Lanthanide Metal–Organic Framework Microrods: Co Polarized Emission

Angewandte Chemie - International Edition 56, 7853-7857 DOI: 10.1002/anie.201703917

Citation Report

#	Article	IF	CITATIONS
1	Color-tunable entangled coordination polymers based on long flexible bis(imidazole) ligands and phenylenediacetate. New Journal of Chemistry, 2017, 41, 12139-12146.	1.4	9
2	A series of anionic host coordination polymers based on azoxybenzene carboxylate: structures, luminescence and magnetic properties. Dalton Transactions, 2017, 46, 14192-14200.	1.6	145
3	Dicarboxylate mediated efficient morphology/phase tailoring of YPO ₄ :Ln ³⁺ crystals and investigation of down-/up-conversion luminescence. CrystEngComm, 2017, 19, 5230-5243.	1.3	21
4	Long-lasting phosphorescence with a tunable color in a Mn ²⁺ -doped anionic metal–organic framework. Journal of Materials Chemistry C, 2017, 5, 7898-7903.	2.7	56
5	Synthesis, Crystal Structure, Gas Absorption, and Separation Properties of a Novel Complex Based on Pr and a Three-Connected Ligand. Crystals, 2017, 7, 370.	1.0	3
6	Facile synthesis of monodisperse SrAl ₂ O ₄ :Eu ²⁺ cage-like microspheres with an excellent luminescence quantum yield. Journal of Materials Chemistry C, 2018, 6, 3346-3351.	2.7	12
7	Ratiometric fluorescence sensing of mercuric ion based on dye-doped lanthanide coordination polymer particles. Analytica Chimica Acta, 2018, 1014, 85-90.	2.6	38
8	Probing Optical Anisotropy and Polymorphâ€Dependent Photoluminescence in [Ln ₂] Complexes by Hyperspectral Imaging on Single Crystals. Chemistry - A European Journal, 2018, 24, 10146-10155.	1.7	11
9	Excitation Position Sensitive Upconversion Emission of Lanthanide Ions Doped βâ€NaYF ₄ Single Microcrystals. ChemNanoMat, 2018, 4, 348-352.	1.5	2
10	Exploration of the two-step crystallization of organic micro/nano crystalline materials by fluorescence spectroscopy. Materials Chemistry Frontiers, 2018, 2, 1323-1327.	3.2	20
11	Weak interactions cause selective cocrystal formation of lanthanide nitrates and tetra-2-pyridinylpyrazine. CrystEngComm, 2018, 20, 1123-1129.	1.3	14
12	Recent Advances in Microâ€/Nanostructured Metal–Organic Frameworks towards Photonic and Electronic Applications. Chemistry - A European Journal, 2018, 24, 6484-6493.	1.7	45
13	Three Zn(ii)-based MOFs for luminescence sensing of Fe3+ and Cr2O72â^ ions. Dalton Transactions, 2018, 47, 3298-3302.	1.6	51
14	Ratiometric luminescence sensing based on a mixed Ce/Eu metal–organic framework. Journal of Materials Chemistry C, 2018, 6, 2054-2059.	2.7	54
15	From ligand exchange to reaction intermediates: what does really happen during the synthesis of emissive complexes?. Physical Chemistry Chemical Physics, 2018, 20, 7428-7437.	1.3	16
16	Epitaxial growth of single crystalline film scintillating screens based on Eu ³⁺ doped RAIO ₃ (R = Y, Lu, Gd, Tb) perovskites. CrystEngComm, 2018, 20, 937-945.	1.3	16
17	Zinc(II) and cadmium(II) complexes of long flexible bis(imidazole) and phenylenediacetate ligands, synthesis, structure, and luminescent property. Polyhedron, 2018, 146, 180-186.	1.0	13
18	Low pH hydrothermal syntheses, structural characterization and properties of several lanthanide complexes constructed with 1,2,3,5-benzenetetracarboxylic acid. Polyhedron, 201 <u>8</u> , 141, 377-384.	1.0	8

