The effectiveness of virtual and augmented reality in he

Anatomical Sciences Education 10, 549-559 DOI: 10.1002/ase.1696

Citation Report

#	Article	IF	CITATIONS
1	How comprehensive are research studies investigating the efficacy of technologyâ€enhanced learning resources in anatomy education? A systematic review. Anatomical Sciences Education, 2018, 11, 303-319.	2.5	71
2	Integration of Virtual Reality and Augmented Reality: Are They Worth the Effort in Education?. , 2018, ,		Ο
3	Web based Augmented Reality for Human Body Anatomy Learning. Procedia Computer Science, 2018, 135, 457-464.	1.2	32
4	The importance of the new Apps technology in the study of anatomy by the students of medicine. , 2018, , .		1
6	A Generic Architecture of Augmented and Virtual Reality in Classrooms. , 2018, , .		3
8	Mobile Mixed Reality for Experiential Learning and Simulation in Medical and Health Sciences Education. Information (Switzerland), 2018, 9, 31.	1.7	105
9	Nutrition and growth: assessing the impact of regional nutritional intake on childhood development and metacarpal parameters. Anatomy and Cell Biology, 2018, 51, 31.	0.5	3
10	Research trends in the use of augmented reality in science education: Content and bibliometric mapping analysis. Computers and Education, 2019, 142, 103647.	5.1	201
11	Head-Mounted Display Virtual Reality in Post-secondary Education and Skill Training. Frontiers in Education, 2019, 4, .	1.2	66
12	The Past, Present, and Future of Virtual Reality in Pharmacy Education. American Journal of Pharmaceutical Education, 2019, 83, 7456.	0.7	60
13	Interactive 3D Digital Models for Anatomy and Medical Education. Advances in Experimental Medicine and Biology, 2019, 1138, 1-16.	0.8	63
14	Augmented Reality in Orthopedics: Current State and Future Directions. Frontiers in Surgery, 2019, 6, 38.	0.6	32
15	Spatial perception of ceiling height and type variation in immersive virtual environments. Building and Environment, 2019, 163, 106285.	3.0	37
16	StreamFlowVR: A Tool for Learning Methodologies and Measurement Instruments for River Flow Through Virtual Reality. Lecture Notes in Computer Science, 2019, , 456-471.	1.0	4
17	Mixed reality breathes fresh energy into the development of modern surgery. Global Health Journal (Amsterdam, Netherlands), 2019, 3, 60-61.	1.9	1
18	Theme 13 Clinical management and support. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2019, 20, 327-347.	1.1	2
19	Mixed Reality in Medical Education: A Narrative Literature Review. Proceedings of the International Symposium of Human Factors and Ergonomics in Healthcare, 2019, 8, 28-32.	0.2	14
20	The Benefits of an Augmented Reality Magic Mirror System for Integrated Radiology Teaching in Gross Anatomy. Anatomical Sciences Education, 2019, 12, 585-598.	2.5	96

#	Article	IF	Citations
21	<p>Augmented reality glasses improve adherence to evidence-based intubation practice</p> . Advances in Medical Education and Practice, 2019, Volume 10, 279-286.	0.7	15
22	Ethical Rationales and Guidelines for the Continued Use of Archival Collections of Embryonic and Fetal Specimens. Anatomical Sciences Education, 2019, 12, 407-416.	2.5	10
23	Digital Learning to Improve Safe and Effective Prescribing: A Systematic Review. Clinical Pharmacology and Therapeutics, 2019, 106, 1236-1245.	2.3	11
24	Virtual reality in preoperative imaging in maxillofacial surgery: implementation of "the next level�. British Journal of Oral and Maxillofacial Surgery, 2019, 57, 644-648.	0.4	29
25	Using virtual reality to complement and enhance anatomy education. Journal of Visual Communication in Medicine, 2019, 42, 93-101.	0.4	61
26	Faculty awareness of the economic and environmental benefits of augmented reality for sustainability in Saudi Arabian universities. Journal of Cleaner Production, 2019, 226, 259-269.	4.6	32
27	Extended Reality in Medical Practice. Current Treatment Options in Cardiovascular Medicine, 2019, 21, 18.	0.4	97
28	Digital and intelligent liver surgery in the new era: Prospects and dilemmas. EBioMedicine, 2019, 41, 693-701.	2.7	58
29	Leveraging augmented reality for training transfer: a case of healthcare service providers in ophthalmology. Development and Learning in Organizations, 2019, 34, 33-36.	0.3	9
30	Survey of use mobile augmented reality for teaching materials. Journal of Physics: Conference Series, 2019, 1375, 012085.	0.3	2
31	Virtual Patients and Serious Games. , 2019, , 41-51.		1
32	Effects of a 3D Visualization Application and Game-Based Learning on Gross Anatomy Education: Focused on Some Students in the Department of Dental Hygiene. Anatomy & Biological Anthropology, 2019, 32, 101.	0.1	2
33	Exploring the Dimensions of Medical Student Engagement with Technologyâ€Enhanced Learning Resources and Assessing the Impact on Assessment Outcomes. Anatomical Sciences Education, 2019, 12, 117-128.	2.5	63
34	Applying Modern Virtual and Augmented Reality Technologies to Medical Images and Models. Journal of Digital Imaging, 2019, 32, 38-53.	1.6	168
35	Enhancement of Anatomical Education Using Augmented Reality: An Empirical Study of Body Painting. Anatomical Sciences Education, 2019, 12, 599-609.	2.5	70
36	Of Discomfort and Disagreement: Unclaimed Bodies in Anatomy Laboratories at United States Medical Schools. Anatomical Sciences Education, 2019, 12, 360-369.	2.5	16
37	The Use of Augmented Reality Technology in Medical Specimen Museum Tours. Anatomical Sciences Education, 2019, 12, 561-571.	2,5	41
38	Spatial Abilities Training in Anatomy Education: A Systematic Review. Anatomical Sciences Education, 2020, 13, 71-79.	2.5	44

#	Article	IF	CITATIONS
39	An augmented reality-supported mobile application for diagnosis of heart diseases. Journal of Supercomputing, 2020, 76, 1242-1267.	2.4	24
40	Exploration of temporal bone anatomy using mixed reality (HoloLens): development of a mixed reality anatomy teaching resource prototype. Journal of Visual Communication in Medicine, 2020, 43, 17-26.	0.4	35
41	Virtual Reality in Anatomy: A Pilot Study Evaluating Different Delivery Modalities. Anatomical Sciences Education, 2020, 13, 445-457.	2.5	39
42	Neuroanatomy Learning: Augmented Reality vs. Crossâ€Sections. Anatomical Sciences Education, 2020, 13, 353-365.	2.5	61
43	Specular Reflections Removal for Endoscopic Image Sequences With Adaptive-RPCA Decomposition. IEEE Transactions on Medical Imaging, 2020, 39, 328-340.	5.4	37
44	Difficult obstetric airway training: Current strategies, challenges and future innovations. Trends in Anaesthesia and Critical Care, 2020, 31, 21-27.	0.4	3
45	The Critical Role of Stereopsis in Virtual and Mixed Reality Learning Environments. Anatomical Sciences Education, 2020, 13, 401-412.	2.5	58
46	A Novel Evaluation Model for a Mixed-Reality Surgical Navigation System: Where Microsoft HoloLens Meets the Operating Room. Surgical Innovation, 2020, 27, 193-202.	0.4	21
47	Using videoconferencing to deliver anatomy teaching to medical students on clinical placements. Translational Research in Anatomy, 2020, 19, 100059.	0.3	12
48	The Effect of Stereoscopic Augmented Reality Visualization on Learning Anatomy and the Modifying Effect of Visual‧patial Abilities: A Double enter Randomized Controlled Trial. Anatomical Sciences Education, 2020, 13, 558-567.	2.5	70
49	Evaluating the Performance of Augmented Reality in Displaying Magnetic Resonance Imaging–Derived Three-Dimensional Holographic Models. Journal of Medical Imaging and Radiation Sciences, 2020, 51, 95-102.	0.2	2
50	Evaluation of HoloHuman augmented reality application as a novel educational tool in dentistry. European Journal of Dental Education, 2020, 24, 259-265.	1.0	51
51	Artificial Intelligence or Natural Stupidity? Deep Learning or Superficial Teaching?. Anatomical Sciences Education, 2020, 13, 5-7.	2.5	1
52	Augmented Reality Interface for Complex Anatomy Learning in the Central Nervous System: A Systematic Review. Journal of Healthcare Engineering, 2020, 2020, 1-15.	1.1	14
53	Evaluating the effectiveness of learning ear anatomy using holographic models. Journal of Otolaryngology - Head and Neck Surgery, 2020, 49, 63.	0.9	30
54	Immersive virtual reality in Kâ€12 and higher education: A 10â€year systematic review of empirical research. British Journal of Educational Technology, 2020, 51, 2006-2033.	3.9	156
55	Exploring the Utility and Student Perceptions of Synthetic Cadavers in an Undergraduate Human Anatomy Course. Anatomical Sciences Education, 2021, 14, 605-614.	2.5	4
56	CLASSIE teaching – using virtual reality to incorporate medical ethics into clinical decision making. BMC Medical Education, 2020, 20, 326.	1.0	9

