Enzymatic Carbonâ€"Sulfur Bond Formation in Natura

Chemical Reviews 117, 5521-5577 DOI: 10.1021/acs.chemrev.6b00697

Citation Report

#	Article	IF	CITATIONS
1	Introduction: Unusual Enzymology in Natural Product Synthesis. Chemical Reviews, 2017, 117, 5223-5225.	23.0	10
2	Gliotoxin Biosynthesis: Structure, Mechanism, and Metal Promiscuity of Carboxypeptidase GliJ. ACS Chemical Biology, 2017, 12, 1874-1882.	1.6	24
3	Thioamideâ€Directed Cobalt(III)â€Catalyzed Selective Amidation of C(sp ³)â^'H Bonds. Angewandte Chemie - International Edition, 2017, 56, 16550-16554.	7.2	138
4	Elemental sulfur as a sulfuration agent in the copper-catalyzed C–H bond thiolation of electron-deficient arenes. Organic and Biomolecular Chemistry, 2017, 15, 8276-8279.	1.5	17
5	Convergent Evolution of Ergothioneine Biosynthesis in Cyanobacteria. ChemBioChem, 2017, 18, 2115-2118.	1.3	40
6	Anaerobic Origin of Ergothioneine. Angewandte Chemie, 2017, 129, 12682-12685.	1.6	50
7	Anaerobic Origin of Ergothioneine. Angewandte Chemie - International Edition, 2017, 56, 12508-12511.	7.2	70
8	Asymmetric Fe ^{II} -Catalyzed Thia-Michael Addition Reaction to α,β-Unsaturated Oxazolidin-2-one Derivatives. Organic Letters, 2017, 19, 6324-6327.	2.4	27
9	Thioamideâ€Ðirected Cobalt(III) atalyzed Selective Amidation of C(sp ³)â^'H Bonds. Angewandte Chemie, 2017, 129, 16777-16781.	1.6	38
10	Sequential Ytterbium(III) Triflate Catalyzed Oneâ€Pot Threeâ€Component Thiaâ€Michael Addition. Asian Journal of Organic Chemistry, 2018, 7, 955-963.	1.3	4
11	Enzymatic reconstitution of ribosomal peptide backbone thioamidation. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3030-3035.	3.3	73
12	Transition-Metal-Free Coupling Reaction of Dithiocarbamates with Indoles: C–S Bond Formation. Journal of Organic Chemistry, 2018, 83, 5778-5783.	1.7	31
13	Rh(<scp>ii</scp>)/phosphine-cocatalyzed synthesis of dithioketal derivatives from diazo compounds through simultaneous construction of two different C–S bonds. Chemical Communications, 2018, 54, 5964-5967.	2.2	31
14	Hydrochloric Acid-Promoted Intermolecular 1,2-Thiofunctionalization of Aromatic Alkenes. Journal of Organic Chemistry, 2018, 83, 2818-2829.	1.7	26
15	KI-catalyzed C–S bond formation <i>via</i> an oxidation relay strategy: efficient access to various α-thio-β-dicarbonyl compounds. Organic and Biomolecular Chemistry, 2018, 16, 1641-1645.	1.5	25
16	One-pot synthesis of thioesters with sodium thiosulfate as a sulfur surrogate under transition metal-free conditions. Organic and Biomolecular Chemistry, 2018, 16, 1871-1881.	1.5	14
17	Palladium-Catalyzed Oxidative Cross-Coupling of Arylhydrazines and Arenethiols with Molecular Oxygen as the Sole Oxidant. Journal of Organic Chemistry, 2018, 83, 2389-2394.	1.7	38
18	AIBNâ€Initiated Denitrative Crossâ€Coupling Reactions of βâ€Nitrostyrenes with Sulfonyl Hydrazides/Disulfides: A Metalâ€free Approach towards Vinyl Sulfones. Asian Journal of Organic Chemistry, 2018, 7, 359-362.	1.3	20

#	Article	IF	CITATIONS
19	Nickel atalyzed Câ^'S Bond Formation via Decarbonylative Thioetherification of Esters, Amides and Intramolecular Recombination Fragment Coupling of Thioesters. Chemistry - A European Journal, 2018, 24, 3608-3612.	1.7	79
20	Thiaâ€Michael Addition: An Emerging Strategy in Organic Synthesis. Asian Journal of Organic Chemistry, 2018, 7, 634-661.	1.3	76
21	Mini-Review: Ergothioneine and Ovothiol Biosyntheses, an Unprecedented Trans-Sulfur Strategy in Natural Product Biosynthesis. Biochemistry, 2018, 57, 3309-3325.	1.2	56
22	Use of a Tyrosine Analogue To Modulate the Two Activities of a Nonheme Iron Enzyme OvoA in Ovothiol Biosynthesis, Cysteine Oxidation versus Oxidative C–S Bond Formation. Journal of the American Chemical Society, 2018, 140, 4604-4612.	6.6	42
23	Selective Sâ€Deacetylation of Functionalized Thioacetates Catalyzed by Dy(OTf) ₃ . Asian Journal of Organic Chemistry, 2018, 7, 179-188.	1.3	8
24	Dimerization of Phenylalanine: An Approach to Thiazoles and Oxazoles Involved S/Oâ€Insertion. Advanced Synthesis and Catalysis, 2018, 360, 550-555.	2.1	23
25	Copper atalyzed Alkylation of Thiophenols with Benzyltrimethylammonium Triflates. Asian Journal of Organic Chemistry, 2018, 7, 141-144.	1.3	13
26	Recent Advances in Our Understanding of the Biosynthesis of Sulfur Modifications in tRNAs. Frontiers in Microbiology, 2018, 9, 2679.	1.5	35
27	Acid-catalyzed oxidative cleavage of S–S and Se–Se bonds with DEAD: efficient access to sulfides and selenides. Organic Chemistry Frontiers, 2018, 5, 3557-3561.	2.3	30
28	A straightforward and convenient synthesis of functionalized allyl thiosulfonates and allyl disulfanes. RSC Advances, 2018, 8, 40446-40453.	1.7	15
29	Metal-Free Oxidative Thioesterification of Methyl Ketones with Thiols/Disulfides for the Synthesis of α-Ketothioesters. Journal of Organic Chemistry, 2018, 83, 14978-14986.	1.7	33
30	[3 + 4] Annulation of Bromoenals and 1,2-Benzenedithiol: Base-Promoted [2 + 4] Reaction and N-Heterocyclic Carbene-Catalyzed Ring-Expansion. Journal of Organic Chemistry, 2018, 83, 15178-15185.	1.7	18
31	Alkyl Sulfides as Promising Sulfur Sources: Metalâ€Free Synthesis of Aryl Alkyl Sulfides and Dialkyl Sulfides by Transalkylation of Simple Sulfides with Alkyl Halides. Chemistry - an Asian Journal, 2018, 13, 3833-3837.	1.7	6
32	Biosynthesis of Quinolidomicin, the Largest Known Macrolide of Terrestrial Origin: Identification and Heterologous Expression of a Biosynthetic Gene Cluster over 200 kb. Organic Letters, 2018, 20, 7996-7999.	2.4	33
33	Glutathione S-Transferases in the Biosynthesis of Sulfur-Containing Secondary Metabolites in Brassicaceae Plants. Frontiers in Plant Science, 2018, 9, 1639.	1.7	48
34	Regio―and Stereoselective Hydrosulfonylation of Electronâ€Deficient Alkynes: Access to Both E―and Zâ€Î²â€Sulfonylâ€Î±,βâ€Unsaturated Carbonyl Compounds. Advanced Synthesis and Catalysis, 2018, 360, 4562-	4 37 0.	18
35	Theionbrunonines A and B: Dimeric Vobasine Alkaloids Tethered by a Thioether Bridge from <i>Mostuea brunonis</i> . Organic Letters, 2018, 20, 6596-6600.	2.4	25
36	Bacteria Hunt Bacteria through an Intriguing Cyclic Peptide. ChemMedChem, 2018, 14, 24-51.	1.6	7