#	Article	IF	CITATIONS
19	Color tuning and white light emission by codoping in isostructural homochiral lanthanide metal–organic frameworks. RSC Advances, 2018, 8, 42100-42108.	1.7	15
20	Achieving Thermoâ€Mechanoâ€Optoâ€Responsive Bitemporal Colorful Luminescence via Multiplexing of Dual Lanthanides in Piezoelectric Particles and its Multidimensional Anticounterfeiting. Advanced Materials, 2018, 30, e1804644.	11.1	181
21	Metal ion coordination enhancing quantum efficiency of ligand phosphorescence in a double-stranded helical chain coordination polymer of Pb ²⁺ with nicotinic acid. Dalton Transactions, 2018, 47, 14636-14643.	1.6	11
22	Luminescent Ultralong Microfibers Prepared through Supramolecular Selfâ€Assembly of Lanthanide Ions and Thymidine in Water. Chemistry - A European Journal, 2018, 24, 18890-18896.	1.7	9
23	BaCaLu ₂ F ₁₀ :Ln ³⁺ (Ln = Eu, Dy, Tb, Sm, Yb/Er, Yb/Ho) spheres: ionic liquid-based synthesis and luminescence properties. CrystEngComm, 2018, 20, 6173-6182.	1.3	10
24	Intense Circularly Polarized Luminescence Contributed by Helical Chirality of Monosubstituted Polyacetylenes. Macromolecules, 2018, 51, 7104-7111.	2.2	75
25	Resonanceâ€Activated Spinâ€Flipping for Efficient Organic Ultralong Roomâ€Temperature Phosphorescence. Advanced Materials, 2018, 30, e1803856.	11.1	161
26	Anionic Lanthanide Metal–Organic Frameworks: Selective Separation of Cationic Dyes, Solvatochromic Behavior, and Luminescent Sensing of Co(II) Ion. Inorganic Chemistry, 2018, 57, 11463-11473.	1.9	88
27	Rational synthesis of organic single-crystalline microrods and microtubes for efficient optical waveguides. Journal of Materials Chemistry C, 2018, 6, 9594-9598.	2.7	25
28	Coordination Frameworks Containing Magnetic Single Chain of Imidazoledicarboxylate-Bridged Cobalt(II)/Nickel(II): Syntheses, Structures, and Magnetic Properties. Crystal Growth and Design, 2018, 18, 3449-3457.	1.4	31
29	Triple-Wavelength-Region Luminescence Sensing Based on a Color-Tunable Emitting Lanthanide Metal Organic Framework. Analytical Chemistry, 2018, 90, 6675-6682.	3.2	60
30	Interfacial self-assembly of bipyridyl-functionalized nanoSiO2-BPy@Ln(β-diketone)n composites and their luminescent properties. Journal of Luminescence, 2018, 203, 277-285.	1.5	6
31	One-dimensional Lanthanide Coordination Polymers Based on Butylene-2,2'-bis(oxybenzoic Acid), with Dy-compound Exhibiting White Light Emission. Inorganic Chemistry Communication, 2018, 94, 108-113.	1.8	2
32	Photonic functional metal–organic frameworks. Chemical Society Reviews, 2018, 47, 5740-5785.	18.7	528
33	A difunctional metal–organic framework with Lewis basic sites demonstrating turn-off sensing of Cu ²⁺ and sensitization of Ln ³⁺ . Journal of Materials Chemistry C, 2018, 6, 7874-7879.	2.7	24
34	Supramolecular Polymer-Based Fluorescent Microfibers for Switchable Optical Waveguides. ACS Applied Materials & Interfaces, 2018, 10, 26526-26532.	4.0	22
35	Luminescence properties of 2-benzoyl-1,3-indandione based Eu3+ ternary and tetrakis complexes and their polymer films. Dyes and Pigments, 2018, 159, 655-665.	2.0	12
36	White-Light-Emitting Materials and Highly Sensitive Detection of Fe ³⁺ and Polychlorinated Benzenes Based on Ln-Metal–Organic Frameworks. Crystal Growth and Design, 2018, 18, 5353-5364.	1.4	60

#	Article	IF	CITATIONS
37	Synthesis, structure, and luminescent properties of zinc(II) complexes based on flexible phenylenediacetate ligand. Polyhedron, 2018, 154, 473-479.	1.0	5
38	Chiral coordination polymers based on d ¹⁰ metals and 2-aminonicotinate with blue fluorescent/green phosphorescent anisotropic emissions. Dalton Transactions, 2018, 47, 8746-8754.	1.6	12
39	Structure and red emissions of Eu3+-doped hydrocalumite prepared in ethanol/water media. Journal of Rare Earths, 2019, 37, 45-51.	2.5	5
40	Highly-selective recognition of latent fingermarks by La-sensitized Ce nanocomposites <i>via</i> electrostatic binding. Chemical Communications, 2019, 55, 10579-10582.	2.2	10
41	From IR to x-rays: gaining molecular level insights on metal-organic frameworks through spectroscopy. Journal of Physics Condensed Matter, 2019, 31, 483001.	0.7	12
42	Simultaneous Longâ€Persistent Blue Luminescence and High Quantum Yield within 2D Organic–Metal Halide Perovskite Micro/Nanosheets. Angewandte Chemie, 2019, 131, 15272-15279.	1.6	46
43	Simultaneous Longâ€Persistent Blue Luminescence and High Quantum Yield within 2D Organic–Metal Halide Perovskite Micro/Nanosheets. Angewandte Chemie - International Edition, 2019, 58, 15128-15135.	7.2	184
44	High quantum yield pure blue emission and fast proton conduction from an indium–metal–organic framework. Dalton Transactions, 2019, 48, 12088-12095.	1.6	17
45	Heteroepitaxial Growth of Multiblock Lnâ€MOF Microrods for Photonic Barcodes. Angewandte Chemie - International Edition, 2019, 58, 13803-13807.	7.2	94
46	Heteroepitaxial Growth of Multiblock Lnâ€MOF Microrods for Photonic Barcodes. Angewandte Chemie, 2019, 131, 13941-13945.	1.6	23
47	Metal–Organic Frameworks for Food Safety. Chemical Reviews, 2019, 119, 10638-10690.	23.0	366
48	Triggering White-Light Emission in a 2D Imine Covalent Organic Framework Through Lanthanide Augmentation. ACS Applied Materials & Interfaces, 2019, 11, 27343-27352.	4.0	90
49	Lanthanide Coordination Polymer-Based Composite Films for Selective and Highly Sensitive Detection of Cr ₂ O ₇ ^{2–} in Aqueous Media. Inorganic Chemistry, 2019, 58, 15118-15125.	1.9	41
50	Lanthanide Metal–Organic Framework Nanoprobes for the In Vitro Detection of Cardiac Disease Markers. ACS Applied Materials & Interfaces, 2019, 11, 43989-43995.	4.0	46
51	Structure and Properties of PET Nanoâ€Porous Luminescence Fibers for Fluorescenceâ€Indicating to Acid Gases. Macromolecular Materials and Engineering, 2019, 304, 1900467.	1.7	5
52	Lanthanide coordination polymers constructed from the asymmetrical N-heterocyclic rigid carboxylate: Synthesis, crystal structures, luminescence properties and magnetic properties. Polyhedron, 2019, 161, 47-55.	1.0	64
53	Trinuclear Ni(ii) oriented highly dense packing and π-conjugation degree of metal–organic frameworks for efficient water oxidation. CrystEngComm, 2019, 21, 5862-5866.	1.3	23
54	Comprehensively understanding the steric hindrance effect on the coordination sphere of Pb ²⁺ ions and photophysical nature of two luminescent Pb(<scp>ii</scp>)-coordination polymers. Dalton Transactions, 2019, 48, 13841-13849.	1.6	16