#	Article	IF	CITATIONS
57	Letter to the Editor Regarding "Mixed Reality-Based Preoperative Planning for Training of Percutaneous Transforaminal Endoscopic Discectomy: A Feasibility Study― World Neurosurgery, 2020, 139, 660.	0.7	0
58	Trauma and orthopaedics training amid COVID-19: A medical student's perspective. Monthly Notices of the Royal Astronomical Society: Letters, 2020, 91, 801-802.	1.2	1
59	Augmented reality-based learning for the comprehension of cardiac physiology in undergraduate biomedical students. American Journal of Physiology - Advances in Physiology Education, 2020, 44, 314-322.	0.8	16
60	Medical Student Perception of a Virtual Reality Training Module for Anatomy Education. Medical Science Educator, 2020, 30, 1201-1210.	0.7	21
61	Learning anatomy by virtual reality and augmented reality. A scope review. Morphologie, 2020, 104, 254-266.	0.5	65
62	Modernising Anatomy Teaching: Which Resources Do Students Rely On?. Journal of Medical Education and Curricular Development, 2020, 7, 238212052095515.	0.7	16
63	Problem-based gaming via an augmented reality mobile game and a printed game in foreign language education. Education and Information Technologies, 2022, 27, 743-771.	3.5	34
64	Virtual Dissection: An Interactive Anatomy Learning Tool. Anatomical Sciences Education, 2021, 14, 788-798.	2.5	22
65	Work-in-Progress—Development of a Virtual Reality Learning Environment: VR Baby. , 2020, , .		2
66	Mixed and Augmented Reality: Distinct Terms, Different Anatomy Teaching Potential. Anatomical Sciences Education, 2021, 14, 519-520.	2.5	7
67	Virtual reality: an effective tool for teaching root canal anatomy to undergraduate dental students – a preliminary study. International Endodontic Journal, 2020, 53, 1581-1587.	2.3	56
68	Producing 3D printed highâ€fidelity retroperitoneal models from in vivo patient data: The Oxford Method. Journal of Anatomy, 2020, 237, 1177-1184.	0.9	5
69	Virtual Reality and Augmented Reality—Translating Surgical Training into Surgical Technique. Current Reviews in Musculoskeletal Medicine, 2020, 13, 663-674.	1.3	72
70	Innovative Educational Pathways in Spine Surgery: Advanced Virtual Reality–Based Training. World Neurosurgery, 2020, 140, 674-680.	0.7	27
71	XR-Cockpit: a comparison of VR and AR solutions on an interactive training station. , 2020, , .		3
72	Developing future medical educators in an Australian medical program: supervisors' reflections on the first four years of MD Professional Project implementation. Medical Education Online, 2020, 25, 1819113.	1.1	2
73	The Effectiveness of Collaborative Augmented Reality in Gross Anatomy Teaching: A Quantitative and Qualitative Pilot Study. Anatomical Sciences Education, 2021, 14, 590-604.	2.5	30
74	Mexican Educators Survey on Anatomical Sciences Education and a Review of World Tendencies. Anatomical Sciences Education, 2021, 14, 471-481.	2.5	10

#	Article	IF	CITATIONS
75	A Review of Training and Guidance Systems in Medical Surgery. Applied Sciences (Switzerland), 2020, 10, 5752.	1.3	11
76	Using Holograms to Enhance Learning in Health Sciences and Medicine. Medical Science Educator, 2020, 30, 1351-1352.	0.7	7
77	From Traditional to VR-Based Online Education Platforms: A Model of the Mechanism Influencing User Migration. Information (Switzerland), 2020, 11, 423.	1.7	9
78	Work-in-Progress—Adapting a Virtual Reality Anatomy Teaching Tool for Mobility: Pilot Study. , 2020, ,		8
79	Student Acceptance of Using Augmented Reality Applications for Learning in Pharmacy: A Pilot Study. Pharmacy (Basel, Switzerland), 2020, 8, 122.	0.6	13
80	Utilizing serious games for physiology and anatomy learning and revision. American Journal of Physiology - Advances in Physiology Education, 2020, 44, 505-507.	0.8	31
81	Systematic review and meta-analysis of augmented reality in medicine, retail, and games. Visual Computing for Industry, Biomedicine, and Art, 2020, 3, 21.	2.2	81
82	Can virtual reality improve traditional anatomy education programmes? A mixed-methods study on the use of a 3D skull model. BMC Medical Education, 2020, 20, 395.	1.0	51
83	Tele-orthopaedics: A systematic mapping study. Journal of Telemedicine and Telecare, 2022, 28, 3-23.	1.4	23
84	A Comparative Evaluation of a Virtual Reality Table and a HoloLens-Based Augmented Reality System for Anatomy Training. IEEE Transactions on Human-Machine Systems, 2020, 50, 337-348.	2.5	51
85	Implementing a Competency-Based Approach to Anatomy Teaching: Beginning With the End in Mind. Journal of Medical Education and Curricular Development, 2020, 7, 238212052090789.	0.7	3
86	Unveiling the technological trends of augmented reality: A patent analysis. Computers in Industry, 2020, 118, 103221.	5.7	54
87	An Alternative Method for Anatomy Training: Immersive Virtual Reality. Anatomical Sciences Education, 2020, 13, 648-656.	2.5	58
88	Virtual Reality Becomes a Reality for Ophthalmologic Surgical Clinical Trials. Translational Vision Science and Technology, 2020, 9, 1.	1.1	9
90	The mediating role of presence differs across types of spatial learning in immersive technologies. Computers in Human Behavior, 2020, 107, 106290.	5.1	30
91	Implementation of a Virtual Reality Operating Room for Simulation Purposes in Medical Training. , 2020, , .		3
92	Freehand-Steering Locomotion Techniques for Immersive Virtual Environments: A Comparative Evaluation. International Journal of Human-Computer Interaction, 2020, 36, 1734-1755.	3.3	21
93	The Use of Virtual Reality in Podiatric Medical Education. Clinics in Podiatric Medicine and Surgery, 2020, 37, 409-420.	0.2	26

#	Article	IF	CITATIONS
94	A Review of Telepresence, Virtual Reality, and Augmented Reality Applied to Clinical Care. Journal of Technology in Behavioral Science, 2020, 5, 178-205.	1.3	56
95	Does spatial awareness training affect anatomy learning in medical students?. Anatomical Sciences Education, 2020, 13, 707-720.	2.5	23
96	Augmented reality in STEM education: a systematic review. Interactive Learning Environments, 2022, 30, 1556-1569.	4.4	107
97	Augmented and Virtual Reality in Surgery. Computing in Science and Engineering, 2020, 22, 18-26.	1.2	48
98	Delaying memory decline: different options and emerging solutions. Translational Psychiatry, 2020, 10, 13.	2.4	15
99	From CT to 3D Printed Models, Serious Gaming, and Virtual Reality: Framework for Educational 3D Visualization of Complex Anatomical Spaces From Within—the Pterygopalatine Fossa. Journal of Digital Imaging, 2020, 33, 776-791.	1.6	14
100	The role of augmented reality in Anatomical education: An overview. Annals of Anatomy, 2020, 229, 151463.	1.0	62
101	The effectiveness of virtual reality-based technology on anatomy teaching: a meta-analysis of randomized controlled studies. BMC Medical Education, 2020, 20, 127.	1.0	183
102	A Randomised Control Trial and Comparative Analysis of Multi-Dimensional Learning Tools in Anatomy. Scientific Reports, 2020, 10, 6120.	1.6	10
103	The Effectiveness of an Augmented Reality Headâ€Mounted Display in Learning Skull Anatomy at a Community College. Anatomical Sciences Education, 2021, 14, 221-231.	2.5	24
104	Stereoscopic threeâ€dimensional visualisation technology in anatomy learning: A metaâ€analysis. Medical Education, 2021, 55, 317-327.	1.1	27
105	Immersive virtual reality as a pedagogical tool in education: a systematic literature review of quantitative learning outcomes and experimental design. Journal of Computers in Education, 2021, 8, 1-32.	5.0	335
106	A review of anatomy education during and after the <scp>COVID</scp> â€19 pandemic: Revisiting traditional and modern methods to achieve future innovation. Clinical Anatomy, 2021, 34, 108-114.	1.5	194
107	Development of Virtual Reality Simulation Program for High-risk Neonatal Infection Control Education. Clinical Simulation in Nursing, 2021, 50, 19-26.	1.5	19
108	Mixed reality system for nondestructive evaluation training. Virtual Reality, 2021, 25, 709-718.	4.1	7
109	HoloLens and mobile augmented reality in medical and health science education: A randomised controlled trial. British Journal of Educational Technology, 2021, 52, 680-694.	3.9	94
110	Experts' review of a virtual environment for virtual clinical simulation in South Africa. Computer Animation and Virtual Worlds, 2021, 32, e1983.	0.7	2
111	Threeâ€Dimensional Virtual Pathology Specimens: Decrease in Student Performance upon Switching to Digital Models. Anatomical Sciences Education, 2022, 15, 115-126.	2.5	1