	CITATION R	CITATION REPORT	
#	Article	IF	CITATIONS
37	Synthesis of aryl sulfides via radical–radical cross coupling of electron-rich arenes using visible light photoredox catalysis. Beilstein Journal of Organic Chemistry, 2018, 14, 2520-2528.	1.3	6
38	Cascade reactions as efficient and universal tools for construction and modification of 6-, 5-, 4- and 3-membered sulfur heterocycles of biological relevance. Tetrahedron, 2018, 74, 6335-6365.	1.0	21
39	Genome Editing Reveals Novel Thiotemplated Assembly of Polythioamide Antibiotics in Anaerobic Bacteria. Angewandte Chemie - International Edition, 2018, 57, 14080-14084.	7.2	30
40	Genome Editing Reveals Novel Thiotemplated Assembly of Polythioamide Antibiotics in Anaerobic Bacteria. Angewandte Chemie, 2018, 130, 14276-14280.	1.6	11
41	Nâ€Heterocyclic Carbeneâ€Catalyzed <i>inâ€situ</i> Activation of Alkynyl Acids for Câ^'S Bond Formation: Access to Imidazo[2,1â€ <i>b</i>][1,3]thiazinones. Advanced Synthesis and Catalysis, 2018, 360, 4515-4522.	2.1	24
42	NRPS Protein MarQ Catalyzes Flexible Adenylation and Specific S-Methylation. ACS Chemical Biology, 2018, 13, 2387-2391.	1.6	15
43	Discovery and biosynthesis of thioviridamide-like compounds. Chinese Chemical Letters, 2018, 29, 1022-1028.	4.8	30
44	Expanding the Rubterolone Family: Intrinsic Reactivity and Directed Diversification of PKSâ€derived Pyrans. Chemistry - A European Journal, 2018, 24, 11319-11324.	1.7	15
45	Catalytic Asymmetric Conjugate Addition of Tritylthiol to Azadienes with a Bifunctional Organocatalyst. Asian Journal of Organic Chemistry, 2018, 7, 1561-1564.	1.3	34
46	Enzymatic Thioamide Formation in a Bacterial Antimetabolite Pathway. Angewandte Chemie - International Edition, 2018, 57, 11574-11578.	7.2	24
47	Synthesis of conjoined 1,5-dithiaspiro derivatives through catalyst free double reaction of carbon disulfide with dialkyl acetylenedicarboxylates and isocyanide derivatives. Journal of Sulfur Chemistry, 2018, 39, 579-587.	1.0	2
48	Fe(OTf) ₂ â€Catalyzed <i>Thia</i> â€Michael Addition Reaction: A Green Synthetic Approach to βâ€Thioethers. European Journal of Organic Chemistry, 2018, 2018, 4536-4540.	1.2	15
49	Photocatalytic formation of carbon–sulfur bonds. Beilstein Journal of Organic Chemistry, 2018, 14, 54-83.	1.3	132
50	The energy-transfer-enabled biocompatible disulfide–ene reaction. Nature Chemistry, 2018, 10, 981-988.	6.6	143
51	A mild light-induced cleavage of the S–O bond of aryl sulfonate esters enables efficient sulfonylation of vinylarenes. Chemical Science, 2018, 9, 7193-7197.	3.7	31
52	Reconstitution of Enzymatic Carbon–Sulfur Bond Formation Reveals Detoxification-Like Strategy in Fungal Toxin Biosynthesis. ACS Chemical Biology, 2018, 13, 2508-2512.	1.6	12
53	Bioinformatic Expansion and Discovery of Thiopeptide Antibiotics. Journal of the American Chemical Society, 2018, 140, 9494-9501.	6.6	119
54	Siteâ€Selective Câ^'S Bond Formation at Câ^'Br over Câ^'OTf and Câ^'Cl Enabled by an Airâ€Stable, Easily Recoverable, and Recyclable Palladium(I) Catalyst. Angewandte Chemie - International Edition, 2018, 57, 12425-12429.	7.2	73

#	Article	IF	CITATIONS
55	Enzymatic Thioamide Formation in a Bacterial Antimetabolite Pathway. Angewandte Chemie, 2018, 130, 11748-11752.	1.6	5
56	Siteâ€Selective Câ^'S Bond Formation at Câ^'Br over Câ^'OTf and Câ^'Cl Enabled by an Airâ€Stable, Easily Recoverable, and Recyclable Palladium(I) Catalyst. Angewandte Chemie, 2018, 130, 12605-12609.	1.6	26
57	P450-Catalyzed Tailoring Steps in Leinamycin Biosynthesis Featuring Regio- and Stereoselective Hydroxylations and Substrate Promiscuities. Biochemistry, 2018, 57, 5005-5013.	1.2	5
58	β-Hydroxy sulfides and their syntheses. Beilstein Journal of Organic Chemistry, 2018, 14, 1668-1692.	1.3	19
59	Metal–Ligand Cooperativity Promoting Sulfur Atom Transfer in Ferrous Complexes and Isolation of a Sulfurmethylenephosphorane Adduct. Inorganic Chemistry, 2018, 57, 11552-11559.	1.9	16
60	Catalytic Hydrothiolation: Regio- and Enantioselective Coupling of Thiols and Dienes. Journal of the American Chemical Society, 2018, 140, 10443-10446.	6.6	132
61	Biosynthesis of thiocarboxylic acid-containing natural products. Nature Communications, 2018, 9, 2362.	5.8	26
62	Câ€5 crossâ€coupling reaction using novel and green synthesized CuO nanoparticles assisted by <scp><i>Euphorbia maculata</i></scp> extract. Applied Organometallic Chemistry, 2019, 33, e5144.	1.7	20
63	High-Atom Economic Approach To Prepare Chiral α-Sulfenylated Ketones. Journal of Organic Chemistry, 2019, 84, 11219-11227.	1.7	9
64	Structural diversity, biosynthetic aspects, and LC-HRMS data compilation for the identification of bioactive compounds of Lepidium meyenii. Food Research International, 2019, 125, 108615.	2.9	22
65	Identification of Sulfonated and Hydroxy-Sulfonated Polychlorinated Biphenyl (PCB) Metabolites in Soil: New Classes of Intermediate Products of PCB Degradation?. Environmental Science & Technology, 2019, 53, 10601-10611.	4.6	15
66	Facile synthesis of 1,2-thiobenzonitriles <i>via</i> Cu-catalyzed denitrogenative radical coupling reaction. Chemical Communications, 2019, 55, 10265-10268.	2.2	17
67	Reconstitution of Iterative Thioamidation in Closthioamide Biosynthesis Reveals Tailoring Strategy for Nonribosomal Peptide Backbones. Angewandte Chemie, 2019, 131, 13148-13152.	1.6	7
68	Lewis Base/BrÃ,nsted Acid Coâ€catalyzed Enantioselective Sulfenylation/Semipinacol Rearrangement of Di―and Trisubstituted Allylic Alcohols. Angewandte Chemie - International Edition, 2019, 58, 12491-12496.	7.2	54
69	BrÃ,nsted Base-Switched Selective Mono- and Dithiolation of Benzamides via Copper Catalysis. Journal of Organic Chemistry, 2019, 84, 10490-10500.	1.7	10
70	3-Functional substituted 4-trifluoromethyl tetrahydrothiophenes via [3 + 2]-cycloaddition reactions. Journal of Sulfur Chemistry, 2019, 40, 629-640.	1.0	6
71	λ ³ â€lodanes as Visible Light Photocatalyst in Thioacetalization of Aldehydes. European Journal of Organic Chemistry, 2019, 2019, 4822-4826.	1.2	8
72	Crystal Structure of the Ergothioneine Sulfoxide Synthase from <i>Candidatus Chloracidobacterium thermophilum</i> and Structure-Guided Engineering To Modulate Its Substrate Selectivity. ACS Catalysis, 2019, 9, 6955-6961.	5.5	18

#	Article	IF	CITATIONS
73	Photocatalytic Oxidative C–H Thiolation: Synthesis of Benzothiazoles and Sulfenylated Indoles. Synlett, 2019, 30, 1648-1655.	1.0	14
74	Reconstitution of Iterative Thioamidation in Closthioamide Biosynthesis Reveals Tailoring Strategy for Nonribosomal Peptide Backbones. Angewandte Chemie - International Edition, 2019, 58, 13014-13018.	7.2	23
75	Implementation of High Order QAM Modulation on SDR. Journal of Physics: Conference Series, 2019, 1302, 022095.	0.3	1
76	An Efficient Sequential Oneâ€Pot Approach for the Synthesis of C3â€Functionalized Imidazo[1,2―a]pyridines under Transitionâ€Metal Free Conditions. Asian Journal of Organic Chemistry, 2019, 8, 2269-2275.	1.3	21
77	Natural Sulfur-Containing Compounds: An Alternative Therapeutic Strategy against Liver Fibrosis. Cells, 2019, 8, 1356.	1.8	42
78	Visible Light Mediated Sulfenylationâ€Annulation Cascade of Alkyne Tethered Cyclohexadienones. Advanced Synthesis and Catalysis, 2019, 361, 4983-4988.	2.1	33
79	Lewis Base/BrÃ,nsted Acid Co atalyzed Enantioselective Sulfenylation/Semipinacol Rearrangement of Di―and Trisubstituted Allylic Alcohols. Angewandte Chemie, 2019, 131, 12621-12626.	1.6	11
80	Visible-Light-Induced Deaminative Thioesterification of Amino Acid Derived Katritzky Salts via Electron Donor–Acceptor Complex Formation. Organic Letters, 2019, 21, 8673-8678.	2.4	73
81	Michael additions in polyketide biosynthesis. Natural Product Reports, 2019, 36, 531-547.	5.2	23
82	Copper atalyzed Enantioselective Construction of Tertiary Propargylic Sulfones. Angewandte Chemie, 2019, 131, 3943-3947.	1.6	26
83	Copper atalyzed Enantioselective Construction of Tertiary Propargylic Sulfones. Angewandte Chemie - International Edition, 2019, 58, 3903-3907.	7.2	99
84	Biosynthesis and Chemical Applications of Thioamides. ACS Chemical Biology, 2019, 14, 142-163.	1.6	126
85	The solvent-controlled chemoselective construction of C–S/S–S bonds <i>via</i> the Michael reaction/thiol coupling of quinoline-2-thiones. Organic and Biomolecular Chemistry, 2019, 17, 2379-2383.	1.5	11
86	Cs ₂ CO ₃ â€Mediated Vicinal Thiosulfonylation of 1,1â€Dibromoâ€1â€Alkenes with Thiosulfonates: An Expedient Synthesis of (<i>E</i>)â€1,2â€Thiosulfonylethenes. Advanced Synthesis and Catalysis, 2019, 361, 1587-1591.	2.1	39
87	Substrate-switched dual functionalization of alkenes: catalyst-free synthetic route for β-hydroxy and β-keto thioethers. New Journal of Chemistry, 2019, 43, 11045-11049.	1.4	10
88	Synthesis of Thiomorpholin-3-ones by a Gold-Catalysed Oxidative Cyclisation-Rearrangement Cascade from Ynamides. European Journal of Organic Chemistry, 2019, 2019, 5201-5204.	1.2	15
89	Air-Tolerant Direct Thiol Esterification with Carboxylic Acids Using Hydrosilane via Simple Inorganic Base Catalysis. Journal of Organic Chemistry, 2019, 84, 7694-7701.	1.7	18
90	Unprecedented Reactivity of βâ€lodovinyl Sulfones: An Efficient Synthesis of βâ€Keto Sulfones and βâ€Keto Thiosulfones. European Journal of Organic Chemistry, 2019, 2019, 3771-3775.	1.2	35