#	Article	IF	CITATIONS
55	Circularly Polarized Luminescence from Achiral Single Crystals of Hybrid Manganese Halides. Journal of the American Chemical Society, 2019, 141, 15755-15760.	6.6	124
56	Chirality and Chiroptics of Lanthanide Molecular and Supramolecular Assemblies. CheM, 2019, 5, 3058-3095.	5.8	102
57	A ratiometric fluorescent sensor with dual response of Fe3+/Cu2+ based on europium post-modified sulfone-metal-organic frameworks and its logical application. Talanta, 2019, 197, 291-298.	2.9	57
58	Two 2D-MOFs based on two flexible ligands: structural control and fluorescence sensing on Felll cation and CrVI-containing anions. Journal of Solid State Chemistry, 2019, 272, 166-172.	1.4	11
59	Novel bimetallic lanthanide metal–organic frameworks (Ln-MOFs) for colour-tuning through energy-transfer between visible and near-infrared emitting Ln ³⁺ ions. Journal of Materials Chemistry C, 2019, 7, 2751-2757.	2.7	20
60	Grafting of terbium(<scp>iii</scp>) complexes onto layered rare-earth hydroxide nanosheets to fabricate novel optical fiber temperature sensors. Nanoscale, 2019, 11, 2795-2804.	2.8	22
61	Room temperature phosphorescence of Mn(<scp>ii</scp>) and Zn(<scp>ii</scp>) coordination polymers for photoelectron response applications. Dalton Transactions, 2019, 48, 10785-10789.	1.6	83
62	Aqueous Phase Sensing of Fe ³⁺ and Ascorbic Acid by a Metal–Organic Framework and Its Implication in the Construction of Multiple Logic Gates. Chemistry - an Asian Journal, 2019, 14, 2822-2830.	1.7	44
63	Stereochemically Active and Inactive Lone Pairs in Two Room-Temperature Phosphorescence Coordination Polymers of Pb ²⁺ with Different Tricarboxylic Acids. Inorganic Chemistry, 2019, 58, 6772-6780.	1.9	30
64	Chirality ontrolled Multiphoton Luminescence and Secondâ€Harmonic Generation from Enantiomeric Organic Microâ€Optical Waveguides. Advanced Optical Materials, 2019, 7, 1801775.	3.6	53
65	Facile synthesis of 1D organic–inorganic perovskite micro-belts with high water stability for sensing and photonic applications. Chemical Science, 2019, 10, 4567-4572.	3.7	212
66	Multi-emissive room temperature phosphorescence of a two-dimensional metal-organic framework. Inorganic Chemistry Communication, 2019, 104, 119-123.	1.8	6
67	Photoluminescent Anisotropy Amplification in Polymorphic Organic Nanocrystals by Light-Harvesting Energy Transfer. Journal of the American Chemical Society, 2019, 141, 6157-6161.	6.6	92
68	Multiresponsive Supramolecular Luminescent Hydrogels Based on a Nucleoside/Lanthanide Complex. ACS Applied Materials & Interfaces, 2019, 11, 47404-47412.	4.0	42
69	Luminescence Sensing of Fe ³⁺ and Nitrobenzene by Three Isostructural Ln–MOFs Assembled by a Phenylâ€Ðicarboxylate Ligand. ChemistrySelect, 2019, 4, 12794-12800.	0.7	15
70	Steric-Hindrance-Controlled Laser Switch Based on Pure Metal–Organic Framework Microcrystals. Journal of the American Chemical Society, 2019, 141, 19959-19963.	6.6	57
71	Three chiral one-dimensional lanthanide–ditoluoyl-tartrate bifunctional polymers exhibiting luminescence and magnetic behaviors. RSC Advances, 2019, 9, 32288-32295.	1.7	4
72	Combining Chiral Helical Polymer with Achiral Luminophores for Generating Full-Color, On–Off, and Switchable Circularly Polarized Luminescence. Macromolecules, 2019, 52, 376-384.	2.2	88

#	Article	IF	CITATIONS
73	Luminescent Lanthanide–Collagen Peptide Framework for pH-Controlled Drug Delivery. Molecular Pharmaceutics, 2019, 16, 846-855.	2.3	18
74	Complete-series excitonic dipole emissions in few layer ReS2 and ReSe2 observed by polarized photoluminescence spectroscopy. Nano Energy, 2019, 56, 641-650.	8.2	49
75	Shedding Light on the Dark Corners of Metal–Organic Framework Thin Films: Growth and Structural Stability of ZIF-8 Layers Probed by Optical Waveguide Spectroscopy. Journal of Physical Chemistry A, 2019, 123, 1100-1109.	1.1	21
76	Metal-Organic Frameworks: New Functional Materials and Applications. , 2019, , 35-54.		2
77	Metal-organic frameworks based on flexible bis(imidazole) and dicarboxylic ligands and their applications as selective sensors for magnesium nitrate. Polyhedron, 2020, 178, 114349.	1.0	2
78	Sensitive Ratiometric Fluorescent Metal-Organic Framework Sensor for Calcium Signaling in Human Blood Ionic Concentration Media. ACS Applied Materials & Interfaces, 2020, 12, 4625-4631.	4.0	39
79	Lanthanideâ€Based Luminescent Materials for Waveguide and Lasing. Chemistry - an Asian Journal, 2020, 15, 21-33.	1.7	43
80	Spatially Responsive Multicolor Lanthanideâ€MOF Heterostructures for Covert Photonic Barcodes. Angewandte Chemie - International Edition, 2020, 59, 19060-19064.	7.2	71
81	Modulating Magnetic and Photoluminescence Properties in 2â€Aminonicotinateâ€Based Bifunctional Coordination Polymers by Merging 3d Metal Ions. Chemistry - A European Journal, 2020, 26, 13484-13498.	1.7	8
82	Spatially Responsive Multicolor Lanthanideâ€MOF Heterostructures for Covert Photonic Barcodes. Angewandte Chemie, 2020, 132, 19222-19226.	1.6	12
83	Highly enhanced UV-vis-NIR light harvesting and photoelectric conversion of a pyrene MOF by encapsulation of the D–π–A cyanine dye. Journal of Materials Chemistry C, 2020, 8, 17169-17175.	2.7	31
84	Tunable Energy-Transfer Process in Heterometallic MOF Materials Based on 2,6-Naphthalenedicarboxylate: Solid-State Lighting and Near-Infrared Luminescence Thermometry. Chemistry of Materials, 2020, 32, 7458-7468.	3.2	54
85	Tumor Microenvironment–Responsive Peptide-Based Supramolecular Drug Delivery System. Frontiers in Chemistry, 2020, 8, 549.	1.8	23
86	Supramolecular self-assembly of chiral helical tubular polymers with amplified circularly polarized luminescence. Materials Chemistry Frontiers, 2020, 4, 2772-2781.	3.2	24
87	Organic micro/nanoscale materials for photonic barcodes. Organic Chemistry Frontiers, 2020, 7, 2776-2788.	2.3	22
88	Lanthanide-functionalized metal–organic frameworks as ratiometric luminescent sensors. Journal of Materials Chemistry C, 2020, 8, 12739-12754.	2.7	139
89	Enantiomeric MOF Crystals Using Helical Channels as Palettes with Bright White Circularly Polarized Luminescence. Advanced Materials, 2020, 32, e2002914.	11.1	125
90	Manipulating Lightâ€Induced Dynamic Macroâ€Movement and Static Photonic Properties within 1D Isostructural Hydrogenâ€Bonded Molecular Cocrystals. Angewandte Chemie, 2020, 132, 22812-22819.	1.6	10