#	Article	IF	CITATIONS
112	The Feasibility of Virtual Reality and Student-Led Simulation Training as Methods of Lumbar Puncture Instruction. Medical Science Educator, 2021, 31, 117-124.	0.7	4
113	Producing three-dimensional printed models of the hepatobiliary system from computed tomography imaging data. Annals of the Royal College of Surgeons of England, 2021, 103, 41-46.	0.3	3
114	The Virtual Dissection Table: A 3D Atlas of the Human Body Using Vectorial Modeling from Anatomical Slices. Human-computer Interaction Series, 2021, , 103-120.	0.4	2
115	This History and Evolution of Virtual Reality. Advances in Higher Education and Professional Development Book Series, 2021, , 1-20.	0.1	2
116	A Medical Liquid Varifocal Endoscope for Abdominal Cavity and its Parallax Estimation Algorithm Compatible with WBANs. IEEE Sensors Journal, 2021, , 1-1.	2.4	2
118	Evolution of augmented reality applications in Orthopaedics: A systematic review. Journal of Arthroscopy and Joint Surgery, 2021, 8, 84-90.	0.3	4
119	The Role of Spatial Ability in Learning with Virtual Reality: A Literature Review. , 0, , .		5
120	Health 4.0: A Conceptual Approach to Evaluate the Application of Digital Technologies in the Healthcare Field. Smart Innovation, Systems and Technologies, 2021, , 17-24.	0.5	2
121	Instructional Design of Virtual Learning Resources for Anatomy Education. Advances in Experimental Medicine and Biology, 2021, 1317, 75-110.	0.8	4
122	Lessons Learned: Medical Library Pilot Testing of a Virtual Reality Anatomy Lab. Journal of Electronic Resources in Medical Libraries, 2021, 18, 20-34.	0.2	0
123	Contemporary training methods in regional anaesthesia: fundamentals and innovations. Anaesthesia, 2021, 76, 53-64.	1.8	22
124	Current Perspectives on Augmented Reality in Medical Education: Applications, Affordances and Limitations. Advances in Medical Education and Practice, 2021, Volume 12, 77-91.	0.7	30
125	Evaluation of Augmented Reality Application Usage and Measuring Students' Attitudes toward Instrumentation. Journal of Chemical Education, 2021, 98, 1458-1464.	1.1	11
126	Virtual and Augmented Reality Enhancements to Medical and Science Student Physiology and Anatomy Test Performance: A Systematic Review and Metaâ€Analysis. Anatomical Sciences Education, 2021, 14, 368-376.	2.5	100
128	Development of a Virtual Threeâ€Dimensional Assessment Scenario for Anatomical Education. Anatomical Sciences Education, 2021, 14, 385-393.	2.5	24
129	Augmented and virtual reality in spine surgery, current applications and future potentials. Spine Journal, 2021, 21, 1617-1625.	0.6	77
130	Eâ€Learning Threeâ€Dimensional Anatomy of the Brainstem: Impact of Different Microscopy Techniques and Spatial Ability. Anatomical Sciences Education, 2022, 15, 317-329.	2.5	3
131	Learning in Stereo: The Relationship Between Spatial Ability and 3D Digital Anatomy Models. Anatomical Sciences Education, 2022, 15, 291-303.	2.5	5

# 132	ARTICLE Exploiting Object-of-Interest Information to Understand Attention in VR Classrooms. , 2021, , .	IF	Citations 20
133	Factores asociados al rendimiento académico en la asignatura de AnatomÃa Humana en estudiantes de pregrado ciencias de la salud. Revista Facultad De Medicina, 2021, 69, e81675.	0.0	0
134	XR collaboration beyond virtual reality: work in the real world. Journal of Computational Design and Engineering, 2021, 8, 756-772.	1.5	25
136	The effect of using theodolite 3D AR in teaching measurement error on learning outcomes and satisfaction of civil engineering students with different spatial ability. Interactive Learning Environments, 0, , 1-15.	4.4	3
137	Augmented Reality (AR) as an Enhancement Teaching Tool: Are Educators Ready for It?. Contemporary Educational Technology, 2021, 13, ep303.	1.3	4
138	Research on emergency escape system of underground mine based on mixed reality technology. Arabian Journal of Geosciences, 2021, 14, 1.	0.6	6
139	"Air Anatomy―– Teaching Complex Spatial Anatomy Using Simple Hand Gestures. Anatomical Sciences Education, 2022, 15, 552-565.	2.5	12
140	Applications of augmented and virtual reality in spine surgery and education: A review. Seminars in Spine Surgery, 2021, 33, 100875.	0.1	6
141	A Systematic Review of Augmented Reality in Health Sciences: A Guide to Decision-Making in Higher Education. International Journal of Environmental Research and Public Health, 2021, 18, 4262.	1.2	20
142	Promoting learning of biomechanical concepts with game-based activities. Sports Biomechanics, 2024, 23, 253-261.	0.8	3
143	Artırılmış Gerçeklikle İlgili Eğitim Alanında Yapılan Lisansüstü Tezlerin İncelenmesi. Eğitin Kuram Ve Uygulama, 0, , .	n Teknoloj 0.1	isi ₃
144	Inspection of Histological 3D Reconstructions in Virtual Reality. Frontiers in Virtual Reality, 2021, 2, .	2.5	2
145	5 Years into Augmented Reality Technology in Education: Research Trends, Bibliometric Study and its Application to Enhance Visualization Skills. WSEAS Transactions on Systems and Control, 2021, 16, 253-260.	0.5	3
146	Digital Transformations of Classrooms in Virtual Reality. , 2021, , .		24
147	Real-time virtual reality co-creation: collective intelligence and consciousness for student engagement and focused attention within online communities. Interactive Learning Environments, 2023, 31, 3422-3435.	4.4	11
148	Virtual reality in medical students' education: a scoping review protocol. BMJ Open, 2021, 11, e046986.	0.8	22
149	Support for using a threeâ€dimensional anatomy application over anatomical atlases in a randomized comparison. Anatomical Sciences Education, 2022, 15, 178-186.	2.5	4
150	Mixed reality applications in urology: Requirements and future potential. Annals of Medicine and Surgery, 2021, 66, 102394.	0.5	18

ARTICLE IF CITATIONS # The Virtual Transformational Leadership Development Experience: Creating a Classroom of the Future. 151 0.3 1 International Journal of Business & Management Research, 2021, 9, 207-210. Taxonomy of Virtual and Augmented Reality Applications in Education. IEEE Transactions on Learning 2.2 Technologies, 2021, 14, 415-429. PBL-based VR course for preservice teachers' designing skills in applied university under coronavirus. 153 4.4 2 Interactive Learning Environments, 2023, 31, 3647-3663. Virtual reality and annotated radiological data as effective and motivating tools to help Social 154 Sciences students learn neuroanatomy. Scientific Reports, 2021, 11, 12843. Assessing the difference in learning gain between a mixed reality application and drawing screencasts 155 2.5 13 in neuroanatomy. Anatomical Sciences Education, 2022, 15, 628-635. The effectiveness of the use of augmented reality in anatomy education: a systematic review and meta-analysis. Scientific Reports, 2021, 11, 15292. 1.6 Evaluation of an Augmented Reality Application for Learning Neuroanatomy in Psychology. Anatomical 157 2.515 Sciences Education, 2022, 15, 535-551. Analyzing Visual Attention of People with Intellectual Disabilities during Virtual Reality-Based Job 1.8 Training. Electronics (Switzerland), 2021, 10, 1652. The impact of user perceptions of AR on purchase intention of location-based AR navigation systems. 159 5.3 19 Journal of Retailing and Consumer Services, 2021, 61, 102575. Augmented and virtual reality in anatomy education: Can they be effective if they do not provide 2.5 immersive experience?. Anatomical Sciences Education, 2022, 15, 431-433. Mixedâ€methods exploration of students' motivation in using augmented reality in neuroanatomy 161 3 2.5 education with prosected specimens. Anatomical Sciences Education, 2022, 15, 839-849. Augmented, Mixed, and Virtual Reality-Based Head-Mounted Devices for Medical Education: Systematic Review. JMIR Serious Games, 2021, 9, e29080. Extended-Reality Technologies: An Overview of Emerging Applications in Medical Education and 163 0.9 14 Clinical Care. Journal of Neuropsychiatry and Clinical Neurosciences, 2021, 33, A4-177. Digital Feast and Physical Famine: The Altered Ecosystem of Anatomy Education due to the Covidâ€19 Pandemic. Anatomical Sciences Education, 2021, 14, 399-407. 164 2.5 Effectiveness of virtual and augmented reality for improving knowledge and skills in medical 165 0.8 5 students: protocol for a systematic review. BMJ Open, 2021, 11, e047004. Augmented reality–assisted roadmaps during periventricular brain surgery. Neurosurgical Focus, 1.0 2021, 51, E4. Investigating the Feasibility of Virtual Reality (VR) for Teaching Cardiac Morphology. Electronics 167 1.8 5 (Switzerland), 2021, 10, 1889. Efficacy of a virtual reality–based basic and clinical fused curriculum for clinical education on the lumbar intervertebral disc. Neurosurgical Focus, 2021, 51, E17.