# 91	ARTICLE Thioamide-Containing Peptides and Proteins. , 2019, , 193-238.	IF	CITATIONS 3
92	Donghaesulfins A and B, Dimeric Benz[<i>a</i>]anthracene Thioethers from Volcanic Island Derived <i>Streptomyces</i> sp Organic Letters, 2019, 21, 3635-3639.	2.4	17
93	Nickel-catalysed selective migratory hydrothiolation of alkenes and alkynes with thiols. Nature Communications, 2019, 10, 1752.	5.8	113
94	Aromatic Halogenation Using <i>N</i> -Halosuccinimide and PhSSiMe ₃ or PhSSPh. Journal of Organic Chemistry, 2019, 84, 7405-7410.	1.7	24
95	Responses of Acidithiobacillus thiooxidans A01 to Individual and Joint Nickel (Ni2+) and Ferric (Fe3+). Minerals (Basel, Switzerland), 2019, 9, 82.	0.8	4
96	Uncovering the unexplored diversity of thioamidated ribosomal peptides in Actinobacteria using the RiPPER genome mining tool. Nucleic Acids Research, 2019, 47, 4624-4637.	6.5	98
97	Scandium-catalyzed electrophilic alkene difunctionalization: regioselective synthesis of thiosulfone derivatives. Organic Chemistry Frontiers, 2019, 6, 1663-1666.	2.3	47
98	Transition-metal-free S–N bond formation: synthesis of 5-amino-1,2,4-thiadiazoles from isothiocyanates and amidines. New Journal of Chemistry, 2019, 43, 6465-6468.	1.4	12
99	Structural and Mechanistic Basis for Anaerobic Ergothioneine Biosynthesis. Journal of the American Chemical Society, 2019, 141, 6906-6914.	6.6	22
100	Dithiolation of [70]Fullerene with Aliphatic Primary Thiols in the Presence of n-Butylamine via Aerobic Oxidation Reaction. Journal of Organic Chemistry, 2019, 84, 3045-3054.	1.7	7
101	Catalytic Hydrothiolation: Counterion-Controlled Regioselectivity. Journal of the American Chemical Society, 2019, 141, 3006-3013.	6.6	108
102	The literature of heterocyclic chemistry, part XVII, 2017. Advances in Heterocyclic Chemistry, 2019, 129, 337-418.	0.9	5
103	Thioalbamide, A Thioamidated Peptide from Amycolatopsis alba, Affects Tumor Growth and Stemness by Inducing Metabolic Dysfunction and Oxidative Stress. Cells, 2019, 8, 1408.	1.8	31
104	Carbene-Catalyzed Enantioselective Addition of Thioamides to Bromoenals for Access to Thiazinone Heterocycles. Organic Letters, 2019, 21, 9493-9496.	2.4	29
105	Ribosomal Formation of Thioamide Bonds in Polypeptide Synthesis. Journal of the American Chemical Society, 2019, 141, 20004-20008.	6.6	33
106	[Zn(L â€Pro) 2] as a Simple and Efficient Catalyst: A Convenient Route for the Synthesis of Thiaâ€Michael Derivatives via Green Chemical Approach. ChemistrySelect, 2019, 4, 13304-13306.	0.7	8
107	Electrochromic Properties of Electrospun Fibers Based on Bisâ€Thiomethylcyclohexanone Derivatives. ChemistrySelect, 2019, 4, 13412-13419.	0.7	2
108	Iodine(III) Enabled Dehydrogenative Aryl Câ^'S Coupling by inâ€situ Generated Sulfenium Ion. Advanced Synthesis and Catalysis, 2019, 361, 1092-1101.	2.1	31

#	Article	IF	CITATIONS
109	A robust 2D organic polysulfane nanosheet with grafted polycyclic sulfur for highly reversible and durable lithium-organosulfur batteries. Nano Energy, 2019, 57, 635-643.	8.2	69
110	Synthesis, characterization, crystal structure of novel bis-thiomethylcyclohexanone derivatives and their inhibitory properties against some metabolic enzymes. Bioorganic Chemistry, 2019, 82, 393-404.	2.0	110
111	<i>N</i> â€lodosuccinimide as Bifunctional Reagent in (<i>E</i>)â€6elective C(sp ²)â^'H Sulfonylation of Styrenes. Asian Journal of Organic Chemistry, 2019, 8, 144-150.	1.3	28
112	Organocatalytic Asymmetric Michael Addition of Rhodanines to Azadienes for Assembling of Sulfurâ€containing Tetrasubstituted Carbon Stereocenters. Advanced Synthesis and Catalysis, 2019, 361, 476-480.	2.1	33
113	Switchable Ni-catalyzed bis-thiolation of acetylene with aryl disulfides as an access to functionalized alkenes and 1,3-dienes. Applied Catalysis A: General, 2019, 571, 170-179.	2.2	17
114	Thioesters as Acyl Donors in Biocatalytic Friedel raftsâ€type Acylation Catalyzed by Acyltransferase from <i>Pseudomonas Protegens</i> . ChemCatChem, 2019, 11, 1064-1068.	1.8	15
115	Direct Oxidative Disulfenylation/Cyclization of 2′â€Hydroxyacetophenones with Thiophenols for the Synthesis of 2,2â€Dithioâ€Benzofuranâ€3(2 <i>H</i>)â€Ones. Advanced Synthesis and Catalysis, 2019, 361, 49-	54. ^{2.1}	16
116	Metal- and base-free regioselective thiolation of the methyl C(sp ³)–H bond in 2-picoline <i>N</i> -oxides. Green Chemistry, 2019, 21, 157-163.	4.6	21
117	Mechanistic Studies of a Nonheme Iron Enzyme OvoA in Ovothiol Biosynthesis Using a Tyrosine Analogue, 2-Amino-3-(4-hydroxy-3-(methoxyl) phenyl) Propanoic Acid (MeOTyr). ACS Catalysis, 2019, 9, 253-258.	5.5	22
118	Dereplication and targeted isolation of bioactive sulphur compound from bacteria isolated from a hydrothermal field. Natural Product Research, 2019, 33, 494-499.	1.0	4
119	Recent advances in sulfenylation of C(sp3) H bond under transition metal-free conditions. Chinese Chemical Letters, 2020, 31, 49-57.	4.8	57
120	Construction of sulfur-containing moieties in the total synthesis of natural products. Natural Products Product Reports, 2020, 37, 246-275.	5.2	395
121	One pot synthesis of novel pregnane-sulphur prodrugs, spectroscopic investigation, conformational analysis, chemical reactivity, Fukui function and their mathematical model. Journal of Molecular Structure, 2020, 1201, 127136.	1.8	4
122	Regio―and Enantioselective Synthesis of Sulfoneâ€Bearing Quaternary Carbon Stereocenters by Pdâ€Catalyzed Allylic Substitution. Angewandte Chemie, 2020, 132, 1356-1361.	1.6	10
123	Regio―and Enantioselective Synthesis of Sulfoneâ€Bearing Quaternary Carbon Stereocenters by Pd atalyzed Allylic Substitution. Angewandte Chemie - International Edition, 2020, 59, 1340-1345.	7.2	69
124	C-S coupling with nitro group as leaving group via simple inorganic salt catalysis. Chinese Chemical Letters, 2020, 31, 84-90.	4.8	15
125	Recent Progress in Unusual Carbohydrate-Containing Natural Products Biosynthesis. , 2020, , 336-392.		3
126	Electrochemical Synthesis of β-Ketosulfones from Switchable Starting Materials. Organic Letters, 2020, 22, 464-467.	2.4	60