#	Article	IF	CITATIONS
91	Manipulating Lightâ€Induced Dynamic Macroâ€Movement and Static Photonic Properties within 1D Isostructural Hydrogenâ€Bonded Molecular Cocrystals. Angewandte Chemie - International Edition, 2020, 59, 22623-22630.	7.2	101
92	Aggregation-Induced Emission-Active Chiral Helical Polymers Show Strong Circularly Polarized Luminescence in Thin Films. Macromolecules, 2020, 53, 8041-8049.	2.2	58
93	The Mechanism of Flexâ€Activation in Mechanophores Revealed By Quantum Chemistry. ChemPhysChem, 2020, 21, 2402-2406.	1.0	7
94	Synergetic Effect of Tetraethylammonium Bromide Addition on the Morphology Evolution and Enhanced Photoluminescence of Rare-Earth Metal–Organic Frameworks. Inorganic Chemistry, 2020, 59, 14318-14325.	1.9	24
95	A multi-responsive chemosensor for highly sensitive and selective detection of Fe ³⁺ , Cu ²⁺ , Cr ₂ O ₇ ^{2â^'} and nitrobenzene based on a luminescent lanthanide metal–organic framework. Dalton Transactions, 2020, 49, 13003-13016.	1.6	73
96	Interactions Between Hydrated Cerium(III) Cations and Carboxylates in an Aqueous Solution: Anomalously Strong Complex Formation with Diglycolate, Suggesting a Chelate Effect. ACS Omega, 2020, 5, 31880-31890.	1.6	6
97	Graphene Oxide-Supported Lanthanide Metal–Organic Frameworks with Boosted Stabilities and Detection Sensitivities. Analytical Chemistry, 2020, 92, 15550-15557.	3.2	38
98	1D and 2D Silver-Based Coordination Polymers with Thiomorpholine-4-carbonitrile and Aromatic Polyoxoacids as Coligands: Structure, Photocatalysis, Photoluminescence, and TD-DFT Study. Crystal Growth and Design, 2020, 20, 4461-4478.	1.4	11
99	Interpenetrated Luminescent Metal–Organic Frameworks based on 1 <i>H</i> -Indazole-5-carboxylic Acid. Crystal Growth and Design, 2020, 20, 4550-4560.	1.4	9
100	Construction of lanthanide coordination polymers based on mixed terpyridyl and dicarboxylate ligands: Syntheses, structures and luminescent properties. Journal of Solid State Chemistry, 2020, 288, 121424.	1.4	6
101	Luminescent lanthanide metal–organic framework nanoprobes: from fundamentals to bioapplications. Nanoscale, 2020, 12, 15021-15035.	2.8	65
102	Ratiometric fluorescence detection of 2,6-pyridine dicarboxylic acid with a dual-emitting lanthanide metal-organic framework (MOF). Optical Materials, 2020, 106, 110006.	1.7	37
103	Ratiometric fluorescence temperature sensing based on single- and dual-lanthanide metal-organic frameworks. Journal of Luminescence, 2020, 226, 117418.	1.5	39
104	Solvent triggering structural changes for two terbium-based metal–organic frameworks and their photoluminescence sensing. Chemical Communications, 2020, 56, 4320-4323.	2.2	28
105	Controlled dye release from a metal–organic framework: a new luminescent sensor for water. RSC Advances, 2020, 10, 2722-2726.	1.7	8
106	Dual-Mode Light-Emitting Lanthanide Metal–Organic Frameworks with High Water and Thermal Stability and Their Application in White LEDs. ACS Applied Materials & Interfaces, 2020, 12, 18934-18943.	4.0	65
107	Circularly polarized luminescence induced by excimer based on pyrene-modified binaphthol. Chinese Chemical Letters, 2020, 31, 2921-2924.	4.8	17
108	Nanoscale light–matter interactions in metal–organic frameworks cladding optical fibers. Nanoscale, 2020, 12, 9991-10000.	2.8	25