#	Article	IF	CITATIONS
169	Applications of Head-Mounted Displays and Smart Glasses in Vascular Surgery. Annals of Vascular Surgery, 2021, 75, 497-512.	0.4	28
170	A Novel Anatomy Education Method Using a Spatial Reality Display Capable of Stereoscopic Imaging with the Naked Eye. Applied Sciences (Switzerland), 2021, 11, 7323.	1.3	5
171	The effects of an immersive 3d interactive video program on improving student nurses' nursing skill competence: A randomized controlled trial study. Nurse Education Today, 2021, 103, 104979.	1.4	24
172	Back to the past: Are anatomy online classes reminiscent of the anatomy theaters of old?. Anatomical Sciences Education, 2021, 14, 525-527.	2.5	1
173	Making room for the 3Rs principles of animal use in ecology: potential issues identified through a survey. European Journal of Ecology, 2021, 7, .	0.1	1
174	The effects of augmented realityâ€supported instruction in tertiaryâ€level medical education. British Journal of Educational Technology, 2022, 53, 307-325.	3.9	13
175	Rapid development of a novel and openâ€access mixed reality resource for dental education. Journal of Dental Education, 2021, , .	0.7	1
176	Next-Generation Simulation—Integrating Extended Reality Technology Into Medical Education. Frontiers in Virtual Reality, 2021, 2, .	2.5	20
177	Scrum VR: Virtual Reality Serious Video Game to Learn Scrum. Applied Sciences (Switzerland), 2021, 11, 9015.	1.3	14
178	"Learning by Doing― a Mixed-Methods Study to Identify Why Body Painting Can Be a Powerful Approach for Teaching Surface Anatomy to Health Science Students. Medical Science Educator, 2021, 31, 1875-1887.	0.7	10
179	Distance education for anatomy and surgical training – A systematic review. Journal of the Royal College of Surgeons of Edinburgh, 2022, 20, e195-e205.	0.8	30
180	Virtual reality-based neurological examination teaching tool(VRNET) versus standardized patient in teaching neurological examinations for the medical students: a randomized, single-blind study. BMC Medical Education, 2021, 21, 493.	1.0	17
181	Immersive virtual classroom as an education tool for color barrier-free presentations: a pilot study. F1000Research, 0, 10, 985.	0.8	0
182	Integration of Extended Reality and a High-Fidelity Simulator in Team-Based Simulations for Emergency Scenarios. Electronics (Switzerland), 2021, 10, 2170.	1.8	8
183	The evolution of epistemological methodologies in anatomy: From antiquity to modern times. Anatomical Record, 2022, 305, 803-817.	0.8	12
184	Perception of perspective in augmented reality head-up displays. International Journal of Human Computer Studies, 2021, 155, 102693.	3.7	12
185	Patient-specific virtual and mixed reality forÂimmersive, experiential anatomy education and for surgical planning inÂtemporal bone surgery. Auris Nasus Larynx, 2021, 48, 1081-1091.	0.5	23
186	Extended reality anatomy undergraduate teaching: A literature review on an alternative method of learning. Annals of Anatomy, 2022, 239, 151817.	1.0	34

#	Article	IF	Citations
187	Serious games, simulations, and virtual patients. , 2021, , 17-27.		2
188	The Road to Birth: Using Digital Technology to Visualise Pregnancy Anatomy. Human-computer Interaction Series, 2021, , 325-342.	0.4	5
189	EasySpec: Automatic Specular Reflection Detection and Suppression From Endoscopic Images. IEEE Transactions on Computational Imaging, 2021, 7, 1031-1043.	2.6	8
190	Teaching with Disruptive Technology: The Use of Augmented, Virtual, and Mixed Reality (HoloLens) for Disease Education. Advances in Experimental Medicine and Biology, 2021, 1317, 147-162.	0.8	18
191	A systematic review of virtual reality application in anatomy studies. AIP Conference Proceedings, 2021, , .	0.3	1
192	Reality, from virtual to augmented. , 2021, , 275-303.		0
193	Electromyography-Based Decoding of Dexterous, In-Hand Manipulation of Objects: Comparing Task Execution in Real World and Virtual Reality. IEEE Access, 2021, 9, 37297-37310.	2.6	5
194	Augmented reality in medical education: students' experiences and learning outcomes. Medical Education Online, 2021, 26, 1953953.	1.1	79
195	Utilising Anatomical and Physiological Visualisations to Enhance the Face-to-Face Student Learning Experience in Biomedical Sciences and Medicine. Advances in Experimental Medicine and Biology, 2019, 1156, 41-48.	0.8	11
196	Virtual Patients in Health Professions Education. Advances in Experimental Medicine and Biology, 2019, 1171, 25-35.	0.8	15
197	Multimodal Learning in Health Sciences and Medicine: Merging Technologies to Enhance Student Learning and Communication. Advances in Experimental Medicine and Biology, 2019, 1205, 71-78.	0.8	24
198	Augmented and Virtual Reality in Anatomical Education – A Systematic Review. Advances in Experimental Medicine and Biology, 2020, 1235, 89-101.	0.8	82
199	The Use of Virtual, Augmented and Mixed Reality in Anatomy Education. , 2020, , 359-366.		12
200	A Virtual Reality for the Digital Surgeon. , 2021, , 183-201.		5
202	Technology Considerations in Health Professions and Clinical Education. , 2020, , 1-22.		14
203	Mixed reality for teaching catheter placement to medical students: a randomized single-blinded, prospective trial. BMC Medical Education, 2020, 20, 510.	1.0	34
204	Impact of virtual reality anatomy training on ultrasound competency development: A randomized controlled trial. PLoS ONE, 2020, 15, e0242731.	1.1	23
205	A situated cognition model for clinical reasoning performance assessment: a narrative review. Diagnosis, 2020, 7, 227-240.	1.2	10

#	Article	IF	CITATIONS
206	Nursing students' engagement and experiences with virtual reality in an undergraduate bioscience course. International Journal of Nursing Education Scholarship, 2020, 17, .	0.4	12
207	Assessing the Relationship between Cognitive Load and the Usability of a Mobile Augmented Reality Tutorial System: A Study of Gender Effects. International Journal of Assessment Tools in Education, 2019, 6, 378-395.	0.4	14
208	An Argument Against Cross-Platform Development: Lessons From an Augmented Reality App Prototype for Rural Emergency Responders. JMIR MHealth and UHealth, 2019, 7, e12207.	1.8	7
209	Augmented Reality in Emergency Medicine: A Scoping Review. Journal of Medical Internet Research, 2019, 21, e12368.	2.1	104
210	Comparing the Effects on Learning Outcomes of Tablet-Based and Virtual Reality–Based Serious Gaming Modules for Basic Life Support Training: Randomized Trial. JMIR Serious Games, 2019, 7, e13442.	1.7	43
211	Use of the HoloLens2 Mixed Reality Headset for Protecting Health Care Workers During the COVID-19 Pandemic: Prospective, Observational Evaluation. Journal of Medical Internet Research, 2020, 22, e21486.	2.1	53
212	Exploring mobile mixed reality in healthcare higher education: A systematic review. Research in Learning Technology, 2018, 26, .	2.3	36
213	Perceptions regarding Distance Learning in Higher Education, Smoothing the Transition. Contemporary Educational Technology, 2020, 13, ep287.	1.3	19
214	Augmented reality in medical education: a systematic review. Canadian Medical Education Journal, 2020, 11, e81-e96.	0.3	72
215	The Use of Digital Software Applications and Digital Atlases to Supplement Anatomy Teaching to Undergraduate Allied Health Students. Advances in Educational Technologies and Instructional Design Book Series, 2018, , 37-65.	0.2	1
216	Development and Usability Assessment of a Mobile Application for Neuroanatomy Teaching: A Case Study in Brazil. Creative Education, 2019, 10, 600-609.	0.2	3
217	Augmented reality and mixed reality for healthcare education beyond surgery: an integrative review. International Journal of Medical Education, 2020, 11, 1-18.	0.6	140
218	Learning Outcomes of Immersive Technologies in Health Care Student Education: Systematic Review of the Literature. Journal of Medical Internet Research, 2022, 24, e30082.	2.1	44
219	Disección de la mano y su relación teórico-práctica en rehabilitación: hallazgo de una variación anatómica. Entramado, 2021, 17, 280-290.	0.1	0
220	Special section editorial: The frontiers of augmented and mixed reality in all levels of education. Education and Information Technologies, 2022, 27, 611-623.	3.5	9
221	The role of spatial ability in mixed reality learning with the HoloLens. Anatomical Sciences Education, 2022, 15, 1074-1085.	2.5	6
222	Student's Perspectives on Augmented Reality in Pharmacy Education in Hong Kong. Frontiers in Education, 2021, 6, .	1.2	2
223	A validated instrument measuring students' perceptions on plastinated and threeâ€dimensional printed anatomy tools. Anatomical Sciences Education, 2022, 15, 850-862.	2.5	4