#	Article	IF	CITATIONS
127	Exploiting a C–N Bond Forming Cytochromeâ€P450 Monooxygenase for C–S Bond Formation. Angewandte Chemie - International Edition, 2020, 59, 3988-3993.	7.2	27
128	State-of-the-art iron-based nanozymes for biocatalytic tumor therapy. Nanoscale Horizons, 2020, 5, 202-217.	4.1	78
129	One-pot efficient synthesis of β-aryl-β-sulfanyl ketones via a four-component reaction of alkyl halides, thiourea benzaldehydes and acetophenones. Tetrahedron Letters, 2020, 61, 151531.	0.7	0
130	Nickelâ€Catalyzed Inter―and Intramolecular Aryl Thioether Metathesis by Reversible Arylation. Angewandte Chemie - International Edition, 2020, 59, 2110-2114.	7.2	54
131	Constructing mesoporous hollow polysulfane spheres bonded with short-chain sulfurs (Sx, xâ‰ \$) as high-performance sulfur cathodes in both ether and ester electrolytes. Energy Storage Materials, 2020, 27, 426-434.	9.5	33
132	Acid-Controlled Access to β-Sulfenyl Ketones and α,β-Disulfonyl Ketones by Pummerer Reaction of β-Keto Sulfones and Sulfoxides. Journal of Organic Chemistry, 2020, 85, 691-701.	1.7	13
133	Exploiting a C–N Bond Forming Cytochromeâ€P450 Monooxygenase for C–S Bond Formation. Angewandte Chemie, 2020, 132, 4017-4022.	1.6	4
134	Decarboxylative thiolation of redox-active esters to free thiols and further diversification. Nature Communications, 2020, 11, 5340.	5.8	23
135	Total synthesis of thioamycolamide A via a biomimetic route. Organic and Biomolecular Chemistry, 2020, 18, 8366-8370.	1.5	6
136	Organocatalyzed Sulfa-Michael Addition of Thiophenols on Trisubstituted α-Fluoroacrylates, a Straightforward Access to Chiral Fluorinated Compounds. Journal of Organic Chemistry, 2020, 85, 14055-14067.	1.7	8
137	Visibleâ€Light Cercosporin Catalyzed Sulfenylation of Electronâ€Rich Compounds with Thiols under Transitionâ€Metalâ€Free Conditions. ChemistrySelect, 2020, 5, 11583-11589.	0.7	10
138	Bisaspochalasins A–C: Three Cytochalasan Homodimers with Highly Fused Ring System from an Endophytic Aspergillus flavipes. Organic Letters, 2020, 22, 7930-7935.	2.4	13
139	Single-Step Replacement of an Unreactive C–H Bond by a C–S Bond Using Polysulfide as the Direct Sulfur Source in the Anaerobic Ergothioneine Biosynthesis. ACS Catalysis, 2020, 10, 8981-8994.	5.5	15
140	Recent Advances in Rapid Synthesis of Non-proteinogenic Amino Acids from Proteinogenic Amino Acids Derivatives via Direct Photo-Mediated C–H Functionalization. Molecules, 2020, 25, 5270.	1.7	11
141	Expeditious Access to Spiro-Fused 2,5-Cyclohexadienones <i>via</i> Thio(seleno)cyanative <i>ipso</i> -Cyclization. Journal of Organic Chemistry, 2020, 85, 15521-15531.	1.7	25
142	Catalyst-free, visible-light-promoted S–H insertion reaction between thiols and α-diazoesters. Organic and Biomolecular Chemistry, 2020, 18, 9494-9498.	1.5	22
143	NIS-promoted intermolecular bis-sulfenylation of allenamides <i>via</i> a two-step radical process: synthesis of 1,3-dithioethers. Organic Chemistry Frontiers, 2020, 7, 2725-2730.	2.3	13
144	Introduction to Thiopeptides: Biological Activity, Biosynthesis, and Strategies for Functional Reprogramming. Cell Chemical Biology, 2020, 27, 1032-1051.	2.5	60

		CITATION REPORT	
#	Article	IF	Citations
145	The catalytic mechanism of sulfoxide synthases. Current Opinion in Chemical Biology, 2020, 59, 111-118.	2.8	12
146	Advances in Cu and Ni-catalyzed Chan–Lam-type coupling: synthesis of diarylchalcogenides, Ar ₂ –X (X = S, Se, Te). Organic and Biomolecular Chemistry, 2020, 18, 9583-9600.	1.5	21
147	<i>>S</i> -Bridged Thioether and Structure-Diversified Angucyclinone Derivatives from the South China Sea-Derived <i>Micromonospora echinospora</i> SCSIO 04089. Journal of Natural Products, 2020, 83, 3122-3130.	1.5	16
148	Electrochemically Enabled Sulfonylation of Alkynes with Sodium Sulfinates. Organic Letters, 2020, 22, 6827-6831.	2.4	31
149	Catalytic Mechanism of Aromatic Nitration by Cytochrome P450 TxtE: Involvement of a Ferric-Peroxynitrite Intermediate. Journal of the American Chemical Society, 2020, 142, 15764-15779.	6.6	55
150	Dietary Thiols: A Potential Supporting Strategy against Oxidative Stress in Heart Failure and Muscular Damage during Sports Activity. International Journal of Environmental Research and Public Health, 2020, 17, 9424.	1.2	23
151	Electrophilic Chlorine from Chlorosulfonium Salts: A Highly Chemoselective Reduction of Sulfoxides. Chemistry - A European Journal, 2020, 26, 10348-10354.	1.7	8
152	Cobalt-Catalyzed Ligand-Controlled Divergent Regioselective Reactions of 1,6-Enynes with Thiols. Organometallics, 2020, 39, 2037-2042.	1.1	9
153	Structural basis of ergothioneine biosynthesis. Current Opinion in Structural Biology, 2020, 65, 1-8.	2.6	39
154	Recent application of visible-light induced radicals in C–S bond formation. RSC Advances, 2020, 10, 20046-20056.	1.7	55
155	Convergent Evolution of Fungal Cysteine Dioxygenases. ChemBioChem, 2020, 21, 3082-3086.	1.3	7
156	Highly Efficient Regioselective Decanoylation of Hyperoside Using Nanobiocatalyst of Fe3O4@PDA-Thermomyces lanuginosus Lipase: Insights of Kinetics and Stability Evaluation. Frontiers in Bioengineering and Biotechnology, 2020, 8, 485.	2.0	7
157	Thioamycolamides A–E, Sulfur-Containing Cycliclipopeptides Produced by the Rare Actinomycete <i>Amycolatopsis</i> sp Organic Letters, 2020, 22, 3014-3017.	2.4	20
158	Visible-Light-Induced, Catalyst-Free Radical Cross-Coupling Cyclization of <i>N</i> -Allylbromodifluoroacetamides with Disulfides or Diselenides. Journal of Organic Chemistry, 2020, 85, 5670-5682.	1.7	34
159	Unconventional Reactivity with DABCOâ€∢i>Bis(sulfur dioxide): C–H Bond Sulfenylation of Imidazopyridines. European Journal of Organic Chemistry, 2020, 2020, 2101-2109.	1.2	14
160	Room temperature nickel-catalyzed cross-coupling of aryl-boronic acids with thiophenols: synthesis of diarylsulfides. Organic and Biomolecular Chemistry, 2020, 18, 2447-2458.	1.5	22
161	Atmospheric Oxygen Mediated Radical Hydrothiolation of Alkenes. Chemistry - A European Journal, 2020, 26, 15804-15810.	1.7	9
162	Sulfoxide Reduction/C(sp ³)–S Metathesis Cascade in Ionic Liquid. Organic Letters, 2020, 22, 5701-5705.	2.4	5

ARTICLE IF CITATIONS # Cross-linking of aromatic phenolate groups by cytochrome P450 enzymes: a model for the biosynthesis 163 1.5 19 of vancomycin by OxyB. Organic and Biomolecular Chemistry, 2020, 18, 4610-4618. Recent Advances in Silverâ€Mediated Radical Difunctionalization of Alkenes. ChemCatChem, 2020, 12, 164 1.8 5312-5329. Recent Advances in Catalytic Asymmetric Reactions of Thiazolones, Rhodanines and Their Derivatives. 165 2.1 11 Advanced Synthesis and Catalysis, 2020, 362, 3542-3557. Nickelâ€katalysierte inter―und intramolekulare Arylthioetherâ€Metathese durch reversible Arylierung. Angewandte Ćhemie, 2020, 132, 2126-<u>2131.</u> Development of Chiral Ureates as Chiral Strong BrAnsted Base Catalysts. Journal of the American 167 6.6 31 Chemical Society, 2020, 142, 3724-3728. Transition-metal and base-free thioannulation of propynamides with sodium sulfide and dichloromethane for the selective synthesis of 1,3-thiazin-4-ones and thiazolidine-4-ones. Tetrahedron, 1.0 2020, 76, 131021. 169 Cu(I)-Catalyzed Enantioselective Alkynylation of Thiochromones. Organic Letters, 2020, 22, 1155-1159. 2.4 17 Thiol Activation toward Selective Thiolation of Aromatic C–H Bond. Organic Letters, 2020, 22, 2.4 26 3804-3809. Decarboxylative Thiolation of Redox-Active Esters to Thioesters by Merging Photoredox and Copper 171 2.4 41 Catalysis. Organic Letters, 2020, 22, 3692-3696. Reconstitution of polythioamide antibiotic backbone formation reveals unusual thiotemplated assembly strategy. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 8850-8858. 3.3 Sulfonium Acids Loaded onto an Unusual Thiotemplate Assembly Line Construct the Cyclopropanol 173 2 1.6 Warhead of a Burkholderia Virulence Factor. Angewandte Chemie, 2020, 132, 13613-13617. Sulfonium Acids Loaded onto an Unusual Thiotemplate Assembly Line Construct the Cyclopropanol Warhead of a <i>Burkholderia</i> Virulence Factor. Angewandte Chemie - International Edition, 2020, 174 59, 13511-13515. Disulfide Chromophores Arise from Stereoelectronic Effects. Journal of Physical Chemistry B, 2020, 175 1.2 6 124, 3931-3935. A leap forward in sulfonium salt and sulfur ylide chemistry. Chinese Chemical Letters, 2021, 32, 299-312. 4.8 79 Hydroxylaminâ€ebgeleitetes Reagenz als duales Oxidationsmittel und Aminogruppendonor für die eisenkatalysierte Herstellung von ungeschÄl4tzten Sulfinamiden aus Thiolen. Angewandte Chemie, 2021, 177 1.6 4 133, 769-776. <i>In Situ</i> Assembly of Choline Acetyltransferase Ligands by a Hydrothiolation Reaction Reveals Key Determinants for Inhibitor Design. Angewandte Chemie - International Edition, 2021, 60, 813-819. Design, synthesis and biological evaluation of thioether-containing lenalidomide and pomalidomide derivatives with anti-multiple myeloma activity. European Journal of Medicinal Chemistry, 2021, 209, 179 2.6 7 112912. <i>In Situ</i> Assembly of Choline Acetyltransferase Ligands by a Hydrothiolation Reaction Reveals Key 1.6 Determinants for Inhibitor Design. Angewandte Chemie, 2021, 133, 826-832.

