Evidence for surface water ice in the lunar polar regions from the Lunar Orbiter Laser Altimeter and temperatur Lunar Radiometer Experiment

Icarus 292, 74-85 DOI: 10.1016/j.icarus.2017.03.023

Citation Report

#	Article	IF	CITATIONS
1	The Role of Organic Aerosol in Atmospheric Ice Nucleation: A Review. ACS Earth and Space Chemistry, 2018, 2, 168-202.	1.2	212
2	Examining the Potential Contribution of the Hokusai Impact to Water Ice on Mercury. Journal of Geophysical Research E: Planets, 2018, 123, 2628-2646.	1.5	23
3	Advanced illumination modeling for data analysis and calibration. Application to the Moon. Advances in Space Research, 2018, 62, 3214-3228.	1.2	19
4	Direct evidence of surface exposed water ice in the lunar polar regions. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8907-8912.	3.3	324
5	Seasonal Polar Temperatures on the Moon. Journal of Geophysical Research E: Planets, 2019, 124, 2505-2521.	1.5	80
6	Thick ice deposits in shallow simple craters on the Moon and Mercury. Nature Geoscience, 2019, 12, 597-601.	5.4	78
7	The Temporal and Geographic Extent of Seasonal Cold Trapping on the Moon. Journal of Geophysical Research E: Planets, 2019, 124, 1935-1944.	1.5	21
8	The Young Age of the LAMPâ€observed Frost in Lunar Polar Cold Traps. Geophysical Research Letters, 2019, 46, 8680-8688.	1.5	41
9	â€~The most terrifying moments': India counts down to risky Moon landing. Nature, 2019, 573, 13-14.	13.7	1
10	Evidence for ultra-cold traps and surface water ice in the lunar south polar crater Amundsen. Icarus, 2019, 332, 1-13.	1.1	19
11	Age constraints of Mercury's polar deposits suggest recent delivery of ice. Earth and Planetary Science Letters, 2019, 520, 26-33.	1.8	19
12	Analyses of Lunar Orbiter Laser Altimeter 1,064â€nm Albedo in Permanently Shadowed Regions of Polar Crater Flat Floors: Implications for Surface Water Ice Occurrence and Future In Situ Exploration. Earth and Space Science, 2019, 6, 467-488.	1.1	24
13	Design and Characterization of the Multi-Band SWIR Receiver for the Lunar Flashlight CubeSat Mission. Remote Sensing, 2019, 11, 440.	1.8	5
14	Impact Ejecta and Gardening in the Lunar Polar Regions. Journal of Geophysical Research E: Planets, 2019, 124, 143-154.	1.5	19
15	Commercial lunar propellant architecture: A collaborative study of lunar propellant production. Reach, 2019, 13, 100026.	0.4	65
16	Ice Mining in Lunar Permanently Shadowed Regions. New Space, 2019, 7, 235-244.	0.4	44
17	Constraining the Evolutionary History of the Moon and the Inner Solar System: A Case for New Returned Lunar Samples. Space Science Reviews, 2019, 215, 1.	3.7	41
18	Analyzing the ages of south polar craters on the Moon: Implications for the sources and evolution of surface water ice Icarus, 2020, 336, 113455.	1.1	53