#	Article	IF	CITATIONS
224	Mixed reality for visualization of orthopedic surgical anatomy. World Journal of Orthopedics, 2021, 12, 727-731.	0.8	6
225	Vergence-accommodation conflict in optical see-through display: review and prospect. Results in Optics, 2021, 5, 100160.	0.9	17
227	Ethical Issues in the Forth Industrial Revolution and the Enhancement of Bioethics Education in Korean Universities. Korean Journal of Medical Ethics, 2018, 21, 34-47.	0.1	0
228	Application of Mixed Reality Technology in Visualization of Medical Operations. Chinese Medical Sciences Journal, 2019, 34, 69.	0.2	11
229	Virtual and Augmented Reality in Medical Education and Training. Advances in Educational Technologies and Instructional Design Book Series, 2019, , 109-150.	0.2	4
230	The Use of Digital Software Applications and Digital Atlases to Supplement Anatomy Teaching to Undergraduate Allied Health Students. , 2019, , 824-845.		0
231	Augmented Reality in Education, Scope of Use and Potential. , 2020, , 1-8.		0
232	Teaching Topographic Surface Concepts in Augmented Reality and Virtual Reality Web Environments. International Journal for Innovation Education and Research, 2019, 7, 307-320.	0.0	2
233	Incorporación de realidad aumentada en el desarrollo de la visualización. Un estudio con estudiantes de secundaria en torno al modelo atómico. , 2019, 56, 1-23.		1
234	Augmented Reality for Education: A Review. International Journal of Innovative Science and Research Technology, 2020, 5, 39-45.	0.1	4
235	O ensino de anatomia humana no contexto da educação médica: uma retrospectiva histórica. Research, Society and Development, 2020, 9, e958975173.	0.0	1
236	Harnessing Augmented Reality and CT to Teach First-Year Medical Students Head and Neck Anatomy. Academic Radiology, 2020, 28, 871-876.	1.3	37
237	Effectiveness of screenâ€ŧoâ€screen and faceâ€ŧoâ€face learning modalities in dental anatomy module during Covidâ€19 pandemic. Anatomical Sciences Education, 2022, 15, 57-66.	2.5	14
238	Accurate and Robust Feature Description and Dense Point-wise Matching based on Feature Fusion for Endoscopic Images. Computerized Medical Imaging and Graphics, 2021, 94, 102007.	3.5	3
239	Use of virtual and augmented reality-based interventions in health education to improve dementia knowledge and attitudes: an integrative review. BMJ Open, 2021, 11, e053616.	0.8	13
240	uso da tecnologia no ensino da anatomia humana: revisão sistemática da literatura de 2017 a 2020. Medicina, 2020, 53, 447-455.	0.0	4
241	Innovations in Pediatric and Congenital Cardiac Surgery. Congenital Heart Disease, 2022, 17, 1-3.	0.0	1
242	The Use of Augmented Reality Technology in Medical Museums. , 2020, , 337-347.		2

#	Article	IF	CITATIONS
243	Anatomy Education in an Innovative Medical School Curriculum. , 2020, , 453-457.		0
244	Augmented Reality in Medical Education and Training: From Physicians to Patients. Springer Series on Cultural Computing, 2020, , 111-138.	0.4	11
245	A Thermal and Vibrational Feedback Glove Based on the Tactile Characteristics of Human Hand Skin. IEEE Access, 2020, 8, 226671-226684.	2.6	5
246	Volumetric Head-Mounted Display With Locally Adaptive Focal Blocks. IEEE Transactions on Visualization and Computer Graphics, 2022, 28, 1415-1427.	2.9	4
247	Facilitating Small Group Learning. , 2020, , 133-141.		1
248	Choosing Between Lecture and Briefing Sessions. , 2020, , 123-131.		2
249	Enhancing Teaching in Biomedical, Health and Exercise Science with Real-Time Physiological Visualisations. Advances in Experimental Medicine and Biology, 2020, 1260, 1-11.	0.8	8
250	Augmented Reality in Education, Scope of Use and Potential. , 2020, , 211-219.		0
251	Ambientes web para o ensino de superfÃcies topográficas em realidade aumentada e realidade virtual. Terrae Didatica, 0, 16, e20001.	0.0	0
252	Engaging with Children Using Augmented Reality on Clothing to Prevent Them from Smoking. Advances in Experimental Medicine and Biology, 2020, 1262, 59-94.	0.8	7
253	The Preparation of Graphic Models for a Virtual Reality Application in Unity. Advances in Intelligent Systems and Computing, 2020, , 331-340.	0.5	0
254	Technological resources for teaching and learning about human anatomy in the medical course: Systematic review of literature. Anatomical Sciences Education, 2022, 15, 403-419.	2.5	14
255	Affordances of augmented reality technology for science education: Views of secondary school students and science teachers. Human Behavior and Emerging Technologies, 2021, 3, 1153-1171.	2.5	16
256	The impact of using an "anatomy escape room―on nursing students: A comparative study. Nurse Education Today, 2022, 109, 105205.	1.4	9
257	RECENT TRENDS IN CURRICULUM AND TEACHING METHODS IN SCIENCE EDUCATION. Gamtamokslinis Ugdymas / Natural Science Education, 2020, 17, 24-43.	0.1	0
258	Leveraging Edge Computing for Mobile Augmented Reality. Advances in Information Security, 2021, , 327-353.	0.9	2
259	Design and Implementation of "AugMedicine: Lung Cases,―an Augmented Reality Application for the Medical Curriculum on the Presentation of Dyspnea. Frontiers in Virtual Reality, 2020, 1, .	2.5	2
260	Investigation of High School Students' Attitudes towards the Use of Augmented Reality Applications in Biology Instruction. Erzincan Üniversitesi Eğitim FaküItesi Dergisi, 2020, 22, 606-631	0.1	2

~		_
$(1 \mathbf{T} \mathbf{A} \mathbf{T}$	ION	
CITAL	IUN.	REFORT

#	ARTICLE	IF	CITATIONS
262	Application and evaluation of virtual technologies for anatomy education to medical students: A review. Medical Journal of the Islamic Republic of Iran, 2020, 34, 163.	0.9	0
263	Challenges and opportunities of digital health in a post-COVID19 world. Journal of Research in Medical Sciences, 2021, 26, 11.	0.4	4
264	Case-based radiological anatomy instruction using cadaveric MRI imaging and delivered with extended reality web technology. European Journal of Radiology, 2022, 146, 110043.	1.2	8
265	Usage of augmented reality (AR) and development of e-learning outcomes: An empirical evaluation of students' e-learning experience. Computers and Education, 2022, 177, 104383.	5.1	38
266	Use of augmented reality in teaching management of anaphylactic shock to family doctors. , 2021, , .		0
267	Informationists and Nurse Educators Partner to Integrate a Virtual Dissection Table into a Nursing Curriculum. Medical Reference Services Quarterly, 2021, 40, 437-447.	0.9	1
268	Virtual reality as training technology in the health field: a literature review. Conjeturas, 2021, 21, 410-426.	0.0	0
269	Evaluating the integration of body donor imaging into anatomical dissection using augmented reality. Anatomical Sciences Education, 2023, 16, 71-86.	2.5	8
270	Scoping review: The use of augmented reality in clinical anatomical education and its assessment tools. Anatomical Sciences Education, 2022, 15, 765-796.	2.5	7
272	Visualization of Archimedian and Platonic polyhedra using a web environment in Augmented Reality and Virtual Reality. International Journal for Innovation Education and Research, 2021, 9, 1-13.	0.0	0
273	Assessment of Virtual Reality as a Didactic Resource in Higher Education. Sustainability, 2021, 13, 12730.	1.6	25
274	Dynamic Threeâ€Dimensional Virtual Environment to Improve Learning of Anatomical Structures. Anatomical Sciences Education, 2021, , .	2.5	7
276	Improvements of Virtual and Augmented Reality for Advanced Treatments in Urology. Advances in Medical Technologies and Clinical Practice Book Series, 2022, , 117-131.	0.3	6
277	Spatially resolved transcriptomics in immersive environments. Visual Computing for Industry, Biomedicine, and Art, 2022, 5, 2.	2.2	2
278	Novel development of a 3D digital mediastinum model for anatomy education. Translational Research in Anatomy, 2022, 26, 100158.	0.3	3
279	Robótica en cirugÃa y neurocirugÃa, aplicaciones y desafÃos, una revisión. Scientia Et Technica, 2020, 25, 478-490.	0.1	0
280	Features of using immersive technologies (virtual and augumented reality) in medical education and practice. Morphologia, 2020, 14, 158-164.	0.1	2
281	EMG-Based Decoding of Manipulation Motions in Virtual Reality: Towards Immersive Interfaces. , 2020,		9

#	Article	IF	CITATIONS
282	Application and evaluation of virtual technologies for anatomy education to medical students: A review. Medical Journal of the Islamic Republic of Iran, 2020, 34, 163.	0.9	7
284	Virtual Reality Assessment and Customization Using Physiological Measures: A Literature Analysis. , 2021, , .		2
285	Tridimensional Vectorial Modeling of the Human Body From Anatomical Slices. Advances in Medical Education, Research, and Ethics, 2022, , 26-48.	0.1	0
286	Immersive virtual classroom as an education tool for color barrier-free presentations: a pilot study. F1000Research, 0, 10, 985.	0.8	1
287	Incorporation of virtual reality in the clinical training of medical students studying esophageal and mediastinal anatomy and surgery. Surgery Today, 2022, 52, 1212-1217.	0.7	9
288	Ready Medic One: A Feasibility Study of a Semi-Autonomous Virtual Reality Trauma Simulator. Frontiers in Virtual Reality, 2022, 2, .	2.5	1
289	A meta-analysis of the impact of virtual technologies on students' spatial ability. Educational Technology Research and Development, 2022, 70, 73-98.	2.0	11
290	Defining Anatomic Roadmaps for Neurosurgery with Mixed and Augmented Reality. World Neurosurgery, 2022, 157, 233-234.	0.7	5
291	Persistent Postural-Perceptual Dizziness Interventions—An Embodied Insight on the Use Virtual Reality for Technologists. Electronics (Switzerland), 2022, 11, 142.	1.8	5
292	Augmented Reality in Professional Training: A Review of the Literature from 2001 to 2020. Applied Sciences (Switzerland), 2022, 12, 1024.	1.3	17
293	Virtual Reality in Medical Students' Education: Scoping Review. JMIR Medical Education, 2022, 8, e34860.	1.2	40
295	The specialty mentor effect in enhancing surgical experience of medical students: A randomised control trial. Journal of the Royal College of Surgeons of Edinburgh, 2022, 20, 383-388.	0.8	2
296	First Impressions: A Visual Catalogue for Understanding Interactions with Novel Interfaces in Augmented Reality. , 2022, , .		1
297	Virtual Reality Head-Mounted Displays in Medical Education. Simulation in Healthcare, 2023, 18, 42-50.	0.7	15
298	Immersive virtual-reality computer-assembly serious game to enhance autonomous learning. Virtual Reality, 2023, 27, 3301-3318.	4.1	35
299	Differentiated Learning in the Context of Immersive Technologies. International Journal of Smart Education and Urban Society, 2022, 13, 1-10.	0.1	0
300	An Efficient Nonlinear Mass-Spring Model for Anatomical Virtual Reality. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-10.	2.4	3
301	Technology enhanced neuroanatomy teaching techniques: A focused BEME systematic review of current evidence: BEME Guide No. 75. Medical Teacher, 2022, 44, 1069-1080.	1.0	4