#	Article	IF	CITATIONS
109	Chirogenesis and Pfeiffer Effect in Optically Inactive EuIII and TbIII Tris(β-diketonate) Upon Intermolecular Chirality Transfer From Poly- and Monosaccharide Alkyl Esters and α-Pinene: Emerging Circularly Polarized Luminescence (CPL) and Circular Dichroism (CD). Frontiers in Chemistry, 2020, 8, 685.	1.8	15
110	Helical Nanostructures with Circularly Polarized Luminescence from the Multicomponent Assembly of Ï€â€Conjugated <i>N</i> â€ŧerminal Amino Acids. ChemPlusChem, 2020, 85, 1511-1522.	1.3	24
111	Fast Crystallization-Deposition of Orderly Molecule Level Heterojunction Thin Films Showing Tunable Up-Conversion and Ultrahigh Photoelectric Response. ACS Central Science, 2020, 6, 1169-1178.	5.3	79
112	Dense π-stacking of flexible ligands fixed in interpenetrating Zn(<scp>ii</scp>) MOF exhibiting long-lasting phosphorescence and efficient carrier transport. Dalton Transactions, 2020, 49, 9961-9964.	1.6	9
113	Pure Metal–Organic Framework Microlasers with Controlled Cavity Shapes. Nano Letters, 2020, 20, 2020-2025.	4.5	31
114	Rational Construction of Porous Metal–Organic Frameworks for Uranium(VI) Extraction: The Strong Periodic Tendency with a Metal Node. ACS Applied Materials & Interfaces, 2020, 12, 14087-14094.	4.0	48
115	Formation and Encapsulation of Lead Halide Perovskites in Lanthanide Metal–Organic Frameworks for Tunable Emission. ACS Applied Materials & Interfaces, 2020, 12, 9851-9857.	4.0	34
116	Metal–organic framework-5 as a novel phosphorescent probe for the highly selective and sensitive detection of Pb(II) in mussels. Sensors and Actuators B: Chemical, 2020, 308, 127733.	4.0	21
117	Multifarious Chiral Nanoarchitectures Serving as Handed-Selective Fluorescence Filters for Generating Full-Color Circularly Polarized Luminescence. ACS Nano, 2020, 14, 3208-3218.	7.3	76
118	Tuning Multimode Luminescence in Lanthanide(III) and Manganese(II) Coâ€Đoped CaZnOS Crystals. Advanced Optical Materials, 2020, 8, 2000274.	3.6	42
119	Luminescent manganese(II) complexes: Synthesis, properties and optoelectronic applications. Coordination Chemistry Reviews, 2020, 416, 213331.	9.5	110
120	Highly sensitive color fine-tuning of diblock copolymeric nano-aggregates with tri-metallic cations, Eu(III), Tb(III), and Zn(II), for flexible photoluminescence films (FPFs). Journal of Materials Science and Technology, 2021, 65, 72-81.	5.6	5
121	Controlled Assembly of Luminescent Lanthanide-Organic Frameworks via Post-Treatment of 3D-Printed Objects. Nano-Micro Letters, 2021, 13, 15.	14.4	22
122	Controlled Shape Evolution of Pureâ€MOF 1D Microcrystals towards Efficient Waveguide and Laser Applications. Chemistry - A European Journal, 2021, 27, 3297-3301.	1.7	14
123	Thermo-induced structural transformation with synergistic optical and magnetic changes in ytterbium and erbium complexes. Chinese Chemical Letters, 2021, 32, 1519-1522.	4.8	11
124	Luminescence response mode and chemical sensing mechanism for lanthanide-functionalized metal–organic framework hybrids. Inorganic Chemistry Frontiers, 2021, 8, 201-233.	3.0	166
125	Luminescence-colour-changing sensing toward neurological drug carbamazepine in water and biofluids based on white light-emitting CD/Ln-MOF/PVA test papers. Journal of Materials Chemistry C, 2021, 9, 8683-8693.	2.7	19
126	Coordination-induced spontaneous resolution of a TPPE-based MOF and its use as a crystalline sponge in guest determination. Dalton Transactions, 2021, 50, 7186-7190.	1.6	8

#	Article	IF	Citations
127	Superlattice films of semiconducting oxide and rare-earth hydroxide nanosheets for tunable and efficient photoluminescent energy transfer. Nanoscale, 2021, 13, 4551-4561.	2.8	15
128	Recent advances in persistent luminescence based on molecular hybrid materials. Chemical Society Reviews, 2021, 50, 5564-5589.	18.7	331
129	Elastic orange emissive single crystals of 1,3-diamino-2,4,5,6-tetrabromobenzene as flexible optical waveguides. Journal of Materials Chemistry C, 2021, 9, 9465-9472.	2.7	15
130	An enantiomeric pair of alkaline-earth metal based coordination polymers showing room temperature phosphorescence and circularly polarized luminescence. Journal of Materials Chemistry C, 2021, 9, 5544-5553.	2.7	10
131	Long Afterglow of a Nonporous Coordination Polymer with Tunable Room-Temperature Phosphorescence by the Doping of Dye Molecules. Inorganic Chemistry, 2021, 60, 846-851.	1.9	20
132	Self-assembled ultrafine CsPbBr3 perovskite nanowires for polarized light detection. Science China Materials, 2021, 64, 2261-2271.	3.5	13
133	Boosting Wideâ€Range Tunable Longâ€Afterglow in 1D Metal–Organic Halide Micro/Nanocrystals for Space/Timeâ€Resolved Information Photonics. Advanced Materials, 2021, 33, e2007571.	11.1	138
134	Metal-organic frameworks as functional materials for implantable flexible biochemical sensors. Nano Research, 2021, 14, 2981-3009.	5.8	26
135	Lightâ€Emitting Metal–Organic Halide 1D and 2D Structures: Nearâ€Unity Quantum Efficiency, Lowâ€Loss Optical Waveguide and Highly Polarized Emission. Angewandte Chemie - International Edition, 2021, 60, 13548-13553.	7.2	50
136	Low-Dimensional Organic Metal Halide Hybrids with Excitation-Dependent Optical Waveguides from Visible to Near-Infrared Emission. ACS Applied Materials & Interfaces, 2021, 13, 26451-26460.	4.0	23
137	Lightâ€Emitting Metal–Organic Halide 1D and 2D Structures: Nearâ€Unity Quantum Efficiency, Lowâ€Loss Optical Waveguide and Highly Polarized Emission. Angewandte Chemie, 2021, 133, 13660-13665.	1.6	5
138	Circularly polarized luminescence of agglomerate emitters. Aggregate, 2021, 2, e48.	5.2	81
139	Angle-Dependent Polarized Emission and Photoelectron Performance of Dye-Encapsulated Metal–Organic Framework. Inorganic Chemistry, 2021, 60, 10109-10113.	1.9	14
140	Hydrogen-Bonded Organic Framework Microlasers with Conformation-Induced Color-Tunable Output. ACS Applied Materials & Interfaces, 2021, 13, 28662-28667.	4.0	39
141	Stimuli-Responsive Metal–Organic Framework on a Metal–Organic Framework Heterostructure for Efficient Antibiotic Detection and Anticounterfeiting. ACS Applied Materials & Interfaces, 2021, 13, 35689-35699.	4.0	30
142	Laterally Engineering Lanthanideâ€MOFs Epitaxial Heterostructures for Spatially Resolved Planar 2D Photonic Barcoding. Angewandte Chemie - International Edition, 2021, 60, 24519-24525.	7.2	27
143	Activating Roomâ€Temperature Phosphorescence of Organic Luminophores via External Heavyâ€Atom Effect and Rigidity of Ionic Polymer Matrix**. Angewandte Chemie, 2021, 133, 19887-19891.	1.6	23
144	Activating Roomâ€Temperature Phosphorescence of Organic Luminophores via External Heavyâ€Atom Effect and Rigidity of Ionic Polymer Matrix**. Angewandte Chemie - International Edition, 2021, 60, 19735-19739.	7.2	131