#	RTICLE		CITATIONS
19	Lunar polar water resource exploration – Examination of the lunar cold trap reservoir system model and introduction of play-based exploration (PBE) techniques. Planetary and Space Science, 2020, 180, 104742.	0.9	16
20	Optical Parameters of Gas Hydrates for Terahertz Applications. Journal of Infrared, Millimeter, and Terahertz Waves, 2020, 41, 375-381.	1.2	0
21	Searching for potential ice-rich mining sites on the Moon with the Lunar Volatiles Scout. Planetary and Space Science, 2020, 181, 104826.	0.9	14
22	Regions of interest (ROI) for future exploration missions to the lunar South Pole. Planetary and Space Science, 2020, 180, 104750.	0.9	44
23	A Real-Time Model of the Seasonal Temperature of Lunar Polar Region and Data Validation. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58, 1892-1903.	2.7	11
24	Erosion of lunar surface rocks by impact processes: A synthesis. Planetary and Space Science, 2020, 194, 105105.	0.9	27
25	The Lunar Polar Hydrogen Mapper CubeSat Mission. IEEE Aerospace and Electronic Systems Magazine, 2020, 35, 54-69.	2.3	15
26	H ₂ O and Other Volatiles in the Moon, 50 Years and on. ACS Earth and Space Chemistry, 2020, 4, 1480-1499.	1.2	5
27	Stratigraphy of Ice and Ejecta Deposits at the Lunar Poles. Geophysical Research Letters, 2020, 47, e2020GL088920.	1.5	32
28	Temperatureâ€Dependent Changes in the Normal Albedo of the Lunar Surface at 1,064Ânm. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006338.	1.5	4
29	Assessing the Roughness Properties of Circumpolar Lunar Craters: Implications for the Timing of Waterâ€lce Delivery to the Moon. Geophysical Research Letters, 2020, 47, e2020GL087782.	1.5	13
30	Mapping the Predicted Solar Wind Hydrogen Flux in Lunar South Pole Craters. Planetary Science Journal, 2020, 1, 13.	1.5	8
31	MARAUDERS: A mission concept to probe volatile distribution and properties at the lunar poles with miniature impactors. Planetary and Space Science, 2020, 189, 104969.	0.9	5
32	Meteoroid Bombardment of Lunar Poles. Astrophysical Journal, 2020, 894, 114.	1.6	8
33	Geologic context and potential EVA targets at the lunar south pole. Advances in Space Research, 2020, 66, 1247-1264.	1.2	22
34	Physical and compositional properties of impact melts for Jackson and Tycho craters: Implications for space weathering and degradation of lunar impact melts. Icarus, 2020, 351, 113926.	1.1	2
35	Deep Neural Network-Based Landmark Selection Method for Optical Navigation on Lunar Highlands. IEEE Access, 2020, 8, 99010-99023.	2.6	9
36	Lunar Flashlight: Illuminating the Lunar South Pole. IEEE Aerospace and Electronic Systems Magazine, 2020, 35, 46-52.	2.3	16

#	Article	IF	CITATIONS
37	A geologic model for lunar ice deposits at mining scales. Icarus, 2020, 347, 113778.	1.1	52
38	Water within a permanently shadowed lunar crater: Further LCROSS modeling and analysis. Icarus, 2021, 354, 114089.	1.1	17
39	Improved LOLA elevation maps for south pole landing sites: Error estimates and their impact on illumination conditions. Planetary and Space Science, 2021, 203, 105119.	0.9	48
40	The spectral radiance of indirectly illuminated surfaces in regions of permanent shadow on the Moon. Acta Astronautica, 2021, 180, 25-34.	1.7	7
41	Geomorphic Evidence for the Presence of Ice Deposits in the Permanently Shadowed Regions of Scottâ€E Crater on the Moon. Geophysical Research Letters, 2021, 48, e2020GL090780.	1.5	14
42	Illumination conditions within permanently shadowed regions at the lunar poles: Implications for in-situ passive remote sensing. Acta Astronautica, 2021, 178, 432-451.	1.7	8
43	Simulation of Pol-SAR Imaging and Data Analysis of Mini-RF Observation From the Lunar Surface. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-11.	2.7	8
44	From space back to Earth: supporting sustainable development with spaceflight technologies. Sustainable Earth, 2021, 4, .	1.3	14
45	Small Penetrator Instrument Concept for the Advancement of Lunar Surface Science. Planetary Science Journal, 2021, 2, 38.	1.5	5
46	Micro Rover Mission for Measuring Lunar Polar Ice. , 2021, , .		5
47	Review of the research on detection and inversion on lunar polar water ice. , 2021, , .		0
48	Thermophysical Characterization of Cyclic Frost Formation in the Subsurface and Nominal Water Activity on Comets: Case Study of 67P/Churyumov-Gerasimenko. Astrophysical Journal, 2021, 910, 10.	1.6	2
49	Characterization of H2O transport through Johnson Space Center number 1A lunar regolith simulant at low pressure for <i>in-situ</i> resource utilization. Physics of Fluids, 2021, 33, .	1.6	4
50	The LUVMI Volatile Sampler and Volatile Analysis Package for In Situ ISRU Applications on the Moon and Other Airless Bodies. , 2021, , .		0
51	Ice Prospecting on the Moon at Mining Scales. , 2021, , .		0
52	Lunar thermal mining: Phase change interface movement, production decline and implications for systems engineering. Planetary and Space Science, 2021, 199, 105199.	0.9	8
53	The Business Case for Lunar Ice Mining. New Space, 2021, 9, 77-94.	0.4	14
54	Temperatures Near the Lunar Poles and Their Correlation With Hydrogen Predicted by LEND. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006598.	1.5	11