#	Article	IF	CITATIONS
302	Applications of Mixed Reality Technology in Orthopedics Surgery: A Pilot Study. Frontiers in Bioengineering and Biotechnology, 2022, 10, 740507.	2.0	24
303	Effect of binocular disparity on learning anatomy with stereoscopic augmented reality visualization: A double center randomized controlled trial. Anatomical Sciences Education, 2023, 16, 87-98.	2.5	13
304	The Application of Three-Dimensional Technologies in the Improvement of Orthopedic Surgery Training and Medical Education Quality: A Comparative Bibliometrics Analysis. Frontiers in Bioengineering and Biotechnology, 2022, 10, 852608.	2.0	5
305	Geography Education in a Collaborative Virtual Environment: A Qualitative Study on Geography Teachers. ISPRS International Journal of Geo-Information, 2022, 11, 180.	1.4	6
306	Virtual Surgical Subinternships: Course Objectives and a Proposed Curriculum. Plastic and Reconstructive Surgery, 2022, 149, 1032e-1040e.	0.7	2
307	A Pilot Study to Investigate the Role of Virtual Reality in the Preservice Training of Nursing Staff in Isolation Wards. CIN - Computers Informatics Nursing, 2022, Publish Ahead of Print, .	0.3	0
308	Learning with simulated virtual classmates: Effects of social-related configurations on students' visual attention and learning experiences in an immersive virtual reality classroom. Computers in Human Behavior, 2022, 133, 107282.	5.1	25
309	The Opportunities and Challenges of Digital Anatomy for Medical Sciences: Narrative Review. JMIR Medical Education, 2022, 8, e34687.	1.2	22
310	Technologies-enhanced Anatomical Study in Undergraduate Medical Students. Ramathibodi Wetchasan, 2021, 44, .	0.1	0
311	Role of Three-Dimensional Visualization Modalities in Medical Education. Frontiers in Pediatrics, 2021, 9, 760363.	0.9	12
313	Who can Benefit from Immersive Virtual Reality in Education? Effectiveness of IVR in Teaching using Meta-analysis. , 2021, , .		0
314	Qualitative Research on Nursing Undergraduate Students' Experience of Human Anatomy Virtual Simulation Experimental Teaching Project. Nursing Science, 2022, 11, 178-183.	0.0	1
315	An Augmented Reality Framework for Eye Muscle Education. , 2022, , .		0
316	A BRIEF REVIEW ON INNOVATIVE ANATOMY LEARNING TECHNOLOGIES FOR MEDICAL AND HEALTH STUDENTS EDUCATION. Recisatec, 2022, 2, e24121.	0.0	1
317	The First Pilot Study of an Interactive, 360° Augmented Reality Visualization Platform for Neurosurgical Patient Education: A Case Series. Operative Neurosurgery, 2022, Publish Ahead of Print,	0.4	2
320	Virtual reality curriculum increases paediatric residents' knowledge of CHDs. Cardiology in the Young, 2023, 33, 410-414.	0.4	2
321	Immersive virtual reality on childbirth experience for women: a randomized controlled trial. BMC Pregnancy and Childbirth, 2022, 22, 354.	0.9	8
322	Challenges and opportunities of digital health in a post-COVID19 world. Journal of Research in Medical Sciences, 2021, 26, 11.	0.4	30

#	Article	IF	CITATIONS
324	Towards VR Simulation-Based Training in Brain Death Determination. , 2022, , .		1
325	Augmented Reality Based Human-Machine Interfaces in Healthcare Environment: Benefits, Challenges, and Future Trends. , 2022, , .		7
327	Modern and synchronized clinical anatomy teaching based on the BDIE method (board–digital) Tj ETQq0 0 0 rş	gBT /Overlo	ock 10 Tf 50

328	Current State and General Perceptions of the Use of Extended Reality (XR) Technology at the University of Newcastle: Interviews and Surveys From Staff and Students. SAGE Open, 2022, 12, 215824402210933.	0.8	12
329	Comparing learning retention in medical students using mixed-reality to supplement dissection: a preliminary study. International Journal of Medical Education, 2022, 13, 107-114.	0.6	7
330	Providing dementia education with augmented reality: a health sciences and medicine feasibility pilot study. Research in Learning Technology, 0, 30, .	2.3	3
331	Comparison of Standard Training to Virtual Reality Training in Nuclear Radiation Emergency Medical Rescue Education. Disaster Medicine and Public Health Preparedness, 2023, 17, 1-6.	0.7	1
332	Digital Body Preservation: Technique and Applications. Anatomical Sciences Education, 2022, , .	2.5	3
333	Enseñanza- aprendizaje de la anatomÃa macroscópica humana: estrategias de literacidad académica. Revista De La Universidad Industrial De Santander Salud, 2022, 54, .	0.0	0
334	Comparison of Augmented Reality-assisted and Instructor-assisted Cardiopulmonary Resuscitation: A Simulated Randomized Controlled Pilot Trial. Clinical Simulation in Nursing, 2022, 68, 9-18.	1.5	7
336	The emerging potential of interactive virtual reality in drug discovery. Expert Opinion on Drug Discovery, 2022, 17, 685-698.	2.5	11
337	A Novel Immersive Anatomy Education System (Anat_Hub): Redefining Blended Learning for the Musculoskeletal System. Applied Sciences (Switzerland), 2022, 12, 5694.	1.3	6
338	The future of anatomy education: Learning from Covidâ€19 disruption. Anatomical Sciences Education, 2022, 15, 643-649.	2.5	9
339	Augmented reality for teaching anatomy. Clinical Anatomy, 2022, 35, 824-827.	1.5	7
340	Advancement of Technology and Innovation for Future Cardiovascular Care. , 2022, , 641-654.		0
341	Virtual and Augmented Reality for Mechatronics based Applications. , 2022, , .		0
342	Website Design using Virtual Reailty for Medical Studies. , 2022, , .		0
343	Lessons Learned from the Development of an Immersive Virtual Reality (IVR) Game for Construction Safety. Lecture Notes in Civil Engineering, 2023, , 395-407.	0.3	1

#	Article	IF	CITATIONS
344	Towards Increase Reading Habit For Preschool Children Through Interactive Augmented Reality Storybook. , 2022, , .		7
345	The use of augmented reality for patient and significant other stroke education: a feasibility study. Brain Impairment, 2023, 24, 245-259.	0.5	3
346	Applications of Virtual Reality in Education and Medicine: A Review of the Past, Present, and Future Outlook. DÜMF Mühendislik Dergisi, 0, , .	0.2	0
347	Flipped anatomy classroom integrating multimodal digital resources shows positive influence upon students' experience and learning performance. Anatomical Sciences Education, 2022, 15, 1086-1102.	2.5	15
348	"Sport and Anatomy― Teaching, Research, and Assistance at the University of Pisa. Sustainability, 2022, 14, 8160.	1.6	1
349	Diffusion of Technology in the Teaching of Neuroanatomy in Times of Pandemic: A Medical and Academic Perspective on Learning. Frontiers in Surgery, 0, 9, .	0.6	0
350	A Bibliometric Analysis of Virtual Reality in Anatomy Teaching Between 1999 and 2022. Frontiers in Education, 0, 7, .	1.2	4
351	Snailed It! Inside the Shell: Using Augmented Reality as a Window Into Biodiversity. Frontiers in Education, 0, 7, .	1.2	1
352	Self-Regulated Learning Strategies for Nursing Students: A Pilot Randomized Controlled Trial. International Journal of Environmental Research and Public Health, 2022, 19, 9058.	1.2	9
353	An Analysis on the Application of a Virtual Reality Program in the Basic Medicine Subject Class for Training of Students in Emergency Medical Services. , 2022, 36, 60-68.		0
354	Assessing medical students' perception and educational experience during COVID-19 pandemic. Irish Journal of Medical Science, 2023, 192, 1015-1020.	0.8	4
355	Communication Skills Training Using Remote Augmented Reality Medical Simulation: a Feasibility and Acceptability Qualitative Study. Medical Science Educator, 2022, 32, 1005-1014.	0.7	11
356	Are extended reality technologies (ERTs) more effective than traditional anatomy education methods?. Surgical and Radiologic Anatomy, 2022, 44, 1215-1218.	0.6	4
357	Comparing the Psychological Effects of Manikin-Based and Augmented Reality–Based Simulation Training: Within-Subjects Crossover Study. JMIR Medical Education, 2022, 8, e36447.	1.2	5
358	Augmented reality in interventional radiology education: a systematic review of randomized controlled trials. Sao Paulo Medical Journal, 2022, 140, 604-614.	0.4	5
359	Twenty years on: The rationale and use of the clinical crossâ€sectional orientation in neuroanatomy. Anatomical Sciences Education, 2023, 16, 7-9.	2.5	1
360	Virtual reality and augmented reality in radiation oncology education – A review and expert commentary. Technical Innovations and Patient Support in Radiation Oncology, 2022, 24, 25-31.	0.6	14
361	Application of AR and 3D Technology for Learning Neuroanatomy. , 2022, , 147-180.		1