#	Article	IF	CITATIONS
181	Specialized Flavoprotein Promotes Sulfur Migration and Spiroaminal Formation in Aspirochlorine Biosynthesis. Journal of the American Chemical Society, 2021, 143, 206-213.	6.6	20
182	An Unexpected Splitâ€Merge Pathway in the Assembly of the Symmetric Nonribosomal Peptide Antibiotic Closthioamide. Angewandte Chemie - International Edition, 2021, 60, 4104-4109.	7.2	10
183	An Unexpected Splitâ€Merge Pathway in the Assembly of the Symmetric Nonribosomal Peptide Antibiotic Closthioamide. Angewandte Chemie, 2021, 133, 4150-4155.	1.6	4
184	Hydroxylamineâ€Derived Reagent as a Dual Oxidant and Amino Group Donor for the Ironâ€Catalyzed Preparation of Unprotected Sulfinamides from Thiols. Angewandte Chemie - International Edition, 2021, 60, 758-765.	7.2	44
185	Streamlined construction of peptide macrocycles <i>via</i> palladium-catalyzed intramolecular <i>S</i> -arylation in solution and on DNA. Chemical Science, 2021, 12, 5804-5810.	3.7	41
186	Recent advances in the synthesis and applications of β-keto sulfones: new prospects for the synthesis of β-keto thiosulfones. Organic and Biomolecular Chemistry, 2021, 19, 3087-3118.	1.5	42
187	New insights into the disulfide bond formation enzymes in epidithiodiketopiperazine alkaloids. Chemical Science, 2021, 12, 4132-4138.	3.7	20
188	Nickel(II)â€Mediated Câ^'S Cross oupling Between Thiols and ortho â€6ubstituted Arylboronic Acid. Asian Journal of Organic Chemistry, 2021, 10, 582-587.	1.3	7
189	Metal-free g-C ₃ N ₄ nanosheets as a highly visible-light-active photocatalyst for thiol–ene reactions. Nanoscale, 2021, 13, 3493-3499.	2.8	13
190	Selective oxidative intermolecular carbosulphenylation of aryl alkenes with thiols and nucleophiles via a 1,2-dithioethane intermediate. Chemical Communications, 2021, 57, 7533-7536.	2.2	3
191	Synthetic applications of α,α-difluoroarylacetic acids and salts <i>via</i> decarboxylative functionalization. Organic Chemistry Frontiers, 2021, 8, 5516-5530.	2.3	18
192	Cryptic Sulfur Incorporation in Thioangucycline Biosynthesis. Angewandte Chemie - International Edition, 2021, 60, 7140-7147.	7.2	10
193	Electroreductive Nickel atalyzed Thiolation: Efficient Crossâ€Electrophile Coupling for Câ^'S Formation. Chemistry - A European Journal, 2021, 27, 4883-4887.	1.7	33
194	Cryptic Sulfur Incorporation in Thioangucycline Biosynthesis. Angewandte Chemie, 2021, 133, 7216-7223.	1.6	1
195	Copper-Catalyzed Cycloaddition of Heterobicyclic Alkenes with Diaryl Disulfides to Synthesize Dihydrobenzo[b]thiophene Derivatives. Journal of Organic Chemistry, 2021, 86, 4193-4204.	1.7	7
196	Rhodium-Catalyzed Twofold Unsymmetrical C–H Alkenylation–Annulation/Thiolation Reaction To Access Thiobenzofurans. Organic Letters, 2021, 23, 1194-1198.	2.4	15
197	<i>In Vitro</i> Reconstitution of a Five-Step Pathway for Bacterial Ergothioneine Catabolism. ACS Chemical Biology, 2021, 16, 397-403.	1.6	14
199	Microbiological versus Chemical Reductive Sulfidation: An Experimental and Theoretical Study. ACS Omega, 2021, 6, 7512-7523.	1.6	2

#	Article	IF	CITATIONS
200	Nickel-catalyzed oxidative dehydrogenative coupling of alkane with thiol for C(sp3)-S bond formation. Tetrahedron Letters, 2021, 68, 152950.	0.7	9
201	Nickel-Catalyzed Reversible Functional Group Metathesis between Aryl Nitriles and Aryl Thioethers. Journal of the American Chemical Society, 2021, 143, 3723-3728.	6.6	53
202	Implications for an Imidazole-2-yl Carbene Intermediate in the Rhodanase-Catalyzed C–S Bond Formation Reaction of Anaerobic Ergothioneine Biosynthesis. ACS Catalysis, 2021, 11, 3319-3334.	5.5	12
203	Enantioselective Hydrothiolation: Diverging Cyclopropenes through Ligand Control. Journal of the American Chemical Society, 2021, 143, 6176-6184.	6.6	41
204	Biosynthesis of Sinapigladioside, an Antifungal Isothiocyanate from <i>Burkholderia</i> Symbionts. ChemBioChem, 2021, 22, 1920-1924.	1.3	17
205	Electrochemical Selective Oxidative Synthesis of Diversified Sulfur Heterocycles from <scp>βâ€Ketothioamides</scp> . Chinese Journal of Chemistry, 2021, 39, 1831-1837.	2.6	16
206	Structural and Mechanistic Insights into Câ^'S Bond Formation in Gliotoxin. Angewandte Chemie - International Edition, 2021, 60, 14188-14194.	7.2	6
207	The Art of Total Synthesis of Bioactive Natural Products via Microwaves. Current Organic Chemistry, 2021, 25, 1047-1069.	0.9	16
208	Strukturelle und mechanistische Einblicke in die Bildung der C‣â€Bindungen in Gliotoxin. Angewandte Chemie, 2021, 133, 14307-14314.	1.6	1
209	The Cytochrome P450 Catalyzing Câ^'S Bond Formation in <i>S</i> â€Heterocyclization of Chuangxinmycin Biosynthesis. Angewandte Chemie - International Edition, 2021, 60, 15399-15404.	7.2	20
210	Catalyst-Free and Solvent-Controlled Divergent Synthesis of Difluoromethylene-Containing <i>S</i> -Heterocycles. Journal of Organic Chemistry, 2021, 86, 9206-9217.	1.7	16
211	Carbon‣ulfur Bond Constructions: From Transitionâ€Metal Catalysis to Sustainable Catalysis. Chemical Record, 2021, 21, 3674-3688.	2.9	23
212	The Cytochrome P450 Catalyzing Câ^'S Bond Formation in S â€Heterocyclization of Chuangxinmycin Biosynthesis. Angewandte Chemie, 2021, 133, 15527-15532.	1.6	2
213	Ni-Catalyzed Aryl Sulfide Synthesis through an Aryl Exchange Reaction. Journal of the American Chemical Society, 2021, 143, 10333-10340.	6.6	50
214	Decoding Directing Groups and Their Pivotal Role in Câ^'H Activation. Chemistry - A European Journal, 2021, 27, 12453-12508.	1.7	71
215	Ni(II) Precatalysts Enable Thioetherification of (Hetero)Aryl Halides and Tosylates and Tandem Câ^'S/Câ^'N Couplings. Chemistry - A European Journal, 2021, 27, 12320-12326.	1.7	24
216	Reactivity of (Z)-4-Aryliden-5(4H)-thiazolones: [2 + 2]-Photocycloaddition, Ring-Opening Reactions, and Influence of the Lewis Acid BF3. Journal of Organic Chemistry, 2021, 86, 12119-12140.	1.7	3
217	Ir(III) atalyzed and Ag ₂ Oâ€Promoted Câ^'H/Câ^'H Cross oupling/Intramolecular Cyclization of Ketene Dithioacetals with Benzothiophene. Advanced Synthesis and Catalysis, 2021, 363, 4360-4364.	2.1	6

