme rainfall series in Pearl River Basin, China. Atmospheric Research, 2022, 276, 106269.	4.1	1
399	The increasing predominance of extreme precipitation in Southwest China since the late 1970s. Atmospheric and Oceanic Science Letters, 2022, 15, 100227.	1.3	6

#	Article	IF	CITATIONS
400	Future water levels of the Great Lakes under 1.5°C to 3°C warmer climates. Journal of Great Lakes Research, 2022, 48, 865-875.	1.9	4
401	Synergistic Interaction of Low Salinity Stress With Vibrio Infection Causes Mass Mortalities in the Oyster by Inducing Host Microflora Imbalance and Immune Dysregulation. Frontiers in Immunology, 2022, 13, .	4.8	6
402	Impact of climate change on volcanic processes: current understanding and future challenges. Bulletin of Volcanology, 2022, 84, .	3.0	13
403	Assessing the impact of flooding on bacterial community structure and occurrence of potentially pathogenic bacteria in Texas Rivers after Hurricane Harvey. Journal of Hazardous Materials Letters, 2022, 3, 100058.	3.6	6
404	Temperature Variability in Murmansk over the Last 70 Years: Long-term Trends and Extreme Events. Russian Meteorology and Hydrology, 2022, 47, 148-157.	1.3	0
405	Overview of Climate Change and its impacts in Iran. Türk Coğrafya Dergisi, 0, , .	0.7	1
406	Towards Quantifying the Uncertainty in Estimating Observed Scaling Rates. Geophysical Research Letters, 2022, 49, .	4.0	12
407	The imbalance of the Asian water tower. Nature Reviews Earth & Environment, 2022, 3, 618-632.	29.7	286
408	A multi-method framework for global real-time climate attribution. Advances in Statistical Climatology, Meteorology and Oceanography, 2022, 8, 135-154.	0.9	0
409	Assessment of dry and heavy rainfall days and their projected changes over Northeast Brazil in Coupled Model Intercomparison Project Phase 6 models. International Journal of Climatology, 2022, 42, 8665-8686.	3.5	5
410	Analysis of Future Meteorological Drought Changes in the Yellow River Basin under Climate Change. Water (Switzerland), 2022, 14, 1896.	2.7	5
411	Contrasting Hysteresis Behaviors of Northern Hemisphere Land Monsoon Precipitation to CO ₂ Pathways. Earth's Future, 2022, 10, .	6.3	8
412	C-band polarimetric Doppler Weather Radar observations during an extreme precipitation event and associated dynamics over Peninsular India. Natural Hazards, 2022, 114, 1307-1322.	3.4	3
413	Advances in weather and climate extremes. , 2022, , 49-63.		0
414	The role of climate datasets in understanding climate extremes. , 2022, , 19-48.		0
415	Why has Precipitation Increased in the Last 120ÂYears in Norway?. Journal of Geophysical Research D: Atmospheres, 2022, 127,	3.3	2
416	Extreme weather impacts of climate change: an attribution perspective. , 2022, 1, 012001.		89
417	Greenhouse Gas Emissions Drive Global Dryland Expansion but Not Spatial Patterns of Change in Aridification. Journal of Climate, 2022, 35, 2901-2917.	3.2	8

#	Article	IF	CITATIONS
418	Constrained CMIP6 projections indicate less warming and a slower increase in water availability across Asia. Nature Communications, 2022, 13, .	12.8	15
419	Changing compound rainfall events in Tasmania. International Journal of Climatology, 2023, 43, 538-557.	3.5	2
420	Spatiotemporal Pattern of Occurrence Time of Extreme Precipitation and Circulation Mechanisms in the Arid Region of Northwest China. Frontiers in Earth Science, 0, 10, .	1.8	1
421	Strengthened tropical cyclones and higher flood risk under compound effect of climate change and urbanization across China's Greater Bay Area. Urban Climate, 2022, 44, 101224.	5.7	16
422	Characterizing Long Island's Extreme Precipitation and Its Relationship to Tropical Cyclones. Atmosphere, 2022, 13, 1070.	2.3	3