#	ARTICLE	IF	CITATIONS
362	Advances in Experimental Medicine and Biology, 2022, , 3-21.	0.8	Ο
363	Developing a Tutorial for Improving Usability and User Skills in an Immersive Virtual Reality Experience. Lecture Notes in Computer Science, 2022, , 63-78.	1.0	3
364	Is It Time to FONA Friend? A Novel Mixed Reality Front of Neck Access Simulator. , 2022, , 3-25.		0
365	SKilletonVR: Canine Skeleton VR (Oculus Quest). , 2022, , 203-230.		Ο
366	Doctoral Colloquium—The Potential of Mixed-Reality Technology for Motivating Dentistry Students in Higher Education. , 2022, , .		1
367	Implementation of Augmented Reality in Medical Education. , 2022, , .		0
368	Instructional design and educational satisfaction for virtual environment simulation in undergraduate nursing education: the mediating effect of learning immersion. BMC Medical Education, 2022, 22, .	1.0	1
369	Has pedagogy, technology, and Covidâ€19 killed the faceâ€ŧoâ€face lecture?. Anatomical Sciences Education, 2022, 15, 1145-1151.	2.5	8
370	A New Approach to Teach Conceptual Design Integrating Additive Manufacturing Constraints. Lecture Notes in Mechanical Engineering, 2023, , 1552-1563.	0.3	1
371	ImersivnÃ-virtuálnÃ-realita ve vzdÄ›lávánÃ: SWOT analýza. Pedagogická Orientace, 2022, 32, .	0.2	0
372	Impact of virtual reality use on the teaching and learning of vectors. Frontiers in Education, 0, 7, .	1.2	13
373	Better Experience, Better Performance? Results of a Study on VR Training Effectiveness in Healthcare. , 2022, , .		1
374	A Systematic Literature Review of Virtual Reality Education and COVID-19 Safety. Automation, Collaboration, and E-services, 2023, , 627-647.	0.5	1
375	Innovations in Surgery—How Advances in the Delivery of Surgical Care and Training Can Help Hospitals Recover from COVID-19. Springer Series on Bio- and Neurosystems, 2022, , 465-484.	0.2	0
376	A conceptual design for welding training simulation using virtual reality with multiple marker tracking method. AIP Conference Proceedings, 2022, , .	0.3	0
377	Anatomy in a virtual small-group learning setting: A COVID revelation. International Journal of Advanced Medical and Health Research, 2022, .	0.1	0
378	Virtual reality technology in the educational process of medical equipment engineers. AIP Conference Proceedings, 2022, , .	0.3	0
379	Virtual reality as a way to modernize Russian medical education. Nacionalʹnoe Zdravoohranenie, 2022, 2, 47-54.	0.3	0

#	Article	IF	CITATIONS
380	Application of problem-based learning combined with a virtual simulation training platform in clinical biochemistry teaching during the COVID-19 pandemic. Frontiers in Medicine, 0, 9, .	1.2	6
382	Microsoft HoloLens 2 in Medical and Healthcare Context: State of the Art and Future Prospects. Sensors, 2022, 22, 7709.	2.1	40
383	Virtual Reality (VR) in Anatomy Teaching and Learning in Higher Healthcare Education. , 2023, , 117-129.		0
384	Students' performance in teaching neuroanatomy using traditional and technologyâ€based methods. Journal of Veterinary Medicine Series C: Anatomia Histologia Embryologia, 2023, 52, 115-122.	0.3	3
385	Enhanced Visualisation of Normal Anatomy with Potential Use of Augmented Reality Superimposed on Three-Dimensional Printed Models. Micromachines, 2022, 13, 1701.	1.4	1
386	The effectiveness of 3D holographic technology on students' learning performance: a meta-analysis. Interactive Learning Environments, 0, , 1-13.	4.4	3
387	An Exploration of the Potential Role of Augmented Reality-Based Pedagogical Tools. Lecture Notes in Networks and Systems, 2023, , 581-588.	0.5	0
388	Advancements in Optical See-through Near-Eye Display. , 0, , .		0
389	Anatomi eğitiminde mobil öğrenmenin öğrencilerin öğrenme becerileri ve motivasyonuna etkisi: sistema derleme. European Journal of Science and Technology, 0, , .	tik _{0.5}	0
390	Teaching Histology Using Self-Directed Learning Modules (SDLMs) in a Blended Approach. Medical Science Educator, 2022, 32, 1455-1464.	0.7	4
391	Augmented Reality and Virtual Reality in Education: Public Perspectives, Sentiments, Attitudes, and Discourses. Education Sciences, 2022, 12, 798.	1.4	16
392	Augmented Bridges: Investigating the potential of augmented reality for the design of configurable bridges. International Journal of Architectural Computing, 0, , 147807712211379.	0.9	0
393	Considerations for the risk of adverse health effects of different anatomy education modalities. Surgical and Radiologic Anatomy, 2022, 44, 1545-1546.	0.6	1
394	Utilizing an organizational development framework as a road map for creating a technologyâ€driven agile curriculum in predoctoral dental education. Journal of Dental Education, 2023, 87, 394-400.	0.7	3
395	Revisão integrativa de ferramentas inovadoras para ensino-aprendizagem em anatomia em curso de Medicina. Revista Brasileira De Educacao Medica, 2022, 46, .	0.0	1
396	VIRTUAL ANATOMY OF THE HUMAN BODY: WHERE WE ARE, WHERE WE GO Revista Argentina De AnatomÃa ClÃnica, 2022, 14, 53-55.	0.1	0
397	CaracterÃsticas de un escenario de Realidad Virtual para el aprendizaje de anatomÃa: Una revisión bibliográfica. Revista EspaÑola De EducaciÓn MÉdica, 2022, 3, .	0.3	0
398	The TPACK Implementation in Physics Textbook with Augmented Reality: Enhance The 4C Skills at Mechanics Wave Concept. Journal of Physics: Conference Series, 2022, 2377, 012080.	0.3	0

#	Article	IF	CITATIONS
399	Emerging Imaging Techniques in Anatomy: For Teaching, Research and Clinical Practice. Advances in Experimental Medicine and Biology, 2023, , 19-42.	0.8	4
400	Diverse approaches to learning with immersive Virtual Reality identified from a systematic review. Computers and Education, 2023, 195, 104701.	5.1	21
401	On the added benefit of virtual anatomy for dissectionâ€based skills. Anatomical Sciences Education, 2023, 16, 439-451.	2.5	4
402	The digital metaverse: Applications in artificial intelligence, medical education, and integrative health. Integrative Medicine Research, 2023, 12, 100917.	0.7	45
403	Bringing Radiology Education to a New Reality: A Pilot Study of Using Virtual Reality as a Remote Educational Tool. Canadian Association of Radiologists Journal, 2023, 74, 251-263.	1.1	4
404	Use of Extended Reality in Medical Education: An Integrative Review. Medical Science Educator, 2023, 33, 275-286.	0.7	15
405	Determinants of Learning Anatomy in an Immersive Virtual Reality Environment — A Scoping Review. Medical Science Educator, 2023, 33, 287-297.	0.7	6
406	Practical anatomy classes: An alternative to improve the learning of middle school students. Anatomical Sciences Education, 2023, 16, 644-653.	2.5	0
407	Utilizing the metaverse in anatomy and physiology. Anatomical Sciences Education, 2023, 16, 574-581.	2.5	9
408	Impact of the COVID-19 Pandemic on Students' Motivation in Relation to Asynchronous Anatomy Video Lectures. Medical Science Educator, 0, , .	0.7	0
409	Mixed reality simulation for peripheral intravenous catheter placement training. BMC Medical Education, 2022, 22, .	1.0	4
410	The training of wrist arthroscopy. Frontiers in Medicine, 0, 9, .	1.2	1
411	From tablet to table: How augmented reality influences food desirability. Journal of the Academy of Marketing Science, 2023, 51, 503-529.	7.2	7
412	Virtual Reality for Learning. Current Topics in Behavioral Neurosciences, 2023, , .	0.8	1
413	Countering the Novelty Effect: A Tutorial for Immersive Virtual Reality Learning Environments. Applied Sciences (Switzerland), 2023, 13, 593.	1.3	18
414	The Potential for Using Extended Reality Technology in Interdisciplinary Case Discussions and Case Planning in Stereotactic Radiosurgery: Proof-of-Concept Usability Study. , 2022, 1, e36960.		1
415	A scoping review on the trends of digital anatomy education. Clinical Anatomy, 2023, 36, 471-491.	1.5	7
416	Augmented Reality in Surgical Navigation: A Review of Evaluation and Validation Metrics. Applied Sciences (Switzerland), 2023, 13, 1629.	1.3	11