#	Article	IF	CITATIONS
145	Emerging and perspectives in microlasers based on rare-earth ions activated micro-/nanomaterials. Progress in Materials Science, 2021, 121, 100814.	16.0	18
146	Octanuclear {Ln8} complexes: magneto-caloric effect in the {Gd8} analogue. Journal of Chemical Sciences, 2021, 133, 1.	0.7	4
147	Lanthanides-based luminescent hydrogels applied as luminescent inks for anti-counterfeiting. Journal of Luminescence, 2021, 236, 118128.	1.5	31
148	Laterally Engineering Lanthanideâ€MOFs Epitaxial Heterostructures for Spatially Resolved Planar 2D Photonic Barcoding. Angewandte Chemie, 2021, 133, 24724.	1.6	6
149	Preparation and photoluminescence of functionalized cotton fabric by double luminescent guests-encapsulated ZnBDC metal-organic framework. Dyes and Pigments, 2022, 197, 109835.	2.0	3
150	Lanthanide-Bisphosphonate Coordination Chemistry: Biocompatible Fluorescent Labeling Strategy for Hydrogel. ACS Applied Bio Materials, 2021, 4, 1057-1064.	2.3	8
151	Recent Advances on Molecular Crystalline Luminescent Materials for Optical Waveguides. Advanced Optical Materials, 2021, 9, 2001768.	3.6	48
152	Highlights of the development and application of luminescent lanthanide based coordination polymers, MOFs and functional nanomaterials. Dalton Transactions, 2021, 50, 770-784.	1.6	92
153	Eu-MOF and its mixed-matrix membranes as a fluorescent sensor for quantitative ratiometric pH and folic acid detection, and visible fingerprint identifying. Inorganic Chemistry Frontiers, 2021, 8, 4924-4932.	3.0	36
154	Dysprosium–dianthracene framework showing thermo-responsive magnetic and luminescence properties. Journal of Materials Chemistry C, 2021, 9, 10749-10758.	2.7	12
155	Highly sensitive luminescent detection toward polytypic antibiotics by a water-stable and white-light-emitting MOF-76 derivative. Dyes and Pigments, 2020, 180, 108444.	2.0	46
156	Anionic Ln–MOF with tunable emission for heavy metal ion capture and <scp> </scp> -cysteine sensing in serum. Journal of Materials Chemistry A, 2020, 8, 5587-5594.	5.2	61
157	First principle study of nonlinear optical crystals. Wuli Xuebao/Acta Physica Sinica, 2018, 67, 114203.	0.2	9
158	Fluorescence and electrochemical detection of iodine vapor in the presence of high humidity using Ln-based MOFs. Dalton Transactions, 2021, 50, 15567-15575.	1.6	12
159	Monazite LaPO ₄ :Eu ³⁺ nanorods as strongly polarized nano-emitters. Nanoscale, 2021, 13, 16968-16976.	2.8	6
160	Cholesteric Liquid Crystalline Polyether with Broad Tunable Circularly Polarized Luminescence. Langmuir, 2021, 37, 11922-11930.	1.6	10
161	Metal–organic framework solid solutions of rare earth ions Tb3+, Eu3+ and Y3+ with pyridine-2, 4, 6-tricarboxylate ligand emitting high quantum yield white light. Journal of Solid State Chemistry, 2022, 305, 122654.	1.4	1
162	Luminescent lanthanide single atom composite materials: Tunable full-color single phosphor and applications in white LEDs. Chemical Engineering Journal, 2022, 430, 132782.	6.6	18