423	Changing temporal volatility of precipitation extremes due to global warming. International Journal of Climatology, 2022, 42, 8971-8983.	3.5	5
424	Impact of the mid-latitude zonal circulation on dynamic mechanism of anomalous precipitation over China in summer 2021. Atmospheric Research, 2022, 277, 106314.	4.1	5
425	Volcanic hazard exacerbated by future global warming-driven increase in heavy rainfall. Royal Society Open Science, 2022, 9, .	2.4	3
426	Projected Changes in Rare Precipitation Extremes: Results of Regional Climate Modeling for the Territory of Russia. Russian Meteorology and Hydrology, 2022, 47, 355-362.	1.3	1
427	Climate change is increasing the risk of a California megaflood. Science Advances, 2022, 8, .	10.3	46
428	The ExtremeX global climate model experiment: investigating thermodynamic and dynamic processes contributing to weather and climate extremes. Earth System Dynamics, 2022, 13, 1167-1196.	7.1	4
429	Future Changes of the Eddy Moisture Convergence in Winter over Coastal Lands in Eastern North America and East Asia. Journal of Geophysical Research D: Atmospheres, 0, , .	3.3	0
430	Climate change attribution of the 2021 Henan extreme precipitation: Impacts of convective organization. Science China Earth Sciences, 2022, 65, 1837-1846.	5.2	10
431	2021å¹´æ²³å⊷æžç«¯é™æ°´çš"æ°"候åĩ化归å›:å⁻¹æµç»"织的影哕 SCIENTIA SINICA Terrae, 2022, , .	0.3	0
432	Extreme precipitation events. Wiley Interdisciplinary Reviews: Water, 2022, 9, .	6.5	16
433	Acute climate risks in the financial system: examining the utility of climate model projections. , 2022, 1, 025002.		6
434	Characterization of groundwater types and residence times in the Verlorenvlei catchment, South Africa to constrain recharge dynamics and hydrological resilience. Journal of Hydrology, 2022, 613, 128280.	5.4	3
435	Fundamental Ingredients of Australian Rainfall Extremes. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	7

#	Article	IF	CITATIONS
436	Analysis on the Return Period of "7.20―Rainstorm in the Xiaohua Section of the Yellow River in 2021. Water (Switzerland), 2022, 14, 2444.	2.7	5
437	How explosive volcanic eruptions reshape daily precipitation distributions. Weather and Climate Extremes, 2022, 37, 100489.	4.1	2
438	Characteristics of extreme precipitation and related near surface atmospheric conditions in summer over the Tibetan Plateau from GPM observations and multi-source reanalysis datasets. Atmospheric Research, 2022, 279, 106400.	4.1	8
439	Australia's Future Extratropical Cyclones. Journal of Climate, 2022, 35, 7795-7810.	3.2	6
440	Observed Changes in Daily Precipitation Intensity in the United States. Geophysical Research Letters, 2022, 49, .	4.0	11
443	Future Projections of Extreme Precipitation Climate Indices over South America Based on CORDEX-CORE Multimodel Ensemble. Atmosphere, 2022, 13, 1463.	2.3	12
444	Comparison of Satellite Precipitation Products: IMERG and GSMaP with Rain Gauge Observations in Northern China. Remote Sensing, 2022, 14, 4748.	4.0	6
445	Evaluation of extreme precipitation climate indices and their projected changes for Brazil: From CMIP3 to CMIP6. Weather and Climate Extremes, 2022, 38, 100511.	4.1	21
446	Rarest rainfall events will see the greatest relative increase in magnitude under future climate change. Communications Earth & Environment, 2022, 3, .	6.8	17
447	Spatial and temporal scaling of sub-daily extreme rainfall for data sparse places. Climate Dynamics, 2023, 60, 3577-3596.	3.8	3
448	Compound flood models in coastal areas: a review of methods and uncertainty analysis. Natural Hazards, 2023, 116, 469-496.	3.4	11
449	Synoptic patterns associated with extreme precipitation events over southeastern South America during spring and summer seasons. International Journal of Climatology, 2022, 42, 10387-10406.	3.5	4