#	Article	IF	CITATIONS
218	Synthesis of Organosulfur and Related Heterocycles under Mechanochemical Conditions. Journal of Organic Chemistry, 2021, 86, 13895-13910.	1.7	16
219	A comprehensive survey upon diverse and prolific applications of chitosan-based catalytic systems in one-pot multi-component synthesis of heterocyclic rings. International Journal of Biological Macromolecules, 2021, 186, 1003-1166.	3.6	30
220	Biosynthesis of chuangxinmycin featuring a deubiquitinaseâ€like sulfurtransferase. Angewandte Chemie, 0, , .	1.6	1
221	Solid Phase Synthesis of Thioetherâ€linked Peptide Macrocycles via Palladiumâ€Catalyzed Intramolecular Sâ€Arylation and Sâ€Alkenylation. Asian Journal of Organic Chemistry, 0, , .	1.3	0
222	Thiocysteine lyases as polyketide synthase domains installing hydropersulfide into natural products and a hydropersulfide methyltransferase. Nature Communications, 2021, 12, 5672.	5.8	10
223	Biosynthesis of Ditropolonyl Sulfide, an Antibacterial Compound Produced by Burkholderia cepacia Complex Strain R-12632. Applied and Environmental Microbiology, 2021, 87, e0116921.	1.4	4
224	Enantioselective Addition of Sodium Bisulfite to Nitroalkenes. A Convenient Approach to Chiral Sulfonic Acids. European Journal of Organic Chemistry, 2021, 2021, 5284-5287.	1.2	4
225	Biosynthesis of Chuangxinmycin Featuring a Deubiquitinaseâ€like Sulfurtransferase. Angewandte Chemie - International Edition, 2021, 60, 24418-24423.	7.2	9
226	Ni-catalyzed C–S bond cleavage of aryl 2-pyridyl thioethers coupling with alkyl and aryl thiols. Tetrahedron, 2021, 99, 132453.	1.0	3
227	Carbon–sulfur bond formation via photochemical strategies: An efficient method for the synthesis of sulfur-containing compounds. Chinese Chemical Letters, 2022, 33, 1798-1816.	4.8	84
228	Transition Metal-Free C–H Thiolation via Sulfonium Salts Using β-Sulfinylesters as the Sulfur Source. Organic Letters, 2021, 23, 7905-7909.	2.4	8
229	Redox-active benzimidazolium sulfonamides as cationic thiolating reagents for reductive cross-coupling of organic halides. Chemical Science, 2021, 12, 2509-2514.	3.7	18
230	lodide-promoted transformations of imidazopyridines into sulfur-bridged imidazopyridines or 1,2,4-thiadiazoles. Chemical Communications, 2021, 57, 5338-5341.	2.2	8
231	Amino-assisted synthesis of alkynylthioethers <i>via</i> a visible-light-induced C _(sp) –S ^{II} coupling between bromoalkynes and 2,2′-diaminodiaryldisulfides. Organic Chemistry Frontiers, 2021, 8, 5345-5351.	2.3	7
232	Metal-Free, Acid/Phosphine-Induced Regioselective Thiolation of <i>p</i> -Quinone Methides with Sodium Aryl/Alkyl Sulfinates. Journal of Organic Chemistry, 2021, 86, 1516-1527.	1.7	26
233	Maipomycin A, a Novel Natural Compound With Promising Anti-biofilm Activity Against Gram-Negative Pathogenic Bacteria. Frontiers in Microbiology, 2020, 11, 598024.	1.5	16
234	Recent advances in molecular mechanisms of anticancer natural products that target mitochondrial bioenergetics. Studies in Natural Products Chemistry, 2021, 71, 1-43.	0.8	4
235	Induced Production, Synthesis, and Immunomodulatory Action of Clostrisulfone, a Diarylsulfone from Clostridium acetobutylicum. Chemistry - A European Journal, 2020, 26, 15855-15858.	1.7	3

# 236	ARTICLE Organocatalytic Regio- and Enantioselective 1,8-Additions of Nitrogen and Sulfur Nucleophiles to 6-Methylene-6 <i>H</i> -indoles. Organic Letters, 2020, 22, 7859-7863.	IF 2.4	CITATIONS 23
238	Visible-light-driven electron donor–acceptor complex induced sulfonylation of diazonium salts with sulfinates. Green Chemistry, 2021, 23, 8865-8870.	4.6	17
239	Visible-light photocatalytic preparation of alkenyl thioethers from 1,2,3-thiadiazoles and Hantzsch esters: synthetic and mechanistic investigations. Organic Chemistry Frontiers, 2021, 8, 6499-6507.	2.3	3
240	A review on the latest progress of Câ€6 crossâ€coupling in diaryl sulfide synthesis: Update from 2012 to 2021. Applied Organometallic Chemistry, 2022, 36, e6482.	1.7	13
241	Direct C–H Thiolation for Selective Cross-Coupling of Arenes with Thiophenols via Aerobic Visible-Light Catalysis. Organic Letters, 2021, 23, 8082-8087.	2.4	21
243	Chapter 11. C–S Bond Formations in Primary and Secondary Metabolism. Chemical Biology, 2020, , 258-273.	0.1	0
244	A facile and green synthetic protocol for 1,2,3-triazole linked thioethers/thioesters. Synthetic Communications, 0, , 1-10.	1.1	1
245	Biosynthesis and Degradation of Sulfur Modifications in tRNAs. International Journal of Molecular Sciences, 2021, 22, 11937.	1.8	12
246	Copper acetate - lodine co-mediated thiolation of 2-arylpyridines with thiophenol. Tetrahedron, 2022, 103, 132552.	1.0	2
247	Synthesis of benzyl thioether derivatives via N-heterocyclic carbene palladium(II)-catalyzed cross coupling of benzylammonium salts with thiophenols. Journal of Organometallic Chemistry, 2022, 958, 122176.	0.8	3
248	Dually Cross-Linked Core-Shell Structure Nanohydrogel with Redox–Responsive Degradability for Intracellular Delivery. Pharmaceutics, 2021, 13, 2048.	2.0	3
249	lodine-catalyzed, highly atom-economic synthesis of 9-sulfenylphenanthrenes and polycyclic heteroaromatics in water. Green Chemistry, 2021, 23, 10006-10013.	4.6	26
250	Construction of diverse C–S/C–Se bonds <i>via</i> nickel catalyzed reductive coupling employing thiosulfonates and a selenosulfonate under mild conditions. Organic Chemistry Frontiers, 2022, 9, 1375-1382.	2.3	18
251	Polynuclear heteroleptic ruthenium(II) photoredox catalysts: Evaluation in blue-light-mediated, regioselective thiol-ene reactions. Polyhedron, 2022, 212, 115616.	1.0	2
252	Direct Bis-Alkyl Thiolation for Indoles with Sulfinothioates under Pummerer-Type Conditions. Journal of Organic Chemistry, 2022, 87, 1133-1143.	1.7	6
253	Electrochemical Oxidative Sulfonylation of Nâ€Arylamides/Amine with Sodium Sulfinates. Asian Journal of Organic Chemistry, 2022, 11, .	1.3	8
254	Regioselective installation of enolizable ketones and unprotected mercaptoacetic acid into olefins using GO as a phase transfer catalyst. New Journal of Chemistry, 2022, 46, 3297-3304.	1.4	2
255	Copper-Catalyzed Trifluoromethylthio-arylsulfonylation of Styrene Derivatives via the Insertion of Sulfur Dioxide. Organic Letters, 2022, 24, 1207-1212.	2.4	24