#	ARTICLE	IF	CITATIONS
417	Student Engagement Using HoloLens Mixed-Reality Technology in Human Anatomy Laboratories for Osteopathic Medical Students: an Instructional Model. Medical Science Educator, 2023, 33, 223-231.	0.7	6
418	Immersives Lernen in der Berufsschule. MedienpÄdagogik, 0, 51, 268-288.	0.3	1
419	Satisfaction with virtual simulation learning and academic performance in the context of COVID-19 in nursing students at a public university - Peru. , 2022, , .		0
420	Three-dimensional technologies in presurgical planning of bone surgeries: current evidence and future perspectives. International Journal of Surgery, 2023, 109, 3-10.	1.1	3
421	Metaverse for Exercise Rehabilitation: Possibilities and Limitations. International Journal of Environmental Research and Public Health, 2023, 20, 5483.	1.2	6
422	AR Cinema: Visual Storytelling and Embodied Experiences with Augmented Reality Filters and Backgrounds. Presence: Teleoperators and Virtual Environments, 2021, 30, 99-123.	0.3	4
423	Impact assessment of implementing virtual reality in the Egyptian construction industry. Ain Shams Engineering Journal, 2023, 14, 102184.	3.5	4
424	The Use of Youtube in Health Communication: A Study on the Uses of Augmented and Virtual Reality. , 0, , .		0
425	Motivational benefits and usability of a handheld Augmented Reality game for anatomy learning. , 2022, , ,		1
427	Comparing cybersickness in virtual reality and mixed reality head-mounted displays. Frontiers in Virtual Reality, 0, 4, .	2.5	6
429	A Large-Scale, Multiplayer Virtual Reality Deployment: A Novel Approach to Distance Education in Human Anatomy. Medical Science Educator, 2023, 33, 409-421.	0.7	5
430	Virtual Reality and Augmented Reality in Anatomy Education During COVID-19 Pandemic. Cureus, 2023, , .	0.2	3
431	Effects of Medical Education Program Using Virtual Reality: A Systematic Review and Meta-Analysis. International Journal of Environmental Research and Public Health, 2023, 20, 3895.	1.2	11
432	New Perspectives in Nonintrusive Sleep Monitoring for Neurodegenerative Diseases—A Narrative Review. Electronics (Switzerland), 2023, 12, 1098.	1.8	2
433	BIO-VR: Design and Implementation of Virtual Reality-Based Simulated Biology Laboratory Using Google Cardboard with an Emphasis on Virtual Education. Lecture Notes in Networks and Systems, 2023, , 867-883.	0.5	1
434	Can mixed reality technologies teach surgical skills better than traditional methods? A prospective randomised feasibility study. BMC Medical Education, 2023, 23, .	1.0	4
435	New Trends in Surgical Education and Mentoring by Immersive Virtual Reality: An Innovative Tool for Patient's Safety. , 2023, , 657-667.		0
436	Virtual reality learning: A randomized controlled trial assessing medical student knowledge of fetal development. International Journal of Gynecology and Obstetrics, 2023, 162, 292-299.	1.0	1

#	Article	IF	CITATIONS
437	Effects of the individual threeâ€dimensional printed craniofacial bones with a quick response code on the skull spatial knowledge of undergraduate medical students. Anatomical Sciences Education, 2023, 16, 858-869.	2.5	1
438	Augmented Reality (AR) and Virtual Reality (VR) Applications During Covid-19 Pandemic Among Preclinical Medical and Dentistry Students: A Mini-Review. , 2022, 18, 131-143.		0
439	V-CarE—A Conceptual Design Model for Providing COVID-19 Pandemic Awareness: Proposal for a Virtual Reality Design Approach to Facilitate People With Persistent Postural-Perceptual Dizziness. JMIR Research Protocols, 0, 12, e38369.	0.5	0
440	Virtual Reality as a Complementary Learning Tool in Anatomy Education for Medical Students. Medical Science Educator, 2023, 33, 507-516.	0.7	3
441	Applications and Effects of EdTech in Medical Education. Korean Medical Education Review, 2021, 23, 160-167.	0.1	1
443	An idea to explore: Augmented reality and <scp>LEGO</scp> ® brick modeling in the biochemistry and cell biology classroomâ€ŧwo tactile ways to teach biomolecular structure—Function. Biochemistry and Molecular Biology Education, 2023, 51, 439-445.	0.5	1
444	Patient Empowerment in Health Care System: Opportunities and Challenges. , 2023, 3, 74-81.		0
445	Ensino remoto emergencial na Medicina: aspectos positivos e negativos no ensino e na aprendizagem em tempos de pandemia. Revista Brasileira De Educacao Medica, 2023, 47, .	0.0	0
446	Introduction to Veterinary Engineering Teaching Veterinary Anatomy: How Biomedical Engineering Has Changed ItsCourse. , 2023, , 77-91.		0
447	The application of augmented reality in plastic surgery training and education: A narrative review. Journal of Plastic, Reconstructive and Aesthetic Surgery, 2023, 82, 255-263.	0.5	2
448	The Role of Augmented Reality in the Advancement of Minimally Invasive Surgery Procedures: A Scoping Review. Bioengineering, 2023, 10, 501.	1.6	1
462	The Ethics Behind Neuroethics, Neurobioethics, Sensory Enhancement, and Surrogate Realities. Advances in Medical Education, Research, and Ethics, 2023, , 256-270.	0.1	0
465	The design of android application for 3D microteaching based on augmented reality. AIP Conference Proceedings, 2023, , .	0.3	0
467	Bibliometric Analysis of Virtual Reality in School and University Contexts. Lecture Notes in Networks and Systems, 2023, , 72-92.	0.5	0
470	The Application of Virtual Reality Technology in the New Liberal Arts Environment. , 2023, , 751-756.		0
475	Technology Considerations in Health Professions and Clinical Education. , 2023, , 743-764.		0
478	Immersive virtual reality in orthopaedics—a narrative review. International Orthopaedics, 2024, 48, 21-30.	0.9	2
479	An Overview of Traditional and Advanced Visualization Techniques Applied to Anatomical Instruction Involving Cadaveric Dissection. Advances in Experimental Medicine and Biology, 2 <u>023, , 35-63.</u>	0.8	0

ARTICLE

IF CITATIONS

Technology-Enhanced Preclinical Medical Education (Anatomy, Histology and Occasionally,) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 742 T

483	Review on Virtual Reality for the Advancement of Architectural Learning. , 2023, , .		0
485	The Third Dimension: 3D Printed Replicas and Other Alternatives to Cadaver-Based Learning. Advances in Experimental Medicine and Biology, 2023, , 39-61.	0.8	1
489	VRLE-Based Teaching for Medical Students: VR-Baby. Gaming Media and Social Effects, 2023, , 187-213.	0.7	0
490	Security, Ethics andÂPrivacy Issues inÂtheÂRemote Extended Reality forÂEducation. Gaming Media and Social Effects, 2023, , 355-380.	0.7	0
491	Re: Ultrasound simulation training to meet the 2021 Royal College of Radiologists' curriculum for radiology trainees: South East London experience. Clinical Radiology, 2023, 78, e1089-e1090.	0.5	0
492	Medical Illustration in Anatomy. , 2023, , 63-83.		0
494	Visual Analysis of the Application Research of Extended Reality in Education Based on CiteSpace. , 2023, , .		0
495	Scope of Research Areas Enlightened in Augmented and Virtual Reality. Cognitive Science and Technology, 2023, , 307-315.	0.2	0
503	Perspective Chapter: Using Augmented Reality (AR) in the Education of Medical Bioengineers. , 0, , .		Ο
510	Using Technology as a Support for Autism Spectrum Disorder. Advances in Medical Technologies and Clinical Practice Book Series, 2023, , 293-325.	0.3	0
523	Improvisation in Spinal Surgery Using AR (Augmented Reality), MR (Mixed Reality), and VR (Virtual) Tj ETQq1 1 0.	784314 rş	gBT /Overlo
532	When Surgery Meets the Metaverse. , 2023, , 65-73.		0
533	Educators' Ability to Use Augmented Reality (AR) for Teaching Based on the TARC Framework: Evidence from an International Study. Lecture Notes in Networks and Systems, 2024, , 69-77.	0.5	Ο
534	Simulation Modalities for Undergraduate Nursing Education. Comprehensive Healthcare Simulation, 2023, , 27-33.	0.2	0
535	Towards Anatomy Education with Generative Al-based Virtual Assistants in Immersive Virtual Reality Environments. , 2024, , .		Ο
536	Evaluating the Effectiveness of VR Classrooms as a Replacement for Traditional Asynchronous Video-based Learning Environments. , 2024, , .		0
544	Virtual Insights, Real Solutions. Advances in Medical Technologies and Clinical Practice Book Series, 2024, , 20-41.	0.3	0

ARTICLE

IF CITATIONS