450	Seasonal variability of future extreme precipitation and associated trends across the Contiguous U.S Frontiers in Climate, 0, 4, .	2.8	2
451	Discharge and floods projected to increase more than precipitation extremes. Hydrological Processes, 2022, 36, .	2.6	5
452	Constraining extreme precipitation projections using past precipitation variability. Nature Communications, 2022, 13, .	12.8	15
453	Quantification of model uncertainty in sub-daily extreme precipitation projections. Clobal and Planetary Change, 2022, 218, 103967.	3.5	4
454	Spatiotemporal variations of precipitation concentration influenced by large-scale climatic factors and potential links to flood-drought events across China 1958–2019. Atmospheric Research, 2023, 282, 106507.	4.1	10
455	Effect difference of climate change and urbanization on extreme precipitation over the Guangdong-Hong Kong-Macao Greater Bay Area. Atmospheric Research, 2023, 282, 106514.	4.1	10

#	Article	IF	CITATIONS
456	Intensification of subhourly heavy rainfall. Science, 2022, 378, 655-659.	12.6	18
457	Increasing precipitation whiplash in climate change hotspots. Environmental Research Letters, 2022, 17, 124011.	5.2	5
458	Impacts of tropical cyclones on summertime short-duration precipitation extremes over the middle-lower reaches of the Yangtze River valley. Atmospheric Research, 2023, 282, 106520.	4.1	1
459	Incorporating non-stationarity from climate change into rainfall frequency and intensity-duration-frequency (IDF) curves. Journal of Hydrology, 2023, 616, 128757.	5.4	17
460	Influence of a heavy rainfall event on nutrients and phytoplankton dynamics in a well-mixed semi-enclosed bay. Journal of Hydrology, 2023, 617, 128932.	5.4	9
461	Future changes in monsoon extreme climate indices over the Sikkim Himalayas and West Bengal. Dynamics of Atmospheres and Oceans, 2023, 101, 101346.	1.8	2
462	Consistency of Seasonal Mean and Extreme Precipitation Projections Over Europe Across a Range of Climate Model Ensembles. Journal of Geophysical Research D: Atmospheres, 2023, 128, .	3.3	5
463	Moistureâ€Budget Drivers of Global Projections of Meteorological Drought From Multiple GCM Large Ensembles. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	0
464	Future Seasonal Changes in Extreme Precipitation Scale With Changes in the Mean. Earth's Future, 2022, 10, .	6.3	6
465	Seasonal variations in the dynamic and thermodynamic response of precipitation extremes in the Indian subcontinent. Climate Dynamics, 0, , .	3.8	1
466	Persistent and nonpersistent regional extreme total, daytime, and nightâ€time precipitation events over southwest China (1961–2019). International Journal of Climatology, 2023, 43, 2150-2174.	3.5	1
467	The representation of summer monsoon rainfall over northeast India: assessing the performance of CORDEX-CORE model experiments. Theoretical and Applied Climatology, 2023, 151, 1949-1962.	2.8	3
468	Hydrological post-processing for predicting extreme quantiles. Journal of Hydrology, 2023, 617, 129082.	5.4	2
469	Water table prediction through causal reasoning modelling. Science of the Total Environment, 2023, 867, 161492.	8.0	0
470	Causal reasoning modeling (CRM) for rivers' runoff behavior analysis and prediction. , 2023, , 91-108.		0
471	Multivariate linear modeling for the application in the field of hydrological engineering. , 2023, , 277-289.		1
472	Sharpening of cold-season storms over the western United States. Nature Climate Change, 2023, 13, 167-173.	18.8	5
473	Can southern Australian rainfall decline be explained? A review of possible drivers. Wiley Interdisciplinary Reviews: Climate Change, 2023, 14, .	8.1	10

#	Article	IF	CITATIONS
474	Impact of Climate Change on Water Status: Challenges and Emerging Solutions. Advances in Science, Technology and Innovation, 2023, , 3-20.	0.4	1