#	Article	IF	CITATIONS
256	Total Synthesis of (±)-Spiroaxillarone A via a Reversible Sulfa-Michael Addition. Organic Letters, 2022, 24, 1303-1307.	2.4	5
257	In-solution direct oxidative coupling for the integration of sulfur/selenium into DNA-encoded chemical libraries. Chemical Science, 2022, 13, 2604-2613.	3.7	21
258	Gold-catalyzed thioetherification of allyl, benzyl, and propargyl phosphates. Catalysis Science and Technology, 0, , .	2.1	1
259	Diethyl phosphite-mediated switchable synthesis of bis(imidazoheterocycles) derived disulfanes and sulfanes using imidazoheterocycles and octasulfur. New Journal of Chemistry, 2022, 46, 4784-4791.	1.4	6
260	XtalFluorâ€E effects the C3â€H sulfenylation of indoles to form diâ€indole sulfides. European Journal of Organic Chemistry, 0, , .	1.2	1
261	Transition-metal-catalyzed remote C–H functionalization of thioethers. RSC Advances, 2022, 12, 10835-10845.	1.7	13
262	Redox-active alkylsulfones as precursors for alkyl radicals under photoredox catalysis. Chemical Communications, 2022, 58, 4857-4860.	2.2	6
263	Iodide Salt Mediated Synthesis of <i>β</i> â€Keto Sulfones Using Arylsulfonyl Chlorides as the Sulfur Sources. ChemistrySelect, 2022, 7, .	0.7	2
264	Recent advances in direct $\hat{l}\pm$ -C(sp3)-H bond functionalization of thioethers. Green Synthesis and Catalysis, 2022, 3, 203-211.	3.7	13
265	Methane might be made by all living organisms. Nature, 2022, 603, 396-397.	13.7	6
266	Sustainable Thioetherification via Electron Donor–Acceptor Photoactivation Using Thianthrenium Salts. Angewandte Chemie, 2022, 134, .	1.6	9
267			
	Methane formation driven by reactive oxygen species across all living organisms. Nature, 2022, 603, 482-487.	13.7	69
268	 Methane formation driven by reactive oxygen species across all living organisms. Nature, 2022, 603, 482-487. Sustainable Thioetherification via Electron Donor–Acceptor Photoactivation Using Thianthrenium Salts. Angewandte Chemie - International Edition, 2022, 61, . 	13.7 7.2	69 65
268 269	Methane formation driven by reactive oxygen species across all living organisms. Nature, 2022, 603, 482-487. Sustainable Thioetherification via Electron Donor–Acceptor Photoactivation Using Thianthrenium Salts. Angewandte Chemie - International Edition, 2022, 61, . Thiocytochalasins Aâ~'D, four sulfur-containing cytochalasans from an endophytic fungus Phoma multirostrata XJ-2-1. Chinese Chemical Letters, 2022, 33, 4572-4576.	13.7 7.2 4.8	69 65 6
268 269 270	Methane formation driven by reactive oxygen species across all living organisms. Nature, 2022, 603, 482-487.Sustainable Thioetherification via Electron Donor–Acceptor Photoactivation Using Thianthrenium Salts. Angewandte Chemie - International Edition, 2022, 61, .Thiocytochalasins Aâ~'D, four sulfur-containing cytochalasans from an endophytic fungus Phoma multirostrata XJ-2-1. Chinese Chemical Letters, 2022, 33, 4572-4576.Kumemicinones A–G, Cytotoxic Angucyclinones from a Deep Sea-Derived Actinomycete of the Genus <i>Actinomadura</i>	13.7 7.2 4.8 1.5	69 65 6 14
268 269 270 271	Methane formation driven by reactive oxygen species across all living organisms. Nature, 2022, 603, 482-487. Sustainable Thioetherification via Electron Donor–Acceptor Photoactivation Using Thianthrenium Salts. Angewandte Chemie - International Edition, 2022, 61, . Thiocytochalasins Aâ~D, four sulfur-containing cytochalasans from an endophytic fungus Phoma multirostrata XI-2-1. Chinese Chemical Letters, 2022, 33, 4572-4576. Kumemicinones A–G, Cytotoxic Angucyclinones from a Deep Sea-Derived Actinomycete of the Genus <i>>Actinomadura</i> Journal of Natural Products, 2022, 85, 1098-1108. Substrate Recognition by the Peptidyl-(<i>S</i>)-2-mercaptoglycine Synthase TglHI during 3-Thiaglutamate Biosynthesis. ACS Chemical Biology, 2022, 17, 930-940.	13.7 7.2 4.8 1.5 1.6	69 65 6 14
268 269 270 271 272	Methane formation driven by reactive oxygen species across all living organisms. Nature, 2022, 603, 482-487.Sustainable Thioetherification via Electron Donor–Acceptor Photoactivation Using Thianthrenium Salts. Angewandte Chemie - International Edition, 2022, 61, .Thiocytochalasins Aâ°D, four sulfur-containing cytochalasans from an endophytic fungus Phoma multirostrata XJ-2-1. Chinese Chemical Letters, 2022, 33, 4572-4576.Kumemicinones A–G, Cytotoxic Angucyclinones from a Deep Sea-Derived Actinomycete of the Genus <i>Actinomadura</i> Journal of Natural Products, 2022, 85, 1098-1108.Substrate Recognition by the Peptidyl-(<i>S</i> J-2-mercaptoglycine Synthase TglHI during 3-Thiaglutamate Biosynthesis. ACS Chemical Biology, 2022, 17, 930-940.Wholeâ€cell Biotransformation of Penicillin G by a Threeâ€enzyme Coâ€expression System with Engineered Deacetoxycephalosporin C Synthase. ChemBioChem, 2022,	13.7 7.2 4.8 1.5 1.6 1.3	 69 65 6 14 11 1

	CITATION R	on Report	
#	Article	IF	CITATIONS
274	Photoinduced aerobic C–S borylation of aryl sulfides. Organic Chemistry Frontiers, 2022, 9, 3034-3038.	2.3	6
275	Air-triggered, catalyst-free decarboxylative oxysulfonylation of arylpropiolic acids with sodium sulfinates. Environmental Chemistry Letters, 0, , .	8.3	2
276	Visible-light-induced C–H sulfenylation of quinoxalin-2(1H)-ones with disulfides by sustainable cerium catalysis. Green Synthesis and Catalysis, 2023, 4, 226-230.	3.7	8
277	Regioselective ringâ€opening of epoxide and Nâ€tosylaziridine with 4â€hydroxydithiocoumarin: Key precursors of 2,3â€dihydroâ€1,4â€oxathiin and 2,3â€dihydroâ€1,4â€thiazine derivatives. European Journal of Organic Chemistry, 0, , .	1.2	1
278	Divergent Thio/Selenolactionization of Styrene-type Carboxylic Acids and Amides: Synthesis of Chalcogenated Isobenzofuran-1(3H)-ones and Isochroman-1-ones. Synlett, 0, 0, .	1.0	2
279	Application of DMSO as a methylthiolating reagent in organic synthesis. Organic and Biomolecular Chemistry, 2022, 20, 4471-4495.	1.5	19
280	Rhodium(<scp>i</scp>)-catalyzed C–S bond formation <i>via</i> enantioselective carbenoid S–H insertion: catalytic asymmetric synthesis of α-thioesters. Organic Chemistry Frontiers, 2022, 9, 3467-3472.	2.3	11
281	Synthesis of Symmetrical Sulfides Enabled by a Sulfur Dioxide Surrogate Acting as a Divalent Sulfur Source. Organic Letters, 2022, 24, 3663-3667.	2.4	7
282	Diphenyl sulfide and 2-aminophenyl phenyl sulfide: An experimental thermochemical study. Journal of Chemical Thermodynamics, 2022, 172, 106832.	1.0	2
283	Mechanistic insights into the key marine dimethylsulfoniopropionate synthesis enzyme DsyB/DSYB. , 2022, 1, 114-130.		5
284	Nickel-Catalyzed Decarbonylative Thioetherification of Carboxylic Acids with Thiols. Journal of Organic Chemistry, 2022, 87, 8672-8684.	1.7	21
285	An indirect detection strategy-assisted self-cleaning electrochemical platform for in-situ and pretreatment-free detection of endogenous H2S from sulfate-reducing bacteria (SRB). Journal of Hazardous Materials, 2022, 436, 129296.	6.5	7
286	Câ^'S Cross oupling Reactions Catalyzed by Wellâ€Defined Copper and Nickel Complexes. European Journal of Organic Chemistry, 2022, 2022, .	1.2	5
287	Recent developments in promiscuous enzymatic reactions for carbon–nitrogen bond formation. Bioorganic Chemistry, 2022, 127, 106014.	2.0	3
288	Cleavage Off-Loading and Post-assembly-Line Conversions Yield Products with Unusual Termini during Biosynthesis. ACS Chemical Biology, 2022, 17, 2221-2228.	1.6	5
289	Visibleâ€Lightâ€Promoted Intramolecular Annulation of 2â€Alkynylbiphenyl Compounds to Synthesize 9â€Sulfenylphenanthrenes Under Metalâ€Free and Additiveâ€Free Conditions. ChemPhotoChem, 2022, 6, .	1.5	4
290	CO ₂ -Switchable Single-Chain Polymeric Nanoparticles Enable Gas-Controllable Reaction Separation for Asymmetric Catalysis in Water. ACS Sustainable Chemistry and Engineering, 2022, 10, 11760-11772.	3.2	6
291	Cu-Catalyzed Diarylthiolation of Ynones with Aryl Iodides and Elemental Sulfur: An Access to Tetrasubstituted (<i>Z</i>)-1,2-Bis(arylthio)alkenes and Benzo[<i>b</i>][1,4]dithiines. Journal of Organic Chemistry, 2022, 87, 11796-11804.	1.7	4