#	Article	IF	CITATIONS
163	Dynamic Manipulating Spaceâ€Resolved Persistent Luminescence in Core–Shell MOFs Heterostructures via Reversible Photochromism. Angewandte Chemie - International Edition, 2022, 61, .	7.2	79
164	Dynamic Manipulating Spaceâ€Resolved Persistent Luminescence in Core–Shell MOFs Heterostructures via Reversible Photochromism. Angewandte Chemie, 2022, 134, .	1.6	18
165	Hierarchical self-assembly into chiral nanostructures. Chemical Science, 2022, 13, 633-656.	3.7	63
166	Rapid synthesis of amphiphilic europium complexes via ultrasonic treatment-assisted crosslinking reaction. Dyes and Pigments, 2022, 197, 109950.	2.0	5
167	Polarized Emission of Lanthanide Metal–Organic Framework (Lnâ€MOF) Crystals for High apacity Photonic Barcodes. Advanced Optical Materials, 2022, 10, .	3.6	17
168	Syntheses, structures, surface analysis, DFT and fluorescence properties of three new Cd(II)-MOFs assembled with semi-rigid polycarboxylate. Journal of Molecular Structure, 2022, 1251, 131957.	1.8	4
169	Metal-Organic Framework superstructures with long-ranged orientational order via E-field assisted liquid crystal assembly. Journal of Colloid and Interface Science, 2022, 610, 1027-1034.	5.0	18
170	Soft Metal–Organic Frameworks Based on {Na@Ln ₆ } as a Secondary Building Unit Featuring a Magnetocaloric Effect and Fluorescent Sensing for Cyclohexane and Fe ³⁺ . Crystal Growth and Design, 2021, 21, 7065-7074.	1.4	9
171	Recent advances in luminescent metal–organic frameworks and their photonic applications. Chemical Communications, 2021, 57, 13678-13691.	2.2	22
172	Our journey of developing dualâ€emitting metalâ€organic frameworkâ€based fluorescent sensors. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2022, 648, .	0.6	8
173	Core–Shell Lanthanide-Doped Nanoparticles@Eu-MOF Nanocomposites for Anticounterfeiting Applications. ACS Applied Nano Materials, 2022, 5, 1161-1168.	2.4	18
174	Circularly polarized luminescent porous crystalline nanomaterials. Nanoscale, 2022, 14, 1123-1135.	2.8	13
175	Recent progress on porous MOFs for process-efficient hydrocarbon separation, luminescent sensing, and information encryption. Chemical Communications, 2022, 58, 747-770.	2.2	81
176	Multiple Responsive CPL Switches in an Enantiomeric Pair of Perovskite Confined in Lanthanide MOFs. Advanced Materials, 2022, 34, e2109496.	11.1	67
177	Rare-Earth Doping in Nanostructured Inorganic Materials. Chemical Reviews, 2022, 122, 5519-5603.	23.0	338
178	The Special Case of the Spectral Emission of a Tb ³⁺ Mono Metal Complex. ChemPhysChem, 2022, 23, .	1.0	1
179	Rare Earth Ions-Activated Hybrid Assemblies Fluorescent Systems Based on the Layered Lanthanum Hydroxides. Acta Chimica Sinica, 2022, 80, 133.	0.5	1
180	Synthesis and luminescence properties of new nitridolithosilicate phosphor La ₄ Ba ₃ Li ₃ Si ₉ N ₁₉ :Pr ³⁺ grown in Li flux. Chemical Communications, 2022, , .	2.2	2

#	Article	IF	Citations
181	Two Bi-Mofs with Pyridylmulticarboxylate Ligands Showing Distinct Crystal Structures and Phosphorescence Properties. SSRN Electronic Journal, 0, , .	0.4	0
182	Chiral Metal–Organic Frameworks. Chemical Reviews, 2022, 122, 9078-9144.	23.0	175
183	Spectroscopic properties and fluorescent recognition of dye sensitized layered lutetium-terbium hydroxides. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 276, 121240.	2.0	2
184	Near-Infrared Lanthanide-Based Emission from Fused Bis[Ln(III)/Zn(II) 14-metallacrown-5] Coordination Compounds. Inorganic Chemistry, 2022, 61, 5691-5695.	1.9	3
185	Two Bi-MOFs with pyridylmulticarboxylate ligands showing distinct crystal structures and phosphorescence properties. Journal of Solid State Chemistry, 2022, 309, 123005.	1.4	3
186	Three-primary-color molecular cocrystals showing white-light luminescence, tunable optical waveguide and ultrahigh polarized emission. Science China Chemistry, 2022, 65, 408-417.	4.2	17
187	Framework-Shrinkage-Induced Wavelength-Switchable Lasing from a Single Hydrogen-Bonded Organic Framework Microcrystal. Journal of Physical Chemistry Letters, 2022, 13, 130-135.	2.1	24
188	Multiâ€Mode and Dynamic Persistent Luminescence from Metal Cytosine Halides through Balancing Excited‧tate Proton Transfer. Advanced Science, 2022, 9, e2200992.	5.6	55
189	Fluorescent strengthening effect of co-doped inert rare earth ions (La3+, Gd3+, Lu3+) on white-light-emitting of Eu–Tb(btc) coordination polymers. Journal of Luminescence, 2022, 247, 118904.	1.5	12
191	Crystallization induced room-temperature phosphorescence and chiral photoluminescence properties of phosphoramides. Chemical Science, 2022, 13, 5893-5901.	3.7	21
192	Advanced optical properties of upconversion nanoparticles. , 2023, , 613-648.		1
193	Exploring Axial Organic Multiblock Heterostructure Nanowires: Advances in Molecular Design, Synthesis, and Functional Applications. Advanced Functional Materials, 2022, 32, .	7.8	15
194	Color-tunable persistent luminescence in 1D zinc–organic halide microcrystals for single-component white light and temperature-gating optical waveguides. Chemical Science, 2022, 13, 7429-7436.	3.7	51
195	Luminescent trade-off effect arising from Y3+ ion doping in rare earth metal–organic framework solid solutions Tb1-Y -PTC (H3PTC = pyridine-2, 4, 6-tricarboxylate). Journal of Solid State Chemistry, 2022, 312, 123270.	1.4	3
196	Family of Nanoclusters, Ln ₃₃ (Ln = Sm/Eu) and Gd ₃₂ , Exhibiting Magnetocaloric Effects and Fluorescence Sensing for MnO ₄ [–] . Inorganic Chemistry, 2022, 61, 8861-8869.	1.9	11
197	Metal-organic materials with circularly polarized luminescence. Coordination Chemistry Reviews, 2022, 468, 214640.	9.5	44
198	Multifunctional lanthanide MOF luminescent sensor built by structural designing and energy level regulation of a ligand. Inorganic Chemistry Frontiers, 2022, 9, 4065-4074.	3.0	23
199	Highly luminescent and stable lanthanide coordination polymers based 2-(3′,4′-dicarboxyphenoxy)-benzoic acid: Crystal structure, photoluminescence, white light emission and fluorescence sensing. Dyes and Pigments, 2022, 206, 110650.	2.0	9