475	Evaluating extreme precipitation in gridded datasets with a novel station database in Morocco. Stochastic Environmental Research and Risk Assessment, 0, , .	4.0	1
476	Evaluating soil loss under land use management and extreme rainfall. Journal of Contaminant Hydrology, 2023, 256, 104181.	3.3	1
477	Assessing the performance of satellite derived and reanalyses data in capturing seasonal changes in extreme precipitation scaling rates over the Indian subcontinent. Atmospheric Research, 2023, 288, 106741.	4.1	2
478	Thermodynamic and dynamic effects of anomalous dragon boat water over South China in 2022. Weather and Climate Extremes, 2023, 40, 100560.	4.1	4
479	Overstating the effects of anthropogenic climate change? A critical assessment of attribution methods in climate science. European Journal for Philosophy of Science, 2023, 13, .	1.1	4
480	Risk assessment of flash flood and soil erosion impacts on electrical infrastructures in overcrowded mountainous urban areas under climate change. Reliability Engineering and System Safety, 2023, 236, 109302.	8.9	8
482	Robust global detection of forced changes in mean and extreme precipitation despite observational disagreement on the magnitude of change. Earth System Dynamics, 2023, 14, 81-100.	7.1	4
483	Performance evaluation of IMERG products based on the extremely heavy rainstorm event (2021) once in a thousand years in Henan, China. Atmospheric Research, 2023, 285, 106639.	4.1	0
484	Global scaling of precipitation extremes using near-surface air temperature and dew point temperature. Environmental Research Letters, 2023, 18, 034016.	5.2	3
485	Temperature and cloud condensation nuclei (CCN) sensitivity of orographic precipitation enhanced by a mixed-phase seeder–feeder mechanism: a case study for the 2015 Cumbria flood. Atmospheric Chemistry and Physics, 2023, 23, 1987-2002.	4.9	1
486	Can the 2D shallow water equations model flow intrusion into buildings during urban floods?. Journal of Hydrology, 2023, 619, 129231.	5.4	9
487	Shifts in flood generation processes exacerbate regional flood anomalies in Europe. Communications Earth & Environment, 2023, 4, .	6.8	12
488	What Are the Dominant Synoptic Patterns Leading to the Summer Regional Hourly Extreme Precipitation Events Over Centralâ€Eastern Tibetan Plateau and Sichuan Basin?. Geophysical Research Letters, 2023, 50, .	4.0	4
489	Atmospheric Circulation Patterns Associated with Extreme Precipitation Events in Eastern Siberia and Mongolia. Atmosphere, 2023, 14, 480.	2.3	1
490	Spatioâ€ŧemporal patterns of ichthyoplankton in southern Chilean Patagonia: βâ€diversity and associated environmental factors. Fisheries Oceanography, 0, , .	1.7	0
491	A binational social vulnerability index (BSVI) for the San Diego-Tijuana region: mapping trans-boundary exposure to climate change for just and equitable adaptation planning. Mitigation and Adaptation Strategies for Global Change, 2023, 28, .	2.1	1
492	The Pakistan Flood of August 2022: Causes and Implications. Earth's Future, 2023, 11, .	6.3	37

#	Article	IF	CITATIONS
493	Diverging projections for flood and rainfall frequency curves. Journal of Hydrology, 2023, 620, 129403.	5.4	5
494	Variations of extreme precipitation events with sub-daily data: a case study in the Ganjiang River basin. Natural Hazards and Earth System Sciences, 2023, 23, 1139-1155.	3.6	3
495	Selecting regional climate models based on their skill could give more credible precipitation projections over the complex Southeast Asia region. Climate Dynamics, 0, , .	3.8	0
496	Increases in extreme precipitation over the Northeast United States using high-resolution climate model simulations. Npj Climate and Atmospheric Science, 2023, 6, .	6.8	5