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
56	Water Group Exospheres and Surface Interactions on the Moon, Mercury, and Ceres. Space Science Reviews, 2021, 217, 1.	3.7	21
57	Secondary Impact Burial and Excavation Gardening on the Moon and the Depth to Ice in Permanent Shadow. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE006933.	1.5	14
58	Peering into lunar permanently shadowed regions with deep learning. Nature Communications, 2021, 12, 5607.	5.8	13
59	Impact Gardening as a Constraint on the Age, Source, and Evolution of Ice on Mercury and the Moon. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006172.	1.5	43
60	Analyzing Surface Ruggedness Inside and Outside of Ice Stability Zones at the Lunar Poles. Planetary Science Journal, 2021, 2, 213.	1.5	12
61	Design and characterization of a low cost CubeSat multi-band optical receiver to map water ice on the lunar surface for the Lunar Flashlight mission. , 2017, , .		0
62	Physical Properties of Icy Materials. , 2018, , 15-29.		0
63	Optical and mechanical designs of the multi-band SWIR receiver for the Lunar Flashlight CubeSat mission. , 2018, , .		Ο
64	The Lunar Flashlight CubeSat instrument: A compact SWIR laser reflectometer to quantify and map water ice on the surface of the Moon. , 2018, , .		1
65	Lunar and off Earth resource drivers, estimations and the development conundrum. Advances in Space Research, 2020, 66, 359-377.	1.2	2
66	Indirect solar receiver development for the thermal extraction of H2O(v) from lunar regolith: Heat and mass transfer modeling. Acta Astronautica, 2022, 190, 365-376.	1.7	4
67	Resource potential of lunar permanently shadowed regions. Icarus, 2022, 377, 114874.	1.1	25
68	Depth to Diameter Analysis on Small Simple Craters at the Lunar South Pole—Possible Implications for Ice Harboring. Remote Sensing, 2022, 14, 450.	1.8	3
69	Polarimetric analysis of L-band DFSAR data of Chandrayaan-2 mission for ice detection in permanently shadowed regions (PSRs) of lunar South polar craters. Advances in Space Research, 2022, 70, 4000-4029.	1.2	11
70	Exogenic origin for the volatiles sampled by the Lunar CRater Observation and Sensing Satellite impact. Nature Communications, 2022, 13, 642.	5.8	13
71	Size–frequency measurements of meter-sized craters and boulders in the lunar polar regions for landing-site selections of future lunar polar missions. Icarus, 2022, 378, 114938.	1.1	4
72	Volatile interactions with the lunar surface. Chemie Der Erde, 2022, 82, 125858.	0.8	26
73	The Effects of Terrain Properties Upon the Small Crater Population Distribution at Giordano Bruno: Implications for Lunar Chronology. Journal of Geophysical Research E: Planets, 2022, 127, .	1.5	5