#	Article	IF	CITATIONS
292	Discovery and Characterization of the Metallopterin-Dependent Ergothioneine Synthase from <i>Caldithrix abyssi</i> . Jacs Au, 2022, 2, 2098-2107.	3.6	10
293	Base-Promoted Reactions of Organostibines with Alkynes and Organic Halides to Give Chalcogenated (<i>Z</i>)-Olefins and Ethers. Organic Letters, 2022, 24, 6159-6164.	2.4	4
294	Catalystâ€Free, Oneâ€Pot, Threeâ€Component Synthesis of 3â€Arylsulfonylated Thioflavones. Advanced Synthesis and Catalysis, 2022, 364, 3088-3093.	2.1	6
295	ThnL, a B12-dependent radical <i>S</i> -adenosylmethionine enzyme, catalyzes thioether bond formation in carbapenem biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	4
296	"Thiol-free synthesized―and sustainable thiolating synthons for nickel-catalyzed reductive assembly of sulfides with high efficiency. Organic Chemistry Frontiers, 2022, 9, 6490-6497.	2.3	6
297	Visible-light-promoted sulfenylation of 6-aminouracils under catalyst-free conditions. New Journal of Chemistry, 2022, 46, 16523-16529.	1.4	6
298	Serendipitous synthesis of 2-alkenyl- and 2-aryl-4-thiazolidinones using dithiodiglycolic anhydride. New Journal of Chemistry, 2022, 46, 18505-18511.	1.4	2
299	Stable Isotope-Guided Metabolomics Reveals Polar-Functionalized Fatty-Acylated RiPPs from <i>Streptomyces</i> . ACS Chemical Biology, 2022, 17, 2936-2944.	1.6	4
300	Biosynthesis of DNA-Alkylating Antitumor Natural Products. Molecules, 2022, 27, 6387.	1.7	3
301	Dimethyl Sulfoxide-Assisted, Iodine- and Ascorbic Acid-Catalyzed One-Pot Synthetic Approach for Constructing Highly Substituted Pyrazolo[1,5- <i>a</i>)quinoline Thioether Derivatives. Journal of Organic Chemistry, 2022, 87, 13856-13872.	1.7	7
302	Design and Synthesis of Amino Acid Derivatives via Diethyl Acetadimalonate and Late‣tage Modification by Chemical Methods. Asian Journal of Organic Chemistry, 0, , .	1.3	0
303	Thia-Michael Reaction: The Route to Promising Covalent Adaptable Networks. Polymers, 2022, 14, 4457.	2.0	6
304	Biocatalytic Thionation of Epoxides for Enantioselective Synthesis of Thiiranes. Angewandte Chemie, 0, , .	1.6	0
305	Biocatalytic Thionation of Epoxides for Enantioselective Synthesis of Thiiranes. Angewandte Chemie - International Edition, 2022, 61, .	7.2	6
306	Bispyrrolidinoindoline Epi(poly)thiodioxopiperazines (BPI-ETPs) and Simplified Mimetics: Structural Characterization, Bioactivities, and Total Synthesis. Molecules, 2022, 27, 7585.	1.7	1
307	The Perfluoroalkylthiolation Reaction of Indoles and Activated Arenes with Perfluoroalkanesulfenic Acids. European Journal of Organic Chemistry, 2022, 2022, .	1.2	2
308	Total syntheses of surugamides and thioamycolamides toward understanding their biosynthesis. Journal of Natural Medicines, 0, , .	1.1	0
309	Sulfur incorporation into biomolecules: recent advances. Critical Reviews in Biochemistry and Molecular Biology, 2022, 57, 461-476.	2.3	3

ARTICLE IF CITATIONS # Micelle-mediated multicomponent cross-coupling in water: general construction of 310 4.6 4 3-chalcogenylindoles. Green Chemistry, 2023, 25, 1311-1321. Selective editing of a peptide skeleton <i>via</i> Câ€"N bond formation at N-terminal aliphatic side 311 3.7 chains. Chemical Science, 2022, 13, 14382-14386. Visible-Light-Driven Synthesis of Aryl Xanthates and Aryl Dithiocarbamates via an Electron 312 19 2.4 Donorâ€"Acceptor Complex. Organic Letters, 2022, 24, 8895-8900. Application of Halogen Bonding Catalysis for Markovnikov-Type Hydrothiolation of Alkenes. Synlett, 1.0 Metabolomics and Genomics Enable the Discovery of a New Class of Nonribosomal Peptidic 314 Metallophores from a Marine <i>Micromonospora</i>. Journal of the American Chemical Society, 10 6.6 2023, 145, 58-69. Sulfur-Containing Metabolites from Marine and Terrestrial Fungal Sources: Origin, Structures, and 2.2 Bioactivities. Marine Drugs, 2022, 20, 765. A efficient, metal-free and sustainable synthesis, C-S linked by simple C-H thiocyanation of 316 1.0 2 4-aminocoumarin or 4-(N-aryl)aminocoumarin derivativess. Tetrahedron, 2022, 133233. Functional Diversification and Structural Origins of Plant Natural Product Methyltransferases. 1.7 Molecules, 2023, 28, 43. Pyridineâ€Boryl Radical Mediated Decarboxylative Homolytic Substitution of Nâ€hydroxyphthalimide Ester 318 1.2 1 with Ar ₂ X ₂ (X=S, Se). European Journal of Organic Chemistry, 2022, 2022, . Base-catalyzed stereoselective thiosulfonylation of ynones for the facile synthesis of 2.3 thio-functionalized vinyl sulfones. Organic Chemistry Frontiers, 2023, 10, 1224-1229. Pd-catalyzed site-selective C(sp²)â€"H chalcogenation of amino acids and peptides using a 320 2.3 7 picolinamide auxiliary. Organic Chemistry Frontiers, 2023, 10, 1252-1262. Catalystâ€Free Thiaâ€Michael Addition to αâ€Trifluoromethylacrylates for 3D Network Synthesis. Chemistry -1.7 A European Journal, 2023, 29, . Selectfluor-Promoted Reactions of Aryl Methyl Ketones with Dimethyl Sulfoxide to Give 322 2.4 3 2,5-Diacylthiophenes and Î²-Acyl Allylic Methýlsulfones. Organic Letters, 2023, 25, 389-394. Exploration of Some Bisâ€Sulfide and Bisâ€Sulfone Derivatives as Nonâ€Classical Aldose Reductase İnhibitors. ChemistrySelect, 2023, 8, . Advances in S–N bond formation <i>via</i> electrochemistry: a green route utilizing diverse sulfur 324 4.6 8 and nitrogen sources. Green Chemistry, 2023, 25, 2524-2540. Neogrisemycin, a Trisulfide-Bridged Angucycline, Produced upon Expressing the Thioangucycline 2.4 Biosynthetic Gene Cluster in <i>Streptomýces albus</i>J1074. Organic Letters, 2023, 25, 961-965. Nonbasic Synthesis of Thioethers via Nickel-Catalyzed Reductive Thiolation Utilizing NBS-Like 327 1.7 2 <i>N</i>-Thioimides as Electrophilic Sulfur Donors. Journal of Organic Chemistry, 2023, 88, 2773-2783. Multicomponent Selective Thioetherification of KSAc: Easy Access to Symmetrical/Unsymmetrical 1.3 4â€Alkylthioâ€3â€haloâ€2(5<i>H</i>)â€furanones. Asian Journal of Organic Chemistry, 2023, 12, .

#	Article	IF	CITATIONS
329	Synthesis and Application Dichalcogenides as Radical Reagents with Photochemical Technology. Molecules, 2023, 28, 1998.	1.7	3
332	Threeâ€Component Synthesis of 3â€(Arylsulfonyl)benzothiophenes Using Acetic Acid as a Quencher for Methyl Radicalâ€Mediated Side Reactions. Advanced Synthesis and Catalysis, 2023, 365, 1514-1520.	2.1	4
333	Catalyst―and Lightâ€free Sâ^'H Insertion between Phosphorodithioic Acids and Diazo Compounds: Rapid Access to Dialkylphosphorodithioates. Asian Journal of Organic Chemistry, 2023, 12, .	1.3	1
334	Synthesis of α-aryl sulfides by deaminative coupling of α-amino compounds with thiophenols. Organic and Biomolecular Chemistry, 0, , .	1.5	1
335	Electrochemical Oxidative Annulation of Inactivated Alkynes for the Synthesis of Sulfonated 2 <i>H</i> -Chromene Derivatives. Organic Letters, 2023, 25, 2793-2797.	2.4	9
346	Structural Basis of Low-Molecular-Weight Thiol Glycosylation in Lincomycin A Biosynthesis. ACS Chemical Biology, 2023, 18, 1271-1277.	1.6	1
350	BF ₃ –Et ₂ O Promoted Heteronucleophilic Addition Reactions for the Synthesis of Unsymmetrical <i>gem</i> -Diarylmethyl Thioethers. Organic Letters, 2023, 25, 5017-5021.	2.4	3
365	Electrochemical Wastewater Refining: A Vision for Circular Chemical Manufacturing. Journal of the American Chemical Society, 2023, 145, 19422-19439.	6.6	5
384	Diastereoselective organophotocatalytic hydrosulfonylation of cyclopropenes. Green Chemistry, 2023, 25, 9086-9091.	4.6	1
387	Catalytic asymmetric synthesis of sulfur-containing atropisomers by C-S bond formations. Science China Chemistry, 2023, 66, 3331-3346.	4.2	3
402	Recent advances in selective mono-/dichalcogenation and exclusive dichalcogenation of C(sp ²)–H and C(sp ³)–H bonds. Organic and Biomolecular Chemistry, 0, , .	1.5	0
415	Nickel-catalyzed oxidative thiolation of \hat{l}_{\pm} -amino carbonyl compounds with thiols. Organic and Biomolecular Chemistry, 2024, 22, 2003-2006.	1.5	0
416	Recent trends in the synthesis and applications of β-iodovinyl sulfones: a decade of progress. Organic and Biomolecular Chemistry, 2024, 22, 2492-2509.	1.5	0