497	Irrigationâ€Induced Crop Growth Enhances Irrigation Cooling Effect Over the North China Plain by Increasing Transpiration. Water Resources Research, 2023, 59, .	4.2	3
499	Climate Variability and Change in Tropical South America. The Latin American Studies Book Series, 2023, , 15-44.	0.2	0
500	Revealing the Statistics of Extreme Events Hidden in Short Weather Forecast Data. AGU Advances, 2023, 4, .	5.4	6
501	Variability conceals emerging trend in 100yr projections of UK local hourly rainfall extremes. Nature Communications, 2023, 14, .	12.8	14
502	Regionally high risk increase for precipitation extreme events under global warming. Scientific Reports, 2023, 13, .	3.3	5
503	Coherent Mechanistic Patterns of Tropical Land Hydroclimate Changes. Geophysical Research Letters, 2023, 50, .	4.0	1
504	Exploring the Future of Rainfall Extremes Over CONUS: The Effects of High Emission Climate Change Trajectories on the Intensity and Frequency of Rare Precipitation Events. Earth's Future, 2023, 11, .	6.3	4
505	Assessment of the predictability of inflow to reservoirs through Bayesian causality. Hydrological Sciences Journal, 2023, 68, 1323-1337.	2.6	1
506	Divergent vegetation variation and the response to extreme climate events in the National Nature Reserves in Southwest China, 1961–2019. Ecological Indicators, 2023, 150, 110247.	6.3	3
507	Countries most exposed to individual and concurrent extremes and near-permanent extreme conditions at different global warming levels. Earth System Dynamics, 2023, 14, 485-505.	7.1	4
508	Global transportation infrastructure exposure to the change of precipitation in a warmer world. Nature Communications, 2023, 14, .	12.8	5
509	Time distribution pattern and spatial heterogeneity of hourly scale event-based extreme precipitation in China. Journal of Hydrology, 2023, 622, 129712.	5.4	2
510	The Global Importance of Increasing Design Rainstorms under Specific Return Periods in China. Water (Switzerland), 2023, 15, 2049.	2.7	0
511	Fire weather index data under historical and shared socioeconomic pathway projections in the 6th phase of the Coupled Model Intercomparison Project from 1850 to 2100. Earth System Science Data, 2023, 15, 2153-2177.	9.9	2

#	Article	IF	CITATIONS
513	Large anomalies in future extreme precipitation sensitivity driven by atmospheric dynamics. Nature Communications, 2023, 14, .	12.8	7
514	Global tropical cyclone precipitation scaling with sea surface temperature. Npj Climate and Atmospheric Science, 2023, 6, .	6.8	4
515	A gridded multi-site precipitation generator for complex terrain: an evaluation in the Austrian Alps. Hydrology and Earth System Sciences, 2023, 27, 2123-2147.	4.9	0
516	Spatial–temporal variation of extreme precipitation in the Yellow–Huai–Hai–Yangtze Basin of China. Scientific Reports, 2023, 13, .	3.3	1
517	Contributions of Climate Change and ENSO Variability to Future Precipitation Extremes Over California. Geophysical Research Letters, 2023, 50, .	4.0	2
518	Response of Extreme Rainfall to Atmospheric Warming and Wetting: Implications for Hydrologic Designs Under a Changing Climate. Journal of Geophysical Research D: Atmospheres, 2023, 128, .	3.3	0
519	Changes in the mean and variability of temperature and precipitation over global land areas. , 2023, 2, 035006.		1
520	Robust projection of East Asian summer monsoon rainfall based on dynamical modes of variability. Nature Communications, 2023, 14, .	12.8	3
521	Positive correlation between wet-day frequency and intensity linked to universal precipitation drivers. Nature Geoscience, 2023, 16, 410-415.	12.9	6
522	Sensitivity of the pseudo-global warming method under flood conditions: a case study from the northeasternÂUS. Hydrology and Earth System Sciences, 2023, 27, 1909-1927.	4.9	1