#	Article	IF	CITATIONS
74	ielectric characterization and polarimetric analysis of lunar north polar crater Hermite-A using handrayaan-1 Mini-SAR, Lunar Reconnaissance Orbiter (LRO) Mini-RF, and Chandrayaan-2 DFSAR data. dvances in Space Research, 2022, 70, 4030-4055.		7
75	Polar Ice Accumulation from Volcanically Induced Transient Atmospheres on the Moon. Planetary Science Journal, 2022, 3, 99.	1.5	13
76	Exosphere-mediated migration of volatile species on airless bodies across the solar system. Icarus, 2022, 384, 115092.	1.1	6
77	Polar Ice on the Moon. , 2022, , 1-9.		2
78	Simulated Lunar Surface Hydration Measurements using Multispectral Lidar at 3 µm. Earth and Space Science, 0, , .	1.1	0
79	Thermophysical properties of the regolith on the lunar far side revealed by the <i>in situ</i> temperature probing of the Chang'E-4 mission. National Science Review, 2022, 9, .	4.6	7
80	New Constraints on the Volatile Deposit in Mercury's North Polar Crater, Prokofiev. Planetary Science Journal, 2022, 3, 188.	1.5	5
81	Characteristics of de Gerlache crater, site of girlands and slope exposed ice in a lunar polar depression. Icarus, 2022, 388, 115231.	1.1	5
82	Using Laser Altimetry to Finely Map the Permanently Shadowed Regions of the Lunar South Pole Using an Iterative Self-Constrained Adjustment Strategy. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15, 9796-9808.	2.3	3
83	Quantifying Subâ€Meter Surface Heterogeneity on Mars Using Offâ€Axis Thermal Emission Imaging System (THEMIS) Data. Earth and Space Science, 2022, 9, .	1.1	1
84	Selection of Lunar South Pole Landing Site Based on Constructing and Analyzing Fuzzy Cognitive Maps. Remote Sensing, 2022, 14, 4863.	1.8	6
85	WORMS: A Reconfigurable Robotic Mobility System for Extreme Lunar Terrain. , 2022, , .		2
86	LRO‣AMP Survey of Lunar South Pole Cold Traps: Implication for the Presence of Condensed H ₂ O. Journal of Geophysical Research E: Planets, 2022, 127, .	1.5	4
87	Water extraction from icy lunar regolith by drilling-based thermal method in a pilot-scale unit. Acta Astronautica, 2023, 202, 386-399.	1.7	8
88	Possible sites for a Chinese international lunar research station in the lunar south polar region. Planetary and Space Science, 2022, , 105623.	0.9	2
89	Solar/planetary formation and evolution. , 2023, , 1-54.		0
90	Laboratory measurements show temperature-dependent permittivity of lunar regolith simulants. Earth, Planets and Space, 2023, 75, .	0.9	2
91	Statistical estimates of rock-free lunar regolith thickness from diviner. Planetary and Space Science, 2023, 229, 105662.	0.9	0

		CHAHON REPORT	
#	Article	IF	Citations
92	Energetic charged particle dose rates in water ice on the Moon. Icarus, 2023, 395, 115477	. 1.1	1
93	Detecting and characterizing the abundance and form of water-ice in permanently-shadow of the moon using a three-band lidar system. Icarus, 2023, 400, 115540.	ed regions 1.1	Ο
94	Highly Resolved Topography and Illumination at Mercury's South Pole from MESSENGE Planetary Science Journal, 2023, 4, 21.	R MDIS NAC. 1.5	2
95	Design and Verification of a Novel Sampling System for Lunar Water Ice Exploration. IEEE A 11, 18938-18946.	.ccess, 2023, 2.6	0
96	Characterization of H2O vapor transport through lunar mare and lunar highland simulants pressures for in-situ resource utilization. Advances in Space Research, 2023, 72, 614-622.	at low 1.2	0
97	Research of Lunar Water-Ice and Exploration for China's Future Lunar Water-Ice Explora Science & Technology, 2023, 3, .	ation. Space: 1.0	1
98	Buried Ice Deposits in Lunar Polar Cold Traps Were Disrupted by Ballistic Sedimentation. Jo Geophysical Research E: Planets, 2023, 128, .	urnal of 1.5	2
99	Overview of the Lunar In Situ Resource Utilization Techniques for Future Lunar Missions. Sp Science & Technology, 2023, 3, .	bace: 1.0	5
100	Polar Ice on the Moon. , 2023, , 971-980.		1
103	WORMS: Field-Reconfigurable Robots for Extreme Lunar Terrain. , 2023, , .		3
117	Cold-trapped ices at the poles of Mercury and the Moon. , 2024, , 1-29.		0