#	ARTICLE	IF	CITATIONS
200	Dual-mode multi-color circularly polarized luminescent MOFs from a facile approach of chiral induction. Journal of Materials Chemistry C, 2022, 10, 13084-13092.	2.7	7
201	Recent Advances on Moleculeâ€Based Micro/Nanocrystal Heterojunctions for Optical Applications. Advanced Optical Materials, 2023, 11, .	3.6	5
202	Hydrogen-bond organized 2D metal–organic microsheets: direct ultralong phosphorescence and color-tunable optical waveguides. Science Bulletin, 2022, 67, 2076-2084.	4.3	72
203	One and Twoâ€Photon Excited Fluorescence Optimization of Metal–Organic Frameworks with Symmetryâ€Reduced AlEgen‣igand. Angewandte Chemie - International Edition, 2022, 61, .	7.2	9
204	Maximized Green Photoluminescence in Tbâ€Based Metal–Organic Framework via Pressureâ€Treated Engineering. Angewandte Chemie, 2022, 134, .	1.6	1
205	Maximized Green Photoluminescence in Tbâ€Based Metal–Organic Framework via Pressureâ€Treated Engineering. Angewandte Chemie - International Edition, 2022, 61, .	7.2	17
206	One and Twoâ€Photon Excited Fluorescence Optimization of Metal–Organic Frameworks with Symmetryâ€Reduced AlEgen‣igand. Angewandte Chemie, 0, , .	1.6	0
207	A zinc(II) complex based on 5-(ethylamino)isophthalic acid and <i>trans</i> -1,2-di(4-pyridyl)ethene with a threefold interpenetrated crystal structure: synthesis, crystal structure and room temperature phosphorescence. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2022, .	0.3	1
208	Influence of Tartrate Ligand Coordination over Luminescence Properties of Chiral Lanthanide-Based Metal–Organic Frameworks. Nanomaterials, 2022, 12, 3999.	1.9	0
209	Luminescent properties and recent progress in applications of lanthanide metal-organic frameworks. Chinese Chemical Letters, 2023, 34, 108009.	4.8	16
210	Chiral two-dimensional metal–organic frameworks based on Zn(salen) ligands: subcomponent self-assembly and circularly polarised luminescence. CrystEngComm, 2023, 25, 484-489.	1.3	1
211	Multistimuli-responsive pyrene-based lanthanide (III)-MOF construction and applied as dual-function fluorescent chemosensors for trace water and vitamins molecules. Materials Today Chemistry, 2023, 27, 101292.	1.7	7
212	Upconversion Luminescence through Cooperative and Energyâ€Transfer Mechanisms in Yb ³⁺ â€Metalâ€Organic Frameworks. Angewandte Chemie, 0, , .	1.6	1
213	Upconversion Luminescence through Cooperative and Energyâ€Transfer Mechanisms in Yb ³⁺ â€Metalâ€Organic Frameworks. Angewandte Chemie - International Edition, 2023, 62, .	7.2	14
214	A New Microporous Lanthanide Metal–Organic Framework with a Wide Range of pH Linear Response. Molecules, 2022, 27, 8696.	1.7	2
215	Circularly polarized luminescence of lanthanide complexes: From isolated individuals, discrete oligomers, to hierarchical assemblies. InformaÄnÃ-Materiály, 2023, 5, .	8.5	7
216	Flexible fluorescent metal-organic frameworks towards highly stable optical fibers and biocompatible cell platforms. Science China Materials, 2023, 66, 1659-1669.	3.5	1
217	Multifunctional lanthanide MOFs with active sites as new platforms for smart sensing of methylmalonic acid and anti-counterfeiting applications. Journal of Materials Chemistry C, 2023, 11, 2328-2335.	2.7	12

1

#	Article	IF	CITATIONS
218	Tailored Supramolecular Cage for Efficient Bio-Labeling. International Journal of Molecular Sciences, 2023, 24, 2147.	1.8	2
219	Modulating anthracene excimer through guest engineering in two-dimensional lead bromide hybrids. Inorganic Chemistry Frontiers, 2023, 10, 2917-2925.	3.0	3
220	Influence of solvent coordination on crystal structure and luminescent property in lanthanide MOFs. Polyhedron, 2023, 237, 116386.	1.0	2
221	Down-converting luminescent optoelectronics and their applications. APL Photonics, 2023, 8, .	3.0	6
222	White light and long persistent luminescence from metal cluster-based metal-organic frameworks. Chemical Engineering Journal, 2023, 462, 142154.	6.6	4
223	Long Persistent Luminescence from Metal–Organic Compounds: State of the Art. Advanced Functional Materials, 2023, 33, .	7.8	62
224	Supramolecular glasses with color-tunable circularly polarized afterglow through evaporation-induced self-assembly of chiral metal–organic complexes. Nature Communications, 2023, 14, .	5.8	60
225	Highly Boosting Circularly Polarized Luminescence of Chiral Metal–Imidazolate Frameworks. Advanced Science, 2023, 10, .	5.6	7
226	Exploring Functional Photonic Devices made from a Chiral Metal–Organic Framework Material by a Multiscale Computational Method. Advanced Functional Materials, 0, , .	7.8	5
239	U-type π-conjugated phosphorescent ligand sensitized lanthanide metal–organic frameworks for efficient white-light-emitting diodes. Dalton Transactions, 2023, 52, 13872-13877.	1.6	1

241 Chemistry of Metal–Organic Frameworks. , 2023, , 45-79.