523	Non-stationarity in extreme rainfalls across Australia. Journal of Hydrology, 2023, 624, 129872.	5.4	3
524	A warming-induced reduction in snow fraction amplifies rainfall extremes. Nature, 2023, 619, 305-310.	27.8	22
525	Thermodynamically enhanced precipitation extremes due to counterbalancing influences of anthropogenic greenhouse gases and aerosols. , 2023, 1, 614-625.		3
526	Communicating the link between climate change and extreme rain events. Nature Geoscience, 2023, 16, 552-554.	12.9	4
527	Warming stabilizes alpine ecosystem facing extreme rainfall events by changing plant species composition. Journal of Ecology, 2023, 111, 2064-2076.	4.0	0
528	Disaster effects of climate change and the associated scientific challenges. Chinese Science Bulletin, 2024, 69, 286-300.	0.7	2
529	Predicting Changes in Population Exposure to Precipitation Extremes over Beijing–Tianjin–Hebei Urban Agglomeration with Regional Climate Model RegCM4 on a Convection-Permitting Scale. Sustainability, 2023, 15, 11923.	3.2	0
530	Observed increase in the peak rain rates of monsoon depressions. Npj Climate and Atmospheric Science, 2023, 6, .	6.8	2

#	Article	IF	CITATIONS
531	Combinations of drivers that most favor the occurrence of daily precipitation extremes. Atmospheric Research, 2023, 294, 106959.	4.1	1
532	Foundations of attribution in climate-change science. , 2023, 2, 035014.		Ο
533	Role of mean and variability change in changes in European annual and seasonal extreme precipitation events. Earth System Dynamics, 2023, 14, 797-816.	7.1	2
534	How Do the Start Date, End Date, and Frequency of Precipitation Change across China under Warming?. Remote Sensing, 2023, 15, 4057.	4.0	Ο
535	Assessing environmental change associated with early Eocene hyperthermals in the Atlantic Coastal Plain, USA. Climate of the Past, 2023, 19, 1677-1698.	3.4	1
536	The North American Monsoon precipitation response to climate warming at convection-permitting scales. Climate Dynamics, 2024, 62, 497-524.	3.8	2
537	Emergent constraints on future extreme precipitation intensification: from global to continental scales. Weather and Climate Extremes, 2023, 42, 100613.	4.1	1
538	Evolutionary Characteristics of Daytime and Nocturnal Precipitation Heterogeneity in Gansu Province, Northwest China. Water (Switzerland), 2023, 15, 3353.	2.7	Ο
539	Influence of solar activity and large-scale climate phenomena on extreme precipitation events in the Yangtze River Economic Belt. Stochastic Environmental Research and Risk Assessment, 2024, 38, 211-231.	4.0	2
540	Anthropogenic warming reduces the likelihood of drought-breaking extreme rainfall events in southeast Australia. Weather and Climate Extremes, 2023, 42, 100607.	4.1	0
541	Attribution of the December 2013 extreme rainfall over the Pearl River Delta to anthropogenic influences. Climate Dynamics, 2023, 61, 5533-5549.	3.8	0
542	Changes in compound flood event frequency in northern and central Europe under climate change. Frontiers in Climate, 0, 5, .	2.8	1
543	Subdaily Extreme Precipitation and Its Linkage to Global Warming Over the Tibetan Plateau. Journal of Geophysical Research D: Atmospheres, 2023, 128, .	3.3	1
544	Soil moisture precipitation feedbacks in the Eastern European Alpine region in convectionâ€permitting climate simulations. International Journal of Climatology, 2023, 43, 6763-6782.	3.5	0
545	A stacked ensemble learning and nonâ€homogeneous hidden Markov model for daily precipitation downscaling and projection. Hydrological Processes, 2023, 37, .	2.6	1
547	Global extreme precipitation characteristics: the perspective of climate and large river basins. Climate Dynamics, 2024, 62, 1013-1030.	3.8	Ο
