Molecular characterisation of protistan species and con across three U.S. coasts

Diversity and Distributions 23, 680-691 DOI: 10.1111/ddi.12550

Citation Report

#	Article	IF	CITATIONS
1	The challenges and promises of genetic approaches for ballast water management. Journal of Sea Research, 2018, 133, 134-145.	1.6	26
2	Phylogeography and connectivity of molluscan parasites: Perkinsus spp. in Panama and beyond. International Journal for Parasitology, 2018, 48, 135-144.	3.1	12
3	Ballast Water Exchange and Invasion Risk Posed by Intracoastal Vessel Traffic: An Evaluation Using High Throughput Sequencing. Environmental Science & Technology, 2018, 52, 9926-9936.	10.0	32
4	Genomic and Microscopic Analysis of Ballast Water in the Great Lakes Region. Applied Sciences (Switzerland), 2019, 9, 2441.	2.5	5
5	Metagenomic Sequencing Identifies Highly Diverse Assemblages of Dinoflagellate Cysts in Sediments from Ships' Ballast Tanks. Microorganisms, 2019, 7, 250.	3.6	33
6	Environmental DNA Metabarcoding: A Promising Tool for Ballast Water Monitoring. Environmental Science & Technology, 2019, 53, 11849-11859.	10.0	25
7	Metabarcoding quantifies differences in accumulation of ballast water borne biodiversity among three port systems in the United States. Science of the Total Environment, 2020, 749, 141456.	8.0	7
8	Protistan and fungal diversity in soils and freshwater lakes are substantially different. Scientific Reports, 2020, 10, 20025.	3.3	10
9	Status and prospects of marine NIS detection and monitoring through (e)DNA metabarcoding. Science of the Total Environment, 2021, 751, 141729.	8.0	28
10	Considering Commercial Vessels as Potential Vectors of Stony Coral Tissue Loss Disease. Frontiers in Marine Science, 2021, 8, .	2.5	14
11	Diversity and microhabitat associations of Labyrinthula spp. in the Indian River Lagoon System. Diseases of Aquatic Organisms, 2020, 137, 145-157.	1.0	6
12	Assessment of species gaps in DNA barcode libraries of non-indigenous species (NIS) occurring in European coastal regions. Metabarcoding and Metagenomics, 0, 4, .	0.0	17
14	A Review of Biofouling of Ships' Internal Seawater Systems. Frontiers in Marine Science, 2021, 8, .	2.5	15
15	Sargasso Sea bacterioplankton community structure and drivers of variance as revealed by DNA metabarcoding analysis. PeerJ, 2022, 10, e12835.	2.0	2
16	International shipping as a potent vector for spreading marine parasites. Diversity and Distributions, 2022, 28, 1922-1933.	4.1	6
17	Expanding the phylogeography and connectivity of <i>Perkinsus</i> species across North and Central America. Diversity and Distributions, 2024, 30, .	4.1	0