548	Linking Historical and Projected Trends in Extreme Precipitation with Cumulative Carbon Dioxide Emissions. Atmosphere - Ocean, 0, , 1-18.	1.6	0
549	Egypt's waterways conservation campaigns under growing intrinsic demand and Nile upstream damming. Journal of Hydrology: Regional Studies, 2023, 50, 101537.	2.4	2

#	Article	IF	CITATIONS
550	Using Explainable Artificial Intelligence to Quantify "Climate Distinguishability―After Stratospheric Aerosol Injection. Geophysical Research Letters, 2023, 50, .	4.0	0
551	Spatially and temporally explicit environmental drivers of fawn recruitment in a native ungulate. Ecosphere, 2023, 14, .	2.2	1
552	Investigating the Storm Surge and Flooding in Shenzhen City, China. Remote Sensing, 2023, 15, 5002.	4.0	0
553	Effects of climate change induced hyposalinity stress on marine bivalves. Estuarine, Coastal and Shelf Science, 2023, 294, 108539.	2.1	2
554	Storyline attribution of human influence on a record-breaking spatially compounding flood-heat event. Science Advances, 2023, 9, .	10.3	1
555	Historical and future trends in South Asian monsoon low pressure systems in a high-resolution model ensemble. Npj Climate and Atmospheric Science, 2023, 6, .	6.8	0
556	Historical, Recent, and Future Threat of Drought on Agriculture in East Java, Indonesia: A Review. E3S Web of Conferences, 2023, 448, 03016.	0.5	0
557	Decomposing the Precipitation Response to Climate Change in Convection Allowing Simulations Over the Conterminous United States. Earth and Space Science, 2023, 10, .	2.6	0
558	Modulation of the intraseasonal variability in early summer precipitation in eastern China by the Quasi-Biennial Oscillation and the Madden–Julian Oscillation. Atmospheric Chemistry and Physics, 2023, 23, 14903-14918.	4.9	0
559	Precipitation variability related to atmospheric circulation patterns over the Tibetan Plateau. International Journal of Climatology, 0, , .	3.5	0
560	Hydrodynamic responses of estuarine bays along the Texas-Louisiana coast during Hurricane Harvey. Ocean Modelling, 2024, 187, 102302.	2.4	1
561	Sensitivity of extreme precipitation to climate change inferred using artificial intelligence shows high spatial variability. Communications Earth & Environment, 2023, 4, .	6.8	0
564	Historical Shifts in Seasonality and Timing of Extreme Precipitation. Geophysical Research Letters, 2023, 50, .	4.0	0
565	Variations in Precipitation at the Shimantan Reservoir, China. Water (Switzerland), 2023, 15, 4313.	2.7	0
566	Towards a future-oriented political ecology of climate change. Geoforum, 2023, , 103921.	2.5	0
567	Future changes in the precipitation regime over the Arabian Peninsula with special emphasis on UAE: insights from NEX-GDDP CMIP6 model simulations. Scientific Reports, 2024, 14, .	3.3	0
568	Flood mapping of the lower Mejerda Valley (Tunisia) using Sentinel-1 SAR: geological and geomorphological controls on flood hazard. Frontiers in Earth Science, 0, 11, .	1.8	0
569	Effects of Extreme-Ambient Temperatures in Silver Barb (Barbonymus gonionotus): Metabolic, Hemato-Biochemical Responses, Enzymatic Activity and Gill Histomorphology. Water (Switzerland), 2024, 16, 292.	2.7	1

#	Article	IF	CITATIONS
570	Projected Change in Extreme Precipitation due to Global Warming in a Large Ensemble Climate Simulation. Japanese Journal of Multiphase Flow, 2023, 37, 368-375.	0.3	0
571	Mitigating strategies for agricultural water pollution exacerbated by climate change. , 2024, , 173-195.		0
573	Spatial–temporal evolution characteristics and influence factors of extreme precipitation indices based on bias-corrected and gauge-measured precipitation data in the main river basins of China, 1980–2020. Theoretical and Applied Climatology, 2024, 155, 3563-3580.	2.8	0
574	Intensification in the Wettest Days to 50 Percent of Annual Precipitation (WD50) Across Europe. Geophysical Research Letters, 2024, 51, .	4.0	0
575	Predicting extreme sub-hourly precipitation intensification based on temperature shifts. Hydrology and Earth System Sciences, 2024, 28, 375-389.	4.9	0
576	Constraining Projected Changes in Rare Intense Precipitation Events Across Global Land Regions. Geophysical Research Letters, 2024, 51, .	4.0	0
577	Precipitation impacts the physicochemical water quality and abundance of microbial source tracking markers in urban Texas watersheds. , 2024, 3, e0000209.		0
578	Locally opposite responses of the 2023 Beijing–Tianjin–Hebei extreme rainfall event to global anthropogenic warming. Npj Climate and Atmospheric Science, 2024, 7, .	6.8	0
579	Impact of anthropogenic warming on emergence of extreme precipitation over global land monsoon area. Environmental Research Letters, 2024, 19, 034018.	5.2	0
580	Spatiotemporal variability of fall daily maximum flows in southern Quebec (Canada) from 1930 to 2018. Journal of Flood Risk Management, 0, , .	3.3	0
581	Effects of low-temperature stress on serum biochemical indicators, intestinal microbiome, and transcriptome of juvenile golden pompano (Trachinotus ovatus). Aquaculture International, 0, , .	2.2	0
582	Intensification of daily tropical precipitation extremes from more organized convection. Science Advances, 2024, 10, .	10.3	0
583	Sensitivity of Rainfall Extremes to Unprecedented Indian Ocean Dipole Events. Geophysical Research Letters, 2024, 51, .	4.0	0
584	Linkages and reactions of geomorphic processes in Kerala Flood, 2018. Natural Hazards, O, , .	3.4	0
585	Less concentrated precipitation and more extreme events over the Three River Headwaters region of the Tibetan Plateau in a warming climate. Atmospheric Research, 2024, 303, 107311.	4.1	0
586	Spring Irrigation Reduces the Frequency and Intensity of Summer Extreme Heat Events in the North China Plain. Geophysical Research Letters, 2024, 51, .	4.0	0
587	Low flows from drought and water use reduced total dissolved solids fluxes in the Lower Colorado River Basin between 1976 to 2008. Journal of Hydrology: Regional Studies, 2024, 52, 101673.	2.4	0
588	Constraints on regional projections of mean and extreme precipitation under warming. Proceedings of the National Academy of Sciences of the United States of America, 2024, 121, .	7.1	0

#	Article	IF	CITATIONS
589	Climate change signals of extreme precipitation return levels for Germany in a transient convectionâ€permitting simulation ensemble. International Journal of Climatology, 2024, 44, 1454-1471.	3.5	0
590	Attributing Extreme Precipitation Characteristics in South China Pearl River Delta Region to Anthropogenic Influences Based on Pseudo Global Warming. Earth and Space Science, 2024, 11, .	2.6	0
591	Assessment of model projections of climateâ€change induced extreme storms on the southâ€east coast of Australia. International Journal of Climatology, 2024, 44, 2139-2159.	3.5	0
592	A systematic review of climate change science relevant to Australian design flood estimation. Hydrology and Earth System Sciences, 2024, 28, 1251-1285.	4.9	0
593	Northwestern Mediterranean Heavy Precipitation Events in a Warmer Climate: Robust Versus Uncertain Changes With a Large Convectionâ€Permitting Model Ensemble. Geophysical Research Letters, 2024, 51, .	4.0	0
594	Risk-based hydrologic design under climate change using stochastic weather and watershed modeling. Frontiers in Water, 0, 6, .	2.3	0
595	Increases in extreme precipitation expected in Northeast China under continued global warming. Climate Dynamics, 0, , .	3.8	0
596	Incorporating extreme event attribution into climate change adaptation for civil infrastructure:		0